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Abstract

The next generation wireless system with high mobility requirements brings the
challenge to mitigate the effect of a time-varying channel. Conventional multi-
carrier systems like Orthogonal frequency division multiplexing (OFDM) are de-
signed to mitigate the multipath effects that cause Inter Symbol Interference (ISI),
Since OFDM is highly sensitive to inter carrier interference (ICI), it is not well-
suited for the high mobility scenarios with significant Doppler shifts and fre-
quency dispersion. As the Doppler spread and phase noise leads to the inter
carrier interference (ICI). Unlike the traditional time-frequency domain schemes,
the OTFS system transmits the information symbols in the delay-Doppler do-
main. OTFS converts a doubly-dispersive time-frequency channel into a nearly
static channel in the delay-Doppler domain by means of the Symplectic Fourier
transform . In the delay-Doppler domain, the information symbols experiences
constant fading, thus the OTFS system performs better than the OFDM system
even in the presence of high Doppler. One of the channel estimation schemes for
the OTFS system is pilot based estimation in which pilots are transmitted in the
delay-Doppler domain. In this method, the delay-Doppler coordinates are esti-
mated using the spreading of the pilot output in the time-frequency domain due
to transformations. The channel coefficients estimated by these method are ac-
curate in the absence of noise, but in the presence of noise the channel path gain
value estimates were affected. Additional pilot power is required for this method
to get the accurate estimate. In the proposed channel estimation algorithm, these
slowly varying channel path gain values are estimated using the Gradient based
adaptive algorithms. In this method the pilot based approach is combined with
the adaptive methods to gain the advantages of both the methods. This method
uses a single pilot symbol surrounded by some guard symbols, for the estimation
of the delay-Doppler domain channel. In this method the additional pilots were
inserted to support the adaptive algorithms, but it can give accurate results even
in presence of noise.
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CHAPTER 1

Introduction

1.1 Motivation

The next generation wireless networks bring substantial benefits to the users
enabling significant gain in terms of productivity, speed and quality of service.
The ever increasing demand of data usage makes it clear that the fourth genera-
tion networks will not be able to support these needs. Moreover applications such
as high-speed trains, robotic applications are expected to overwhelm the capacity
of the existing system. .

The next generation wireless systems are evolved from the drawbacks of previ-
ous generations. Thus the emerging 5G technology is evolved to support diverse
usage scenarios. These systems are highly selective to the time-frequency varia-
tions and can not achieve performance compatible to the traditional multi-carrier
systems. The other challenge is handling the time dispersion caused due to mul-
tipath propagation effects and the frequency dispersion caused due to the high
Doppler shifts. The traditional multi-carrier systems like OFDM are affected by
the Doppler shifts as it causes Inter Carrier Interference (ICI), thus leading to loss
of orthogonality between the carriers.

To deal with the above mentioned problems, an approach that was taken to
combat ICI and ISI in OFDM is pulse shaping. In such systems the ability to re-
sist the time-frequency dispersion depends on the pulse localization in the time-
frequency domain. However this pulse shaping approach is not adequate to deal
with the doubly-dispersive channel conditions expected in future wireless sys-
tems. This pulse localization in the time-frequency domain cannot happen simul-
taneously due to Heisenberg’s uncertainty principle.

The recently proposed two dimensional system Orthogonal Time Frequency
Space(OTFS) scheme modulation has taken the motivation for mitigating the above
issues. Unlike the traditional systems working in the time-frequency domain, the
OTFS system is based on delay-Doppler domain representation. In the delay-
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Doppler domain, the time domain pulse can be localized in delay and Doppler
simultaneously.

1.2 Problem Statement

The OTFS system represents the the time-varying channel on any in the delay-
Doppler domain. In this domain, the channel response captures the delay and
Doppler spreads of the dominant reflectors. Thus estimation of the delay-Doppler
domain 2D channel becomes necessary for OTFS symbol detection.

Some of the early research works which were applying the impulse based
channel estimation approach require the entire OTFS frame to be transmitted for
pilot transmission. This leads to reduction in spectral efficiency. To improve this
further a few embedded pilot based methods have been implemented. In these
methods the pilot symbols are embedded in the data grid and arranged such that
there is least interference from the data symbols. This was followed by the belief
propagation algorithms or threshold based methods.

Although in the delay-Doppler domain, the fast fading channel simplifies and
the two-dimensional channel impulse response becomes nearly static, the delay-
Doppler channel response may vary slowly with time due to high Doppler sce-
narios. And the existing algorithms are not well suited to handle the time-varying
nature of the channel. We propose a low-complexity pilot based adaptive algo-
rithm for estimating the 2D channel, combining the advantage of pilot assisted
methods with the adaptive algorithms.

1.3 OFDM Theory

In the single carrier systems, the transmission occurs on the entire bandwidth
in the frequency domain, thus reducing the symbol duration in the time domain.
This duration becomes compatible with the delay spread defined by the difference
between the arrival time of the earliest to the multipath component requiring the
longest time to arrive. Thus the delay spread becomes significant as compared to
the symbol duration leading to Inter Symbol Interference (ISI) shown in Figure
1.1. To deal with this issue, one way is to increase the symbol duration such that
the maximum delay spread becomes negligible.

The multi-carrier systems divide the entire bandwidth into small sub-bands
and dedicate each sub-band to a subcarrier. Due to this the symbol duration is
increased, reducing the effectiveness of the ISI effect. But these systems require
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Figure 1.1: Inter Symbol Interference effect

a bank of modulators and demodulators. To implement a single modulator and
demodulator block requires oscillators.

The OFDM system is a multi-carrier systems, where the subcarriers are orthog-
onal to each other shown in Figure 1.2. Due to orthogonality the signal spectrum
corresponding to different subcarriers can be overlapped in frequency domain as
shown in Figure 1.3. Hence the bandwidth efficiency can be achieved without
causing ICI. In addition to orthogonality, the cyclic prefix is a key element of en-
abling the OFDM signal to operate reliably. The cyclic prefix is added according
to the maximum delay caused by the multipath component, thus protecting the
consecutive symbols from ISI.

In the OFDM system the modulation and demodulation blocks are imple-
mented using the Inverse finite Fourier transform and finite Fourier transform
respectively. Implementing a bank of N modulator or demodulator blocks is not
practical as it would be computationally very complex, while the same task of
modulating the N-parallel subcarriers can be done by FFT/IFFT with much less
complexity. The block diagram of the OFDM system is shown in Figure 1.4. The
transmitted data is the QPSK/QAM modulated symbols in the frequency domain.
For transmitting this frequency domain OFDM symbol through the channel, it
must be transformed to a time domain symbol using IFFT operation. At the re-
ceiver side the FFT operation is performed to convert the received signal back to
the original form.

The cyclic prefix added to the time domain OFDM symbol at the transmitter
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Figure 1.2: FDM vs OFDM channel

repeats the end portion of each symbol and appends it to the start of the sym-
bol. The duration of the cyclic prefix is decided by the maximum delay spread
and thus it acts like a guard between the adjacent symbols and avoids ISI. The
input-output relationship in the time domain, which is represented as the linear
convolution between the signal and channel, can be modeled as circular convolu-
tion due to the circular rotation caused by addition of the cyclic prefix (Figure 1.5).
Due to FFT operation at the receiver this circular convolution gets transformed
into multiplication thus simplifying the channel estimation and equalization.

To summarize the advantages of OFDM, it makes efficient use of the available
bandwidth by overlapping the data on subcarriers in frequency domain due to
orthogonality. The addition of cyclic prefix helps eliminate the ISI and converts
the time-domain linear convolution to circular convolution, thus simplifying the
process of frequency domain equalization. The use of the FFT block makes OFDM
computationally efficient and replaces complex modulator blocks used in other
multi-carrier systems.

1.4 OFDM Drawbacks

The OFDM system is based on certain assumptions like the time domain chan-
nel impulse response is shorter than the CP duration, there is perfect synchro-
nization between the transmitter and receiver, the fading is slow enough that the
channel can be assumed to be constant at least throughout one OFDM symbol
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Figure 1.3: Orthogonality of Subcarriers

Figure 1.4: OFDM system model

length. Due to these assumptions which may not always hold, there are a few lim-
itations that the OFDM system may face. If the cyclic prefix length is not adequate
then the ISI effect will not be eliminated completely affecting the system perfor-
mance. But increasing the CP length will increase the overhead thus decreasing
the spectral efficiency. This is a trade-off for selecting optimum CP length.

Orthogonality is an important property that makes OFDM different and more
efficient than other multi-carrier systems, but it also makes it susceptible to in-
terference due to frequency offset. The OFDM system is more sensitive to the
frequency offset, as this offset causes drift in the subcarrier spacing causing loss
of orthogonality. The frequency offset often occurs when the local oscillator signal
at the receiver is not synchronized with the transmitter.

The Peak to Average Power Ratio (PAPR) is the ratio of peak power to the
average power of a signal. In the OFDM system due to the large number of inde-
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Figure 1.5: Effect of cyclic prefix addition

Figure 1.6: Inter Carrier Interference effect

pendent carriers the peak power can be significantly high and lead to high PAPR
. Thus the signal region moves outside of the dynamic range and it crosses to the
nonlinear region which results in loss of orthogonality and ICI. The effect of ICI is
shown in Figure 1.6.

The OFDM is robust to the ISI in presence of time-invariant channels . How-
ever for the high mobility next generation applications, the channel is time-varying
because of dispersion in both time and frequency domain. The high- speed com-
munication causes high Doppler conditions. Due to the high Doppler shifts, the
orthogonality of the subcarriers is lost and the OFDM suffers heavy performance
degradation.
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CHAPTER 2

Orthogonal Time Frequency Space (OTFS)

2.1 OTFS Theory

2.1.1 Basics

In the introduction section, we saw that the multi-carrier schemes such as OFDM
eliminates the effect of inter-symbol interference (ISI)s. However they are vulner-
able to the severe inter-carrier interference due to the significant Doppler spread
introduced by the high-mobility scenario.

The Orthogonal Time Frequency Space (OTFS) modulation provides a poten-
tial solution for reliable communications in high-mobility scenarios. Unlike the
traditional Time-Frequency (TF) domain modulation techniques like OFDM, the
OTFS modulation first maps the QAM/PSK modulated symbols onto a two di-
mensional grid in the delay-Doppler plane. The M× N grid has the spacing ∆τ

along the delay period τ and the spacing ∆υ along the Doppler period υ. The
delay period τr = 1/ f and Doppler period υr = 1/T such that τ × υ = 1. Thus
the delay-Doppler grid is limited within unit area grid.

The OTFS waveform convolves with the wireless channel capturing the dom-
inant multipath reflectors. In the TDM representation when a localized pulse is
transmitted in time domain, at the receiver there are several echoes that corre-
spond to the multipath delays. The phase and amplitude of these echoes changes
due to Doppler shifts and the constructive or destructive interference from vari-
ous reflectors sharing the same delay but differing in Doppler. Thus in the time
domain, the pulses cannot be identified separately.

Similarly in the FDM representation, the FDM localized pulse gives rise to
echoes corresponding to Doppler shift induced by various reflectors. Here the
phase and amplitude of the echoes changes due to multipath fading effect and
due to constructive or destructive interference from numerous reflectors sharing
the same Doppler but differing in delay resulting in inseparability of reflectors
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Figure 2.1: Reflectors in Time-Frequency domain

with different delay components. The TDM echoes from left to right in [[1], Fig-
ure 2.1], we can observe that the first and third echoes are due to the time invariant
static reflectors, the fourth echo is due to moving reflector thus it is time varying.
For the second echo there are two reflectors with same delay but different Doppler
as one of the reflector is moving, so this echo is due to interference of two reflec-
tors causing fading. Similar is the case for the second echo in frequency domain
which is corresponding to fading caused due to reflectors having different delay
components.

The signal represented in the delay-Doppler (DD) domain is said to be local-
ized in both delay and Doppler domain as illustrated in [[1], Figure 2.2], which is
not possible in individual time and frequency domains (Heisenberg’s uncertainty
principle). The reflectors can be identified separately without any fading due to
this 2D delay-Doppler representation. The received echoes are confined inside the
rectangular grid. Thus the transmitted pulses are separated with respect to each
other and will remain orthogonal to each other.

Figure 2.2: Reflectors in Delay-Doppler domain

In the OTFS system, two dimensional basis functions are used which are lo-
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calized in the delay-Doppler plane. These basis functions are spread across the
entire time-frequency plane when converted from delay-Doppler domain to time-
frequency domain [1].

2.1.2 Principles and theorems

There are three ways of representing the information symbols in time, frequency
and the delay-Doppler domain. The time and frequency domains can be trans-
formed using Fourier transform. Similarly the delay-Doppler domain signal can
also be converted into time-frequency domains and vice versa by the means of
some transformations.

The transformation defined above is to be applied over the information sym-
bols defined over delay-Doppler grid defined earlier. Once the grid is defined,
then we position the localized pulse wm,n in that delay-Doppler grid at a specific
point (n∆τ, m∆υ). This wm,n is a two dimensional pulse shown as the combination
of one-dimensional TDMA and OFDM pulses given as :

wm,n(τ, υ) = wτ(τ −m∆τ).wυ(υ− n∆υ) (1)

The first pulse is localized in the delay domain and the second one is localized
in the Doppler domain as shown in Figure 2.3.

Figure 2.3: Delay-Doppler modulation scheme

To describe the pulse wm,n in time domain we will compute the ZAK transform
Zt(wm,n) explained in detail in [2]-[3]. This time domain representation is shown
as Figure 2.4. The time domain waveform is a impulse train (shown in green
colour) multiplied by complex exponential signal(shown by red colour) ej2πm∆υt.
The impulses are separated by delay coordinate n∆τ. The shape of the impulse
train is related to the delay pulse wτ, and the shape of the total pulse is related
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to the Fourier transform of the Doppler pulse wυ. Thus displacement along the
delay axis will cause the waveform to shift along the time axis similar to TDM
and the shift along the Doppler domain will cause the change in frequency by the
same amount of shift like FDM. Thus OTFS can be seen as the generalization of
TDM and FDM systems.

Figure 2.4: The OTFS carrier waveform transformation using ZAK transform

Another way in which the OTFS system can be modeled is by adapting the
existing OFDM framework. It can be seen as a scheme that adds pre- and post-
processing modules to a traditional OFDM system. This makes it more relatable
with the classical multi-carrier time-frequency (TF) grid. The transformation be-
tween these grids is given by Symplectic Finite Fourier Transform (SFFT). The
SFFT operation on an MN grid is equivalent to an M-dimensional FFT followed
by N-dimensional IFFT along rows and columns of the grid respectively.

The motivation behind this transformation can be explained using Figure 2.5.
For the transformation from delay-Doppler domain channel response h(τ, υ) to
time-frequency domain channel response H(t, f ), we need to perform IFFT w.r.t.
time domain to get the time-variant impulse response g(t, τ) (time-delay domain)
followed by FFT w.r.t. delay domain to get the time-frequency channel response.
This operation can be performed using a single Inverse Symplectic Finite Fourier
Transformation (ISFFT). And for the transformation from h(τ, υ) to H(t, f ), we
need to perform FFT w.r.t. time domain to get the Doppler-variant impulse re-
sponse B(υ, f ) (Doppler-frequency domain) followed by IFFT w.r.t. delay domain
to get the delay-Doppler channel response. This operation can be performed us-
ing a single Symplectic Finite Fourier Transformation (SFFT).

This method gives another variant of OTFS, in which the OTFS system can be
modeled by adapting the existing OFDM framework. It can be seen as a scheme
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Figure 2.5: Transformation between different domains

that adds pre- and post-processing modules to a traditional OFDM system. This
makes it more relatable with the classical multi-carrier time-frequency (TF) grid.
The TF domain grid, with the time domain sampling interval T and the frequency
domain sampling interval f is denoted as:

Λ = {(m∆ f , nT), m = 0, 1, ..., M− 1, n = 0, 1, ..., N − 1 (2)

While the delay-Doppler plane is discretized to an M by N grid as:

Γ = {( l
M∆ f

,
k

NT
), l = 0, 1, ..., M− 1, k = 0, 1, ..., N − 1 (3)

Figure 2.6: Time-Frequency and Delay-Doppler grids

Where
1

M∆ f
and

1
NT

sampling intervals for the delay and Doppler axes re-
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spectively. The time-frequency and delay-Doppler grids are shown in Figure 2.6.
The OTFS system can be viewed as the time-frequency spreading technique

due to the transformation between the delay-Doppler and time-frequency domain
as shown in Figure 2.7.

Figure 2.7: Symplectic Fourier transformation

The two dimensional (2D) orthogonal basis function that is seen above is de-
fined as :

Ψn,m(m′∆t, n′∆ f ) = e
j2π(

mm′

M
−

nn′

N
)

(4)

As the delay and Doppler coefficients change, the slope of this 2D basis func-
tion over frequency and time axis changes as m and n respectively. This shows
the analogy to the CDMA signature sequence extended to two dimensions, where
these sequences are orthogonal to each other.

2.1.3 Key features and advantages

This section summarizes the key features and advantages of OTFS represented in
Figure 2.8, which are explained in detail in the above sections.

• Delay- Doppler domain : The delay-Doppler representation provides a com-
pact way to represent the signal which is localized in both delay and Doppler
domain due to the property of quasi-periodicity. There is an added advan-
tage that the channel representation in the delay-Doppler domain is sparse
because of less number of multipath reflectors, which will be explained in
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Figure 2.8: Key Features of OTFS

the next section. Due to the sparse representation the channel estimation
becomes less complex.

• Transformations : The ZAK transformation shows the relation between the
TDM and FDM with OTFS system. Also the delay-Doppler grid representa-
tion equation defines hyperbola, which shows TDM and FDM as the limit-
ing cases of OTFS as shown in Figure 2.9. The time domain representation
system can be modelled as delay τr tending to infinity and υr tending to zero.
And the frequency domain representation of the signal can be seen when υr

tending to infinity and τr tending to zero.

Figure 2.9: Relationship with TDM and FDM

• Diversity gain : The Symplectic Fourier transform used for transformation
from delay-Doppler domain to time-frequency domain in Figure 2.7 shows
the spreading nature of the OTFS system similar to the CDMA system. Thus
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the information symbol in delay-Doppler domains spans across the entire
time-frequency domain resulting in diversity gain.

• Robustness to high-Doppler channels : The traditional multi-carrier sys-
tems suffer due to the high-Doppler induced in the channel and there is a
significant degradation in performance due to the time-variant nature of the
channel. On the contrary, the delay-Doppler representation of the channel
converts this channel to a slow fading channel. Due to this the information
symbols face near constant fading.

2.2 OTFS System model

2.2.1 Block diagram

The OTFS system follows the general block diagram as seen in [[4], Figure
2.10], where the Time-Frequency domain block is the familiar OFDM modulation
scheme that is combined with the Pre and Post processing blocks to implement
the OTFS modulation scheme in the delay-Doppler domain.

The QAM symbols x[k, l] arranged in the DD domain are mapped to the TF
domain symbols X[m, n] through 2D Inverse Symplectic Finite Fourier Transform
(ISFFT). This step is followed by the Heisenberg transform, which is a general-
ization of the Inverse Fast Fourier Transform (IFFT). This converts the TF domain
symbols X[m, n] to the time domain signal s(t).

Figure 2.10: SISO-OTFS system model

The Wigner transform is applied at the receiver side on the received signal
r(t) for transforming it back to a time-frequency domain signal Y[m, n], which is
a generalization of the inverse Heisenberg transform followed by the Symplectic
Finite Fourier Transform (SFFT) which maps these symbols back to DD domain
y[k, l].

The OTFS system input-output relationships in different domains is expressed
as follows :

14



1. OTFS Input-Output relation in Matrix form :
Transmitter :

• ISFFT:
The Symplectic Fourier Transform is a variant of the 2D Fourier trans-
form which is used for conversion between the delay-Doppler and time-
frequency channel representations. The information symbols are trans-
mitted in a packet of duration NT in a given bandwidth B = M∆ f ,

where ∆ f =
1
T

. At the transmitter side we use Inverse Symplectic
Fourier Transform, given as :

X[m, n] =
1

MN

M−1

∑
k=0

N−1

∑
l=0

x[k, l]e
j2π(

nl
N
−

mk
M

)
= FMxFH

N (5)

• Heisenberg transform:
This step is following the ISFFT operation known as Heisenberg trans-
form, which maps the TF domain symbols X[m, n] to time domain sig-
nal s(t) which can be arranged in a M× N matrix S.

s(t) =
M−1

∑
m=0

N−1

∑
n=0

X[m, n]ej2πm∆ f (t−nT) (6)

S = GtxFH
MX (7)

S = GtxFH
M(FMxFH

N ) = GtxxFH
N (8)

s = vec(S) = (FH
N ⊗ Gtx)x̄ (9)

where Gtx is the transmit window (matrix representation of gtx) and x
is the DD domain M× N grid and x[k, l] and x̄ = vec(x). The equation
(9) can be derived from the fact that x̄ is a MN× 1 vector, so to perform
the same operations on the vector we should use Kronecker product.

Channel :

• The input-output relation in time domain is given as

r(t) =
∫

τ

∫
υ

h(τ, υ)s(t− τ)ej2πυ(t−τ)dτdυ + w(t) (10)

where h(τ, υ) = ∑P
i=1 hiδ(τ − τi)δ(υ− υi) is channel representation in

DD domain, P is the number of propagation paths, and hi, τi, υi de-
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note the complex path gain, delay and Doppler shift. The delay and

Doppler-shift taps for the ith path are given by : τi =
li

M∆ f
, υi =

ki

NT
where li and ki are integers and ∆ f and T are Doppler and delay reso-
lutions.

Receiver :

• Wigner transform:
At the receiver side, the time domain symbols R are first converted to
the TF domain samples Y[m, n] by taking the Wigner transform (OFDM
demodulator) and then the SFFT on Y[m, n] to get the received symbols
y[k, l] in the delay-Doppler plane.

Yt f ( f , t) =
∫

y(t)g∗rx(t
′ − t)e−j2π f (t′−t)dt′ (11)

Y = Yt f ( f , t)| f=m∆ f ,t=nT = FMGrxR (12)

• SFFT:
The Symplectic Fourier Transform for converting these TF domain sym-
bols Y[m, n] back to DD domain symbols is given as

y[k, l] =
1

MN

M−1

∑
k=0

N−1

∑
l=0

Y[m, n]e
−j2π(

nl
N
−

mk
M

)
= FH

MYFN (13)

y = FH
M(FMGrxR)FN = GrxRFN (14)

r = vec(R) and ȳ = vec(y) = (FN ⊗ Grx)r (15)

where Grx is the receive window.

2. OTFS Input-Output relation in Discrete form :

The received signal r(t) is sampled at the rate fs = M∆ f =
M
T

and a vector
r of length MN is formed. The discrete form of (10) can be written as,

r(n) =
P

∑
i=1

hie
−j2π

ki(n− li)
MN s([n− li]MN) + w(n) (16)

where [.]n denotes mod-n operation. This equation can further be written in
vector form as,

r = Hs + w (17)
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H is a MN ×MN matrix of the following form :

H =
P

∑
i=1

hiΠli ∆ki (18)

where hi is the complex channel path gain, Π is the permutation matrix and
∆ is the diagonal matrix. This channel is represented in Figure 3.1.
Using the equations (9), (15) and (17), the DD domain relation of transmitted
and received symbols can be given as,

y = (FN ⊗ Grx)H(FH
N ⊗ Gtx)x + (FN ⊗ Grx)w (19)

y = He f f x + ŵ (20)

He f f is the DD domain channel shown in Figure 3.2

3. Alternate Vectorized input-output (I/O) relation : The matrix form of DD
domain input-output relation which we saw in (15), can be represented al-
ternatively as :

y[k, l] =
1

MN

N−1

∑
l′=0

M−1

∑
k′=0

x[k′, l′]hw[
(k− k′)

NT
,
(l − l′)
M∆ f

] + w[k, l] (21)

where hw[
(k− k′)

NT
,
(l − l′)
M∆ f

] = hw(υ, τ)|
υ=

(k− k′)
NT

,τ=
(l − l′)
M∆ f

and hw is the

windowed channel response defined in [4].

4. Time-Frequency (TF) domain simplification :
In the OFDM system, the input-output relation is expressed as convolution
in the time domain and multiplication in frequency domain. The OTFS sys-
tem model retains this relationship. In high mobility scenarios the channel is
both time and frequency dispersive due to the presence of multipath propa-
gation and the Doppler spreads. This results in time-delay domain channel
g(t, τ). Thus the received signal linear time variant channel can be modeled
in same way as OFDM :

r(t) =
∫

g(t, τ)s(t− τ)dτ + w(t) (22)

Similarly we can express the TF domain equations as follows :

Y[m, n] = H[m, n] X[m, n] + ICI + ISI (23)
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The TF domain channel H and its DD domain equivalent is shown in Figure
3.4 and Figure 3.3 respectively.
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CHAPTER 3

Channel estimation

3.1 Channel representation

When the information signal is transmitted over a wireless channel, it gets
delayed in time (due to multipath delay spread) and its frequency content is
shifted (due to Doppler shift). High mobility or high operating frequency would
cause the channel to vary rapidly. The delay-Doppler representation converts the
rapidly varying channel into a nearly constant or slow fading channel. Due to
sparsity and compactness, the channel estimation becomes more convenient in
the delay-Doppler domain than in the time-frequency domain.

In the above system model section, we have seen that the transmitted informa-
tion symbols, received symbols and the channel can be represented in various for-
mats. And depending on the representation, the channel model is also modified to
suit the requirements. Thus in the matrix form, the channel in the time-frequency
domain is modeled as a matrix given in (18).

Figure 3.1: MN ×MN TF domain channel for M = 8 and N = 8

The delay-Doppler domain equivalent of the above channel in MN×MN ma-
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trix form He f f mentioned in (20) can be written as :

He f f = (FN ⊗ Grx)H(FH
N ⊗ Gtx) (24)

Figure 3.2: MN ×MN DD domain channel for M = 8 and N = 8

Both these channels are expressed as MN × MN matrices. The windowed
channel response hw derived from the vectorized input-output relationship is the
channel representation as a M× N matrix.

hw(υ, τ) =
∫ ∫

h(τ′, υ′)w(τ − τ′, υ− υ′)ej2πυτdτ′dυ′ (25)

where w(τ, υ) = ∑N−1
n=0 ∑M−1

m=0 1.e−j2π(υnT−τm∆ f )

Figure 3.3: M× N DD domain channel for M = 32 and N = 32

20



The time-frequency domain equivalent representation of this channel is given
by H(m, n) (23) is shown Figure 3.4.

Figure 3.4: M× N TF domain channel for M = 32 and N = 32

From Figure 3.3, we can see that the complex time-variant channel model is
converted into a simplified form in the delay-Doppler domain. We can observe
that there are four peaks in this figure, which is equal to the number of channel
taps. The peaks correspond to the dominant multipath components. Thus in the
delay-Doppler domain the actual geometry of the channel can be estimated.

Since there are only a few number of reflectors, the parameters to be estimated
( i.e. the delay and the Doppler coefficient corresponding to the reflectors) are also
fewer. Also the distance and the velocity will remain roughly the same for a larger
duration of time rather than the time variant channel in time-frequency domain.
This makes the channel estimation process less complex.

3.2 Existing techniques

In the previous chapter, we saw that the delay-Doppler domain channel estima-
tion is less complex and also provides us the information for the complete channel
response. Hence in [5]-[6], the pilot-aided channel estimation techniques were in-
vestigated. In [7], an entire OTFS frame was used for pilot transmission and the
estimated channel information was used for data detection in the next frame. In
this method the pilot overhead is very high. Also this method may not work well
for the highly time-variant channel, as there is an assumption that the channel
response will be static at least for the upcoming frame of data.

In [8] explains the time-frequency domain estimation of the channel when
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compared to the [7, 9], where the channel estimation was conducted in delay–Doppler
domain. The paper [6] proposed an iterative algorithm based on pseudo random
pilots for channel estimation in the delay-Doppler domain. They have used the
Randomized Gibbs sampling based detection algorithm, which is a complex algo-
rithm.

In [9], the channel estimation of the OTFS system is done using the pilot-based
scheme with integer Doppler shifts. But the detailed description of this scheme
with the pulse shaping waveform is not given in [9]. There are several papers
focusing on utilizing the sparsity of the channel and they use a compressive sens-
ing approach for estimating the channel [10] . The compressive sensing based
algorithms are complex and the pilot overhead is more.

With a suitable message passing based OTFS detection algorithm [11], the per-
formance of OTFS is in general independent of Doppler frequencies for a given
pulse shape unlike OFDM.
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CHAPTER 4

Pilot based estimation

The traditional channel estimation methods transmit the reference symbols to
estimate the channel over these symbols and then interpolate the estimated chan-
nel for the data symbols. In the OTFS system, the channel is represented in a 2D
grid with respective delay-Doppler coefficients and the channel taps are less in
number as compared to the whole dimension of the grid. The pilot based meth-
ods make use of the spreading property of the OTFS system i.e. the data symbol
present at the position [m, n] in the delay-Doppler domain, gets spreaded across
the whole time-frequency grid after the ISFFT operation [12]. Thus even with a
single pilot symbol added in delay-Doppler domain, the whole time-frequency
domain channel can be estimated. This eliminates the need for interpolation.

The pilot, guard and data symbol arrangement in the delay–Doppler grid for
an OTFS frame transmission is as shown in Figure 4.1, where it can be seen that
one pilot symbol is placed at the centre of the DD domain information symbol
grid. Guard symbols are used to avoid the interference between the pilot and
data symbols.

x[k, l] =



xp, k =
M
2

, l =
N
2

0,
M
2
− kv ≤ k ≤ M

2
+ kv,

N
2
− lv ≤ k ≤ N

2
+ lv

xd, otherwise

(26)

Once this transmitted grid is converted back to the delay-Doppler domain
symbols using SFFT operation, we can extract the pilot grid to estimate the chan-
nel. The pilot grid extracted from the received signal is shown in Figure 4.2, where
we can observe that the single pilot symbol is spread to adjacent guard symbols
due to channel impairments. The pilot symbol will undergo similar Doppler and
delay shifts as experienced by the data symbols. So we can observe this pilot grid
and get the delay and Doppler coefficient positions from the spreaded output.

The above shown pilot output grid is extracted in absence of noise, thus we
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Figure 4.1: M× N DD domain transmit grid

Figure 4.2: Pilot grid extracted from Received signal in DD domain

were able to retrieve the magnitude of the channel coefficients exactly from the
observed peaks with the knowledge of pilot power. In the presence of noise it
becomes difficult to get the channel coefficients because there might be multiple
peaks in the grid and identifying the correct peaks require high pilot power.

The motivation behind going for an adaptive algorithm based approach for
a high-mobility scenario was to compensate for the rapid changes in the chan-
nel. And using these algorithms, the magnitude of the channel coefficients can be
determined even in the presence of noise.
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CHAPTER 5

Adaptive filter theory

5.1 Background

The filter refers to a system which is used to extract the desired information
from noisy data. In the communication context, because of the channel distortion
and noise the data is corrupted and thus the receiver should remove this effect
and estimate the original signal. In the linear filter theory consisting of Wiener or
Kalman filters the algorithm tries to minimize the mean square value of error. In
ref Wiener filtering based iterative Channel Estimation has been investigated for
SC-FDMA. However these methods assume some prior information like mean or
correlation of input or noise. So to mitigate this limitation Adaptive filters can be
used.

An Adaptive filter works on recursive algorithms which modify the system
parameters until error is minimized. Many adaptive algorithms can be viewed as
approximations of the discrete wiener filter.

To develop the recursive algorithm for updating the system parameters (i.e
channel taps in case of channel estimation problem) using the gradient based ap-
proach, we must consider the cost function. This cost function is the mean squared
value of the difference between desired response and actual filter output. To get
to the optimal solution the adaptive algorithm moves along the negative direc-
tion to the gradient vector direction. The adaptive algorithm developed with this
concept can be expressed as :

W(n + 1) = W(n) + correction term (27)

This correction term is the product of the learning rate parameter, input vector
and error signal.
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5.2 Some popular algorithms

In the Stochastic gradient approach, the tapped- delay line model reference is
used as the structural basis. From equation (27) the correction term value depends
on two parameters : the correlation matrix of the tap filters and the cross correla-
tion vector between the desired output and the input tap weights. This equation
can be used to calculate the updated tap weights. This algorithm is popularly
known as Least Mean Square (LMS).

W(n + 1) = W(n) + µx(n)e∗(n) (28)

Where µ is learning rate parameter (step size), x(n) is the input signal and e(n)
is the error signal.

5.3 Least Mean Square Algorithm

The least-mean-square (LMS) algorithm is an adaptive filter that was first de-
veloped by Widrow and Hoff (1960). Adaptive systems can rely on a certain pre-
determined criteria and can modify the system parameters to achieve optimum
results. The LMS algorithm works on a simple principle of minimizing the dif-
ference between the desired response and the actual output. This simplifies the
computation as this algorithm does not include any matrix operations. The block
diagram is shown in Figure 5.1.

Figure 5.1: Least Mean Square Algorithm

The LMS algorithm can be summarized as follows :
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Step 1 : Initialization of the channel weights to zero: w(0) = 0
Step 2 : Actual output: y(n) = wHx(n)
Step 3 : Error = Expected output - Actual output: e(n) = d(n)− y(n)
Step 4 : Update the channel weights: W(n + 1) = W(n) + µx(n)e∗(n)
Where µ is the step size.
The step size determines the convergence rate of the algorithm and the renewal
amount of the channel weights. There is a trade-off between the steady state er-
ror and the convergence rate, i.e if the step size µ is set to a high value then the
algorithm can converge at a faster pace but the steady state error is proportional
to the step size. This results in the decrease in accuracy. And when the step
size is smaller, the steady state error value is reduced but the convergence is also
achieved at comparatively lower rate.

The threshold for the convergence is step size µ less than
2

λmax
, where λmax

is the largest eigenvalue of the correlation matrix of the inputs [13]. When the

ratio of
λmax

λmin
is large, then the convergence is limited by the smallest eigenvalue.

To improve the convergence characteristics of the scheme we consider the Nor-
malized LMS algorithm. The NLMS algorithm is a variant of the LMS algo-
rithm considering step-size normalized by input signal power [14, 15, 16]. Un-
like the LMS algorithm, the step-size in NLMS is time varying and given as:
µ =

α

β + xT(n)x(n)
,where α is the adaptation constant in the range (0,2) and β ≥ 0

is the constant for normalization.

5.4 Combination of Pilot based approach with adap-

tive method

The pilot based approach is combined with the adaptive algorithms to check the
performance of the OTFS channel estimation algorithm at low pilot power. The
pilot based method requires high pilot power to identify the correct pilot output
peaks i.e. the delay and Doppler coefficients of the channel. Also the error be-
tween the actual channel coefficients and the estimated magnitude of the channel
coefficients will reduce proportionately with increase in pilot power.

The adaptive methods can be applied on the time domain data. The LMS al-
gorithm is applied on the time domain received signal to estimate the magnitude
of the channel coefficients. And the pilot based method will help us estimate the
delay and Doppler coefficients. With the knowledge of these three factors we can
regenerate the channel.
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CHAPTER 6

Time-Frequency domain pilot addition

The delay-Doppler domain pilot based method had a requirement of a single pilot
symbol but the pilot power required was high to correctly estimate the channel.
Also the pilot needs to be surrounded by guard symbols. The adaptive algorithms
were able to estimate the channel coefficients even at low pilot power but addi-
tional time domain pilots were required for channel estimation.

To achieve the channel estimation goal at low pilot power and using less num-
ber of pilots, we proposed another method where pilots can be added to time-
frequency domain instead of delay-Doppler domain. The first challenge in this
method was to introduce the pilot symbols in the time-frequency domain grid
without disturbing the data symbols. This is because the data symbols will be
spreaded across the whole time-frequency grid after ISFFT. Due to this spreading
we might lose some part of the spreaded data waveform during pilot insertion.
And stealing some elements from the OTFS time-frequency (TF) grid will distort
all the OTFS symbols.

In the proposed algorithm a different approach is adapted rather than stealing
the elements from the time-frequency grid. The delay-Doppler domain grid is
designed here to be of dimension (N−NP)×M , where NP is the number of pilot
rows. Thus in the time-frequency domain the pilot rows will be concatenated with
this grid to make the entire N × M grid similar to the conventional block type
pilot insertion method as shown in Figure 6.1. These pilot rows will be removed
after channel estimation and equalization in the TF domain itself. Thus the final
TF domain grid is of the dimension (N − NP)× M which is passed to the SFFT
block.

In the above method, the rows containing pilot symbols were added to the
grid. The number of pilots added will be NP × M which is a considerably large
number. To reduce this pilot overhead, another approach was considered which is
based on the combination of block and comb type pilot methods as shown in Fig-
ure 6.2 Here the number of pilot symbols gets reduced to NP × NP pilot symbols
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Figure 6.1: Block type pilot rows insertion

but distortion will be there due to stealing of data waveform.

Figure 6.2: Comb and block type pilot symbols

Thus there is a trade-off between the number of pilot symbols used and the
distortion caused to the data symbols which in turn will affect the BER perfor-
mance.
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CHAPTER 7

Simulation results

The MATLAB (2019a, MathWorks, Natick, MA, USA, 2019) simulator is used for
the analysis. Table 7.1 shows simulation parameters for performance evaluation
of OFDM systems at high Doppler frequencies. At high Doppler frequencies like
300 and 500 Hz, the BER performance is poor as compared to lower Doppler per-
formance as observed in Figure 7.1.

Parameters Value
FFT size (NFFT) 100

Modulation QPSK
SNR range 0:25 dB

Doppler spread 0,100,300 Hz

Table 7.1

Figure 7.1: OFDM BER performance with various Doppler frequencies

The motivation behind going for an adaptive algorithm based approach for
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a high-mobility scenario was to compensate for the rapid changes in the chan-
nel. The LMS algorithm was implemented for estimating the unknown channel
weight w for a system y = wx + n. error between the actual channel weights and
the estimated channel weights calculated and the convergence curve is plotted for
1500 iterations in the cases as shown in Figure 7.2. The Table 7.2 shows simulation
parameters for LMS algorithm with varying step size.

Parameters Value
Num. of taps (L) 10

Iterations (N) 1500
Step size (µ) [0.01,0.02,0.05]

Noise Variance (σ2) 0.01

Table 7.2

Figure 7.2: LMS convergence plot at different step sizes

Parameters Value
Num. of taps (L) 10

Iterations (N) 1500
Step size (µ) 0.02

Noise Variance (σ2) [0.1,0.01,0.001]

Table 7.3

With the trade-off between convergence rate and steady state error, we de-
cided to eliminate the dependency of step size value over signal variations and
apply the variants of LMS algorithms for the above system. The Table 7.3 shows
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Figure 7.3: LMS convergence plot at different noise variances

simulation parameters for LMS algorithm with varying noise variance. In Figure
7.3, the convergence curve for varying noise variance is plotted. The increase in
the noise variance leads to the decrease in the steady state error, but achieves a
faster convergence rate.

In the initial implementation the LMS and NLMS algorithms were applied on
the OFDM system with following system parameters. The BER performance of
the LMS and NLMS algorithms were also compared with the traditional Least
Square (LS) detector applied to the OFDM system with simulation parameters
mentioned in Table 7.4. We can observe from Figure 7.4 that the NLMS algorithm’s
performance is comparable with the LS detector.

Parameters Value
Num. of subcarriers (M) 1024

Num. f symbols (N) 100
Length of CP (MCP) 10

Carrier frequency( fc) 4 GHz
Subcarrier spacing (f) 15 KHz

SNR range 0:20 dB
Modulation scheme QPSK

Table 7.4

In this section, the demodulation performance is evaluated for the SISO-OTFS
system, of which the parameters are set according to the Table 7.5. The delay-
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Figure 7.4: OFDM BER performance with adaptive methods

Doppler grid with M = 16 and N = 16 with a carrier frequency of 4 GHz and it is
passed through channel has 4 multi-paths with a max delay spread of 2.08 s and
max Doppler spread of 470 Hz. The BER performance of the SISO-OTFS system
for the above parameters is shown in Figure 7.5.

Parameters Value
Num. of subcarriers (M) 16

Num. f symbols (N) 16
Length of CP (MCP) 4

Carrier frequency( fc) 4 GHz
Subcarrier spacing (f) 15 KHz

SNR range 0:20 dB
Modulation scheme QPSK

Table 7.5

The LMS algorithm applied for channel estimation of OFDM was a one di-
mensional scheme, but the main challenge was to apply this algorithm for a 2D
channel estimation of OTFS system. In some literature work on MIMO-OFDM
systems two dimensional LMS algorithms were implemented [8]. They have ex-
plained the basic structure of how the LMS algorithm works for two dimensional
systems.

The two dimensional LMS (TDLMS) algorithm is generally used for denoising
of Image [17]-[18]. In this method for a noisy image x of dimension MtimesM
obtained by adding noise to the desired image D a filter window W of order N ×
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Figure 7.5: SISO-OTFS BER performance with MMSE detector

N is selected. This filter window is convoluted with the N × N portion of the
image to generate the actual output which is given as,

y(m, n) =
N−1

∑
l=0

N−1

∑
k=0

Wj(l, k)X(m− l, n− k) (29)

where j is the iteration number given by j = mM + n. At every jth iteration
N × N portion of the image is selected, with the aim of minimizing the Mean
Squared Error (MSE) given by :

MSE = E{e2
J} = E{(D(m, n)− y(m, n))2

j } (30)

Here the filter window is smaller as compared to the image. But in the case
of the OTFS system the channel coefficient matrix has a dimension of MN ×MN
which is actually greater than the length of signal i.e. MN × 1.

Thus instead of going for the TDLMS or any two dimensional adaptive al-
gorithms, the one dimensional algorithms were combined with the pilot based
approach. For the traditional pilot based methods, the pilot output in presence of
noise will be dependent on the pilot power. Figure 7.6 (a) and (b) shows the pilot
output at pilot power 2 dB and 10 dB respectively. The actual channel coefficients
and estimated channel coefficients using pilot based approach and the combined
approach are shown in Figure 7.7 at 10 dB pilot power. The combined approach
gives the same results even at low pilot power.

In the time-frequency domain pilot addition approach, two methods were ex-
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(a) (b)

Figure 7.6: Pilot output grid at pilot power 2 dB (a) and 10 dB (b)

Figure 7.7: Estimated channel taps using adaptive algorithms

plained above. The simulation parameters for both the methods are given in Table
7.6 and Table 7.7 and the BER performance plots are shown in Figure 7.8 and Fig-
ure 7.10. The MSE curve is plotted in Figure 7.9 and Figure 7.11 for both these
methods.
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Parameters Value
Num. of subcarriers (M) 16

Num. f symbols (N) 12
Length of pilot rows (NP) 4

Num. of pilot symbols(NS) 64
Pilot power 2 dB

Carrier frequency( fc) 4 GHz
Subcarrier spacing (f) 15 KHz

SNR range 0:20 dB
Modulation scheme QPSK

Table 7.6

Figure 7.8: BER performance with block type pilot method

Parameters Value
Num. of subcarriers (M) 16

Num. f symbols (N) 16
Num. of pilot symbols(NS) 16

Pilot power 2 dB
Carrier frequency( fc) 4 GHz
Subcarrier spacing (f) 15 KHz

SNR range 0:20 dB
Modulation scheme QPSK

Table 7.7
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Figure 7.9: MSE performance with block type pilot method

Figure 7.10: BER performance with comb and block type pilot symbols
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Figure 7.11: MSE performance with comb and block type pilot method
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CHAPTER 8

Thesis Summary and Conclusion

In the introductory chapters, we have seen the need for the OTFS system. The
problem addressed in this thesis was to estimate the channel for this OTFS sys-
tem in an efficient and yet simple manner. The theory sections explained the key
features of the OTFS system and the differences with respect to the conventional
systems like OFDM system.

In the upcoming chapters, the existing channel estimation methods were in-
troduced to solve the same problem. The performance of one of these methods
i.e. the pilot based estimation method was evaluated in the simulation results
section. The delay-Doppler domain estimation approached proposed in chapter
5, is when based on the pilot based method combined with adaptive algorithms.
This method yields better results in noisy environment but with some additional
requirement of time domain pilots.

Another approach proposed is based on time-frequency domain pilot inser-
tion. There are two possible ways in which pilot symbols can be added to the
grid as explained in Chapter 6. The number of pilot symbols used in both delay-
Doppler based pilot method and the comb and block type time-frequency domain
pilot based method is the same. The latter operates at a much lower pilot power
but at the cost of some distortion caused due to the embedded pilots. So de-
pending on the application any one of the algorithms can be used for channel
estimation of the OTFS system.
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CHAPTER 9

Future scope

In this thesis, the problem of channel estimation for the OTFS system was ad-
dressed from two perspectives. One was channel estimation in the delay-Doppler
domain and other channel estimation in the time-frequency domain. The advan-
tages and the limitations were also discussed in reference to the simulations and
results provided for each method. Some of the issues related to the above men-
tioned methods can be addressed in future. For example, to investigate the time-
frequency domain channel estimation approach ,if the discontinuity caused by
the time-frequency domain pilot insertion can be minimized by designing some
special filter.

In the delay-Doppler domain, some new adaptive algorithms can be explored
for improvement. Also the ZAK transformation approach taken for the OTFS
system model can be studied to explore other ways of estimating the channel.
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