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Abstract

Image dehazing has become one of the crucial preprocessing steps for any com-
puter vision task. Most dehazing methods work in the image domain, and the
dehazed image is obtained by estimating the transmission map along with global
atmospheric light. In this thesis, we present a novel end-to-end architecture for
estimating dehazed image in the Krawtchouk transform domain. For this a cus-
tomized Krawtchouk Convolution Layer (KCL) in the architecture is added. KCL
is constructed using Krawtchouk basis functions which converts the image from
the spatial domain to the Krawtchouk transform domain. At the end of the archi-
tecture, another convolution layer called Inverse Krawtchouk Convolution Layer
(IKCL) is introduced which converts the image back to the spatial domain from
the transform domain. It has been observed that the haze is primarily present in
lower frequencies of hazy images. Krawtchouk transform helps to analyze the
high and low frequencies of the images separately. We have divided our archi-
tecture into two branches, the upper branch deals with the higher frequencies
while the lower branch deals with the lower frequencies of the image. The lower
branch is made deeper in terms of the layers as compared to the upper branch
to address the haze present in the lower frequencies. When compared to current
state-of-the-art methods, we were able to get competitive results using the pro-
posed Orthogonal Transform based Generative Adversarial Network (OTGAN)
architecture for image dehazing.
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CHAPTER 1

Introduction

Generally it is difficult to capture a clear photo, especially in winter season. Some
amount of fog or haze is present in the atmosphere and we do not have cam-
era sensors that can directly remove this haze to overcome this problem. Haze
is a natural occurrence that reduces the image quality acquired by the camera.
This is due to small particles in the atmosphere, such as dust, water droplets,
and fog, which absorb and scatter light. Image dehazing (Figure 1.1) is a method
for recovering a haze-free image from a hazy image in order to solve this prob-
lem. Computer vision tasks such as object detection [1], traffic surveillance, object
tracking [2] require a haze-free image to perform at their best potential. As a re-
sult, haze removal becomes an important step in the preprocessing of high-level
computer vision tasks.

(a) (b)

Figure 1.1: (a) Hazy Image (b) Clear Image

Earlier in [3–7], to restore the haze-free image, researchers took multiple im-
ages of the same scene. Multiple images of same scene are captured in different
weather conditions but it is not always possible to get multiple images of the same
scene, this encouraged them to use a single image for image dehazing. To address
the image dehazing task utilising a single image, different approaches have been
proposed.
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Two types of image dehazing techniques exist: (a) based on prior knowledge,
(b) based on learning. The first one uses characteristic differences like brightness,
contrast, saturation between hazy and haze-free images and utilizes this knowl-
edge to obtain a haze-free image. But not all images show the same characteristics
which lead to some artifacts (color distortion) that makes the dehazed image look
unrealistic. On the other hand, learning-based methods extract these characteris-
tics automatically using some learning model.

In this thesis, an orthogonal transform based Generative Adversarial network
(OTGAN) is proposed for image dehazing. The key aspects of the thesis are men-
tioned below:

• GAN based deep learning architecture for image dehazing is introduced in
orthogonal transform domain. Krawtchouk moments converts the images
from spatial domain to Krawtchouk domain. The architecture is trained to
find the difference between the Krawtchouk coefficients of hazy image and
haze-free image.

• Two custom convolution layers are designed consisting of Krawtchouk basis
which are used to convert image in-between spatial domain and Krawtchouk
domain; one of them is Krawtchouk Convolution Layer (KCL) used for for-
ward transform and other Inverse Krawtchouk Convolution Layer (IKCL)
for inverse transform. Weights of KCL are kept fixed and non-trainable,
while weights of IKCL are kept trainable for better adaptivity of the basis
functions to the dataset.

• The proposed architecture has two branches; the upper branch consists of
simple U-Net architecture, which deals with the high frequencies and the
lower branch consist of pyramidal architecture that deals with the low fre-
quencies present in the image

• Images used for training are transformed from RGB to YCbCr color system,
whereby only the Y channel is passed through the architecture.
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CHAPTER 2

Related Work

Many researchers have proposed prior-based and learning-based approaches for
image dehazing. This chapter discusses image dehazing approaches that either
rely on prior information or use learning-based methods.

2.1 Haze formation formula

Figure 2.1 shows the haze formation model. The atmospheric scattering model [8]
defines the haze formation model as

I(x) = R(x)t(x) + A(1 − t(x)) (2.1)

Here, I stands for the image captured by the lens, R stands for the haze-free
image that we are trying to recover, t stands for transmission map, which denotes
the amount of light captured by the camera without any dispersion, and A stands
for the global atmospheric airlight, x represents the index of pixels in the hazy
image. Transmission map t(x) is dependent upon the distance between camera
lens and object and is calculated as

t(x) = e−βd(x) (2.2)

The distance between the object and the camera lens is denoted by d(x). It can
be observed from (2.2) that the transmission map t(x) is inversely proportional to
d(x), so the objects near to the camera lens have less haze. This model is widely
used by the researchers in estimating the clear images. The synthetic datasets can
also be generated using the atmospheric scattering model by selecting a random
value for the transmission map t(x) and random airlight A. These values are then
used to generate hazy images from the clear images.
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Figure 2.1: Haze Formation Model

2.2 Based on prior knowledge

Researchers used to detect characteristics difference between hazy and haze-free
image like brightness, contrast, and saturation and apply this knowledge to es-
timate the transmission map t and global atmospheric light A and use (2.1) to
get the clear image before the deep learning era. He et al. [9] introduced single
image dehazing method using Dark Channel Prior (DCP), it is based on the fact
that, outside haze-free images have some local regions with very low (near-zero)
intensity values for at least one color channel. They used this observation along
with the atmospheric scattering model to obtain a haze-free image directly from
the estimated transmission map and atmospheric light as follows

R =
I − A

max(t, t0)
(2.3)

Here, t0 denotes the lower bound of the transmission map and A denotes the
global atmospheric airlight. This method was not able to produce good results
for regions that are similar to airlight. The observations made in DCP were used
by many researchers in their work. Meng et al. [10] introduced an efficient image
dehazing with Boundary Constraint and Contextual Regularization (BCCR), they
proposed a boundary constraint for the transmission function and used it to cal-
culate the transmission map. In Non-local Image Dehazing (NLD) by Berman et
al. [11], utilized a non-local prior knowledge for image dehazing. They observed
that only a few hundred distinct colors are required to represent a haze-free im-
age, which is tightly clustered in RGB space. For hazy and haze-free photos, these
colour clusters behave differently. The haze line in the hazy image is replaced by
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the colour cluster in the haze-free image, and this knowledge is utilised to esti-
mate the transmission map and then used to recover the haze-free image.

Many methods are introduced for image dehazing in the spatial domain, Liu
et al. [12] introduced a novel approach to dehaze image in the frequency domain
. They used multi-scale wavelet decomposition [13] to convert images from spa-
tial domain to frequency domain. It was observed that haze is present in the
low frequency content of the image; wavelet decomposition produces four dif-
ferent sub-images where the first image contains low-frequency content and re-
maining images provides high-frequency content, specifically the visual features
in the horizontal, vertical, and diagonal directions. The authors presented the
Open Dark Channel Model (ODCM) for removing haze from the low-frequency
portion of the image, and the transmission value acquired from ODCM is used
to minimise noise from the high-frequency part of the image, and finally, wavelet
decomposition is used to obtain a haze-free image.

Prior based methods are fast as they do not require any training, but they work
on the assumptions made by the authors such as dark channel, color attenuation
which are not true for all kinds of images. Even though these methods can remove
the haze but the clear image does not look realistic due to some color distortion
and oversaturation. This can be solved using some optimization but each im-
age requires a different type of optimization which is not feasible. To overcome
these problems, researchers started using learning-based methods which will be
discussed next.

2.3 Based on learning

In Color Attenuation Prior (CAP) Zhu et al. [14] proposed a method which uses
prior knowledge along with linear learning model to estimate the scene depth.
The difference between saturation and brightness varies for hazy and haze-free
images and is directly proportional to the depth map of the image, CAP utilises
this knowledge for image dehazing . So the authors have used supervised linear
learning model to estimate the depth map. Cai et al. [15] proposed a CNN based
DehazeNet, architecture using different convolution layers stacked together to
estimate the transmission map and further recover the haze-free image; they also
introduced BReLU for accurate restoration of the image. MSCNN [16] is CNN
based architecture that uses two different branches for estimating transmission
maps, one of the branches estimates at coarse-scale and the other at the fine-scale.

Most of the methods used learning methods to estimate the transmission map
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and simply use prior knowledge to obtain the global atmospheric airlight. Shin
et al. [17] proposed a novel optimization framework that integrates radiance and
reflectance components along with structure-guided l0 norm for further refine-
ment. The transmission map is estimated using this reflectance map, which is
then utilised for image dehazing. In All-in-one Dehazing Network(AOD-Net),
Li et al. [18] modified the equation of atmospheric scattering model by integrat-
ing the transmission map and airlight into a single term. Instead of calculating
the transmission map first, the clear image is estimated directly using lightweight
CNN. Li et al. [19] proposed PDR-Net. The dehazed image is reconstructed using
CNN, and the colour and contrast qualities of the dehazed image are enhanced
using a network. Lin et al. [20] proposed end-to-end attention based lightweight
model MSAFF-Net which uses a channel and multiscale spatial attention mod-
ule, for determining the regions with haze-related features. In Densely Connected
Pyramid Dehazing Network (DCPDN) Zhang et al. [21] proposed a method which
estimates the transmission map and airlight jointly to obtain the dehazed image.
Authors proposed an encoder-decoder based on the densely connected network
along with pyramid pooling to estimate the transmission map and U-Net [22] is
used to estimate the airlight. Discriminator based on GAN [23] framework is used
to decide whether the estimated image is real or fake.

Learning-based methods achieved accurate results but a large amount of data
is required during the training process. It is difficult to get ground truth images for
real-world hazy images so synthetic datasets are used during training. Synthetic
images cannot generate real-world scenarios, especially in darker environments.
Because of this, learning-based methods are not able to dehaze real-world images
completely which opens a space for further research.
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CHAPTER 3

Motivation

In [12] authors performed image dehazing in the frequency domain instead of the
spatial domain. Wavelet transform is used to convert the image from the spatial
domain to the frequency domain. It has been observed that hazy images contain
more content in the low-frequency spectrum, whereas the haze-free images have
less content in the low-frequency spectrum. One of the reasons for this could
be that the haze-free images are sharper and contain more edges as compared to
hazy images. From this important observation, it is concluded that the haze is
generally present in the lower frequency spectrum. Motivated by this observa-
tion, Krawtchouk moments are used to transform images from spatial domain to
orthogonal domain in this thesis. The details about Krawtchouk moments and its
analysis on hazy images is discussed next.

3.1 Krawtchouk Moments

Krawtchouk moment is widely used in the area of pattern recognition [24, 25].
They can be utilised for image dehazing and as pattern characteristics in the anal-
ysis of two-dimensional images. The role of the Krawtchouk moment in image
dehazing is examined in this chapter after a quick discussion of its definition.

3.1.1 Computation of Krawtchouk Moments

Based on the discrete classical Krawtchouk polynomials [26], image analysis util-
ising Krawtchouk moments presented a new set of orthogonal moments associ-
ated with the binomial distribution. Krawtchouk moments of order (m + n) for
an image g(x, y) is given as [27]

Qnm =
N−1

∑
x=0

N−1

∑
y=0

K̄n(x; p1, N − 1)K̄m(y; p2, N − 1)g(x, y) (3.1)
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with n = 0, 1, ..., N − 1; m = 0, 1, ..., N − 1; g(x, y) is image with size of N × N, K̄m

and K̄n is set of weighted Krawtchouk polynomials, given as

K̄n(x; p, N) = Kn(x; p, N)

√
w(x; p, N)

ρ(n; p, N)
(3.2)

where
w(x; p, N) =

(
N
x

)
px(1 − p)(N−x) (3.3)

and,

ρ(n; p, N) = (−1)n
(

1 − p
p

)n n!
(−N)n

(3.4)

and Kn(x; p, N) is n-th order classical Krawtchouk polynomial defined as

Kn(x; p, N) =
N

∑
k=0

ak,n,pxk =2 F1

(
− n,−x;−N;

1
p

)
. (3.5)

where x, n = 0, 1, 2, ...., N, N > 0, p ∈ (0, 1). The hypergeometric function 2F1 is
defined as

2F1(a, b; c; z) =
∞

∑
k=0

(a)k(b)k
(c)k

zk

k!
(3.6)

where (a)k is the Pochhammer symbol given by

(a)k = a(a + 1) . . . (a + k − 1) =
Γ(a + k)

Γ(a)
(3.7)

The image can be reconstructed from Krawtchouk moments using the follow-
ing equation

g(x, y) =
N−1

∑
x=0

N−1

∑
y=0

QnmK̄n(x; p1, N − 1) K̄m(y; p2, N − 1) (3.8)

3.1.2 Representation in Matrix Form

Krawtchouk moment given in (3.1) can also be implemented in matrix format.
The set of Krawtchouk moments upto order (m + n) in matrix form is given as

Q = K2GKT
1 (3.9)

where G is the image matrix, K1 and K2 are Krawtchouk polynomial matrix de-
rived from matrix Kv with v=1,2 as follows

8



Kv =


K̄0(0; pv, N − 1) · · · K̄0(N − 1; pv, N − 1)

... . . . ...
K̄N−1(0; pv, N − 1) . . . K̄N−1(N − 1; pv, N − 1)

 (3.10)

The inverse transformation given in (3.8) can be represented in the matrix form as

G = KT
2 QK1 (3.11)

3.1.3 Basis function of Krawtchouk Moments

Krawtchouk moments of an image can be interpreted as the projection of the im-
age on the basis functions, wi,j which is given as

wi,j = [ki]
T[k j] (3.12)

where
ki = [K̄i(0; p, N − 1), . . . , K̄i(N − 1; p, N − 1)] (3.13)

and
k j =

[
K̄j(0; p, N − 1), . . . , K̄j(N − 1; p, N − 1)

]
(3.14)

with i = 0, 1, .., N − 1 and j = 0, 1, ..., N − 1. The value of N and p is taken as 8
and 0.5 respectively. Here wi,j is matrix of size 8X8 . The basis functions from w0,0

to w8,8 are shown in Figure 3.1. Krawtchouk moments of an image also provides
a correlation between image F and basis function i.e., the value of the coefficient
is higher if there is a strong similarity between the basis function and the image
content and vice versa.

Figure 3.1: Basis function of Krawtchouk moments
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3.1.4 Basis Ordering and its Importance

Krawtchouk basis functions are used as filters of KCL in the proposed architecture
OTGAN. Inspired from the JPEG (Joint Photographic Experts Group) compres-
sion method [28], basis are rearranged in the zig-zag manner as shown in Figure
3.2.

Figure 3.2: Zig-zag ordering of basis functions

We have used 64 such basis functions and represented them using wi where
i = 0, 1, ..., 63. Zig-Zag ordering arranges the basis functions in increasing order
of frequency, i.e., frequency component increases from low to high with the in-
crease in index i. Krawtchouk coefficients are obtained from the convolution of
basis functions with the image. Average values of coefficients generated from the
convolution of basis functions with three different hazy and clear images is shown
in Figure 3.3. Here Figure 3.3(a)-(b) shows coefficients of three different hazy and
clear image of the same scene whereas Figure 3.3(c) shows the difference between
these coefficients. It can be seen from Figure 3.3(c) that there is a significant loss
of Krawtchouk coefficients in basis functions with lower frequency components.
Thus, in the Krawtchouk domain, the task of dehazing reduces to recovering the
low-frequency Krawtchouk coefficients of a clear image from its corresponding
hazy image. This observation is used in the proposed architecture discussed in
the next chapter.
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(a) (b) (c)

Figure 3.3: (a) Krawtchouk coefficients for hazy image (b): Krawtchouk coeffi-
cients for clear image (c) Difference in the coefficients of hazy and clear image
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CHAPTER 4

Proposed Method

In this chapter, the proposed architecture, shown in Figure 4.1 is discussed in de-
tails. It consists of 8 blocks: (1) RGB to YCbCr, (2) Krawtchouk Convolution Layer
(KCL), (3) Frequency Cube, (4) Pyramidal block for lower frequency, (5) U-Net
block for higher frequency, (6) Inverse Krawtchouk Convolution Layer (IKCL),
(7) Discriminator and, (8) YCbCr to RGB .The details of the mentioned blocks are
discussed next.

4.1 Architecture Structure

4.1.1 Colour Space Transformation: RGB to YCbCr

Whenever we capture any image, it needs to be stored in the electronic devices
such as computers which only understand numbers. Hence, some rules need to
be followed while storing the images in the memory. The color space defines
this set of rules. Generally, RGB color space is used which uses Red-Green-Blue
color components of an image to represent any image. The YCbCr is another type
of color space which represents the image using Y, Cb, and Cr components of
the image. The Y component represents the Luma (brightness) component of the
image, Cb and Cr represent the blue and red components related to the chroma
component.

Figure 4.2 shows the hazy image along with its corresponding haze-free image
in YCbCr color space. It can be seen that the haze component is mainly present in
the Y channel of the image. Hence, it plays an important role as compared to Cb
and Cr components. Y channel of the hazy and haze-free image shows significant
difference while the Cb and Cr channels do not have a significant difference. From
this crucial observation, we decided to only use the Y channel for estimating the
haze-free image and not changing the Cb and Cr channels. Considering this fact,
first the RGB image is converted to YCbCr color mode so that the hazy and haze-
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Figure 4.1: Architecture of proposed model
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Figure 4.2: Image analysis in YCbCr color space

free image pairs can be compared in YCbCr space. Next, only the Y channel is
passed through the proposed architecture instead of all channels. The different
channel are represented as IY, ICb and ICr and are shown in Figure 4.1.

14



4.1.2 Krawcthouk Convolution Layer (KCL)

This layer transforms images to the Krawtchouk moments domain (orthogonal
domain) from the spatial domain. Krawchouk basis function wi of size 8 × 8 are
treated as the filters. There are a total of 64 such filters (wi) arranged in a zig-
zag manner (Figure 3.2). The KCL layer consist of 64 features maps fi created by
performing convolution operation of wi with IY as follows

fi = wi ⊛ IY ∀i ∈ {0, 1, 2, ..., 63} (4.1)

Here, ⊛ represents convolution operation in which stride S is kept 1 and padding
is kept as same for retaining the size of the image. The KCL layer is kept fixed and
non-trainable during the training phase and its functionality can be compactly
represented as follows

f Y = KCL( fi) (4.2)

Here, f Y represent the frequency cube containing all the feature maps ranging
from 0 to 63. The details about the frequency cube is discussed next.

4.1.3 Frequency Cube ( f Y)

The feature maps obtained from (4.2) are used to form a frequency cube f Y. This
cube is ordered in the increasing order of the frequency content. The cube is
split into two parts from a particular point T. Two parts are denoted as f Y

low =

f Y
0 , ... f Y

T−1 and f Y
high = f Y

T , f Y
T+1, ..., f Y

63. The optimal value of the split point T is
obtained experimentally and its value is found to be 60. The details about how
to select this value is discussed in the experimental chapter. The process of parti-
tioning is shown in Figure 4.3. The partitioned cubes f Y

low and f Y
high are processed

separately. As discussed in Figure 3.3, the Krawtchouk coefficients have a sub-
stantial loss in lower frequencies compared to high frequencies. So, to recover the
haze-free image from the hazy image, f Y

low block needs a complex architecture.,
while simple architecture can be used for f Y

high block. Next, we will discuss the
network architecture for dealing with both these frequency blocks f Y

low and f Y
high

respectively.

4.1.4 Architecture for f Y
low

Taking motivation from [29], we have used a similar kind of structure for the
lower part of the architecture. The detailed structure of the lower branch of
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Figure 4.3: Frequency Partitioning

the proposed architecture is shown in Figure 4.4. The frequency cube f Y
low ob-

tained from frequency partitioning is sent as an input to this network which con-
sists of six columns and three rows. The first three columns consist of down-
sampling blocks and the remaining three consist of the up-sampling block. The
up-sampling block increases the number of feature maps by the scale of two, while
the down-sampling block decreases the number of feature maps by the scale of
two. Due to this, each row which contains five dense blocks, performs an opera-
tion on a different scale while keeping the number of feature maps the same. As
the feature maps of different scales have different importance, an attention mech-
anism is also incorporated.

Next, we will discuss the structure of the dense block shown in Figure 4.4
which is used in the architecture for f Y

low. Each dense block is made up of five
convolution layers, the first four of which enhance the feature map and have a
skip connection to the layers before them. The final layer combines all of these
feature maps so that the total number of feature maps equals the total number of
input feature maps.

4.1.5 Architecture for f Y
high

The higher frequency cube f Y
high obtained from the frequency partitioning is sent

to the upper part of the architecture. As higher frequencies do not show a sub-
stantial loss in Krawtchouk coefficients, therefore a simple UNet [22] structure is
used for recovering higher frequency coefficients. The UNet structure used in the
proposed architecture contains four encoders and decoders blocks. Each encoder
block is constructed by stacking up convolution, batch-normalization and decon-
volution blocks together. The number of channels are increased by factor of 2 for
encoder blocks and decreased by factor of 2 for each decoder block. The size of
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Figure 4.4: Architecture for lower branch ( f Y
low)

the image is 128 × 128 for starting encoder block and is decreased by factor 2 for
the successive encoder blocks; which is then increased by a factor of 2 for the suc-
cessive decoder blocks. The size of the kernel is set to be 4 × 4 along with stride
as 2 and padding as 1.

4.1.6 Inverse Krawtchouk Convolution Layer (IKCL)

The outputs from the lower and upper branch of the architecture are combined
at the end. As the image is in Krawtchouk moment domain, it needs to be trans-
formed into the spatial domain. The IKCL layer consists of a convolution layer
that converts the image from the Krawtchouk moment domain to the spatial do-
main. The weights of the kernel are kept trainable during the training phase for
providing better adaptivity of the basis functions to the dataset. This operation
can be represented as follows

RY = IKCL( f Y) (4.3)

where, RY represents the image generated by the proposed architecture.
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4.1.7 Discriminator

The generator and discriminator based GAN [23] framework is used for image
dehazing. Hazy image is passed through the generator (orange box in Figure
4.1), which directly estimates the haze-free image. The Y channel of the gener-
ated image is passed through the discriminator along with the Y channel of the
ground truth image. The discriminator is trained to decide whether the generated
image is real or fake. The task of the generator is to produce a haze-free image
that is indistinguishable from the ground truth. Discriminator and generator are
not trained at the same time. The weights of discriminator are kept fixed during
training of the generator, and during training of discriminator, the weights of the
generator are kept fixed.

4.1.8 Colour Space Transformation: YCbCr to RGB

The image (RY) generated from the proposed architecture is combined with the
ICb and ICr channels of the input image to get a haze-free image R which is finally
transformed from YCbCr color-space to RGB space for visualization.
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CHAPTER 5

Experimental Work

In this chapter, experiments are carried out to verify the proposed architecture’s
performance, and the results are compared to state-of-the-art methods. Quantita-
tive and qualitative experiments are carried out on synthetic images as well as the
real-world images having no ground truth.

5.1 Datasets

Image dehazing is an ill-posed problem, and it’s difficult to get a huge number
of hazy photos as well as its haze-free image. The majority of dehazing meth-
ods rely on synthetic datasets to train their models. For creating synthetic train-
ing datasets, a depth map of haze-free images is obtained either from the exist-
ing datasets or by estimating the depth map, and then using (2.1), hazy image is
generated. We have used RESIDE (REalistic Single Image DEhazing) [30] dataset
which is a large scale synthetic dataset containing both outdoor (OTS) and indoor
(ITS) hazy images along with its clear images. It is widely used for the train-
ing and testing of different dehazing algorithms. We used the RESIDE Outdoor
Training Set (OTS) to train our model, and we tested it on the RESIDE SOTS. The
SOTS dataset contains 1000 pairs of hazy and clear images of 500 outdoor and 500
indoor scenes, generated in the same way as training data is generated.We also
tested our model on the RESIDE HSTS dataset, which includes synthetic hazy
images as well as real-world images. Furthermore, we developed our own 200
real-world hazy images to test the proposed architecture’s performance on a real-
world hazy images. Figure 5.1 shows some of the real-world hazy images.

5.2 Loss Functions

In training a deep learning-based model, the selection of loss function is crucial. It
has been observed through experiments that by simply using mean-square error
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Figure 5.1: Samples of real-world hazy images

(MSE) loss is not helpful as it does not perform well with the outliers. Hence,
in this thesis we have used weighted sum of three different types of losses, the
details of which are as follows

5.2.1 VGG Loss

If we consider any deep neural-based image classification network, in the first few
layers of the network, the feature maps obtained from the convolution layer gen-
erally contains the edges present in the image. These feature maps can be utilised
as loss functions to determine the difference between the estimated and true clear
image. We have used a pre-trained VGG16 model [31] trained on ImageNet [32]
as the loss network. The feature maps of the last layer of the first three stages are
used for defining the VGG loss as follows

Lvgg =
3

∑
i=1

1
Chi MiNi

∥∥ϕi(R̂)− ϕi(R)
∥∥2

2 (5.1)

where Ch represents the channel, M and N represents the size of the image, i rep-
resents the stage of the VGG16 network, ϕi(R̂) and ϕi(R), represents the features
maps of the VGG16 network. Here, R̂ and R represents the estimated and the
ground truth images respectively.
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5.2.2 Smooth L1 Loss

When compared to MSE loss L1 loss [33] is less sensitive to outliers and can pre-
vent gradient explosion. Let R̂i and Ri represents the dehazed and the original
image at pixel i and N is the total number of pixels. The smooth L(s)

1 loss [33] can
be calculated as follows

L(s)
1 (R̂, R) =

1
N

N

∑
i=1

ξ(R̂ − R) (5.2)

where,

ξ(R̂ − R) = ξ(l) =

0.5(l)2 i f |l| < 1

|l| − 0.5 otherwise
(5.3)

5.2.3 GAN Loss

To identify whether the created haze-free is real or fake, we used a GAN-based
architecture. The discriminator D tries to tell the difference between real and fake
images, while the generator G is trained to make haze-free images so that the
discriminator can’t tell the difference. Let G(I) signify the generator’s haze-free
image, and R denote the dataset’s real haze-free image. The GAN loss can be
estimated using the following formula.

LGAN = min
G

max
D

E[R log(D(R))] + E[I log(1 − D(G(I)))] (5.4)

The total loss of the proposed model is obtained as a weighted sum of L1, Lvgg

and LMSE as follows

L = λ1Lvgg + λ2L(s)
1 + λ3LMSE + λ4LGAN (5.5)

Here, λ1, λ2, λ3 and λ4 are regularization parameters of the loss function.

5.3 Implementation Details

Since the model is so large, training it using a full image consumes a lot of com-
puting power and takes a long time. Therefore, we chose patches of size 128× 128
at random from hazy images and matched them with patches from the haze-free
image. With a batch size of 15, we used Adam’s [34] optimizer for fast learning.
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Learning rate is set to 0.001. Inspired from [35], the training images are converted
to YCbCr color mode from RGB, and only the Y (brightness) component is passed
to the architecture and the remaining Cb and Cr channels are directly passed to
the end of the architecture where it is combined with the Y channel of the clear
image obtained from the architecture. For the loss function the values of parame-
ters are taken as: λ1 = 0.5, λ2 = 1, λ3 = 0.04 and λ4 = 0.05. The model is trained
for 20 epochs on NVIDIA RTX 3600.

5.4 Optimization of IKCL

Figure 5.2 shows the optimized basis functions of IKCL layer after the training
process of model is completed. As mentioned earlier in chapter 4.1.6, IKCL layer
is kept trainable during the training phase for providing better adaptivity of the
basis functions to the dataset which can be seen from the figure.

Figure 5.2: Optimized filters of IKCL
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SOTS(Outdoor) SOTS(Indoor) HSTS
DCP [9] 17.55/0.798 20.14/0.871 17.21/0.799
CAP [14] 22.28/0.912 19.06/0.835 21.53/0.866
BCCR [10] 15.48/0.782 16.87/0.789 15.09/0.737
NLD [11] 18.05/0.803 17.28/0.748 17.63/0.792
DehazeNet [15] 22.74/0.856 21.14/0.846 24.48/0.916
DCPDN [21] 19.68/0.882 15.77/0.817 20.40/0.883
AOD-NET [18] 21.34/0.924 19.37/0.850 21.57/0.921
MSCNN [16] 19.55/0.864 17.12/0.804 18.28/0.842
GFN [36] 21.48/0.837 22.33/0.879 22.93/0.873
Deep Energy [37] 24.08/0.933 19.25/0.832 24.44/0.933
OTGAN 25.28/0.935 21.12/0.873 25.42/0.929

Table 5.1: Quantitative analysis showing PSNR/SSIM scores (higher the better)
for SOTS(Outdoor and Indoor) [30] and HSTS

5.5 Qualitative and Quantitative analysis

The proposed method’s performance is compared to existing state-of-the-art meth-
ods in this chapter. We have compared our model with DCP [9], CAP [14], NLD
[11], BCCR [10], DehazeNet [15], MSCNN [16], AOD-Net [18], DCPDN [21], GFN
[36] and Deep-energy [37], the first four approaches are based on prior knowl-
edge, while the subsequent methods are based on learning. SOTS of RESIDE is
used as the testing dataset.

For quantitative examination of the dehazed images obtained from various
approaches, various quality metrics such as Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM) [38], and Natural Image Quality Evaluator (NIQE)
[39] are considered as scoring metrics. Figure 5.3 shows the qualitative compar-
ison of the dehazing methods for SOTS-outdoor dataset along with the ground
truth image. It could be seen that all methods are capable of removing differing
degrees of haze from the hazy image, however the results achieved using the pro-
posed method remove haze to a greater level while also preserving the image’s ac-
tual colours. The dehazing results obtained from BCCR, DCP, NLD methods are
over-saturated in terms of the colors and look unrealistic. The results obtained
from Dehazenet are darker as compared to our method. This can be seen from
third image in sixth column of Figure 5.3, where the trees present in the image
have dark color close to black while the result obtained from our method (tenth
column) has true colors and it is easy to distinguish between different objects in
the image. The DCP and BCCR overestimate the color of sun and we can observe
ringing artifact near the sun while our method does not contain any such artifacts.
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Hazy DCP [9] CAP [14] NLD [11] BCCR [10] DehazeNet [15]

AOD-Net [18] MSCNN [16] DCPDN [21] OTGAN(ours) Ground-truth

Figure 5.3: Qualitative comparison of various methods on SOTS-outdoor dataset
[30]

24



Hazy DCP [9] CAP [14] NLD [11] BCCR [10]

Dehaze-Net [15] AOD [18] MSCNN [16] DCPDN [21] OTGAN(ours)

Figure 5.4: Qualitative comparison of various methods on real-world images
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Moreover, each method produces different color of sky (see fifth row of Figure 5.3)
but the color produced by our method is near to the ground truth image. Table
5.4 shows the quantitative comparison of the methods in terms of PSNR and SSIM
scores for SOTS and HSTS datasets. It can be observed that our proposed method
has the highest PSNR and SSIM scores for SOTS outdoor dataset as compared to
other methods. The results obtained from our method on indoor dataset are not
the highest but they are competitive to other methods like BCCR, NLD, DCPDN
and Deep energy.

In order to validate the performance of the proposed architecture on real world
images, we have chosen few images from the real world hazy dataset (Figure5.1)
and compared the results of our method with other methods. Figure 5.4 shows
the qualitative comparison on real world hazy images. The following observa-
tions worth noticeable are as follows: the results obtained by BCCR are darker
when compared to other methods. The CAP and MSCNN methods are not able
to remove most of the haze from the hazy images. Moreover, it can be concluded
that all the methods struggles to dehaze the image completely, but the amount
of haze removed by our method is more when compared with other methods.
As the real-world images do not have the ground truth image for comparison it
is not possible to evaluate PSNR and SSIM values for the real world images. A
no-reference image quality metric NIQE [39] is used to measure the quality of the
dehazed image. It is a no-reference metric that compares the features of the given
image with Natural Scene Statistic (NSS) model. This model is constructed using
natural and undistorted image corpus. A lower value of NIQE represents a better
perceptual quality of the image. Table 5.5 shows the NIQE score of the proposed
method along with the other methods.When compared to other approaches, the
proposed method produces the lowest value of NIQE.

NIQE
DCP [9] 9.4
CAP [14] 9.6
BCCR [10] 9.7
AOD-NET [18] 9.5
DCPDN [21] 11.9
OTGAN 9.1

Table 5.2: NIQE(LOWER IS BETTER) score on real world dataset
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5.6 Threshold analysis

As discussed in chapter 4.1.3, the proposed architecture is divided into two branches,
one for lower frequencies and the other for higher frequencies. The split point T
divides the frequency cube into two parts flow and fhigh.

(a)

(b)

Figure 5.5: (a) PSNR value for different split points (T) (b) SSIM value for different
split points (T)

The architecture is trained with different value of T and the PSNR and SSIM
scores are calculated for each of them. Figure 5.5 shows the PSNR and SSIM scores
for different values of T. It can be observed from the figure that at T = 60 the aver-
age PSNR and SSSIM scores achieves the highest value. Based on this observation
we have selected T = 60 for our experimental work.
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CHAPTER 6

Limitation of our Model

For the real world images suffering from severely low lighting conditions or dense
haze, most existing work fails to produce good results. It has been shown that
the proposed work performs better in most of the cases. However, if the above
mentioned condition worsen, then the performance of the proposed work will
also decrease. In particular, when the images with low light conditions are passed
to our model, the dehazed image is dark and objects are not clearly visible (refer
Figure 6.1(a)). The same is true for images with dense haze intensity (refer Figure
6.1(b))

(a) (b)

(c) (d)

Figure 6.1: Failure cases: (a) and (b) shows the hazy inputs, (c) and (d) shows the
corresponding output of our model.
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CHAPTER 7

Conclusions

A novel end-to-end architecture has been proposed for image dehazing using Or-
thogonal Transform based Generative Adversarial Network, which performs im-
age dehazing in the Krawtchouk transform domain. Instead of estimating the
transmission map, the proposed model directly estimates a clear image. The
Krawtchouk coefficients are used to distinguish between the image’s low and
high-frequency components, which are then used to recover the haze-free image
from the hazy input image. When compared with existing methods, our proposed
method provides competitive results. The visual comparison shows that results
obtained from our method look more realistic and recovered clear images with
true colors.

In the future, a dataset of real-world images and its haze-free images can be de-
vloped to improve the dehazing quality of real-world hazy images. It is possible
to employ a lightweight CNN for dehazing photos in real time.

We have submitted our work Orthogonal Transform based Generative Adver-
sarial Network for Image Dehazing in IEEE Transactions on Multimedia.
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