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Abstract

Terrain classification is one of the most crucial tasks when utilisation of polarimet-
ric SAR images comes into the picture. This work explores the efficiency of vari-
ous supervised deep learning algorithms that make use of Convolutional Neural
Networks in land cover classification of PolSAR images. The goal of this work is
to classify terrain into different ground covers such as urban, crops, forests, wa-
ter, etc., from polarimetric SAR (PolSAR) images. State-of-the-art classification
approaches relish the advantage of deep learning techniques. However, conven-
tional techniques such as convolutional neural networks (CNN), developed for
optical images are not quite suitable for complex-valued PolSAR images. Hence,
in this work, complex-valued CNN is employed to deal with complex values
of PolSAR images. Further, the CNN focuses mainly on the spatial relationship
within local receptive fields. However, the process entangles the channel correla-
tion with spatial information. To address this issue, we use a squeeze-excitation
network (SENet) along with complex-valued CNN to exploit the channel inter-
dependencies. Thus, we utilize spatial as well as channel relationships in our
work. This, in turn, helps in reducing the speckle noise in the images. Addi-
tionally, this work also tests the effectiveness of data augmentation techniques to
increase the size of labeled training set of the three datasets used. This is done
using various speckle noise suppression techniques. The experimental results on
several datasets justify the importance of both spatial information as well as inter-
channel correlation in classifying PolSAR images. The results after applying data
augmentation techniques specific to the speckled nature of PolSAR images show
improved performance of SENet architectures proposed in this work.
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CHAPTER 1

Introduction

Synthetic Aperture Radar (SAR) has now become a well-explored remote sens-
ing technique that provides large-scale two-dimensional images with high spatial
resolution. These images are mainly that of the Earth’s surface reflectivity. This
reflectivity is active in nature as the SAR imaging system is a radar system that
illuminates the surface with microwave pulses.

The successful launch of SEASAT satellite in 1978 proved that imaging radar
is the most capable and an indispensable Earth remote sensing instrument. SAR
imaging has established itself as the only viable and practical radar imaging sys-
tem for acquiring high spatial resolution data. It has done so because of its porta-
bility when compared to other aperture of same calibre, and also due to the fact
that radar can be mounted on airborne as well as spaceborne platforms. Moreover,
the microwaves are capable of penetrating through various atmospheric barriers
and the radar system is capable of illuminating the surface on its own. All these
features make SAR imaging system independent of day time conditions as well
as of atmospheric conditions.

The data is acquired based on the nature of signal used by the radar. This
is classified into the polarization channels. These polarization channels capture
various features on the same object. Usually SAR systems operate on a single
band from C, L, P, and X. But a few modern SAR systems are capable of capturing
multple frequency data making the data containing abundant information. SAR
images have established their place in various research domains such as agricul-
ture, urban, disaster management, etc for decades now.

An SAR image is a two-dimensional array of pixels. These pixels form a com-
plex valued array containing amplitude and phase information. This information
is stored in various formats such as coherency matrix, covariance matrix, etc us-
ing different statistical parameters. The data is stored across various matrices and
to interpret such massive information, automated systems are required.

The following sections briefly discuss the objective of the work, contribution
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of the thesis and the organization of this thesis.

1.1 Objective

The goal of this work to develop various deep learning models to perform clas-
sification of polarimetric SAR images. The models are required to perform het-
erogeneous land cover classification such as urban, crops, forests, water, etc. The
thesis focuses on the following aspects:

• Investigating the efficiency of Complex-Valued Convolutional Neural Net-
works (CV-CNNs) for the classification task.

• Application of deep learning models such as SENets using complex valued
deep learning operations.

• Investigating the effects of incorporating skip connections in the deep learn-
ing models.

• Application of data augmentation techniques for the classification task and
investigating its effects.

1.2 Contribution of Thesis

The significant features of this work can be summarized as:

• Understanding the efficiency of complex-valued CNNs for the classification
task.

• Implementing Squeeze and Excitation blocks (SE Blocks) to extract spatial
as well as channel-wise important features for PolSAR image classification.

• Modifying the SE blocks to accommodate the complex-valued deep learning
operations.

• Eliminating the need of denoising the PolSAR images to reduce the speckle
noise.

• Performing the data augmentation to increase the size of training data for
better classification.
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1.3 Organization of Thesis

The remaining thesis is organized as follows.

• Chapter 2 discusses Literature survey that contains various classification
techniques employed for PolSAR classification.

• Chapter 3 contains details about how an SAR imaging system operates, how
the data is acquired, the mathematical preliminaries associated with the Pol-
SAR data, the datasets used for all the experiments, and the brief details
about CNNs.

• Chapter 4 and Chapter 5 contain information about the architectures used
for classification.

• Chapter 6 shows the effect of data augmentation using speckle denoising.

• Chapter 7 contains summary of all the work done and the comparison with
the benchmark results described in leading research works.

• Chapter 8 discusses the conclusion and future scope of this work.
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CHAPTER 2

Literature Survey

PolSAR image classification is about classifying each pixel of the input image
into a set of predefined labels. The ultimate goal is to analyze the target im-
ages based on their orientation, shape, geometric structure, and configuration.
It also provides insightful interpretations for many applications. All the classi-
fication techniques developed for PolSAR classification fall under either of two
areas, statistical-based classification and machine learning-based classification.

PolSAR provides terrain information under day and night conditions and un-
der all weather conditions. Considering the nature of data, many unsupervised
statistical approaches have been proposed for classification task. For extract-
ing the polarimetric characteristics of the Entropy-Alpha classes, analysis of the
polarimetric signatures using H/α decomposition has been examined [35]. For
fitting simple back-scatterer mechanisms to polarimetric SAR data, a scattering
model employing three components has been proposed where single bounce,
double bounce and volume scattering mechanisms have been explored [18]. Var-
ious Eigenvector-Eigenvalue based decomposition techniques are used and the
classification is then done using Wishart supervised classifier [12].

Since the covariance and coherency matrix of PolSAR data follow Wishart dis-
tribution, Wishart mixture model has also been implemented for terrain classifica-
tion where the model parameters are estimated using Expectation-Maximization
algorithm [7]. When it comes to pattern recognition tasks, classification perfor-
mance hugely depends on the feature extraction part. These extracted features
include back-scattering elements [8], target decomposition-based features [3], and
other statistic features [10]. Statistical methods designed to extract such features
are usually class-specific and involve manual trial and error. These methods may
provide better performance, but these methods require deep domain knowledge
and also, knowledge about specific radar configurations is required for perform-
ing feature extraction [5]. This is where multistage deep learning models have
scope for automation [53].
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Machine learning classifiers such as SVM [21, 19] and KNN [40] have shown
efficiency for the classification problem. Deep CNN [51], Dual-branch based deep
CNN [20], semi supervised graph-based SPGraphCNN [4] are some of the meth-
ods proposed for PolSAR classification and have proven to be effective. Some
problem specific CNNs such as Tc-CNN [23] which uses three channel CNN to ex-
tract spatial information has also been used. PDAS based model namely CVPDAS-
CNN [15] has been developed.

CNNs have demonstrated superior performance with their hierarchical fea-
ture extraction capabilities [2]. The fundamental task of ship detection for SAR-
based surveillance has been carried out using CNNs [9] on Sentinel-1 data. Fur-
thermore, automatic target recognition for SAR has also been efficiently imple-
mented by using a combination of CNNs with support vector machines [43]. In
PolSAR images, the data is in the form of complex valued pixels and conventional
CNNs accept only real numbers. Usually, polarimetric coherency matrix (T3) or
polarimetric covariance matrix (C3) are used for image classification task. These
matrices contain 6 channels of complex valued arrays. Using T3 matrix, real val-
ued CNN has been implemented where a new 6-D real vector representation has
been specifically tailored for classification of PolSAR data [52].

In some works, real part and imaginary part of the data are fed separately as
a 9-D feature vector [50]. A 6-D complex feature vector is also fed into Complex-
Valued CNN where entire CNN architecture handles complex numbers [50][52].
Experiments are also performed with only the real valued coherency matrix el-
ements (T11, T22, T33), where a newly tailored 6-D feature vector representation
has been proposed [44]. Backpropagation in complex valued CNN domain has
been implemented using Complex Generalized Derivative and Complex Conju-
gate Derivative and it has shown improvement over real valued MLPs [25].

Squeeze and Excitation networks for suitably classifying the low-frequency
and contour subbands-driven polarimetric data has also been implemented [37]
as LC-PSENet. Terrain classification based on the local binary patterns using fea-
ture integrated CNN called CLBP-CNN has been implemented and its accuracy
measured on Flevoland, San Francisco, and Oberpfaffenhofen [1]. Deep Residual
Network (ResNet) has also been implemented for the classification task [32]. A
lightweight network using DeepLabv3 has also been implemented [14].

Data scaling techniques have time and again proved to be effective for image
classification using deep learning techniques [33].CNNs that are adaptively fine-
tuned produce results after training on minimally labelled data [48], but the need
of the hour in PolSAR image classification is data scaling. Data augmentation
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techniques have found its place in remote sensing imagery also. For improving
the efficiency of object detection algorithms of multimodal remote sensing images,
data scaling has been implemented [41]. Also, the issue with the datasets used in
PolSAR classification is the size of these datasets which is small. Large scale data
is needed for proper classification and these techniques are also shown to improve
existing models’ performance in classification [13].

Data augmentation in these experiments has been performed using speckle
denoising. Polarimetric SAR speckle noise model in [31] clarifies the implications
of 2D speckle noise. An adaptive algorithm exploring the effectiveness of mean-
shift-based speckle filtering is discussed in [27]. Images with minimum speckle
have been produced after applying polarimetric whitening filter (PWF) in [34]
and it has produced comparable results. Many a times, during speckle filtering
phase, crosstalk between polarization channels is detected. This issue was tack-
led in [28] and a classification was performed using Bayes maximum likelihood
classification algorithm. Since speckle noise also carries terrain information, it is
important to preserve the potential target information and it was achieved in [6].
Impact of speckle filtering was studied by performing classification of data using
K Means clustering in [11] which also presents a comparative study of several
speckle filters that are used widely.
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CHAPTER 3

Background

This chapter describes the background of SAR, mathematical preliminaries of po-
larimetric SAR. It also throws some light on Convolution Neural Networks and
how deep learning confronts few of the major challenges in PolSAR image classi-
fication.

3.1 Remote Sensing

With the advent of remote sensing, new doors have opened for research in Earth
sciences and that has brought tremendous advancements in the technologies used
for accomplishing these research related tasks. Remote sensing makes the task of
information gathering from a target without the need of physical contact. This
enables data gathering from sources or areas that are inaccessible.

Due to easy access of various landcovers and areas, remote sensing has made
us capable of capturing the intricacies of climate change, natural disasters, rise of
urbanization, resource depletion, and many more such applications. Figure 3.1
depicts the electromagnetic spectrum with different frequency bands along with
their wavelengths. Out of these, remote sensing makes use of signals from mi-
crowave, infrared, and visible range. Optical sensing makes use of visible and in-
frared bands whereas non-optical or microwave sensing makes use of microwave
bands. Though optical remote sensing has been around for a long time, its capa-
bilities are limited to daytime because it needs sunlight or some source of illumi-
nation to work. Atmospheric barriers such as clouds, rainfall, and haze. Addi-
tionally, the information provided by the microwave sensing is different in nature
altogether. Microwave sensing holds the scope of capturing information about
the electric properties as well as geometry of the target. Besides, the range of mi-
crowave band ranges from 1mm to 1m which enables it to surpass clouds, dust,
rainfall, mist, etc. Due to these characteristics, microwave imaging can operate
during any time of the day under any type of atmospheric conditions. Moreover,
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Figure 3.1: Electromagnetic spectrum with different bands [42]

microwave signals are also capable of penetrating the vegetation and a few sub-
ranges can also penetrate the ground. All these characteristics make microwave
imaging apt for monitoring situations above and below the ground. However, the
obtained images are different from the optical images, hence it is a challenge to
interpret them.

Microwave sensing falls under two categories, active and passive. Antennas
and receivers are a part of both of these categories. Active sensors illuminate the
target with their own electromagnetic signals hence they don’t require any kind of
source for illumination. On the other hand, passive sensors require energy from a
source of illumination or a source of heat and measure the emissions.

3.2 Synthetic Aperture Radar

Figure 3.2 shows the basic principle of Radio Detection and Ranging (RADAR)
system mounted on a moving platform for synthesizing an image. A radar emits
electromagnetic waves on the surface and these waves then get backscattered by
the target surface upon the incident. A proportion of these scattered waves is
received by the radar. The target image is constructed using these backscattered
waves,

Depending on the size of the beam sent out by the antenna, the spatial reso-
lution of the image is characterized. For capturing the finer details of the target
area, a narrow beam makes more sense than a wider beam. The length of the
antenna also known as the aperture is inversely proportional to the width of the

8



Figure 3.2: SAR system mounted on a moving platform [30]

beam. Hence, a radar with larger aperture is needed to capture high resolution
images. But for a really high resolutioned image, the kind of large aperture that is
required theoretically, is not feasible practically. Hence, this limitiation has been
overcome by a synthetic aperture which simulates a very long antenna by moving
and covering the surface. Figure 3.2 shows the working of an SAR imaging sys-
tem. An SAR imaging system is situated at height H moving with velocity VSAR.
The antena is perpendicular to the flight direction. The beam is directed slant-
wise toward the ground with angle θ0. The area covered by the antenna beam is
called “antenna footprint”. The entire area covered by the radar during a duration
is “radar swath”.

Multiple backscattered signals are received by the antenna at the same time
from the same target. But since the antenna positions are different, the whole
image of the bigger target scene is reconstructed and this image has a much higher
resolution. This high resolution image mimicking or synthesizing the behavior of
a larger antenna represents the core principle of SAR imaging. SAR systems can
be airborne as well as spaceborne. In airborne systems, the radar is mounted on an

9



Figure 3.3: Illustration of four different polarization states of scattered waves

aircraft as in AIRSAR and EMISAR. In spaceborne systems, the radar is mounted
on satellites as in RADARSAT, ALOS, and ENVISAT.

3.3 Polarimetric SAR

Polarization refers to the plane in which the electric field of the electromagnetic
waves propagates. The data is acquired based on the nature of signal used by the
radar. This is classified into the polarization channels. These polarization chan-
nels are horizontal transmitting and horizontal receiving (HH), horizontal trans-
mitting and vertical receiving (HV), vertical transmitting and horizontal receiving
(VH), and vertical transmitting and vertical receiving (VV).

The electromagnetic wave consists of two orthogonal components, electric
field and magnetic field varying with time. In the polarimetric SAR, the infor-
mation of the target is obtained by analyzing the polarization of transmitted and
received signals. Most of the radar systems are designed based on horizontal and
vertical polarization. If the electric field oscillates in the vertical plane of the wave
propagation then it is called vertically polarized, and if it oscillates in the hori-
zontal plane then it is called horizontally polarized. Depending on the shape of
the electric field ellipse (ellipticity), the polarization is categorized into main three
types: linear, circular, and elliptical. In the case of linear polarization, the electric
field oscillates only in one direction. Whereas, in the case of circular and elliptical
polarization, the electric field rotates in the direction of wave propagation. Figure
3.3 illustrates different types of polarization. Any PolSAR system operates in one
of the three modes - Single polarization (HH or VV), Dual polarization (HH and
HV or VH and VV), and Quad/Full polarization (HH, HV, VH, and VV).
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The full polarized mode contains much more information than single or dual
polarized. Most of the airborne and spaceborne sensors such as EMISAR, AIR-
SAR, RADARSAT-2, and ALOS-PALSAR operate in full polarized mode. The in-
formation of the target can be characterized by observing the behavior of a signal
using different polarization channels. When the polarized signal is transmitted to
the earth’s surface, its polarization states are modified upon interaction with the
target. The modification is dependent upon the target properties such as geome-
try, orientation, and roughness. This even helps to characterize the target better
than optical sensors.

3.3.1 Mathematical Preliminaries of PolSAR Data

As discussed above, when the radar illuminates a surface with a horizontally po-
larized wave, the backscattered wave can either have horizontal or vertical polar-
ization. Same behavior is repeated for the vertically polarized wave illuminated
by the radar. This set of backscattering properties is contained in 2 × 2 Sinclair
matrix as shown in equation 3.1.

S =

[
SHH SHV

SVH SVV

]
(3.1)

Here, SHH is for the scattering element signifying horizontal transmission and
horizontal reception of polarization channel. The other three terms in the matrix
above are to be interpreted in the same manner. Also, SHV = SVH in the case of
monostatic backscattering. Hence, S for our case becomes the associated target
vector Ω, that can be written as,

Ω =
[
SHH

√
2SHV SVV

]T
(3.2)

Using equation 3.2, the 3 × 3 Covariance matrix is obtained when the outer
product of Ω is calculated along with its conjugate transpose ΩT. Hence, C3 is
written as,

C3 = ⟨Ω.Ω∗T⟩ =
〈 |Ω1|2 Ω1Ω∗

2 Ω1Ω∗
3

Ω2Ω∗
1 |Ω2|2 Ω2Ω∗

3

Ω3Ω∗
1 Ω3Ω∗

2 |Ω3|2

〉
(3.3)

Putting values of equation 3.2 in equation 3.3, equation 3.3 becomes,
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C3 =

⟨SHHS∗
HH⟩ ⟨SHHS∗

HV⟩ ⟨SHHS∗
VV⟩

⟨SHVS∗
HH⟩ ⟨SHVS∗

HV⟩ ⟨SHVS∗
VV⟩

⟨SVVS∗
HH⟩ ⟨SVVS∗

HV⟩ ⟨SVVS∗
VV⟩

 (3.4)

3.4 Datasets

This section discusses the five datasets [17] used for all the experiments con-
ducted. The details of these datasets is as given in Table 3.1.

Name Region Sensor Acquired on Size No. of
Classes

Flevoland15 Flevoland,
Netherlands AIRSAR 16th August,

1989 750 × 1024 15

Flevoland7 Flevoland,
Netherlands AIRSAR 16th June,

1991 750 × 700 7

Landes Landes,
France AIRSAR 19th June,

1991 1050 × 1000 6

SFAIRSAR San Francisco
Bay Area AIRSAR 9 April,

2008 900 × 1024 5

SFRS2 San Francisco
Bay Area RADARSAT-2 August,

1989 1800 × 1380 5

Table 3.1: Details of data sets used for experimentation

The first two datasets namely Flevoland15 and Flevoland7 cover agricultural
area which contains different crops. This number of classes in Flevoland15 is fif-
teen and that is Flevoland7 is seven. The Pauli decomposed image along with the
ground truth and labels of Flevoland15 is as shown in Figure 3.4.

The Pauli decomposed image along with the ground truth and labels of Flevoland7
is as shown in Figure 3.5.The third dataset namely Landes consists of six classes
and its Pauli RGB image, ground truth and labels are as shown in Figure 3.6. The
Pauli decomposed image along with the ground truth and labels of both the San
Francisco datasets is shown in Figure 3.7 and figure 3.8.

The data representation that is used for all the experiments below is in the
form of covariance matrix C3 which is discussed in the previous section of this
chapter. Some other representations are in the form of coherency matrix T3 which
contains a 3_D Pauli feature vector k (shown in equation 3.5 instead of the Ω as in
C3. k contains three elements as shown below.
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Figure 3.4: Flevoland15 data set with a) Pauli RGB image b) ground truth with 15
classes

k =
1√
2
[SXX + SYY SXX + SYY 2 × SYY]

T (3.5)

As discussed further, C3 consists of six matrix elements out of which three
matrices are real valued and three matrices are complex-valued.
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Figure 3.5: Flevoland7 data set with a) Pauli RGB image b) ground truth with 7
classes

Figure 3.6: Landes data set with a) Pauli RGB image b) ground truth with 6
classes
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Figure 3.7: SFAIRSAR data set with a) Pauli RGB image b) ground truth with 6
classes

Figure 3.8: SFRS2 data set with a) Pauli RGB image b) ground truth with 6 classes

All the five datasets are benchmark datasets. For performing speckle filtering
operations discussed in later sections, SNAP tool is used.
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3.5 Convolutional Neural Networks in PolSAR Im-

age Classification

Convolutional Neural Networks dominate the image classification task because
of the ways in which they operate. Any CNN employs five elemental operations
namely convolution, activation, max pooling, flattening, and a fully connected
layer in the end.

Convolution

During this step, a portion of the input image is multiplied with the feature de-
tector usually referred to as Kernel as shown in the Figure 3.9. In case of PolSAR
images, the portion of input size is chosen as a 12 × 12 patch. This step generates
a feature map which gives us the number of convolved features. The kernels are
of highly specific nature (blur detect, edge detect, etc) and multiple kernels can be
used during one convolution operation.

Figure 3.9: Convolution Operation [36]

ReLU

An activation function like ReLU is normally used to bring a non-linearity effect.
Such non-linearity is required because images are non-linear in nature. The func-
tion of ReLU is as shown in equation 3.6,
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Figure 3.10: ReLU [36]

Figure 3.11: Max Pooling [36]

ReLU(x) = max(x, 0) (3.6)

Using multiple ReLUs with increasing number of epochs makes a lot more
sense as compared to other activation functions such as tanh and sigmoid as it
learns specific features very well with increased training. Figure 3.10 shows how
ReLU fits the CNN architecture.

Max Pooling

When working with multiple images of the same object, it is necessary for the
network to be able to extract the said object from various environments at differ-
ent orientations. For this very purpose, max pooling is used. A 2 × 2 max pool
window returns the maximum value of the window which is traversed over the
feature map. This process can be seen in Figure 3.11.
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Figure 3.12: Flattening [36]

Flattening

Flattening is performed to arrange the feature map vector in a single column. A
single columned vector is needed at this stage because it is to be fed to a fully
connected layer for further processing. Flattening is described in Figure 3.12.

Fully Connected Layer

The output of the flattening layer is fed into a fully connected layer for the purpose
of combining all the features into specific attributes for the class prediction task.

The final probability after each iteration or epoch is decided by Softmax func-
tion. And for further reducing the loss obtained using losses such as Cross En-
tropy loss, optimizers such as Adam Optimizer are used.

The entire process of CNNs can be summarized as in Figure 3.13 where all the
layers discussed above individually come together for performing the classifica-
tion task.
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Figure 3.13: All the steps of a CNN [36]

A conventional CNN is designed to operate only on real values. And the Pol-
SAR data is represented in terms of complex values. Various studies as shown
in previous sections, have been done using real-valued CNNs however, using
complex-valued CNNs with each operation discussed above, equipped to handle
complex values, makes more sense.

Importance of Batch Normalization

PolSAR data follows Wishart distribution [29] and CNNs are shift invariant in na-
ture. Hence, performing batch normalization aids the network in understanding
the particular distribution nature of the data in a better way. In all the implemen-
tations discussed from now on, batch normalization has been used at least once
to induce the effect of Wishart distribution for the classification task.
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CHAPTER 4

Complex Valued Convolutional Neural Net-
works

Complex-valued CNN is a variation of conventional CNN hierarchical model
where instead of real values, the CV-CNN network can handle the complex val-
ues. This is in line with how PolSAR data is represented which is in the form of
complex numbers. So, the proposed models in this report contain the usual lay-
ers such as input layer, several combinations of convolutional layers followed by
pooling layers, fully connected layers, and the classifier layer in the end, just like
any other CNN model, but the layers are specifically adjusted mathematically for
handling complex numbers.

Input to a CNN model is in the form of 2-D matrix or multiple 2-D matri-
ces distributed over various channels of an image. Then, the convolution layer
performs the feature extraction part. This output is then fed to the nonlinear ac-
tivation to generate the feature maps. This is then followed by down-sampling
done in the pooling layer. The output is multi-channel 1-D or 2-D matrices.

4.1 Various Operations in Complex-Valued CNNs

In a CV-CNN, the elements discussed above need to be fully CV compatible. Fol-
lowing sections throw some light on how complex data is handled in various
CV-CNN layers.

Convolution

A complex filter matrix w(l+1)
ik ∈ CB1×H1×K is convolved over a complex vector

M(l)
k ∈ CF×F×K×I which represents previous layer’s input feature maps. This

convolution is calculated as follows.
The output feature map of each layer after Rectified Linear Unit (ReLU) acti-
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vation is calculated using equation 4.1.

Mi = ReLU(ℜ(W l+1
i )) + iReLU(ℑ(W l+1

i )) (4.1)

The weighted sum of inputs in layer l + 1 to the ith output feature map Ml is
calculated as follows.

W l+1
i =

K

∑
k=1

wl+1
ik ∗ M(l)

k + bl+1
i

=
K

∑
k=1

(ℜ(w(l+1)
ik ) · ℜ(M(l)

k ))−ℑ(w(l+1)
ik ) · ℑ(M(l)

k )

+ j
K

∑
k=1

(ℜ(w(l+1)
ik ) · ℑ(M(l)

k )) +ℑ(w(l+1)
ik ) · ℜ(M(l)

k )

+ bl+1
i

(4.2)

Pooling

For performing max pooling in complex domain, firstly the magnitude of the
neighbouring complex numbers is calculated and then as per the rule of max
pooling, the complex number with maximum magnitude is selected to replace
the entire N × N pooling cell.

Fully Connected Layer

The output feature map for fully connected layer remains same as shown in equa-
tion 4.1. The equation for weighted sum W for complex-valued fully connected
layers can be written as,

W l+1
i =

K

∑
k=1

wl+1
ik · M(l)

k + bl+1
i (4.3)

Complex Backpropogation

The total classification error in case of complex valued CNN model is calculated
using output M of each layer which is in complex domain and the label L which
is also represented in complex domain. Hence, the total classification error E is
calculated as,
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E =
1
2

1
N

N

∑
n=1

K

∑
k=1

[(ℜ(Lk[n])−ℜ(Mk[n]))2

+ (ℑ(Lk[n])−ℑ(Mk[n]))2]

(4.4)

To minimize E in equation 4.4, weights and bias are iteratively adjusted using
the equations below.

w(l+1)
ik [t + 1] = w(l+1)

ik [t] + Λw(l+1)
ik [t]

= w(l+1)
ik [t]− η

∂E[t]

∂w(l+1)
ik [t]

(4.5)

b(l+1)
i [t + 1] = b(l+1)

i [t] + Λb(l+1)
i [t]

= b(l+1)
i [t]− η

∂E[t]

∂b(l+1)
i [t]

(4.6)

4.2 Implemented Methods

In this work, we mainly explore five CNN models. Out of which, two are real
valued CNN models and the other three are similar complex valued CNN models
with variations just in terms of layers. In the experiments demonstrated here,
covariance matrix C3 is used. The data is C3 is distributed over 6 channels as
follows,

C3 = (C11, C12, C13, C22, C23, C33 (4.7)

The two RV-CNNs are very different in terms of the kind of inputs they take.
In equation 11, C11, C22, and C33 contain only the real part and imaginary part is
0. On the other hand, C12, C13 and C23 contain complex valued pixels with both
real and imaginary parts. The entire image is divided into 12 × 12 patches that
are fed into the CNN model. Depending on the size of the data, this size can be
experimented with, for optimal performance.

4.2.1 Real Valued CNN implementation

The first implementation of RV-CNN architecture is shown in Figure 1. It takes a
6-D feature vector which contains only the real values. Hence, data from C11, C22,
and C33 is taken as it is and only the real part of C12, C13 and C23 into this feature
vector shown in equation 4.8.
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Figure 4.1: Real-Valued CNN model

data = (ℜ(C11),ℜ(C12),ℜ(C13),

ℜ(C22),ℜ(C23),ℜ(C33))
(4.8)

The input layer of 12 × 12 × 6 is fed into the network. Here, 6 signifies the
number of channels which signifies the 6 vectors discussed in equation 4.7. The
first convolution layer uses 32 filters to extract features after which this input fea-
ture map is shrunk using a 2 × 2 max-pooling. Then a convolution layer with 64
filters is implemented on this shrunken feature map. This is followed by 2 fully
connected layers where ReLU activation is applied. The last fully connected lay-
ers extracts features using 128 filters after which the Softmax classifier classifies
the data into the number of classes in the given dataset.

The second implementation considers entire data mentioned in equation 4.7
but feeds it into RV-CNN even though there is complex data present. This is
achieved by constructing a 9-D feature vector where real and imaginary parts are
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Figure 4.2: Complex-Valued CNN model (Model 3 of CV-CNN variations)

fed separately. This 9-D feature vector is as follows,

data = (ℜ(C11),ℜ(C12),ℜ(C13),

ℜ(C22),ℜ(C23),ℜ(C33),

ℑ(C12),ℑ(C13),ℑ(C23))

(4.9)

The feature vector in equation 4.9 is fed into the architecture shown in Figure
4.1 as explained above.

4.2.2 Complex Valued CNN implementation

The complex-valued CNN is implemented as per the architecture of individual
layers discussed in the previous sections. Here, the network is fed a 6-D feature
vector where each pixel is a complex number. The input data representation for
this network is as follows,

data = (ℜ(C11),ℜ(C12) +ℑ(C12),

ℜ(C13) +ℑ(C13),ℜ(C22),

ℜ(C23) +ℑ(C23),ℜ(C33))

(4.10)
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As shown in Figure 4.2, the input layer of 12 × 12 × 6 is fed into the complex
valued CNN network.The first convolution layer uses 32 complex filters to extract
features after which this complex input feature map (M in equation 4.1) is shrunk
using a 2 × 2 max-pooling. Then, two more convolution layers are applied to
further extract the features using 64 and 128 complex filters. This feature map is
then fed into two CV compatible fully connected layers where ReLU activation
is applied. The last fully connected layer extracts features using 128 filters after
which the Softmax classifier classifies the data into the number of classes in the
given dataset.

4.2.3 Variations of CV-CNN

The architecture discussed in Figure 4.2 contains three convolution layers and
three fully connected layers. Before arriving at this model, experiments were car-
ried out with other variations also. As shown in Figure 4.3, the first CV-CNN
model (Model 1) consists of 2 convolution layers and 2 fully connected layers fol-
lowed by the Softmax classifier in the end.

Figure 4.3: Model 1 of CV-CNN variations

The depth of this model 1 is increased in the the second CV-CNN implemen-
tation (Model 2) which consists of 3 convolution blocks followed by 2 fully con-
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nected layers as shown in Figure 4.4. This depth is further increased in Model 3
which is the one shown in Figure 4.2.

Figure 4.4: Model 2 of CV-CNN variations

4.3 Experimental Results

Result of all the three CV-CNN models on Flevoland15 is shown in Table 4.1.
Although the CV-CNN models are able to give comparable results, these could
not perform better than the real valued CNNs (results shown in Table 4.2) on
Flevoland15 dataset for the three models explored in this report.

Table 4.2 shows the comparison of Wishart Mixture Model (WMM) classifier
[7] with the two RV-CNN architectures explored in this report. The WMM models
chosen for comparison are those that use unfiltered data. The real-valued CNN
model which used 9-D feature vector as input is shown to perform better than
the normal RV-CNN model shown in Figure 4.1. It is clear that all the CNN im-
plementations of this report give better results than statistical methods on raw
unfiltered data.

Figure 4.5 shows the classification output for Flevoland15 generated by Model
3 of CV-CNN on the right side. The figure also shows the ground truth of Flevoland15
on the left.
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Flevoland15 Results on CV-CNN

Class Label CV-CNN
(Model 1)

CV-CNN
(Model 2)

CV-CNN
(Model 3)

Water 86.36 91.18 100.00
Forest 87.76 86.84 78.72
Lucerne 91.67 100.00 85.00
Grasses 35.29 50.00 43.75
Peas 90.91 100.00 100.00
Barley 87.50 100.00 82.35
BareSoil 80.00 0 100.00
Beat 91.30 96.30 95.45
Wheat2 30.77 76.17 100.00
Wheat3 97.87 90.20 88.00
Steambeans 92.31 100.00 100.00
Rapeseed 50.00 37.50 5.88
Wheat 86.11 76.47 94.44
Buildings 50.00 0 100.00
Potatoes 96.67 94.44 100.00
OA 80.219 82.417 81.868

Table 4.1: Various Architectures on Flevoland15 Dataset

Flevoland15 Result Comparison

Class Label WMM
K-means

WMM
Global

K-means
RV-CNN RV-CNN

(R+C)

Water 95.65 100.00 89.20 89.26
Forest 59.00 59.35 100.00 94.87
Lucerne 52.23 52.27 91.30 94.44
Grasses 33.96 33.83 31.25 36.84
Peas 47.49 47.51 94.12 100.00
Barley 54.43 54.39 94.12 100.00
BareSoil 65.59 66.12 0 16.67
Beet 45.16 45.17 88.00 94.74
Wheat2 33.74 33.75 80.00 86.96
Wheat3 46.79 46.88 92.19 97.37
Steambeans 50.80 50.51 78.57 88.89
Rapeseed 34.84 34.49 25.00 37.50
Wheat 46.44 46.84 73.68 90.48
Buildings 40.46 46.15 100.00 0.00
Potatoes 55.28 55.83 94.59 93.18
OA 49.92 50.04 81.593 84.89

Table 4.2: Comparison of RV-CNN with Statistical Methods over Unfiltered Data
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Figure 4.5: Flevoland15 - Ground Truth vs. Results on Model 3

Flevoland7

Labels RV-CNN RV-CNN
(R+C)

CV-CNN
(Model 1)

CV-CNN
(Model 2)

CV-CNN
(Model 3)

Water 90.30 99.23 99.22 99.22 99.22
Rapeseed 96.30 100.00 98.57 100.00 97.01
Barley 85.83 98.20 98.10 95.45 99.09
Lucerne 100.00 77.78 100.00 83.33 91.67
Potatoes 96.43 97.73 100.00 100.00 100.00
Beet 87.80 86.21 86.84 89.19 75.68
Peas 85.71 66.67 100.00 100.00 100.00
OA 90.102 96.701 97.716 96.954 96.447

Table 4.3: Various Architectures on Flevoland7 Dataset

The result of all the five models on Flevoland7 Dataset is shown in Table 4.3.
Model 1 and Model 2 of CV-CNN architecture perform better than both the Real-
Valued CNNs on Flevoland7 data. Model 1 discussed in Figure 4.3 performs the
best.

The result of all the five models on Landes Dataset is shown in Table 4.4.
All the three models of CV-CNN architecture perform better than both the Real-
Valued CNNs on Landes data. Model 2 discussed in Figure 4.4 performs the best.

Figure 4.6 shows the classification output for Flevoland7 generated by Model 3
of CV-CNN on the right side. The figure also shows the ground truth of Flevoland7
on the left.

Figure 4.7 shows the classification output for Landes generated by Model 3 of
CV-CNN on the right side. The figure also shows the ground truth of Landes on
the left.

Figure 4.8 shows the result generated by Wishart classifier explored in [7]. The
results shown in this figure are densely pixelated because the classification is at
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Figure 4.6: Flevoland7 - Ground Truth vs. Results on Model 3

Landes

Labels RV
-CNN

RV-CNN
(R+C)

CV-CNN
(Model 1)

CV-CNN
(Model 2)

CV-CNN
(Model 3)

C1 70.27 87.39 93.46 91.49 92.66
C2 95.00 100.00 100.00 90.00 100.00
C3 87.50 100.00 100.00 100.00 95.83
C4 99.56 99.49 100.00 100.00 99.44
C5 76.00 80.77 92.00 95.00 96.00
C6 82.98 79.31 76.60 95.35 82.50
OA 88.546 92.731 94.885 96.675 95.396

Table 4.4: Various Architectures on Landes Dataset

Figure 4.7: Landes - Ground Truth vs. Results on Model 3
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pixel level where as the classification of deep learning models shown in results of
Figures 4.5-4.7 follow patch-level classification.

Figure 4.8: Results of Wishart Classifier on Landes, FL7, and FL15
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CHAPTER 5

Squeeze and Excitation Networks

Convolutional Neural Network (CNN) focuses mainly on the spatial relationship
within local receptive fields. However, the process entangles the channel correla-
tion with spatial information. To address this issue, we use a squeeze-excitation
network (SENet) along with complex-valued CNN to exploit the channel inter-
dependencies. Thus, we utilize spatial as well as channel relationships in our
work. This, in turn, helps in reducing the speckle noise in the images.

SENet incorporate a mechanism using CNNs only. This mechanism enhances
the interpretation of channel interdependencies at no additional computational
cost. This improvement is achieved by introducing a content aware mechanism
that weighs each channel on a global level adaptively. This is in contrast to a
conventional CNN where each channel is weighed equally.

As shown in Figure 5.1, one SE-block consists of three operations as follows:

Squeeze

During squeeze operation, the global information comprised in all the channels is
extracted using an averaging operation such as global or adaptive average pool-
ing. The input to this operation is a feature map which is output of the previous
convolution layer. The squeeze operation is the key feature of SE blocks as it is
essential to extract the global information of the feature map. In our experiments,
adaptive average pooling has been used during this operation.

Excitation

Once the feature map is reduced to a smaller dimension by the squeeze operation,
this information is now fed into a small deep learning network module during
the excitation phase. This module contains a bottleneck structure with two fully
connected layers, each followed by their separate activation layers of ReLU and
Sigmoid respectively.
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Figure 5.1: SEBlock architecture
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Scaling

After the excitation part, during the scaling phase, the output of the Sigmoid layer
is multiplied with the input feature map of the convolution layer that was added
before the SEBlock. This element-wise multiplication produces the values for each
channel between 0 and 1, assigning 0 or lower values to channels that are of less
importance as compared to channels with higher values towards 1.

5.1 Skip Connections

A lot of deep learning networks suffer from the problem of vanishing gradient.
When this issue occurs, the loss stops decreasing further but it is still far from
reaching the desired value. For understanding how skip connections work, we
first need to understand the chain rule.

Chain Rule

Suppose the gradient of a loss function z with respect to functions x and y with t
as the layer parameter, then let f, g, h be the functions describing different layers
on the network such as

z = f (x, y) x = g(t) y = h(t) (5.1)

To express the gradient of z with respect to the input parameters in x and y,
the chain rule in multi-variable calculus applies such that,

∂z
∂t

=
∂ f
∂x

∂x
∂t

+
∂ f
∂y

∂y
∂t

(5.2)

Now, when the gradient is calculated, if instead of multiplication as shown in
equation 5.2. if addition could be performed, then the problem of vanishing gra-
dient is eliminated. This is precisely what is accomplished using skip connections.

Skip Connections via ResNet

There are two ways in which skip connections can be incorporated. One is through
addition and another is through concatenation. In our implementations, skip con-
nections are incorporated through addition by using residual connection block. In
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Figure 5.2: Skip Connections using Residual block

a ResBlock as shown in Figure 5.2, a selected block of network is skipped from the
main network and later it’s feature map is added to the original path.

5.2 Complex-Valued Squeeze-Excitation Network

The main component of Squeeze-Excitation (SE) Network is the complex SE block [22].
It enhances the convolutional features by modelling channel inter-correlation. It
enables significant information propagation towards the next layer. SE block per-
forms squeeze and excitation operation. We modify the conventional SE block to
deal with complex values. The squeeze operation is performed by

Fsq(Mi) =
1

H × W

H

∑
x=1

W

∑
y=1

(ℜ{Mi(x, y)}+ jℑ{Mi(x, y)}) . (5.3)

This is equivalent to average pooling per channel, which represents the channel-
wise statistics. The dependencies among the channel is exploited by excitation
operation by a gating mechanism with sigmoid activation as

ei = Fex(si) =
1

1 + e−ℜ{W ′
1 s̃i}

+ j
1

1 + e−ℑ{W ′
1 s̃i}

(5.4)

where si = Fsq(Mi), s̃i = max(W1si, 0). ei is then multiplied channel-wise with
Mi to produce the output feature oi.

We use the SE block with and without skip connections, separately. While
using SE block without skip connection, we use the above mentioned expressions
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Figure 5.3: ResBlock along with SEBlock

to find the feature map oi. In skip-connection configuration (Figure 5.3), the SE
block is associated with two conv blocks. One conv block consists of one CV-CNN
layer, batch normalization and complex ReLU. The other conv block consists of
one CV-CNN layer along with batch normalization.

The output feature map of this configuration is added with the input map
M̂i = Mi + oi.

The advantage of using SENet for PolSar images is to capture channel-wise de-
pendencies that are learned by extracting non-mutually-exclusive and nonlinear
relationships between the individual channels. This is achieved by the excita-
tion module which follows the squeeze model. The main advantage of using a
squeeze network is to interpret the local descriptors that capture the statistics for
the whole image. One more reason for exploring the efficiency of SE blocks for
SAR image classification is that the speckle noise is spread across channels. The
SE block helps in reducing the noise by suppressing unwanted information.

5.3 Experimental Results

Three datasets [17] namely Flevoland15, Flevoland7, and Landes have been con-
sidered for demonstrating the effectiveness of our architecture. Flevoland15 and
Flevoland7 are collected by AIRSAR over Flevoland region of Netherlands. Flevoland15
data is an SAR image of dimensions 750 × 1024 with 15 classes. Flevoland7 data
is a 750 × 700 dimensional SAR image captured by AIRSAR with 7 classes. Lan-
des is a 1050 × 1000 SAR image with 6 classes. It is important to note that all
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the experiments are carried out on unfiltered data. Entire image of the dataset is
divided into 12 × 12 patches. All the experiments are carried out using PyTorch
framework.

Furthermore, experiments can be divided into two parts. First part explores
the efficiency of Complex Valued SENet on the original datasets without any data
scaling. The second part explores the same architectures along with data scaling
techniques.

5.3.1 SENet with and without skip connections

The datasets are divided into training data and testing data where 25% images
have been chosen for testing. Tesla P100-PCIE with 16GB graphics RAM is used
to train the models. For Flevoland15, we get 1212 number of patches. Number
of patches for Flevoland7 and Landes is 1313 and 1303, respectively. For training,
Adam optimizer is used on cross-entropy loss.

Class Label WMM
K-Means [7]

WMM
Global

K-Means[7]

Proposed Net
Without Skip
Connections

Proposed Net
With Skip

Connections
Water 95.65 100.00 100.00 73.01
Forest 59.00 59.35 100.00 100.00
Lucerne 52.23 52.27 100.00 100.00
Grasses 33.96 33.83 77.78 81.82
Peas 47.49 47.51 100.00 94.44
Barley 54.43 54.39 66.67 92.31
BareSoil 65.59 66.12 100.00 100.00
Beet 45.16 45.17 100.00 100.00
Wheat2 33.74 33.75 100.00 100.00
Wheat3 46.79 46.88 100.00 100.00
Steambeans 50.80 50.51 100.00 100.00
Rapeseed 34.84 34.49 95.83 100.00
Wheat 46.44 46.84 97.44 100.00
Buildings 40.46 46.15 0 100.00
Potatoes 55.28 55.83 100.00 100.00
OA 49.92 50.04 97.12 96.04

Table 5.1: Results of SENet on Flevoland 15 dataset

Table 5.1 shows the comparison between the results obtained using statistical
methods [7] and our results. It should be noted that statistical methods produce
sub-optimal results on completely unprocessed data. Since, the convolution lay-
ers and the squeeze and excitation blocks are employed, the noise spread across
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the channels gets sufficiently suppressed and therefore isn’t propagated through
the feature maps. Hence, the proposed deep learning architecture handles the
unfiltered data in an efficient way without any denoising techniques. Table 5.1
also shows the comparison between SENet with and without skip connections.
On Felvoland15, the network without skip connections gives a higher accuracy
of 97.12% than that of network with skip connections which gives accuracy of
96.04%. The proposed network with skip connection performs quite well for al-
most all the classes except for water. The framework is able to classify the build-
ing category, which was missed by without skip-connection configuration. This
is because the skip connection allows a smoother information flow from the input
towards output.

Table 5.2 shows the results of our method on Flevoland7 and Landes datasets.
On Flevoland7, the network without skip connections gives a higher accuracy
of 98.78% than that of network with skip connections which gives accuracy of
98.18%. On Landes dataset, the network with skip connections gives a higher
accuracy of 97.24% than that of network without skip connections which gives
accuracy of 97.24%.

Results of SENet on Flevoland7

Class Label
Without

Skip
Connections

With
Skip

Connections
Water 97.50 99.24
Rapeseed 100.00 100.00
Barley 100.00 96.67
Lucerne 100.00 100.00
Potatoes 100.00 91.30
Beet 96.67 100.00
Peas 100.00 100.00
OA 98.78 98.18

Results of SENet on Landes
C1 98.82 96.51
C2 78.57 100.00
C3 100.00 100.00
C4 100.00 100.00
C5 94.12 95.00
C6 75.00 85.29
OA 95.71 97.24

Table 5.2: Evaluations on more datasets

Figure 5.4 shows the comparison between results generated by the proposed
architecture with and without skip connections for Flevoland7. We also compare
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with WMM-based method [7]. The left image in Figure 5.4 shows the result gen-
erated by the proposed method without skip connections. The right image in
Figure 5.4 shows the result generated by the proposed method with skip con-
nections. Whereas the bottom-left image shows the result produced by WMM
method [7], and the bottom-right shows the ground truth. One can observe that
the WMM method [7] is not able to classify different regions satisfactorily. Fur-
ther, the method does not label the background separately. Hence, background
is classified along with other classes. Moreover, it suffers from the speckle noise.
Whereas, our method produces better results by suppressing the effect of speckle
noise. Similar comparison can be made from Figure 5.5 for Landes dataset.

Figure 5.4: Flevoland7 - left: our result without skip connections; right: results
with skip connections

Figure 5.5: Landes - left: our result without skip connections; right: results with
skip connections
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CHAPTER 6

Data Augmentation for Improved Classifica-
tion

As seen previously, the size of the datasets that we are dealing with is very small
for feeding them into such robust deep learning networks. Hence, by increasing
the size of training data, data augmentation has been performed. This section
gives a brief idea about various speckle filtering techniques and how they are
incorporated in this work for data scaling.

6.1 Speckle Filtering for Polarimetric Data

The reason for appearance of speckle in SAR imagery is the coherent interference
of waves that arise due to scattering from surface. Various types of scattering are
volume scattering, surface scattering, multiple scattering and wave attenuation.
The scattering phenomenon is linear coherent addition of individually scattered
waves that are emitted from various point of discrete scatters. Speckle is deter-
ministic in nature and helps in classifying certain land covers. However, Speckle
causes significant changes in pixel values by not only appearing in the intensity
images of polarization channel, but it also appears in the complex, cross-product
terms. Speckle appears in the form of granular noise and hinders an accurate im-
age interpretation as it suppresses small details in the images. Though speckle
noise is deterministic in nature, it is to be treated properly using statistical meth-
ods.

Polarimetric SAR speckle noise model in [31] clarifies the implications of 2D
speckle noise. An adaptive algorithm exploring the effectiveness of mean-shift-
based speckle filtering is discussed in [27]. Images with minimum speckle have
been produced after applying polarimetric whitening filter (PWF) in [34] and it
has produced comparable results. Many a times, during speckle filtering phase,
crosstalk between polarization channels is detected. This issue was tackled in [28]
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and a classification was performed using Bayes maximum likelihood classifica-
tion algorithm. Since speckle noise also carries terrain information, it is important
to preserve the potential target information and it was achieved in [6]. Impact of
speckle filtering was studied by performing classification of data using K Means
clustering in [11] which also presents a comparative study of several speckle fil-
ters that are used widely.

6.1.1 Various Speckle suppression filters

This section throws some light on the Speckle noise filters used in our methods
for producing differently filtered images for data augmentation.

Median Filter

It is a non-linear image filtering technique, generally used to eliminate impulse
noise such as Speckle noise from an image. The center pixel is replaced with the
median value of the filter window. This type of noise removal is a common pre-
processing step for improving the output results; one such example is that under
some established conditions this filter can help preserve edges while reducing
noise.

Frost Filter

This filter borrows from the concept of minimum mean square error algorithm,
while adapting to local statistical distribution of the image. The frost filter can
be used to mitigate the speckle noise while maintaining the edge information in
radar images. This filter has an exponential damping factor. The value that re-
places the center pixel is computed from a combination of distance from the filter
center, local variance and the damping factor. The exponential damping factor is
vital in managing the smoothness of the image.

y =
∑(x ∗ W)

∑ W
(6.1)

where x is the pixel values in the local window, W is the weight for each pixel
in the local window.

Boxcar Filter

A boxcar function is equal to a constant value over a range/interval and zero
everywhere else. The boxcar filter is roughly based on the boxcar function. The
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center pixel is replaced by the average of the pixel values of filter window.

Yi,j =
〈

Xi,j
〉

Nw
=

1
N2

w

Nw/2

∑
p=−Nw/2

Nw/2

∑
q=−Nw/2

Xi+p,j+q (6.2)

where, Yi,j is the final estimate of filtered value at position i, j. Xi,j is the value of
the input pixel and Nw is the size of window.

Lee Sigma Filter

This filter uses the principle of Gaussian distribution model. Only the pixels be-
longing to a certain standard deviation range are averaged.

Yi,j = K + W ∗ (C − K) (6.3)

where, Yi,j is the despeckled image, K is the mean of the window, W is the
weighing function and C is the center element in the window. W is calculated
using the equation below.

W =
σ2

k
(σ2

k + σ2)
(6.4)

where, σ2 is the variance of the image and σ2
k is the variance of the pixels in the

window.
After experimenting with different kinds of combonations for data scaling,

boxcar filter and Lee Sigma filter have been selected for data augmentation in this
work as discussed below.

For data augmentation, the size of training set has been increased three times
as compared to the original dataset. This is achieved using speckle noise sup-
pression techniques discussed in the previous section. Firstly, the boxcar filter is
applied on the 75% of original patches selected for training set. Then Lee Sigma
filter is applied on the original images in the same way.

data_og = (C11, C12, C13, C22, C23, C33) (6.5)

data_box = (C11, C12, C13, C22, C23, C33) (6.6)

data_lee = (C11, C12, C13, C22, C23, C33) (6.7)

These filtered images are then added with the collection of training patches
along with their labels as shown in equation 6.8
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augmented_data = (data_og, data_box, data_lee) (6.8)

6.2 Experimental Results

After the training set is ready, the training is done using the SENet architecture
with and without skip connections as discussed above. The classwise accuracies
of employing these techniques on Flevoland15 dataset is shown in Table 6.1. Fig-
ure 6.1 shows the set of labels generated for pixels of Flevoland 15 dataset.

When compared with the results in Table 5.1, it can be seen that the accu-
racy after employing data augmentation has increased for Flevoland15. It should
also be noted that for classes with very few labels such as the "buildings" class in
Flevoland15, the accuracy without data augmentation was very less and it signif-
icantly improves after data scaling.

Class Label
Without

Skip
Connections

With
Skip

Connections
Water 100.00 85
Forest 99.06 100.00
Lucerne 100.00 100.00
Peas 100.00 98
Barley 95.08 98.36
BareSoil 97.37 94.74
Beet 94.44 77.78
Wheat2 98.77 100.00
Wheat3 94.12 97.06
Steambeans 100.00 100.00
Rapeseed 100.00 100.00
Wheat 89.19 94.59
Buildings 100.00 99.17
Potatoes 100.00 100.00
OA 98.17 97.25

Table 6.1: Results on Flevoland 15 after data augmentation
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Figure 6.1: After Data Augmentation - left: results without skip connections on
F15; right: results with skip connections on F15

Table 6.2 shows the results of classification using various SENet architectures
after using Data augmentation techniques on Flevoland7. Figure 6.2 shows the
visual result for the result shown in the Table 6.2. As is the case with Flevoland15,
data augmentation process has improved the accuracy for Flevoland7 too.

Results on Flevoland7 after Data Augmentation

Class Label
Without

Skip
Connections

With
Skip

Connections
Water 100.00 100.00
Rapeseed 100.00 100.00
Barley 100.00 99.70
Lucerne 100.00 100.00
Potatoes 100.00 99.15
Beet 96.36 97.27
Peas 100.00 100.00
OA 99.66 99.57

Table 6.2: Evaluation on Flevoland7

Table 6.3 shows the results of classification using various SENet architectures
after using Data augmentation techniques on Landes. Figure 6.3 shows the visual
result for the result shown in the Table 6.3. A slight improvement in accuracy for
Landes has also been achieved for Landes dataset after data augmentation.

Table 6.4 shows the accuracy achieved on SFAIRSAR for SENets without skip
connections without and with data augmentation. Same type of results for SFRS2
have been shown in Table 6.5. Figure 6.4 shows the visual results for the results
shown in Table 6.4.
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Figure 6.2: After augmentation - left: results with- out skip connections on F7;
right: results with skip connections on F7

Results on Landes after Data Augmentation

Class Label
Without

Skip
Connections

With
Skip

Connections
C1 97.61 96.42
C2 95.35 97.67
C3 100.00 100.00
C4 100.00 100.00
C5 100.00 100.00
C6 96.18 97.71
OA 98.72 98.64

Table 6.3: Evaluation on Landes

Table 6.4: Experiments on SFAIRSAR dataset

Class Label SENet Without
Data Augmentation

SENet With
Data Augmentation

Mountain 71.19 94.34
Water 98.05 99.81
Urban 99.83 98.67

Vegetation 91.09 86.35
BareSoil 91.35 97.05

OA 97.22 98.30
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Figure 6.3: After augmentation - left: results with skip connections on Landes;
right:results with skip connections on Landes

Figure 6.4: Results on SFAIRSAR a) Ground Truth. b) Result of SENet without
data augmentation. c) Result of SENet with data augmentation

Table 6.5: Experiments on SFRS2 dataset

Class Label SENet Without
Data Augmentation

SENet With
Data Augmentation

Water 100.00 100.00
High Density Urban 97.60 97.06
Low Density Urban 97.57 97.42

Developed 92.97 97.55
Forest 96.32 98.66

OA 98.41 98.84
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CHAPTER 7

Summary and Comparison

To summarize all the models implemented in this work, we have divided the
implementations in terms of CNN architectures and SENet Architectures.

7.1 Convolutional Neural Networks

As discussed previously, five models for CNNs have been implemented. These
are as shown in Table 7.1.

Model Real/Complex Input Channels Layers
RV-CNN Real 6 5
RV-CNN Real 9 5
CV-CNN Complex 6 5
CV-CNN Complex 6 6
CV-CNN Complex 6 7

Table 7.1: All CNN models

7.2 Squeeze-and-Excitation Newtorks

As discussed previously, four variations of SENet have been implemented. And
they can be summarized as in Table 7.2.

Model Skip Connections Data Augmentation
SENet Without Skip Connections Without Data Augmentation
SEResNet With Skip Connections Without Data Augmentation
SENet Without Skip Connections With Data Augmentation
SEResNet With Skip Connections With Data Augmentation

Table 7.2: All SENet Models

Table 7.3 shows the comparison among various methods and the four varia-
tions of the proposed methods that yield the highest results. Here, the efficiency
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of the proposed method is compared with seven models, including Wishart-AE
model or Wishart-CAE model[47], Fisher Vectors [38], Self-Paced CNN [26], Three-
Channel CNN [24], Multi-Channel fusion CNN based on scattering mechanism
[46], and Complex valued CNN [50] for real-valued as well as complex-valued
network. One can observe that the proposed method is able to produce best re-
sults as compared to the existing approaches.

Method Accuracy
WCAE [47] 93.31
FV [38] 91.44
SPCNN [26] 96.90
Tc-CNN [24] 96.63
MCFCNN+Newloss [46] 95.83
CV-CNN [50] 96.20
RV-CNN [50] 95.30
Proposed method 1
(SENet without skip connections) 97.12

Proposed method 2
(SENet with skip connections) 96.04

Proposed method 1
With Data Augmentation 98.17

Proposed method 2
With Data Augmentation 97.25

Table 7.3: Comparisons on Flevoland15 Dataset

Using variations of Composite Kernel Method for PolSAR Image Classification
Based on Polarimetric-Spatial, four different methods namely POL, MP, Vector
sketching, and composite kernel were able to achieve overall accuracy of 86.9%,
89.6%, 92.6%, and 94.4% respectively [45]. Consequently, previous work using
both statistical and deep learning-based methods [16] have produced accuracy
as shown in Table 7.4. As shown in Table 7.5, SENet with complex valued CNNs
have been able to achieve better performance than various deep learning methods
discussed in [49] and [39].
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Table 7.4: Result Comparison for SFAIRSAR

Method Overall
Accuracy

Wishart 81.49
RBF-SVM 81.34
CNN 90.38
CV-CNN 91.83
SF-CNN 92.01
DAS-CNN 93.43
CVDAS-CNN 94.32
Composite Kernel 94.40
SENet with Data Augmentation 98.30

Table 7.5: Result Comparison for SFRS2

Method Overall
Accuracy

CNN 81.00
AN-CNN 83.90
SW-CNN 74.41
Grid research CNN 89.78
Tensor Embedding 90.76
SENet with Data Augmentation 98.84
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CHAPTER 8

Conclusion and Future Work

The implementations that use CNN models confirm the efficiency of CNNs real-
valued and complex-valued both. The overall accuracy in these models itself
proves that deep learning based classification does not require any preprocess-
ing such as speckle filtering on the raw unlfiltered data. Moreover, the overall
accuracy in these five models itself crosses the accuracy of statistical methods that
use unfiltered data.

In the classification using squeeze and excitation blocks, spatial and channel-
wise important information plays an essential role. The spatial correlation is taken
care of by convolutional blocks, whereas the inter-channel dependencies are ex-
ploited by squeeze and excitation blocks. To deal with complex values, we have
used complex-valued CNN. The SE block has also been modified accordingly.
Furthermore, the data augmentation techniques are employed to provide enough
examples during the training phase of the model.

The proposed models have produced promising results on unfiltered data con-
firming that the squeeze-excitation, when configured with complex-valued deep
learning methods appropriately, can suppress the effect of speckle noise while
classifying the PolSAR image.

The implementations discussed in this work explore the efficiency of squeeze
and excitation networks with deep learning operations that are designed to use
complex values instead of real values. SENets extract channel wise information
efficiently. Work can be done to better implement pixel wise relations along with
these channel wise relations for further improving the performance.

Data augmentation techniques have proven remarkable in solving the issue
that the datasets available for experimentation are small in size. The data used
for data augmentation is purely C-band data. For further improving the model
performance, dual band data such as L- and C-band data can be used.
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