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Abstract

Object Detection and Identification in the field of computer vision is widely re-
garded as one of the most difficult problems in computer science. Yet it is one
of the most rising topics in recent years due to the advancement of the computer
hardware technologies like GPUs.The task of Object Detection and Identification
can be further divided into two categories:

1. Object Detection and Identification in still images.

2. Object Detection and Identification in dynamic environments.

Due to the advancements in computer hardware like GPUs, deep neural net-
work based methods have shown great accuracy and most of the state-of-the-art
methods for still images are based on deep neural networks. Extending these
state-of-the-art object detectors for still images into dynamic environments is not
easy as we see a drop in accuracy because of the deteriorated object appearances
like rare poses, motion blurs, video defocus, and part or full occlusion. The reason
for the decrease in accuracy is that still image detectors do not take into account
the temporal information contained in videos when detecting the objects in dy-
namic environment like videos. To improve the accuracy of the state-of-the-art
detectors in the dynamic environment like videos, different methods have been
developed which takes into consideration temporal information present in videos.

In this thesis work, we have tried to increase the accuracy of state-of-the-art
object detectors by trying to use the knowledge of the previously trained model
as a reference to another model. In our work, we have also tried to simplify
the architecture when we combine two different models without incurring a loss
in the accuracy. In our thesis work, the first model that we have trained is an
pixel-level method and the second model that we have trained is an instance-
level method. We have tested our approach on the ImageNet VID dataset and
YouTube-8M dataset. Results show that our approach has obtained improved re-
sults in instance-level object detection methods.
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CHAPTER 1

Introduction

Object Detection and Identification in images is an effort made by the researchers,
and computer scientists to learn more about how humans detect and identify ob-
jects not only in still images but also in videos and then apply this knowledge to
improve the accuracy of the human created models to detect and identify objects
in images as well as in dynamic environments like videos. This chapter firstly
discusses about Object detection and Identification, then it talks about challenges
in the area of object Identification in dynamic environment, objective of the thesis
and, problem description, followed by the proposed work and the contributions
made by this thesis work and, at last ends with thesis organization.

1.1 General Introduction

In recent years, the world of computer vision has seen and witnessed significant
progress in the domain of object detection[8], especially in the field of video ob-
ject detection. The advancement in the deep convolution networks and hardware
components like GPUs have contributed tremendously in getting better accuracy
and improving the state-of-the-art object detectors not only for still images but
also for video object detection. state-of-the-art object detectors for still images
mostly share a similar two-stage detection network architecture structure. In the
first stage, deep convolution neural networks are applied on the images, and a set
of features are generated from them[9, 10, 11, 12], In the second stage, a shallow
detection-specific network is applied to generate detection results from the input
feature maps of the first stage[13, 14, 15, 16].
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1.2 Thesis Objectives and Problem Description

Deep convolution networks have achieved great accuracy in still images but when
these state-of-the-art object detectors for still images are applied directly to the
videos for object detection it becomes a bit challenging. Loss in object detection
accuracy is seen in video object detection because of the deteriorated object ap-
pearances such as motion blur, rare poses, video defocuses, occlusion, etc. as
shown in Figure 1.1 which is anyways not observed in still images.

Figure 1.1: Deteriorated Object appearance in videos[2].

Most of the state-of-the-art object detectors for still images have failed in giv-
ing good accuracy when applied directly to the video object detection due to the
deteriorated object appearances as shown in Figure 1.1. These state-of-the-art ob-
ject detectors for still images don’t make use of the rich temporal information
which is present in videos. Many new state-of-the-art techniques have been de-
veloped which take the temporal information into account in which some meth-
ods work at the pixel level whereas some methods work at the semantic level to
achieve better accuracy. Many methods/techniques even try to go one step fur-
ther by combining both methods to improve accuracy which in turn makes the
network architecture complex.

Video object detection and identification even though being a difficult task has
gained a lot of importance in the past few years because of its applications in
the real world. For example, vehicle number plate detection of moving vehicles,
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person detection in automated CCTV surveillance, or taking the example of the
recent pandemic situation, where wearing a mask was made mandatory by the
government and failing to comply with the rule resulted in a fine. But the govern-
ment found it difficult to collect the fine when people gathered in numbers in a
public place, where identifying the mask using CCTV live feed can become very
helpful. The application of object identification is increasing as the real world is a
dynamic world unlike a still image having static background.

1.3 Proposed Work

In our thesis work, we try to look deeper into the video object detection domains
model and try to simplify the network architecture when the pixel level and in-
stance level techniques are combined without the loss of accuracy. In this work,
we try to incorporate the use of previously trained weights of pixel-level network
architecture[2] as a reference for the semantic level architecture[4] for generating
feature maps and detection results.

We propose to use of transfer learning in the domain of video object detec-
tion where one model is based on pixel-level method[2] and another model is
based on instance-level method[4] to achieve excellent accuracy with a simplified
network architecture model. We first train our model via the pixel-level method
FGFA[2] and then use its trained weights to train an instance-level model archi-
tecture SELSA[4]. We have trained both of our models on the ImageNet VID
2015 dataset[6] which is considered to be a benchmark dataset for video object
detection. We have tested our approach on ImageNet VID 2015 dataset[6] and the
YouTube-8M dataset [7].

1.4 Contributions

The thesis contributions are as follows:

• In our thesis work, we have introduced the use of transfer learning approach
to fully utilize the video information by using the weights of the trained
model that is a pixel-level based method[2] as a reference for another model
that is an instance-level based method [4].

• We have tested our proposed approach on the ImageNet VID 2015 dataset[6]
and the YouTube-8M dataset [7] which are large-scale datasets for the task
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of video object detection and identification in dynamic environment and
demonstrated improvement over previous methods.

1.5 Thesis Organization

The Thesis report is further divided as follows: Chapter 2 talks about the related
works that have been conducted in the domain of video object detection and iden-
tification along with the literature survey. Chapter 3 talks about our proposed
methodology and model architecture of the proposed work. Chapters 4 and 5
discuss about the experimental setup, the datasets that we have used for experi-
mentation, and the implementation details of both the models that we have used
along with the hardware details. Chapter 6 discusses about the results of our pro-
posed approach on the ImageNet VID 2015 dataset[6] and YouTube-8M dataset
[7], along with the comparisons with state-of-the-art methods namely FGFA[2],
SELSA[4], and MANet[5]. Finally, Chapter 7 discusses about the conclusions and
future work for the conducted studies.
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CHAPTER 2

Related Works and Literature Survey

Object detection in videos refer to the process of locating objects in video se-
quence’s frame.Object detection mechanism is required for every identification
process, whether in every frame or when an object appears for the first time in
a frame.. Most object detection mechanism uses information from a single frame
for detecting an object. But some of the object detection mechanisms used tem-
poral information which is computed from a sequence of nearby frames. There
are several object detection mechanisms that have been developed for video ob-
ject detection and identification task. The first step of real-time object detection
and identification is to identify the region of interest in the video. This chapter
discusses about the previous works that have been developed, in the domain of
object detection and identification.

2.1 Object Identification in Still Images

Because of the development in the deep convolution neural networks, many state-
of-the-art object detectors for still images are based on deep CNN[17, 18, 19, 20].
This deep CNN are divided into two types. The first one is a single-stage detector
and the second one is a two-stage detector. Two-stage detectors typically generate
the detected output in two stages. For example R-CNN[8] in the first stage will
extract regional features from a backbone network that is made up of Deep convo-
lution neural networks, and in the second stage uses the regions of the first stage
for classification and generating bounding boxes. Another two-stage detector Fast
R-CNN[21] introduced the ROI Pooling operation for speeding up the extraction
of the regional feature in stage one of R-CNN, selective search[22] is used for gen-
erating region proposals. Faster R-CNN[23] proposed RPN to generate Region
Proposals, using the Fast R-CNN backbone. Another method R-FCN[24] intro-
duced ROI Pooling operation which is position sensitive to improve the detection
efficiency. Another recent work is CCD-Net[25], It uses an LCFN module for ex-
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tracting features of neighboring objects. To focus more on valuable features, Hy-
brid Attention Pyramid Network(HAPN) is a module that is deployed by CCD-
Net. Paper MSFYOLO[20] proposes an object detection algorithm to detect small
objects via multi-scale feature fusion. The proposed multi-scale feature learning
technique combines concrete and abstract characteristics by learning shallow fea-
tures at a shallow level and deep features at a deep level. Based on the multi-scale
feature learning network, it produces a feature pyramid for object detection by
combining global and local information.

One stage detectors instead of having two stages have only one stage, which
performs the task of generating feature maps as well as bounding boxes for the ob-
jects. One-stage detectors are usually faster than the two-stage detectors because
of not have to do extra work. You only look once(YOLO)[1] and its variations
YOLY9000[26] and YOLOv3[27], SSD[14], DSSD[28], and Lin -et al[23] are some
one stage detectors.

2.2 Object detection and identification in dynamic en-

vironment

ImageNet was among the very first to introduce a challenge for video object de-
tection. Mostly all the methods made the use of temporal information via the
“bounding box post-processing” step onto the final stage. T-CNN[14] instead
of using bounding boxes at the final stage propagates them to the neighboring
nearby frames using optical flow precomputed beforehand and then applies the
tracking algorithms from high confidence bounding boxes to generate tubelets.
Both the boxes and tubelets based on tubelets classification are re-scored. Seq-
NMS[29] from consecutive frames constructs sequences on the nearby neighbor-
ing bounding boxes having a high-confidence score. The post-Processing step is
formulated as a multi-object tracking problem in MCMOT[30]. To know whether
the bounding boxes are associated with the tracked item or not, many hand-craft
rules like color or motion clues, detector confidences, etc are used which can
be further used to refine the results of the tracking. DFF[31] is among the first
work to adopt fine tuned optical flow computation in-network. It uses the optical
flow generated from the FlowNet[31] for propagating and aligning the selected
keyframes features to the surrounding non-keyframes, minimising the redundant
calculations and thus increasing the system speed. FGFA[2] is built on DFF[31]
with an objective to improve the accuracy by aggregating the features using the
optical flows on the keyframes. MANet[5] based on FGFA[2] and DFF[31] in ad-
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dition to the pixel level, provides an instance-level feature calibration and aggre-
gation module in FGFA[2] and then integrated both the levels via a motion pat-
tern reasoning module. RDN[3] tries to learn the relation between the candidate
boxes of nearby neighboring frames and use it to enhance the box-level features.
MEGA[32] is also a method that tries to improve the accuracy by taking into con-
sideration the local as well the global information to enhance the feature maps of
every frame.

2.3 Literature Survey

2.3.1 You only look once(YOLO)[1]

YOLO tries to detect objects in images and videos by adopting the idea of how hu-
mans try to detect objects i.e. by taking into consideration the entire image or the
entire frame of the video. YOLO is a one-stage detector that tries to both predict
the bounding boxes and classify them together in one pass only.As a one-stage
detector, YOLO has numerous advantages. By treating the object classification
problem as a regression problem, YOLO is able to detect and classify objects ex-
ceptionally quickly. YOLO is fast enough to recognize objects in videos shot at
45-frame-per-second speed. Another faster version of YOLO based on Faster R-
CNN has been developed, which can recognize objects in videos captured at the
speed of 150 frames per second.

The second benefit that YOLO has over two-stage detectors is higher accuracy
for detecting generalized representation of objects as YOLO looks at the entire
image to detect and identify the objects. The architecture of YOLO is shown in
Figure 2.1.

Figure 2.1: Architecture of YOLO][1].

YOLO for detection purpose first resizes the entire image and then divides
the entire image into a matrix of S x S grids for detection. Each grid cell in the
image predicts the B number of bounding boxes and the confidence score for the
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predicted boxes once the CNN network is run on the entire image as shown in
Figure 2.1. The bounding box having the center of the object is responsible for
detecting the object of the image. YOLO being a one-stage detector detects objects
faster than two-stage detectors and thus, can be used to detect objects in real-time.

2.3.2 Flow-Guided-Feature-Aggregation(FGFA)[2]

One of the reasons for object detectors of still images not performing very well in
dynamic environments is because object detectors do not take into consideration
temporal information present in the video to detect and identify objects.FGFA[2]
is a method that runs on top of the object detectors and tries to use the tempo-
ral information of the video to improve the accuracy of the object detectors that
consider the nearby neighboring frames. FGFA[2] takes into consideration previ-
ous the 9 frames and the 9 frames ahead of the current reference time as nearby
neighboring frames for getting high accuracy. The architecture of FGFA is shown
in Figure 2.2

Figure 2.2: Architecture of FGFA[2].

FGFA[2] detects and identifies the objects in two stages. Firstly, FGFA[2] ex-
tracts the feature maps of the reference frames and the nearby neighboring frames.
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These extracted feature maps are then warped to the reference frame, resulting in
the reference frame having diverse information. Then in the second stage, it ag-
gregates these warped features into the reference frame by giving higher priority
to the feature maps of the near frames and less priority to the far away frames. Af-
ter the aggregation is performed, these enhanced feature maps are then sent into
the detection network for identifying the objects that are present in the current
reference frame as shown in Figure 2.2.

2.3.3 Relation Distillation Networks for Video Object Detection

(RDN) [3]

RDN is a novel approach that tries to improve the accuracy for object detection,
that takes into consideration the relation of the same object between the different
frames. RDN works in two stages: 1) Basic stage, and 2) Advance stage. The
architecture of RDN is shown in Figure2.3.

Figure 2.3: Architecture of RDN[3].

In the basic stage, RPN is employed to produce the object proposals(ROI) from
the reference frames as well as the nearby neighboring frames. From the object
proposals generated, top K proposals are selected and then sent into the relation
module which aggregates the proposals of the nearby frames with the reference
frame.

In the Advance stage, the top r% proposals of the top K proposals are used to
aggregate the proposals of the frames with only high similarity with the objects in
the reference frame. Advance stage is introduced in RDN to dilute the weightage
of the object proposals that are not very important, as the basic stage tries to take
into consideration all the proposals from the nearby top K frames.

Once the proposal from the advance stage is obtained, these proposals are ag-
gregated with the proposals of the basic stage, and then these enhanced feature
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proposals are used to detect and identify the objects from the current reference
frames.

2.3.4 Sequence Level Semantics Aggregation for Video Object

Detection (SELSA) [4]

To increase the accuracy of the video object detection task, SELSA[4] is a novel
method that relies on the semantic level for object identification rather than de-
pending on the optical flow of the pixels. SELSA[4] takes into consideration a
group of pixels for identifying objects rather than working on each and every raw
pixel of the input reference frame.

SELSA[4] works by aggregating the global level information into the feature
proposals of the current reference frame. Methods that are based on optical flow
can sometimes be inefficient as they do not try to look further beyond a certain
threshold of frames that is the nearby neighboring frames. SELSA[4] tries to en-
hance the feature maps of the current reference frame by taking into account the
global information and aggregating the feature maps having high similarity val-
ues. SELSA[4] looks one step further to enhance feature maps by clustering the
feature maps having high similarity values. SELSA[4] first generates the propos-
als by running a proposal extraction network similar to the one which is used in
pixel-level method. After the proposals are generated, proposals are warped us-
ing similarity between them which is calculated using cosine similarity. Propos-
als that have been warped are then aggregated using the SELSA[4] module and
at last, a detection network is runned over these aggregated proposals to identify
the objects present in the frame as shown in Figure 2.4.

Figure 2.4: Architecture of SELSA[4].
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2.3.5 Fully Motion-Aware Network for Video Object Detection

(MANet) [5]

MANet[5] is a method that trains two methods first one being a pixel level method
and the other one being an instance-level method and then combines their results
at the runtime during the task of object detection and identification. Feature maps
for the objects present in the current reference frame are generated by both meth-
ods, but feature maps of only one method are used for object detection and iden-
tification at runtime. MANet[5] has 3 modules in it, the first one is a pixel-level
method, the second module is an instance-level method and the third one is a
motion pattern based combination as shown in Figure 2.5.

Figure 2.5: Architecture of MANet[5].

The First module in the MANet[5] first aggregates the feature maps of the
nearby neighboring frames 9 frames(that is previous 9 frames from the current
reference frame and 9 frames that are on time occurring ahead of the reference
frame) into the feature maps of the current reference frame to enhance its feature
maps. These feature maps from the output of the first model are stored and for-
warded to the instance-level method and the motion pattern reasoning module.

The second instance-level module already gets the feature maps that are rich
in information but they have local information which is not more than nearby 9
frames. The Instance-level module further enhances the feature maps of the ag-
gregated feature maps by taking into consideration the global information of the
nearby neighboring frames with a random set of indices. These enhanced aggre-
gated feature maps are then forwarded to the motion pattern reasoning module
as shown in Figure 2.5.

The Third module motion pattern reasoning module first finds the average of
the (xi/yi) of all the bounding boxes from the feature maps that have been gen-
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erated from both the methods. After that, if the value comes to be smaller then
it means the object that is present is a rigid body and it will be beneficial to de-
tect the object based on the instance-level method as the instance-level method
is more robust toward change in the appearance of the objects. Similarly, if the
value comes out more than the threshold value then the object is a non-rigid body
that can be detected and identified better by the pixel level method as the pixel
level method takes into account raw pixels directly. The motion pattern reasoning
module’s work is to decide the feature maps of which module should be used at
the runtime to detect and identify the object given the input video frame.
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CHAPTER 3

Proposed Methodology

In this work, our aim is to identify the objects for all the input video frames Ii,
where i = 1, 2, 3, ....., N, and output their respective class labels with high accu-
racy. In our work, we try to use the knowledge of a previously trained model for
reference and tunning the previously trained weights in new architecture to get
better accuracy, rather than training the model entirely from the scratch in less
time and with fewer resources.

3.1 Model Architecture

Videos have rich temporal information which can be exploited and used to im-
prove the accuracy of detecting and identifying the objects.

Our model architecture consists of a total of two models that we have used
to get the improvement in accuracy of detecting and identifying the objects that
are present in the input video frame of the video. The first model that we have
used in our model architecture is a pixel-level based method[2], and the second
model which is the final model in our model architecture is an instance-level
based method[4].

For the first model’s training purpose, optical flow is used to calculate the mo-
tion between the same object but in different frames of the input video sequence.
The model has 5 blocks of convolution layer which are used to extract the feature
maps from the input video frames where each layer is followed by an activation
layer that activates neurons of the next layer based on the learned threshold val-
ues.Initially,threshold value of the activation layer is initialized randomly which
is then relearned based on SGD training as the backbone which we are using is
an R-CNN based backbone for object detection and identification in an dynamic
environment.The activation layer is used after the convolution block to reduce the
number of neurons in the next blocks to reduce the number of computations that
are taking place.The architecture of our proposed model is shown in Figure 3.1.
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Figure 3.1: Architecture of Proposed Work.

14



After the activation layer, each block is followed by a max-pooling layer which
takes the maximum value out of the stride of the 2x2 matrix to further reduce the
dimensions of the feature maps to reduce the requirement of the computation
power as the max pooling layer does not make changes into the feature maps of
the input frame. There is a fully connected layer after the 5 layers, the feature
maps of the all the objects present in the input frame are extracted and the neu-
rons of the last layer are connected with a fully connected layer followed by an
activation layer, to identify the object which has been detected based on the fea-
ture maps of that particular object. The last activation layer is used to output the
final predicted class label for the detected object. The last activation layer has 30
neurons in it, where each of the 30 neurons indicates one class among the 30 class
labels respectively.

The weights of each neuron and the weights of the neurons for the forward
layer are initialized randomly at the start of the training. As we use the SGD
training, our model’s errors while the training phase gets backpropagated, and
the weights are modified accordingly. A total of 120K iterations are performed
for training, where the learning rate is reduced after the first 60K iterations. The
weights for the feature aggregation are different from the weights that are used
for generating feature maps. The weights for the feature aggregation are also
initialised randomly at the start of the training only. The weights of the feature
maps are assigned in a way that higher weights are given to the feature maps
that are of the nearby neighboring frames and lower weights are assigned to the
feature maps of the far frames taking the current frame as the reference frame.

The second model that we use in our proposed model is an instance level based
method [4]. The architecture of our second model is the same as the architecture
that we have followed for our first model that is, it has 5 convolution layers, where
every layer is followed by one activation layer and one max pooling layer. A Fully
connected layer is connected with the last layer and there is an activation layer at
last after the fully connected layer to predict the output. The activation layer also
has 30 neurons which indicate one class label each.

The weights of the second model however are initialized with the weights of
the first model which has been trained instead of initializing randomly like the
first model. The weights that have been initialized are retrained again and are
fined tuned based on the instance level method [4]. The method that we use in
our second model for the feature warping is done by calculating the similarity be-
tween the proposals that are generated by the RPN using the cosine similarity. The
range of the cosine similarity that we get is between -1 to 1 both inclusive. Higher
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the value of cosine similarity, the higher the similarity between the proposals gen-
erated by the RPN, which means that higher the chances that the proposals are of
the same object. Similarly, a lower value of the cosine similarity means that the
proposals that are generated are less similar, which indicates that the generated
proposals are more likely to be of different objects. The second model being a se-
mantic level model, the proposals that are generated are more likely to be robust
against changes in the appearance of the objects.

The reason for using the models of two different methods is that training our
model using the pixel level method[2] makes it robust to identify the objects that
are non-rigid and are smaller in size. Fine tuning our approach with the semantic
level method[4] makes our model more robust towards rigid objects and robust
towards change in the appearance of the objects on the occasion of partial or full
occlusion as shown in the Figure 3.2

Figure 3.2: Comparison of accuracy for partial occlusion[5].

From the Figure 3.2, one can see that the pixel-level method is only able to
detect the bus till the height of the car. Still, the instance level method is able to
detect the bus in its entirety with high accuracy, even when the car is standing in
front of the bus. This is the reason that we have choosen an instance-level method
as our final model for predicting class labels after fine tuning the weights obtained
after the training of the pixel-level method.

Feature Warping and Feature Aggregation are two main components of our
proposed method’s architecture.

1. Feature Warping: Its task is to warp feature maps from nearby neighbour-
ing frames with feature maps from the current reference frame, as well as
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feature maps from the current reference frame, based on motion between
the frames.

2. Feature Aggregation: Its work is to aggregate the feature maps of the nearby
neighboring frames based on the weights which have been warped by the
feature warping module, to enhance the feature maps of the current refer-
ence frame.

3.2 Feature Warping

The work of the Feature warping modeule is to warp the feature maps of the
frames, based on the motion between the frames.

3.2.1 Feature Warping for Initialising weights

Motivated by DFF[31], given a a neighbor frame I j and, a reference frame Ii flow
field Mi→j = F(Ii, Ij) can be estimated by a flow network F(For e.g, FlowNet[31]).
Feature maps of the nearby neighboring frames are warped according to the flow
along with the current reference frame. The warping function for warping the
feature maps of the nearby neighboring frames in the reference frame is defined
as follows:

f j→i = W( f j, , Mi→j) = W( f j, F(Ii, Ij)) (3.1)

where W(·) is the warping function applied to all places that are in the feature
maps for every channel, and f j→i refers to the feature maps that are being warped
from frame j to frame i.

3.2.2 Feature Warping for trained weights

Let X f = {x f
1 , x f

2 , ......, x f
n} denote the generated proposals by using the RPN

network of the Faster R-CNN[23]. For any specific pair of generated proposals
{x f

i , x f
j }, the similarity between the generated proposals is calculated using the

generalized cosine similarity.

wkl
ij = ϕ

(
xk

i

)T
ψ
(

xl
j

)
(3.2)

where ϕ(.) and ψ(.) are general transformation functions.
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3.3 Feature Aggregation

The work of the feature aggregation module is to enhance the feature maps of the
objects for the current reference frame by aggregating its feature maps with the
feature maps of the nearby neighboring frames.

3.3.1 Feature Aggregation for Initialising weights

The current reference frame after obtaining the warp feature maps of nearby neigh-
bouring frames into current reference frame along with the feature maps of the
current reference frame now has very diversified information about the object
instances in the current frame. For feature aggregation, different weights for dif-
ferent spatial locations are initialized and all the feature channels for the same
location share the same spatial weights. The weight maps for warped features
f j−>i is represented by wj→i. The aggregated feature maps at the reference frames
are obtained as follows:

f̄i =
i+K

∑
j=i−K

wj→i f j→i (3.3)

where K specifics the number of frames that we consider as nearby neighbor-
ing frames for feature warping and aggregation into the current reference frame.
These aggregated feature maps of the current reference frame are then fed into
the detection sub-network to obtain the output bounding boxes over the objects
of the current reference frame.

yi = Ndet
(

f̄i
)

(3.4)

where Ndet is the detection specific sub-netwrok to generate the output from the
generated feature maps.

3.3.2 Feature Aggregation for trained weights

After the semantic similarity between the proposals is calculated, this semantic
similarity now serves as guidance for the proposals of the reference frame on how
to aggregate the region proposals of the other nearby neighboring frames. The
newly obtained region proposals after aggregating the nearby region proposals
have richer information than previously it had and is more robust against change

18



in appearance like motion blur, rare poses, etc. The similarities are normalized
with the softmax function to preserve the magnitude of the features after the ag-
gregation. Assuming that we aggregate F frames of video at random(By using
the random selection, we can make the model have global information about the
video, which can help our model to detect and identify objects that are experienc-
ing occlusion at a time frame t based on the global information), with each frame
having N number of region proposals generated in each frame. The aggregated
feature for the referenced proposal is defined as follows:

xk
i = ∑

l∈Ω

N

∑
j=1

wkl
ij xl

j (3.5)

where Ω is the set of randomly selected frame indexes for the aggregation.

3.4 Loss Function

The loss function is the function that computes the distance between the current
output of the algorithm and the expected output. It’s a method to evaluate how
your algorithm models the data. This section discusses about the loss functions
that we have used while training both the models in the training phase.

3.4.1 Loss Function for First Model

The loss function that is used in first model is the standard Log-loss.

3.4.2 Loss Function for Second Model

The loss function that is used in second model is the standard L1 loss.
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CHAPTER 4

Experimental setup

In this chapter, we discuss about the datasets that we have used for our experi-
mentation purpose.

4.1 ImageNet VID 2015 Dataset[6]

ImageNet VID dataset [6]. It is a large-scale benchmark dataset for video ob-
ject detection. Following the protocols in [9, 27], the training and testing of the
video object detection model is done on 3,862 video sequences from the training
set and 555 video sequences from the validation set, respectively. All the snippets
of the dataset are fully annotated and are at frame rates of 25 to 30 fps in general.
There are 30 object categories that we have used for training and testing which
are: “airplane, antelope, bear, bicycle, bird, bus, car, cattle, dog, domestic_cat, ele-
phant, fox, giant_panda, hamster, horse, lion, lizard, monkey, motorcycle, rabbit,
red_panda, sheep, snake, squirrel, tiger, train, turtle, watercraft, whale, zebra”.

4.2 YouTube-8M Dataset[7]

YouTube-8M Dataset[7] It is a large-scale labeled video dataset that consists of
millions of YouTube videos. It has precomputed features for all the videos con-
taining billions of frames. It consists of 6.1 Million IDs and 350,000 hours of videos
for training and testing. We have tested our approach on 30 categories which are:
“airplane, antelope, bear, bicycle, bird, bus, car, cattle, dog, domestic_cat, ele-
phant, fox, giant_panda, hamster, horse, lion, lizard, monkey, motorcycle, rabbit,
red_panda, sheep, snake, squirrel, tiger, train, turtle, watercraft, whale, zebra”.
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4.3 Different types of motions in videos

The Ground truth objects in the videos can be categorized into three categories:
slow motion, medium motion, and fast motion according to the motion speed
for better analysis. An Object’s speed can be measured by an indication known
as “Motion IoU” which can be measured by averaging the IoU(Intersection-over-
union) scores with the same instances but in the nearby neighboring frames. Higher
the motion IoU means slower the object moves and similarly lower the motion
IoU means the object moves faster.

Object motions are divided as follows into slow, medium, and fast motion.
They are categorized as follows:

• Slow-motion: motion IoU score > 0.9.

• Medium-motion: motion IoU >=0.7 and motion IoU <= 0.9.

• Fast-motion: motion IoU < 0.7.

Examples of various groups for the different motions are shown in Figure 4.1.
For a detailed analysis, the mean average precision(mAP) is calculated for slow,
medium, and fast motion along with the mean average precision(mAP) of the
entire video.

Figure 4.1: Video snippets of object instances having slow, medium, and fast
motion[2].
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CHAPTER 5

Implementation Details

In this chapter, we discuss in detail the architecture of the feature network that is
used to generate and extract feature maps from the input video sequence frame,
the detection network that is used to identify the object based on the feature maps
generated, and at last talks about how the training is conducted for both the mod-
els.

5.1 Implementation Details of First Model

5.1.1 Feature network

ResNet -101[17] and Aligned-Inception-Resnet[21] is taken as the feature network
in the first model. The nature of both the models is changed slightly for object de-
tection purposes. The ending average pooling layer and FC layer are removed for
object detection purposes. The effective stride of the last block is changed from 32
to 16 to increase the feature resolution as followed in[24, 26]. At the beginning of
the last block, the stride is changed from 2 to 1. To reduce the feature dimensions
to 1024, a 3 x 3 convolution which is initialized randomly is applied on the top.

5.1.2 Detection network

R-FCN[13] is used for detection following the design as followed in[33]. There
are total 1024-d feature maps, on top of which RPN and R-FCN subnetworks are
applied where the RPN sub-network connects the first 512-d feature maps and
R-FCN connects the last 512-d feature maps respectively. 9 anchors (3 scales and 3
aspect ratios) are used in RPN which generates 300 proposals for each and every
image.
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5.1.3 Training

Following the approach followed by[30], both the training sets of ImageNet DET
and ImageNet VID 2015 Dataset [6] are used. Training is performed in two stages.
In the first stage, feature and detection networks are trained on the ImageNet
DET training set using the annotations same as in the ImageNet VID 2015 Dataset
[6] training set which is 30 categories. One image is used for each mini-batch
of SGD training. 120K iterations are performed on 2 GPUS, each GPU holding
one mini-batch. For the first 80K iterations, the learning rate is 10−3 while for
the remaining 40K iterations the learning rate is taken as 10−4. In phase two, the
entire FGFA[2] model is trained on the training set, where the weights learned
from the first phase are used to initialize the feature and detection networks. 2
GPUs are used in the second phase also. A total of 60K iterations are performed
in which, the learning rate is 10−3 for the first 40K iterations and 10−4 for the last
20K iterations. During the training and inference, all the images are resized to a
shorter side of 300 pixels and a shorter side of 600 pixels for the feature network
and flow network, respectively.

5.2 Implementation Details of Second Model

5.2.1 Feature Network

ResNet-101[17] is used as the backbone for the feature network in the second ar-
chitecture. For the final results ResNeXt-101-32 ∗ 4d [34] is used.The effective
stride of the last block is changed from 32 to 16 to increase the feature resolution
as followed in [24, 26].

5.2.2 Detection Network

RPN is applied to conv4’s output. Three scales and three aspect ratios are em-
ployed as anchors. The output of conv5 is then subjected to Fast R-CNN to detect
and identify the objects that are present in the input video frame based on the pro-
posals generated. On the RoI pooled features, we apply two FC layers, followed
by bounding box regression and classification.
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5.2.3 Training

Weights obtained after training the first model are taken as pre-trained weights
to initialize the backbone networks. SGD training is performed with a total batch
size of 4 on 2 GPUs for a total of 220K iterations. 2.5 ∗ 10−4 is the initial learning
rate, which is divided by 10 at the 110K and 165K iterations. For training, one
training frame is combined with two random frames from the same video (iden-
tical frames for the VID dataset). For inference, K frames from the same video are
sampled alongside the inference frame. The photos are scaled to a shorter side of
600 pixels in both training and inference. The runtime of the model is as follows:

r = 1 +
(2K + 1) · (O(F ) +O(E) +O(W))

O
(
N f eat

)
+O (Ndet)

(5.1)

Where F denotes the time for feature map extraction, E denotes the embedding
feature maps, W denotes the time for warping the feature maps, Nfeat denotes the
time for updating the feature buffer and Ndet denotes the time taken for detection.
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CHAPTER 6

Expiremental Results and Analysis

This chapter discusses the results that we have obtained while performing the
testing of our proposed approach on the ImageNet VID 2015 dataset [6] and the
YouTube-8M dataset [7]. The results obtained are as follows.

6.1 ImageNet VID 2015 Dataset

Figure 6.1 shows the visualized results of our proposed approach along with three
other methods namely FGFA[2], SELSA[4], and MANet[5]. From the Figure 6.1
one can see that results of our proposed approach are better than the other three
models not only when only one object is present in the input video frame, but also
when multiple objects are present even in the case of partial occlusion as well.

For the single object present in the input video frame, present in the third row
of the Figure 6.1, one can see that in the input frame, one buffalo is present which
is predicted as a bear by FGFA[2] which is identified correctly by our proposed
approach.

Similarly, one can verify for the multiple objects by looking at the second row
of the Figure 6.1, where one can see that in the input video frame there is a total
of 7 airplanes, while for the results, FGFA[2] and MANet[5] both have identified
8 objects where one region between two airplanes is also misclassified as an air-
plane. SELSA[4] has identified a total of 7 objects as airplanes but the last airplane
is not identified, while our approach identifies all the 7 objects as airplanes with
high accuracy.
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Figure 6.1: Figure shows the visuals of the results with three other state-of-the-
art methods namely FGFA[2], SELSA[4], and MANet[5]. (a) shows the input test
frame of the video [6]. (b) shows the output results of the FGFA[2] model. (c) show
the output results of SELSA[4] model. (d) shows the output results of MANet[5]
model. (e) shows the output results of our approach.

Along with the visualization on a few of the categories as shown in Figure 6.1,
we also provide the mAP(%) for all the 30 categories on which we have trained
our proposed approach’s model in Table 6.1. The table also shows and compares
the output of 30 categories of our approach along with the other three methods
that are FGFA[2], SELSA[4], and MANet[5] which we have taken as a reference to
compare the results of our proposed model’s approach.

From the table, we can see that our approach outperforms the other three
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Table 6.1: mAP(%) values of all 30 categories for ImageNet VID 2015 Dataset [6].

Categories FGFA[2] SELSA[4] MANet[5] Our Approach

airplane 89.4 87.92 90.1 91.13

antelope 85.1 84.21 87.3 84.22

bear 83.9 93.51 83.4 91.42

bicycle 69.8 68.90 70.9 73.62

bird 73.5 73.69 73.0 76.83

bus 79.0 77.40 75.6 83.48

car 60.6 59.49 62.0 65.06

cattle 70.7 86.10 74.0 86.07

dog 72.5 84.42 73.3 84.66

d_cat 84.3 87.81 85.3 93.96

elephant 79.9 82.0 79.6 83.95

fox 89.8 94.24 91.6 97.07

g_panda 81.0 79.10 83.5 84.39

hamster 93.3 98.42 96.5 98.73

horse 72.3 81.23 94.5 81.43

lion 50.5 70.57 70.5 80.23

lizard 80.8 83.0 82.0 83.56

monkey 82.3 53.07 54.4 59.79

motorcycle 83.0 87.74 81.6 90.40

rabbit 72.7 83.64 67.0 81.84

r_panda 84.0 89.08 89.3 89.04

sheep 57.8 57.31 73.3 58.40

snake 77.1 66.93 77.4 76.02

squirrel 55.8 54.02 54.3 59.70

tiger 91.95 86.0 91.9 90.26

train 83.8 81.66 82.9 86.21

turtle 83.3 81.54 80.3 82.45

watercraft 68.7 66.04 69.3 69.70

whale 75.9 60.24 75.4 77.23

zebra 91.1 95.54 92.4 97.06

Average mAP(%) 76.3 80.25 78.1 81.93
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methods in 19 categories and gives the best results in 19 categories out of 30
categories. The last row of the table shows the Average mAP(%) of all the 30
categories for all the four methods.

The table 6.2 shows the comparison of the results obtained by our proposed
approach in comparison with the other three methods that are FGFA[2] which is a
pixel-level based method, SELSA[4] which is an instance-level based method and,
MANet[5] which is a combination of pixel-level and instance-level based methods
on ImageNet VID 2015 validation dataset [6].

Table 6.2: Accuracy Table for ImageNet VID 2015 Dataset [6].

mAP FGFA SELSA MANet Our
[2] [4] [5] Approach

mAP(%)[1.0] 76.3 80.25 78.1 81.93
mAP(%) slow[0.95] 83.5 86.91 84.9 87.80

mAP(%) medium[0.9] 75.8 77.94 76.8 80.32
mAP(%) fast[0.7] 57.6 61.38 54.37 64.95

For the better analysis of our proposed approach, we compute mAP(%) over
the entire video, mAP(%) of slow moving objects, mAP(%)of medium moving
objects, and mAP(%) of fast moving objects based on motion IoU score. From
the table 6.2, we can see that our approach outperforms SELSA[4] by 2.1% for
the entire video sequence, and our approach outperforms SELSA[4] by 0.9% in
slow-moving objects motion, our method outperforms SELSA[4] by almost 3%
for medium moving objects and outperforms SELSA[4] by almost 5.8% for fast
moving objects as shown in Table 6.2

The confusion matrix in Figure 6.2 shows the accuracy of our method for every
30 categories on which we have trained our model when tested on the ImageNet
VID 2015 validation dataset [6]. It also shows the percentage of misclassification
that our approach has made considering the 30 categories.

From the Figure 6.2, we can see that our approach shows good results in almost
all the 30 categories on which we have trained our model. From the results, we
can see that our model performs less number of misclassifications even in the case
of change in appearance like partial occlusion.
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Figure 6.2: Confusion matrix showing the accuracy of all the 30 categories on
ImageNet VID 2015 Dataset [6].
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Comparison chart Figure 6.3 indicates the motion IoU score on the x-axis and
represents the mean average precision(mAP)(%) on the y-axis respectively, where
point at 0.7 on x-axis indicates mAP(%) of fast motion, point at 0.9 on x-axis in-
dicates mAP(%) of medium motion, point at 0.95 on x-axis indicates mAP(%) for
slow motion and point at 1.0 on x-axis indicates mAP on entire video of ImageNet
VID 2015 Dataset [6].

In the Figure 6.3 the red line indicates the results of our approach, the blue line
indicates the results of the FGFA[2] method, the orange line shows the results of
SELSA[4], and the green line shows the results obtained by the MANet method.
From the Figure 6.3 we can see that our approach performs better than all the
other three methods, and shows significant improvement in the fast moving ob-
jects video sequences.

Figure 6.3: Accuracy comparison of proposed method result with other state-of-
the-art[2, 4, 5] methods for ImageNet VID 2015 Dataset [6].

6.2 YouTube-8M Dataset

From the Figure 6.4, one can see that our proposed approach shows better results
than the results shown from the other three methods - FGFA[2], SELSA[4], and
MANet[5]. From the Figure 6.4, one can see that in row one, there are three ele-
phants in the input video frame, where FGFA[2] and MANet[5] identifies only
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two elephants, while SELSA[4] and our proposed approach identifies all the three
elephants but our proposed approach shows higher accuracy than SELSA[4].

From the Figure 6.4, third row one can see that there are a total of 4 zebras in
the input video frame, and FGFA[2] identifies only one object of the input frame,
which it misclassified as antelope. Similarly, MANet[5] also identifies only one
object of the input video frame, while SELSA[4] identifies three out of the four
zebras that are present in the input video frame. While our proposed approach
identifies all the four zebras that are present in the input video frame.

The fourth row in the Figure 6.4 is a example of motion blur input sequence
that has two birds in the input video frame. FGFA[2] identifies only one bird out
of the two objects present, while SELSA[4] and MANet[5] identifies both the birds
that are present in the input, but misclassified one object as another object. While
our proposed approach detects two objects and identifies them as birds given the
input video frame.

Along with the visualization on a few of the categories as shown in Figure 6.4,
we also provide the mAP(%) for all the 30 categories on which we have trained
our proposed approach’s model in Table 6.3.

The table also shows and compares the output of 30 categories of our approach
along with the other three methods that are FGFA[2], SELSA[4], and MANet[5]
which we have taken as a reference to compare the results of our proposed model’s
approach. From the table, we can see that our approach outperforms the other
three methods in 20 categories and gives the best results in 20 categories out of
30 categories. The last row of the table shows the Average mAP(%) of all the 30
categories for all the four methods.

The confusion matrix in Figure 6.5 shows the accuracy of our method for every
30 categories on which we have trained our model when tested on the YouTube-
8M dataset [7]. It also shows the percentage of misclassification that our approach
has made considering the 30 categories.

From the Figure 6.5, we can see that our approach gives good results in almost
all the 30 categories on which we have trained our model. From the results, one
can see that our model performs less number of misclassifications even in the case
of changes in appearance like partial occlusion.

The table 6.4 shows the comparison of the results obtained by our proposed
approach in comparison with the other three methods that are FGFA[2] which is
an pixel-level based method, SELSA[4] which is a instance-level based method,
MANet which is a combination of pixel-level and instance-level based methods
on YouTube-8M Dataset [7].
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Figure 6.4: Figure shows the visuals of the results with three other state-of-the-
art methods namely FGFA[2], SELSA[4], and MANet[5]. (a) shows the input test
frame of the video [7]. (b) shows the output results of the FGFA[2] model. (c) show
the output results of SELSA[4] model. (d) shows the output results of MANet[5]
model. (e) shows the output results of our approach.

For better analysis of our proposed approach, we compute mAP(%) over the
entire video, mAP(%) of slow moving objects, mAP(%)of medium moving ob-
jects, and mAP(%) of fast moving objects based on motion IoU score. From the
table 6.4, we can see that our approach outperforms SELSA[4] by 4.5% for the
entire video sequence, and our approach outperforms SELSA[4] by 1.1% in slow-
moving objects motion, our method outperforms SELSA[4] by almost 1.8% for
medium moving objects and outperforms SELSA[4] by almost 8% for fast mov-
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Table 6.3: mAP(%) values of all 30 categories for YouTube-8M Dataset [7].

Categories FGFA[2] SELSA[4] MANet[5] Our Approach

airplane 87.92 84.02 92.1 91.10

antelope 80.1 86.21 84.0 84.15

bear 80.9 90.51 83.4 93.45

bicycle 65.8 70.90 69.9 74.62

bird 74.5 73.69 73.0 76.83

bus 79.0 82.40 75.6 83.48

car 59.5 63.2 58.45 65.06

cattle 70.7 86.10 74.0 85.6

dog 84.62 76.9 73.3 84.66

d_cat 84.3 87.81 85.3 93.96

elephant 74.16 84.16 79.6 83.45

fox 90.8 94.24 91.6 98.43

g_panda 81.0 82.7 83.5 84.39

hamster 93.3 98.42 96.5 98.73

horse 72.3 80.23 94.5 79.67

lion 49.5 75.69 70.5 82.96

lizard 83.8 81.75 82.75 83.56

monkey 82.3 53.07 54.4 59.79

motorcycle 84.0 85.74 83.6 92.40

rabbit 83.60 70.4 69.71 80.84

r_panda 82.75 89.08 86.3 90.45

sheep 60.8 57.31 73.3 59.40

snake 72.68 69.93 73.4 76.02

squirrel 52.3 56.82 54.3 58.12

tiger 85.45 89.0 86.75 92.26

train 80.8 86.6 82.7 86.81

turtle 85.3 81.54 82.3 84.95

watercraft 67.7 68.04 65.3 70.70

whale 75.9 60.24 75.4 77.23

zebra 89.1 96.76 91.76 97.06

Average mAP(%) 77.16 78.78 75.48 82.33
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Figure 6.5: Confusion matrix showing the accuracy of all the 30 categories for
YouTube-8M Dataset [7].
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Table 6.4: Accuracy Table for YouTube-8M Dataset [7].

mAP FGFA SELSA MANet Our
[2] [4] [5] Approach

mAP(%)[1.0] 77.16 78.78 75.48 82.33

mAP(%) slow[0.95] 85.9 86.91 84.9 87.83

mAP(%) medium[0.9] 73.9 78.94 76.8 80.36

mAP(%) fast[0.7] 55.64 60.25 56.7 65.05

ing objects as shown in Table 6.4.
Comparison chart in Figure 6.6 indicates the motion IoU score on the x-axis

and represents the mean average precision(mAP)(%) on the y-axis respectively,
where point at 0.7 on x-axis indicates mAP(%) of fast motion, point at 0.9 on x-axis
indicates mAP(%) of medium motion, point at 0.95 on x-axis indicates mAP(%) for
slow motion and point at 1.0 on x-axis indicates mAP on entire video of ImageNet
VID 2015 Dataset [6].

In the Figure 6.6 the red line indicates the results of our approach, the blue line
indicates the results of the FGFA[2] method, the orange line shows the results of
SELSA[4], and the green line shows the results obtained by the MANet[5] method.

Figure 6.6: Accuracy comparison of proposed method result with other state-of-
the-art methods[2, 4, 5] for YouTube-8M Dataset [7].

From the Figure 6.6 we can see that our approach performs better than all
the other three methods, and shows significant improvement in the fast moving
objects video sequences.
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CHAPTER 7

Conclusions and Future Works

7.1 Conclusion

In this work, we have proposed a new method for the Video object detection and
identification problem by the taking transfer learning approach on two different
methods into consideration for video object detection. Instead of relying fully on
the weights of optical flow or full sequence level feature aggregation, we have
tried to combine the knowledge of optical flow and sequence level information
for feature aggregation and detection. The aggregation performed is done on the
proposal level instead of feature maps using the weights trained on both pixel-
level method and semantic level method, which makes our method more robust
towards motion blur and occlusion. Results and Analysis show that the transfer
learning method is effective in case of motion blur and occlusion, outperforms
previous methods, and gives the best performance in the instance-level video
object detection without any need for post-processing methods/techniques like
Seq-NMS.

7.2 Future Works

There is still a large room for improvement in rare poses and fast motion videos.
We can make use of relations between the same object in different frames instead
of optical flow to get better and enhanced feature maps for better accuracy. We
can even detect the edges of the objects before detecting the object, which will
make the model robust towards various illumination conditions thus helping to
improve the accuracy. For calculating the similarity between the generated pro-
posals for the second model, instead of using cosine similarity, similarities mea-
sures that are motion invariant can be used to make the model more robust to-
wards various motion conditions. We believe these open questions will inspire
more future work.
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