
Generating Targeted Adversarial Attacks
and Assessing their Effectiveness in

Fooling Deep Neural Networks
by

GAJJAR SHIVANGI BHARATBHAI
202011023

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

June, 2022

Acknowledgments

The M.Tech Thesis as a whole is a worth accomplishing task. Hence, I take this
opportunity to express my earnest gratitude to all those who assisted in various
capacities in undertaking the thesis work and devising fruitful methodologies.

To start with, I am privileged to express my sense of respect and regard to Prof.
Shruti Bhilare for supervising me throughout the work by providing a systematic
pathway and help me explore for various possibilites till the end. In addition to
that, I thank my thesis co-supervsor Prof. Avik Hati for guiding me to develop
effective algorithms by discussing the issues in methods and brainstorming solu-
tions to their core. Along with that, I express my gratitude towards Prof. Srimanta
Mandal as well for providing additional guidance in various topics of the thesis.

Along with technical support, mental support is also of utmost necessity. I am
thankful to my parents and brother for all the tranquil discussions. Additionally,
I am very much grateful to my friends Meet, Darshil, Dhyanil and Tarang for
giving immense support in overcoming difficulties faced in the journey of entire
thesis work by exchanging their knowledge in various domains.

Any work is impossible without the resources required to complete the tasks.
Last but not least, I am grateful to all the DA-IICT support staff for providing the
facilites from laboratories to the systems and internet facility.

ii

Contents

Abstract v

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 What is an adversarial attack? . 1
1.2 Types of adversarial attack . 2
1.3 Motivation . 2
1.4 Problem Statement . 3
1.5 Contribution . 3
1.6 Thesis Outline . 3

2 Literature Review 5
2.1 Fast Gradient Sign Method . 5
2.2 Jacobian Saliency Map Attack . 6
2.3 Carlini and Wagner Attack . 8
2.4 DeepFool Attack . 8
2.5 Other Attacks . 11

3 The DeepFool Attack 14
3.1 Intuition . 14
3.2 Gaps in DeepFool . 15

4 Proposed Method: Targeted DeepFool 16
4.1 Basic Targeted DeepFool . 16

4.1.1 Intuition . 16
4.1.2 Mathematical Derivation . 17
4.1.3 Issues faced . 20

4.2 Recursive Targeted DeepFool . 21

iii

4.2.1 Issue Resolved . 21
4.2.2 Intuition . 21

4.3 Variation 1: Recursive algorithm with a provision of skipping vis-
ited hyperplane . 22

4.4 Variation 2: Adding constraint in the algorithm to skip visited hy-
perplanes . 24

5 Experimental Setup 25
5.1 Datasets . 25
5.2 Model Architectures . 25
5.3 Metrics . 27
5.4 Results . 27

6 Conclusion 33
6.1 Conclusion and Summary . 33
6.2 Future Work . 33
6.3 Publication . 34

References 35

iv

Abstract

Deep neural network (DNN) models have gained popularity for most image clas-
sification problems. However, DNNs also have numerous vulnerable areas. These
vulnerabilities can be exploited by an adversary to execute a successful adversar-
ial attack, which is an algorithm to generate perturbed inputs that can fool a well-
trained DNN. Among various existing adversarial attacks, DeepFool, a white-box
untargeted attack is considered as one of the most reliable algorithms to compute
adversarial perturbations. However, in some scenarios such as person recogni-
tion, adversary might want to carry out a targeted attack such that the input
gets misclassified in a specific target class. Moreover, studies show that defense
against a targeted attack is tougher than an untargeted one. Hence, generating a
targeted adversarial example is desirable from an attacker’s perspective. In this
thesis, we propose ‘Targeted DeepFool’, which is based on computing a minimal
amount of perturbation required to reach the target hyperplane. The proposed al-
gorithm produces minimal amount of distortion for conventional image datasets:
MNIST and CIFAR10. Further, Targeted DeepFool shows excellent performance
in terms of adversarial success rate.

v

List of Tables

4.1 Comparison between basic and recursive algorithms Targeted Deep-
Fool for a sample from MNIST dataset with no threshold limit on
amount of perturbations. (* = manually stopped) 22

5.1 L2 norm of perturbations for MNIST using Targeted DeepFool . . . 29
5.2 L2 norm of perturbations for CIFAR10 using Targeted DeepFool . . 30
5.3 Adversarial success rate and natural error for 10,000 adversarial

test samples of MNIST and CIFAR10 generated using basicrecur-
sive Targeted DeepFool. 31

5.4 Adversarial success rate and average distortion of 10,000 adversar-
ial samples generated by Targeted DeepFool and other attacks on
MNIST dataset. 31

5.5 L2-norm between the original image and the adversarial sample
generated by FGSM [8] and Targeted DeepFool. 32

vi

List of Figures

1.1 Based on an experiment performed in [8] 2

2.1 An adversarial sample generated using FGSM with ϵ = 0.007[8] . . 6
2.2 Perturbed images generated using JSMA for corresponding source

target pairs[20] . 7
2.3 Perturbed images generated using C&W L2 attack for correspond-

ing source-target pairs [2] . 9
2.4 Figure taken from DeepFool original paper [16] - Row 1: Original

image, Row 2: Perturbed image and perturbations using DeepFool,
Row 3: Perturbed image and perturbations using FGSM [8] 10

2.5 Fooling Transfer Net (FTN) [24] . 12
2.6 Row 1: Original images, Row 2: Perturbed images generated by

Poincarè metric learning and Row 3: Corresponding perturbations
[13] . 13

4.1 Intuition of basic Targeted DeepFool using an instance of mutliclass
non-linear classifier approximated to be near to linear. 17

4.2 Binary classifier . 18
4.3 (a) Input x is closest to H1 hyperplane initially, (b) After execution

of basic algorithm of Targeted DeepFool it has reached the bound-
ary of H3, but could not reach H5 hence recursion will take place, (c)
After one recursion, the input is much closer to target hyperplane
H5, which was not possible with basic algorithm. 20

5.1 Architecture for pretraining the model for MNIST dataset 26
5.2 Architecture for pretraining the model for CIFAR10 dataset 26
5.3 Average distortion obtained for adversarial samples generated us-

ing Targeted DeepFool algorithm for different pixel-difference thresh-
olds on MNIST dataset. 28

5.4 Adversarial samples generated by Targeted DeepFool for MNIST
dataset. 29

vii

5.5 Adversarial samples generated by Targeted DeepFool for CIFAR10
dataset. 30

5.6 Row 1: Original images, Row 2: Perturbed images generated by
FGSM [8], Row 3: Perturbed images generated by Targeted DeepFool. 31

viii

CHAPTER 1

Introduction

Achieving good classification accuracy is the foremost reason for the wide usage
of DNNs in image classification tasks. In spite of attaining acceptable prediction
accuracy, DNNs do have gaps that can be exploited by an attacker to generate
adversarial examples. An adversarial example is designed by adding a calculated
noise to an original input image such that the perturbed input has imperceptible
visual changes in the image, and it gets misclassified by a DNN [24]. An algorithm
designed to generate adversarial examples is termed as an adversarial attack. Ad-
versarial attacks can be divided into different categories depending upon various
conditions. Adversarial attacks and its types are discussed in next segment.

1.1 What is an adversarial attack?

Goodfellow et al. in [8] performed an experiment, which is as shown in the Figure
1.1. It can be seen that, the image is quite visibly recognizable to human eye as
an image of a panda. When this image was given to a well trained GoogleNet, it
gave the prediction as panda with a confidence of 57.5%. However, after adding
a well-calculated noise to the image, the model gave a prediction to be a gibbon
with even higher confidence of 99.3%. It can be observed that the noise added
to the image is imperceptible to the human eye, but for network it is of high sig-
nificance. The algorithm used to compute such noise, which when added to an
image, can fool a well-trained DNN is called an adversarial attack. In this par-
ticular experiment, the authors had used Fast Gradient Sign Method(FGSM)[8]
adversarial attack to compute the noise or perturbation. More about FGSM attack
is discussed in Chapter 2. A perturbed input is known as an adversarial example.

1

Figure 1.1: Based on an experiment performed in [8]

1.2 Types of adversarial attack

Adversarial attacks can be divided into different types based on various condi-
tions. Based on requirement of architectural knowledge, they are divided into
two: white box attack and black box attack. An adversarial attack algorithm that
requires architecture knowledge to craft an adversarial example is known as a
white box attack [28]. The algorithms which do not require architecture knowledge
are called the black box attacks [28]. Based on constraint of misclassification, adver-
sarial attacks are classified into two: targeted attack and untargeted attack. If an
attack algorithm follows a constraint of misclassifying the input into a particular
target class, then they are known as targeted attacks [20]. The algorithms, which
focuses only on misclassifying the input, regardless of any particular target class,
are known as untargeted attacks [20]. From the mentioned categories of attacks,
black-box and targeted attacks are of greater interest in recent research works, as
they are difficult to defend.

1.3 Motivation

A question might arise: why to develop an adversarial attack? The answer is sim-
ple. In order to find a solution, it is required to study the issue. Similarly, to devise
a strong defense, it is required to craft an even stronger attack. As discussed ear-
lier, there exists several works on untargeted attacks. A white-box attack Deep-
Fool [16] is considered one of the most effective untargeted attacks. In general,
it is desirable to generate minimum amount of perturbation, and the authors of

2

DeepFool claim to produce lesser amount of perturbation than the Fast Gradient
Sign Method (FGSM) [8]. However, with an increasing amount of research on ad-
versarial defense, simply misclassifying the input is not enough. Therefore, the
focus has shifted recently towards targeted attacks, which are difficult to defend
than the untargeted ones. Hence, several targeted variants have been proposed
in literature for almost all state-of-the-art adversarial attacks. Unlike other algo-
rithms such as FGSM, DeepFool has fewer variants.

1.4 Problem Statement

To achieve targeted misclassification, by proposing a targeted variation of the
DeepFool algorithm in the white-box setting, with an aim to study robustness
of DNNs against such attacks. We refer to our proposed variant of DeepFool as
Targeted DeepFool.

1.5 Contribution

The key contributions of the proposed work are as follows:

• To achieve the goal of moving the input towards the target hyperplane using
the shortest distance possible, we propose a basic Targeted DeepFool and a
recursive Targeted DeepFool. To the best of our knowledge, this is the first
such attempt.

• This thesis work discusses the mathematical properties as well as experi-
mental benchmarks set by Targeted DeepFool, in terms of adversarial suc-
cess rate, while retaining the properties of the original algorithm: minimal
amount of perturbation for high natural error.

• In addition to that, average distortion is defined to study the amount of per-
turbation generated by the algorithm.

1.6 Thesis Outline

The rest of the document is organised as follows. Chapter 2 discusses the previous
works on adversarial attacks. Chapter 3 discusses about the original DeepFool

3

algorithm and some analysis on it. Chapter 4 describes the proposed algorithm.
Chapter 5 demonstrates the experimental setup for comparing and contrasting
the proposed algorithm with other state-of-the-art algorithms. We conclude in
Chapter 6.

4

CHAPTER 2

Literature Review

Szegedy et al. [22] made a breakthrough in the adversarial machine learning area
by showing the vulnerabilities of various state-of-the-art DNNs. DNNs trained
with high accuracy also have a certain blind spot, where they can be vulnerable
to adversarial attacks. These areas are exploited by the adversary to generate
adversarial samples. Even by changing the distribution of the input data slightly,
a machine learning model can easily be fooled [8]. This property of DNN is used
in many adversarial attack algorithms to generate adversarial samples, some of
which are discussed in the following segment.

2.1 Fast Gradient Sign Method

Fast gradient sign method (FGSM) is a white-box untargeted attack, which was
first introduced by Goodfellow et al. [8]. It is a single step algorithm to generate
an adversarial sample xadv, given an original input image x with ground-truth
label ytrue as shown below,

xadv = x + ϵ · sign(∇xL(h(x), ytrue))

Here, ϵ is a hyperparameter used to tune the amount of perturbation. The intu-
ition behind the algorithm is to maximize the loss (L(h(x), y)) of model h between
the prediction h(x) of input x with its ground-truth label. Figure 2.1 shows an ad-
versarial image generated using FGSM. Xu et al. [26] proposed a targeted version
of FGSM attack in which, the FGSM algorithm is terminated if the image is classi-
fied into the target. Iterative FGSM (I-FGSM) is a variant of FGSM, which updates
the original input with perturbations computed iteratively using the FGSM single
step rule. Momentum iterative FGSM (MI-FGSM) [5] accumulates gradients of the
loss function at each iteration in order to escape from poor local maxima. Hence,
a stabilize optimization will be achieved. Diverse inputs FGSM (DI-FGSM) [25]

5

Figure 2.1: An adversarial sample generated using FGSM with ϵ = 0.007[8]

transforms images with a probability to overcome the problem of overfitting of
MI-FGSM. In translation invariant FGSM (TI-FGSM) [6], the gradients of the un-
translated images are convolved with a predefined kernel, and hence optimize the
perturbations.

2.2 Jacobian Saliency Map Attack

Jacobian saliency map attack (JSMA) is a white-box targeted attack, which was
first introduced by Papernot et al. [20]. It is a class of algorithms that exploits for-
ward derivatives. The forward derivatives inform the learnt behavior of DNNs
and builds an adversarial saliency map to explore efficient adversarial space. Some
of the results of JSMA source-target generated examples are shown in Figure 5.4.
Jacobian vector gives us the information about the region, where we can most
likely craft an adversarial sample to fool the network. Jacobian for a model F
given an input X is defined as,

JF(X) =

[
∂F(X)

∂x1
,

∂F(X)

∂x2

]
where x1 and x2 are input neurons. Adversarial saliency maps are defined using
Jacobian as,

S(X, t)[i] =

{
0 if Jij(X) < 0 or ∑j ̸=t Jit(X) > 0
Jit(X)|∑j ̸=t Jij(X)| otherwise

These saliency maps give location of the pixels which contributes highly in the
classifiation task, which are later used for perturbing the original input. The per-
turbed images using JSMA on MNIST is shown in Figure 5.4. Greedy JSMA [17]

6

Figure 2.2: Perturbed images generated using JSMA for corresponding source
target pairs[20]

7

is a variation of JSMA. It is a score-based attack. Instead of using Jacobian of net-
work (architecture knowledge), this method performs a greedy local search in the
pixel neighbourhood. It is an iterative search process to perturb pixels that have
high confidence scores for ground truth.

2.3 Carlini and Wagner Attack

Carlini and Wagner attack (C&W) [2] attack was introduced with a motive of in-
creasing the robustness of DNNs by increasing transferability of adversarial at-
tacks. These attacks are generated using three distance metrics (L0, L2, L∞). It is a
black-box targeted attack. In FGSM, any standard loss function like crossentropy
is used. However in C&W, the best suited one is the L2 loss, whose objective
function is defined as,

min
w
||1

2
(tanh(w) + 1)− x||22 + c · f (

1
2
(tanh(w) + 1))

such that target class t ̸= ground-truth and f is given by,

f (x′) = max(max{Z(x′)i : i ̸= t} − Z(x′)t,−κ)

where Z is the pre-softmax layer and κ is a tuning parameter. Perturbed inputs
generated by L2 C&W on MNIST [4] data are shown in Figure 5.5.

Zeroth order optimization based black-box attack (ZOO) [3] is a variation of
C&W score-based attack. It uses zeroth order stochastic co-ordinate descent to
directly estimate the gradients of target model to generate adversarial examples.

2.4 DeepFool Attack

Dezfooli et al. [16] introduced the DeepFool algorithm to generate adversarial
samples with a motive of adding minimal amount of perturbations to the orig-
inal image. DeepFool is a white-box untargeted attack. The main idea behind
the algorithm is to add perturbation to the input image such that it reaches the
other side of the separating hyperplane. This leads to missclassfication of the in-
put. Chapter 3 deals with in-depth discussion of DeepFool algorithm. Figure 5.6
shows a perturbed image generated using DeepFool algorithm compared with
perturbations generated using FGSM. The amount of perturbation generated by
DeepFool is visibly lesser than that generated by FGSM. All the attacks mentioned
till this point are summed up by Goel et al. in [7]. The authors have provided

8

Figure 2.3: Perturbed images generated using C&W L2 attack for corresponding
source-target pairs [2]

9

Figure 2.4: Figure taken from DeepFool original paper [16] - Row 1: Original
image, Row 2: Perturbed image and perturbations using DeepFool, Row 3: Per-
turbed image and perturbations using FGSM [8]

10

a tool called SmartBox, where they have incorporated all the state-of-the-art at-
tacks, with a motive of benchmarking the performance of the mentioned attack
algorithms. Along with that, they have also proposed a method of adversarial
attack by adding Gaussian noise to the image. However, the experiments were
satisfactory as compared to other state-of-the-art attacks.

2.5 Other Attacks

As discussed earlier, there are different categories of attacks based on different sce-
narios. Apart from targeted-untargeted and black-box - white-box attacks, there
is one more category of attack called the universal attack. Universal mapping to
generate adversarial examples that can fool classifier to classify all of them to one
targeted class and also having strong transferability is a type of attack which is
generated in most harsh conditions [24]. Wu in [24] has described a fooling trans-
fer net (FTN), which generates universal perturbations using the low frequency
fooling images. Figure 2.5 shows the diagram of FTN (encoder-decoder model). It
uses Adaptive Instance Normalization(AdaIN) residual blocks, which are efficient
in transfer learning due to the property of real-noise denoising[10]. First the low
frequency fooling image is generated for the target label and given to the classi-
fier network. Techniques like transformation robustness(TR), Decorrelation(DR)
[19], Compositional Pattern Producing Network (CPPN) [18, 21] and Gradient
CPPN are used for generating the low-frequency fooling images. The mean and
variance of each layer are stored and given to AdaIN decoder of FTN. When the
source image(Is) is given to FTN, it produces a desired adversarial image (Ia).

Many of the machine learning models give correct output even in a setup of
adversarial inputs [8, 14, 27]. Hence, with the motivation to develop a stronger
attack, Laidlaw et al. [12] show one more category of attack known as the targeted
adversarial attack with an abstain option. The main intuition is to abstain from
assigning any class, when the input is not misclassified correctly into the target
class. The motive behind abstaining is to reduce the adversarial error, which is
considered as a primary metric in comparing targeted adversarial attacks.

Li et al. [13], claim that there are two issues in generating transferable targeted
adversarial examples: First, noise curing produced by iterative attacks and sec-
ond, just getting close to target class without moving away from original class is
not enough. Noise curing is a problem with many iterative attacks, like MI-FGSM
[5]. Assume a scenario where he magnitude of gradient continuously decreases
and at one point vanishes away. However, MI-FGSM rescales it to unit L1 ball

11

Figure 2.5: Fooling Transfer Net (FTN) [24]

so it doesn’t vanish away. But after few iterations the direction of gradient be-
comes constant showing no bigger effect of addition of noise. This phenomenon
is termed as noise curing. To overcome the mentioned two issues, Li et al. [13]
proposed an effective approach to generate such examples using Poincarè metric
learning (to alleviate noise curing) along with triplet loss to increase the transfer-
ability. For any two points u and v in L1 ball, Poincarè distance is defined as,

d(u, v) = arccosh(1 + δ(u, v))

where

δ(u, v) = 2
||u− v||22

(1− ||u||22)(1− ||v||22)

The triplet loss function to be minimized for input xi with ground-truth ytrue, to
misclassify it into target class ytar is defined as,

Ltrip(ytar, l(xi), ytrue) = [d(l(xi), ytar)− d(l(xi), ytrue) + γ]

where fused logits for K classifiers is given by,

l(x) =
K

∑
k=1

wklk(x)

Some results are shown in Figure 2.6. The concept used in the Poincarè metric
learning is based on the distance measures used in the hyperbolic space. Poincarè

12

Figure 2.6: Row 1: Original images, Row 2: Perturbed images generated by
Poincarè metric learning and Row 3: Corresponding perturbations [13]

ball is a representation of hyperbolic space which has been of greater interest in
recent reasearches, as it can efficiently deal with problems having complex data
distributions [1, 15].

Apart from these, there are numerous other variations of various state-of-the-
art adversarial attacks. Though being a state-of-the-art attack, there are not many
targeted variations of DeepFool [16] attack. DeepFool also has some limitations.
Along with this, converting an untargeted attack into a targeted one comes with
certain challenges, which is discussed in the next chapter with mathematical ar-
guments.

13

CHAPTER 3

The DeepFool Attack

3.1 Intuition

The simple fundamental followed in generating adversarial images using Deep-
Fool is to make the input to cross the closest decision boundary in a multiclass
scenario. More formally, the input is taken towards the closest hyperplane, in the
opposite direction of its gradient. For a binary linear classifier, the equation of
perturbations for first iteration is given by,

p∗(x0) = arg min
∥p∥2

, sign(h(x0 + p)) ̸= sign(h(x0))

= −h(x0)

∥g∥2
2

g
(3.1)

where p∗(x0) represents computed perturbation of input x0 for a model h(x) and
g represents weight vector.

For linear multiclass classifiers, the closest hyperplane is computed by,

l(x0) = arg min
k ̸=k′(x0)

|hk(x0)− hk′(x0)(x0)|∥∥∥gk − gk′(x0)

∥∥∥
2

(3.2)

Minimum perturbation is given by,

p∗(x0) =
|hl(x0)(x0)− hk′(x0)(x0)|∥∥∥gl(x0) − gk′(x0)

∥∥∥
2

(gl(x0) − gk′(x0)) (3.3)

The algorithm follows an iterative update of the above equation, until misclas-
sification is achieved. In practice, not all classifiers are linear. Hence, the linear
approximation of hyperplane is considered instead. In brief, the goal of DeepFool
is to take the input away from the original label regardless of any specific target

14

class.

3.2 Gaps in DeepFool

The mentioned equations give two inferences: first, the model’s knowledge (f (x0))
is used while computing the perturbations and second, misclassification of class,
i.e. the target label, is not taken into consideration. Both these observations con-
clude that DeepFool is not a targeted attack and has poor transferability. Apart
from these straightforward conclusions, few researches have explored other gaps
in the DeepFool algorithm as well. It is mentioned in [23], even though Deep-
Fool claims to generate minimum perturbations by stepping the closest bound-
ary, there could exist an alternate region where minimum perturbations can be
obtained. Because of this property, DeepFool still needs improvement in untar-
geted setting as well. One reason behind this, is the gaps or holes produced while
computing the linear approximation of decision boundary, which is mathemat-
ically proved in [9] and [23]. The algorithm is designed in a way that it needs
to use the model parameters to generate the adversarial examples. Studies show
that improving transferability is more of a difficult task than to make a targeted
version of same.

15

CHAPTER 4

Proposed Method: Targeted DeepFool

In order to devise an adversarial attack algorithm, we used the idea of DeepFool[16].
Along with that, we introduced phenomenon of target misclassification. In the
process of devising the algorithm for Targeted DeepFool, we first propose a ba-
sic algorithm for the same. Basic algorithm encounters an issue of input getting
stuck on the intermediate hyperplanes, which is discussed in detail, in the up-
coming segment. In order to resolve the issue, we then modified the algorithm by
introducing recursion in the algorithm.

4.1 Basic Targeted DeepFool

4.1.1 Intuition

Basic algorithm of Targeted misclassification is based on the fundamental of push-
ing the input towards the target hyperplane using the concept of orhtogonal pro-
jection. Figure 4.1 shows an instance of a non-linear multiclass classifier. Among
multiple seperating hyperplanes, the red one (H4) is the target hyperplane and
the rest of the hyperplanes are intermidiate hyperplanes. However, not all the
hyperplanes are linear. So, first a linear approximation of the hyperplanes is com-
puted (represented using dotted lines). Our goal is to push the input x towards
the target hyperplane H4. The shortest path to reach the hyperplane is using the
orthogonal projection of x on H5 (red arrow). In DeepFool[16], the orthogonal
projection with respect to the closest hyperplane (H3) is considered (blue arrow).
The intuition behind basic algorithm is supported using mathematical arguments
and derivation in the next segment.

16

Figure 4.1: Intuition of basic Targeted DeepFool using an instance of mutliclass
non-linear classifier approximated to be near to linear.

4.1.2 Mathematical Derivation

Consider a binary classifier h(x) = gTx + g0 (Fig. 4.2), where g is the learnable
weight vector, g0 is the bias. The hyperplane separating the two classes is de-
fined as H = {x : h(x) = 0}. Our goal is to craft an adversarial sample (x), by
perturbing the input(x0), such that it reaches the hyperplane H, i.e.

h(x) = 0 (4.1)

However, in practice, not all classifiers are linear. So, it is required to take an
approximation instead. For this, we can use Taylor series expansion of h as:

h(x) = h(x0) +∇xh(x0)
T(x− x0), (4.2)

considering the higher order terms to be zero.
Now, our optimization problem is to get the minimum amount of perturbation

between adversarial input x and original input x0. However, it is a challenging
task to perturb the input using a single step algorithm. Hence, perturbation pi =

xi+1 − xi are computed iteratively to obtain an adversarial example as:

min
pi
∥xi+1 − xi∥2

2 , (4.3)

17

Figure 4.2: Binary classifier

with the goal to reach the hyperplane H, that is,

h(xi+1) = h(xi) +∇xh(xi)
T(xi+1 − xi) ≈ 0. (4.4)

Therefore, the overall optimization problem becomes:

min
pi

1
2
∥xi+1 − xi∥2

2

+ λ(h(xi) +∇xh(xi)
T(xi+1 − xi))sign(h(xi)) (4.5)

It can be shown that∇xh(x) represents the learnable weight vector (g) of the clas-
sifier. Using first order optimization condition to solve the constrainted optimiza-
tion problem, derivative of Eq. (4.5) with respect to λ gives,

gTxi+1 + g0 = 0

gTxi+1 = −g0
(4.6)

Now, differentiating Eq. (4.5) with respect to pi gives,

xi+1 − xi + (λg)sign(h(xi)) = 0 (4.7)

Multiplying Eq. (4.7) by gT,

gTxi+1 − gTxi + λ ∥g∥2
2 sign(h(xi)) = 0

λ =
gTxi − gTxi+1

∥g∥2
2

sign(h(xi))
(4.8)

18

From Eq. (4.6),

λ =
gTxi + g0

∥g∥2
2

sign(h(xi))

λ =
h(xi)

∥g∥2
2

sign(h(xi))

(4.9)

Putting value of λ in Eq. (4.7),

xi+1 = xi −
h(xi)

∥g∥2
2

g

= xi −
h(xi)

∥∇xh(xi)∥2
2

∇xh(xi)

= xi + pi

(4.10)

where pi is the amount of perturbation added to the input iteratively until mis-
classification is achieved.

Now, considering h to be a multiclass classifier, in order to craft an adversarial
sample that gets classified into a target class t from an input with ground-truth
label j(xi), the input is pushed towards the target hyperplane iteratively. Hence,
deriving from Eq. (4.10), the perturbation (pi) are computed as:

pi =

∣∣∣ht (xi)− hj(xi) (xi)
∣∣∣∥∥∥gt − gj(xi)

∥∥∥2

2

(
gt − gj(xi)

)
, xi+1 = xi + pi (4.11)

until the input is classified into the target class t, and ht(x) is the classifier pre-
diction for class t. The basic algorithm of Targeted DeepFool works on this basic
update rule (Eq. (4.11)).

The algorithm is summarized in Algorithm 1 as an iterative process, which
takes an input image x, model h and target hyperplane t as input arguments. The
adversarial sample is initialized (x0) with the original input image and gets up-
dated by perturbation pi obtained in every iteration i. The total perturbation ptot

required to generate an adversarial sample from x0 is computed by summing up
the perturbations pi obtained over all iterations. Here, a minimal amount of per-
turbation is ensured by computing the orthogonal projection of the image on the
target hyperplane. However, there is limited control over the amount of pertur-
bation if the target hyperplane is farther away. Hence, a threshold value is set
for the amount of perturbation to ensure that the algorithm terminates when it
encounters a non-converging situation.

19

Figure 4.3: (a) Input x is closest to H1 hyperplane initially, (b) After execution
of basic algorithm of Targeted DeepFool it has reached the boundary of H3, but
could not reach H5 hence recursion will take place, (c) After one recursion, the
input is much closer to target hyperplane H5, which was not possible with basic
algorithm.

Algorithm 1 Basic Targeted DeepFool
procedure GENERATEADV(x, h, t, ptot)

Initialize x0 ← x, i← 0.
Set threshold (maximum perturbation)
while arg maxj hj (xi) ̸= t or pi < threshold do

pi ←
|ht(xi)−hj(xi)

(xi)|∥∥∥gt−gj(xi)

∥∥∥2

2

(gt − gj(xi)
)

xi+1 ← xi + pi
i← i + 1

end while
ptot ← ∑i pi
return ptot

end procedure

4.1.3 Issues faced

The main idea behind the basic algorithm is to push the input towards the target
hyperplane. However, estimating a hyperplane for a DNN is a non-trivial task,
which makes the optimization used in DeepFool intractable [23]. As discussed
earlier, one reason behind this is the gaps or holes produced while computing the
linear approximation of the decision boundary, which is mathematically proved
in [9] and [23]. Basic algorithm of Targeted DeepFool also faces the same is-
sue. Due to inefficient approximation of non-linear hyperplanes, the algorithm
might face a scenario where the input gets stuck on an intermediate hyperplane.

20

Fig. 4.3(a) shows one such scenario. Initially, the example is closest to the hyper-
plane H1, and the target hyperplane is H5. According to the basic algorithm, the
orthogonal projection of x on H5 gives the minimum amount of perturbation to
be added to make x reach the boundary of H5. However, due to high density
of other hyperplanes on the way, x gets stuck on the boundary of an intermedi-
ate hyperplane. The basic algorithm does not have a provision for retracting and
continuing when it gets stuck on an intermediate hyperplane (Fig. 4.3(b)).

4.2 Recursive Targeted DeepFool

4.2.1 Issue Resolved

As discussed earlier, we observed that many of the inputs were getting stuck on
an intermediate hyperplane (Fig. 4.3(b)). After that we performed experiments
on the input by considering the ground truth as the poisiton where the input got
stuck. We observed that, the input was getting even more closer to the target
hyperplane (Fig. 4.3(c)). That is how we came up with the modified version of
basic algorithm, known as recursive algorithm.

4.2.2 Intuition

Algorithm 2 Recursive Targeted DeepFool
procedure GENERATEADV(x, h, t, recLimit, ptot)

Initialize x0 ← x, i← 0, maxRec← 15.
Set threshold (maximum perturbation)
while arg maxj hj (xi) ̸= t or pi < threshold do

pi ←
|ht(xi)−hj(xi)

(xi)|∥∥∥gt−gj(xi)

∥∥∥2

2

(gt − gj(xi)
)

xi+1 ← xi + pi
i← i + 1

end while
ptot ← ptot + ∑i pi
if arg maxj hj (xi) ̸= t and recLimit < maxRec then

call GENERATEADV(xi, h, t, recLimit + 1, ptot)
end if
return ptot

end procedure

We propose a recursive version of the basic algorithm that resolves the above
mentioned issue to a great extent. As shown in Algorithm 2, if convergence is not

21

Basic Algorithm Recursive Algorithm

Perturbed images
Source | Target 4 | 5 4 | 5
Iteration (total) 1000* 100

L2 norm of perturbations 14175.311 13631.604

Table 4.1: Comparison between basic and recursive algorithms Targeted DeepFool
for a sample from MNIST dataset with no threshold limit on amount of perturba-
tions. (* = manually stopped)

achieved by the basic algorithm, the perturbed sample generated as its output is
used as the input for the subsequent call of the recursive algorithm. The recur-
sions terminate when the target misclassification is achieved. However, it is still
possible to encounter a scenario where the generated example jumps between in-
termediate hyperplanes and never reaches the target hyperplane. For such cases,
an upper bound on the number of recursions (maxRec) is set as the stopping cri-
terion. recLimit keeps a track of the number of recursions, which is initially set to
0. For experimental purposes, we have set the maximum recursion limit (maxRec)
to be 15. The total perturbation ptot required to generate the desired adversarial
sample is initialized to 0. Then in each recursion, perturbations obtained over all
recursions are summed up and used to update ptot.

Table 4.1 shows comparitive analysis between basic algorithm and recursive
algorithm without any threshold perturbation limit, for an image of handwritten
digit 4. When the input was given to the basic algorithm with target specified as
5, it ran for more than 1000 iterations, where we had to manually terminate the
algorithm. On the other hand, recursive algorithm converged after 1 recursion, i.e.
100 iterations in total. The L2 norm of the perturbations show that the recursive
algorithm not only resolves the issue to desirable extent, but also produces lesser
amount of perturbations.

4.3 Variation 1: Recursive algorithm with a provision

of skipping visited hyperplane

In the process of developing the recursive algorithm for Targeted DeepFool, we
observed that the algorithm takes equal time to process as that of the original
DeepFool [16]. Hence, to reduce the time we came up with a modified version
of Algorithm 2. The intuition behind the variation is to keep a track of visited

22

intermediate hyperplane and skip the hyperplane when the input gets stuck again
on the same hyperplane. In this case the only option was to select any random
hyperplane from the non-visited list of hyperplane as an initial hyperplane for
next recursion. Algorithm 3 shows the modified algorithm. Here, visited is initally
empty set and not_visited is a set of all labels, except the ground-truth label. The
modification can be visible at the part, where the condition of whether the label
belongs to visited set or not, is specified. If the label is present in the visited set,
we select any label from the not_visited set. Otherwise, the label is removed from
the visited set and rest of the algorithm is executed as the recursive algorithm.

However, doing so, the algorithm couldn’t fetch desirable results as the input
was assumed to be stuck on non-visited hyperplane, but in reality it was not at
that hyperplane. Hence, to overcome this issue, we performed one more modifi-
cation the algorithm, which is discussed in the upcoming section.

Algorithm 3 Recursive Targeted DeepFool : Variation 1
procedure GENERATEADV(x, h, t, recLimit, ptot, visited, not_visited)

Initialize x0 ← x, i← 0, maxRec← 15.
Set threshold (minimum perturbation)
label ← j(x)
if label ∈ visited then

label ← not_visited.pop(0)
else

Remove label from not_visited
end if
Insert label in visited
while h(xi) ̸= yt or pi < threshold do

pi ← |ht(xi)−hlabel(xi)|
∥gt−glabel∥2

2
(gt − glabel)

xi+1 ← xi + pi
i← i + 1

end while
ptot ← ptot + ∑i pi
if h(xi) ̸= yt and recLimit < maxRec then

call GENERATEADV(xi, h, t, recLimit + 1, ptot, visited, not_visited)
end if
return ptot

end procedure

23

4.4 Variation 2: Adding constraint in the algorithm to

skip visited hyperplanes

As mentioned in the modified version of recursive algorithm, the input is not able
to reach the target hyperplane by simply skipping the visited hyperplanes. Ap-
parently, there are cases, where the input is not able to easily move away from any
particular hyperplane. Due to this, skipping the visited hyperplane, might not
add proper amount of perturbation. Therefore, we came up with a modification in
first variation, where we allow the hyperplane to be visited for label_count times.
For experiments we used label_count = 3 are achieved desirable results. How-
ever, after all the experiments, we found that the Algorithm 2 is accomplished in
itself than the other variations.

Algorithm 4 Recursive Targeted DeepFool: Variation 2
procedure GENERATEADV(x, h, t, recLimit, ptot, visited, not_visited,
label_count)

Initialize x0 ← x, i← 0, maxRec← 15.
Set threshold (minimum perturbation)
label ← j(x)
if label ∈ visited && label_count < 2 then

label ← not_visited.pop(0)
label_count← label_count + 1

else
Remove label from not_visited

end if
Insert label in visited
while h(xi) ̸= yt or pi < threshold do

pi ← |ht(xi)−hlabel(xi)|
∥gt−glabel∥2

2
(gt − glabel)

xi+1 ← xi + pi
i← i + 1

end while
ptot ← ptot + ∑i pi
if h(xi) ̸= yt and recLimit < maxRec then

call GENERATEADV(xi, h, t, recLimit + 1, ptot, visited,
not_visited,label_count)

end if
return ptot

end procedure

24

CHAPTER 5

Experimental Setup

Recursive Targeted DeepFool resolves the issue faced in the basic Targeted Deep-
Fool to a desirable extent. In addition to that, on experimental grounds, the recur-
sive algorithm is found to be more effective than the basic one. Hence, in the rest
of the document, ‘Targeted DeepFool’ refers to the recursive algorithm (Algorithm
2) if not specified otherwise.

5.1 Datasets

Targeted DeepFool is tested on two widely used image datasets MNIST [4] and
CIFAR10 [11]. MNIST dataset is a collection of 28× 28 MNIST grayscale images
of handwritten digits from 0 to 9. It consists of 60,000 images in training set and
10,000 images in validation set. CIFAR10 dataset consists of 32× 32 RGB images
for 10 classes. It has 50,000 images in training set and 10,000 images in validation
set.

5.2 Model Architectures

Targeted DeepFool is a white-box attack. Hence, it requires the knowledge of the
architecture and model parameters to generate adversarial samples. Figures 5.1
and 5.2 shows the model definitions for MNIST and CIFAR10, which are identical
to that of Carlini and Wagner [2] for generating transferable adversarial exam-
ples. MNIST model is trained with a dropout of 0.5 and test accuracy of 99.1%
on validation set. CIFAR10 model is also trained with the same dropout with test
accuracy of 79% on validation set.

25

Input 28x28
fc

ReLU
200

Conv
3x3x32

Conv
3x3x64

fc
Softmax

10

Figure 5.1: Architecture for pretraining the model for MNIST dataset

Input 32x32x3
fc

ReLU
256

Conv
3x3x64

Conv
3x3x128

fc
Softmax

10

Figure 5.2: Architecture for pretraining the model for CIFAR10 dataset

26

5.3 Metrics

In order to evaluate the effectiveness of the proposed algorithm, following met-
rics are used. The percentage of correctly classified images into the target class is
known as adversarial success rate. The percentage of adversarial images misclas-
sified by the model is known as natural error. Additionally, average distortion is
defined as the fraction of pixels undergoing a pixel value change of more than a
certain threshold q.

If Ntotal denotes the total number of pixels, average distortion (δ) is defined as:

δ =
1

Ntotal
∑

i
1(|xadv(i)− x0(i)| > q) , (5.1)

where x0 and xadv denote the original and the generated adversarial image, re-
spectively, and 1() is an indicator function. Figure 5.3 shows the average distor-
tion for different pixel-difference thresholds. It can be observed that the distortion
is decreasing with increase in the pixel-difference. As the average distortion sta-
bilizes when q > 150, the value of threshold q is chosen as 150 while reporting the
results.

5.4 Results

Table 5.3 shows the adversarial success rate and natural error for MNIST model
and CIFAR10 model on 10,000 adversarial samples, generated from the test set
of respective datasets. The natural error of the models are much higher, giving
an inference that the adversarial attack is successful. However, as the algorithm
is a targeted attack, we are more concerned of adversarial success than natural
error. MNIST and CIFAR10 models report 97.84% and 77% adversarial success
rate, respectively, of recursive Targeted DeepFool. This shows that the algorithm
not only generates adversarial samples, but also is able to achieve the goal of
crafting targeted adversarial samples.

In Table 5.4, we compare the average distortion of the adversarial samples
generated by Targeted DeepFool, JSMA [20], C&W [2], targeted FGSM [26] and
Poincarè metric learning with triplet loss [13]. It can be observed that Targeted
DeepFool yields desirable results as compared to the state-of-the-art targeted at-
tacks in terms of adversarial success rate on MNIST dataset. C&W attack is con-
sidered one of the strongest targeted attacks. Despite that, Targeted DeepFool

27

0 50 100 150
Pixel Difference

0

20

40

60

Av
er

ag
e

di
st

or
tio

n

Average distortion

Figure 5.3: Average distortion obtained for adversarial samples generated using
Targeted DeepFool algorithm for different pixel-difference thresholds on MNIST
dataset.

matches the adversarial success rate of C&W L2 attack with a close margin. How-
ever, in terms of average distortion, Targeted DeepFool yields significantly better
results than all attacks including C&W.

Figures 5.4 and 5.5 show the adversarial samples generated by Targeted Deep-
Fool from MNIST and CIFAR10 datasets, respectively. It can be observed that the
adversarial images look visually perceptible as the original ones. An algorithm
is successful if it works for all types of data. The images shown prove that the
algorithm generates less distorted adversarial samples even for RGB images. Ta-
bles 5.1 and 5.2 show the L2 norm of the perturbations added for each adversarial
image shown in Figures 5.4 and 5.5. For example, it can be seen from the Table 5.1
that amount of perturbation required to generate an example with ground truth 1
and target 0 is more than that of ground truth 2 and target 0. Hence, these tables
show an analysis of amount of perturbation required for an example to convert
it into an adversarial example with a particular target class. Figure 5.6 shows
visual comparison of images generated by Targeted DeepFool with FGSM [8] at-
tack. A crucial property of DeepFool is that it claims to have lesser perturbation
as compared to FGSM [16]. This property is preserved in Targeted DeepFool as
well, and Figure 5.6 demonstrates lesser amount of distortion. This observation is
supported by the L2-norm between the original image and the adversarial image
reported in Table 5.5.

28

Figure 5.4: Adversarial samples generated by Targeted DeepFool for MNIST
dataset.

0 1 2 3 4 5 6 7 8 9

0 0 9780 10006 9692 9686 8984 9490 8753 9950 7774
1 9900 0 9747 8255 9490 8330 10219 9247 8281 8515
2 7896 8068 0 9172 8722 9783 8065 9708 9948 9804
3 8826 8782 8662 0 8812 7985 9533 8747 7866 7488
4 9230 9288 7945 9940 0 8810 8578 9521 7753 7355
5 9164 8981 8610 7759 9289 0 8688 8757 8572 8701
6 8404 7623 7893 7632 8672 8296 0 9103 7665 8620
7 7929 8314 7919 7953 8904 8010 9338 0 8145 8036
8 9311 8018 8103 8067 9105 7976 8041 9503 0 9656
9 8522 8303 7764 9200 7812 8282 7850 7811 8758 0

Table 5.1: L2 norm of perturbations for MNIST using Targeted DeepFool

29

Figure 5.5: Adversarial samples generated by Targeted DeepFool for CIFAR10
dataset.

0 1 2 3 4 5 6 7 8 9

0 0 9066 9066 9348 9304 9388 9218 9545 9304 9304
1 9304 0 9469 8959 9296 9294 9312 8880 9442 9542
2 9454 9454 0 9384 9405 9043 9105 9442 9542 9231
3 9066 9066 9066 0 9066 9066 9413 9066 9066 9066
4 9545 9545 9545 9304 0 9397 9241 9545 9545 9545
5 9454 9454 9441 9231 9454 0 9223 9454 9454 9454
6 9442 9542 9442 9378 9442 9426 0 9481 9442 9442
7 9469 9469 8959 9296 9674 8880 8983 0 9469 9296
8 9469 8959 9348 9088 8983 9111 9077 9469 0 9348
9 9301 9600 9405 9043 9410 9410 9589 9410 9410 0

Table 5.2: L2 norm of perturbations for CIFAR10 using Targeted DeepFool

30

Dataset Adv. Success Natural Error
Basic Recursive Basic Recursive

MNIST 78.00% 97.84% 90.00% 98.12%
CIFAR10 65.20% 77.00% 78.00% 89.00%

Table 5.3: Adversarial success rate and natural error for 10,000 adversarial test
samples of MNIST and CIFAR10 generated using basicrecursive Targeted Deep-
Fool.

Attack Adv. Success Avg. Distortion
Targeted DeepFool 97.84% 2.28%

C&W L2 [2] 97.87% 3.10%
JSMA [20] 97.05% 4.45%

Poincare+Triplet [13] 93.97% 11.26%
Targeted FGSM [26] 94.08% 24.31%

Table 5.4: Adversarial success rate and average distortion of 10,000 adversarial
samples generated by Targeted DeepFool and other attacks on MNIST dataset.

Figure 5.6: Row 1: Original images, Row 2: Perturbed images generated by FGSM
[8], Row 3: Perturbed images generated by Targeted DeepFool.

31

Attack Ground-truth Target Predicted L2-norm

FGSM [8]
0 − 5 23510.21
1 − 7 15058.96
2 − 6 19755.16

Targeted
DeepFool

0 5 5 17699.60
1 7 7 9738.00
2 6 6 16982.90

Table 5.5: L2-norm between the original image and the adversarial sample gener-
ated by FGSM [8] and Targeted DeepFool.

32

CHAPTER 6

Conclusion

6.1 Conclusion and Summary

Targeted adversarial attacks show remarkable utility for testing applications such
as person recognition. In this work, we proposed a targeted adversarial attack
called Targeted DeepFool with a motive to compute minimal amount of pertur-
bation to fool a well trained deep neural network. In process of devising the
algorithm, we first designed the basic algorithm for Targeted DeepFool. The basic
algorithm eventually faced an issue of input getting stuck on intermediate hy-
perplanes. This issue is resolved by our recursive version of the algorithm. The
performance of recursive Targeted DeepFool is validated by the experiments per-
formed on grayscale as well as RGB channel data. The proposed algorithm is
found to be effective in terms of adversarial success rate and average distortion,
thereby adding to the properties of untargeted DeepFool algorithm.

6.2 Future Work

As a part of future work,

• this research can be extended for black box attack by making an ensemble of
multiple DNNs.

• the concept of transferability can be introduced after converting it to a black
box attack.

• the algorithm can be improved further to validate it on large datasets and
face image data.

33

6.3 Publication

Shivangi Gajjar, Avik Hati, Shruti Bhilare, and Srimanta Mandal, "Generating Tar-
geted Adversarial Attacks and Assessing their Effectiveness in Fooling Deep Neu-
ral Networks", IEEE International Conference on Signal Processing and Commu-
nications (SPCOM), Bangalore, July 2022 (Accepted).

34

References

[1] Y. Bi, B. Fan, and F. Wu. Beyond mahalanobis metric: cayley-klein metric
learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2339–2347, 2015.

[2] N. Carlini and D. Wagner. Towards evaluating the robustness of neural net-
works. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39–57,
2017.

[3] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without train-
ing substitute models. In Proceedings of the 10th ACM workshop on artificial
intelligence and security, pages 15–26, 2017.

[4] L. Deng. The mnist database of handwritten digit images for machine learn-
ing research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[5] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li. Boosting adversarial
attacks with momentum. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[6] Y. Dong, T. Pang, H. Su, and J. Zhu. Evading defenses to transferable
adversarial examples by translation-invariant attacks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[7] A. Goel, A. Singh, A. Agarwal, M. Vatsa, and R. Singh. Smartbox: Bench-
marking adversarial detection and mitigation algorithms for face recogni-
tion. In 2018 IEEE 9th International Conference on Biometrics Theory, Applica-
tions and Systems (BTAS), pages 1–7. IEEE, 2018.

[8] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing ad-
versarial examples. In Y. Bengio and Y. LeCun, editors, 3rd International Con-
ference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

35

[9] H. Karimi and J. Tang. Decision boundary of deep neural networks: Chal-
lenges and opportunities. In Proceedings of the 13th International Conference on
Web Search and Data Mining, pages 919–920, 2020.

[10] Y. Kim, J. W. Soh, G. Y. Park, and N. I. Cho. Transfer learning from synthetic
to real-noise denoising with adaptive instance normalization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3482–3492, 2020.

[11] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR-10 (Canadian Institute for Ad-
vanced Research). URL https://www.cs.toronto.edu/ kriz/cifar.html, 5(4):1, 2010.

[12] C. Laidlaw and S. Feizi. Playing it safe: Adversarial robustness with an ab-
stain option, 2019.

[13] M. Li, C. Deng, T. Li, J. Yan, X. Gao, and H. Huang. Towards transferable
targeted attack. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

[14] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep
learning models resistant to adversarial attacks, 2017.

[15] E. Mathieu, C. Le Lan, C. J. Maddison, R. Tomioka, and Y. W. Teh. Continu-
ous hierarchical representations with poincaré variational auto-encoders. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[16] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: A simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[17] N. Narodytska and S. P. Kasiviswanathan. Simple black-box adversarial per-
turbations for deep networks, 2016.

[18] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 427–436, 2015.

[19] C. Olah, A. Mordvintsev, and L. Schubert. Feature visualization. Distill,
2(11):e7, 2017.

36

[20] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami.
The limitations of deep learning in adversarial settings. In 2016 IEEE Euro-
pean Symposium on Security and Privacy (EuroS P), pages 372–387, 2016.

[21] K. O. Stanley. Compositional pattern producing networks: A novel abstrac-
tion of development. Genetic programming and evolvable machines, 8(2):131–
162, 2007.

[22] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing properties of neural networks, 2014.

[23] J. Vadillo, R. Santana, and J. A. Lozano. Exploring gaps in deepfool in
search of more effective adversarial perturbations. In G. Nicosia, V. Ojha,
E. La Malfa, G. Jansen, V. Sciacca, P. Pardalos, G. Giuffrida, and R. Ume-
ton, editors, Machine Learning, Optimization, and Data Science, pages 215–227,
Cham, 2020. Springer International Publishing.

[24] J. Wu. Generating adversarial examples in the harsh conditions, 2020.

[25] C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A. L. Yuille. Improving
transferability of adversarial examples with input diversity. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

[26] J. Xu, Z. Cai, and W. Shen. Using FGSM targeted attack to improve the trans-
ferability of adversarial example. In IEEE 2nd International Conference on Elec-
tronics and Communication Engineering (ICECE), pages 20–25, 2019.

[27] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan. Theoretically
principled trade-off between robustness and accuracy. In International confer-
ence on machine learning, pages 7472–7482. PMLR, 2019.

[28] Y. Zhang, Y. Song, J. Liang, K. Bai, and Q. Yang. Two sides of the same coin:
White-box and black-box attacks for transfer learning. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery amp; Data
Mining, KDD ’20, page 2989–2997, New York, NY, USA, 2020. Association for
Computing Machinery.

37

	Abstract
	List of Tables
	List of Figures
	Introduction
	What is an adversarial attack?
	Types of adversarial attack
	Motivation
	Problem Statement
	Contribution
	Thesis Outline

	Literature Review
	Fast Gradient Sign Method
	Jacobian Saliency Map Attack
	Carlini and Wagner Attack
	DeepFool Attack
	Other Attacks

	The DeepFool Attack
	Intuition
	Gaps in DeepFool

	Proposed Method: Targeted DeepFool
	Basic Targeted DeepFool
	Intuition
	Mathematical Derivation
	Issues faced

	Recursive Targeted DeepFool
	Issue Resolved
	Intuition

	Variation 1: Recursive algorithm with a provision of skipping visited hyperplane
	Variation 2: Adding constraint in the algorithm to skip visited hyperplanes

	Experimental Setup
	Datasets
	Model Architectures
	Metrics
	Results

	Conclusion
	Conclusion and Summary
	Future Work
	Publication

	References
	b579d3ba-02c2-4b47-a4ce-e78315cb07f5.pdf
	Abstract
	List of Tables
	List of Figures
	Introduction
	What is an adversarial attack?
	Types of adversarial attack
	Motivation
	Problem Statement
	Contribution
	Thesis Outline

	Literature Review
	Fast Gradient Sign Method
	Jacobian Saliency Map Attack
	Carlini and Wagner Attack
	DeepFool Attack
	Other Attacks

	The DeepFool Attack
	Intuition
	Gaps in DeepFool

	Proposed Method: Targeted DeepFool
	Basic Targeted DeepFool
	Intuition
	Mathematical Derivation
	Issues faced

	Recursive Targeted DeepFool
	Issue Resolved
	Intuition

	Variation 1: Recursive algorithm with a provision of skipping visited hyperplane
	Variation 2: Adding constraint in the algorithm to skip visited hyperplanes

	Experimental Setup
	Datasets
	Model Architectures
	Metrics
	Results

	Conclusion
	Conclusion and Summary
	Future Work
	Publication

	References

