
VLSI Implementation of Neural Network
Driven Augmented FSM

by

Jimmy Kirtikumar Patel
202011048

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

May, 2022

Declaration

I hercby declare that

i) The thesis comprises of my original work towards the degree of Master of

Technology in Information and Communication Technology at Dhirubhai

Ambani Institute of lnformation and Communication Technology and has

not been submitted elsewhere for a degree,

ii) Due acknowledgment has been made in the text to all the reference material

used.

Jimmy Kirtikumar Patel

Certificate

This is to certify that the thesis work entitled VLSI Implementation of Neural Net-

work Driven Augmented FSM has been carried out by Jimmy Kirtikumar Patel

for the degree of Master of Technology in Information and Communication Tech-

nology at Dhirubhai Ambani Institute of Information and Communication Technology

under my supervision.

lapas K Mei
Tapas Kumar Maiti

Thesis Supervisor

i

Acknowledgments

First and foremost, grateful and thankfulness to God, the Almighty, for His show-
ers of graces during my study endeavour, which enabled me to complete the re-
search successfully.

I would like to thank my research supervisor, Prof. Tapas Kumar Maiti, for al-
lowing me the chance to do research and for offering vital assistance during this
process. His energy, vision, genuineness, and determination have all left an in-
delible impression on me. He taught me the approach for conducting the study
and presenting the findings as simply as possible. Working and researching under
his direction was a tremendous honour and privilege. I am grateful for everything
he has done for me. I’d also want to thank him for his friendship, kindness, and
fantastic warm personality.

I am truly grateful for their love, faith, care, and sacrifices in teaching and pre-
pared me for the future. Also I express my thanks to my sister for her support
and valuable inspiration.

I would like to thank one of my friends and research colleague, Harsh Advani,
for his constant support throughout this research. I’d like to thank the M.Tech.
students from Dhirubhai Ambani Institute of Information and Communication
Technology, Gandhinagar for their assistance with my study. I thank the manage-
ment of Dhirubhai Ambani Institute of Information and Communication Technol-
ogy, Gandhinagar for their support to do this work.

Once again, I want to convey my gratitude to everyone who supported me in
completing the research work, whether directly or indirectly.

ii

Contents

Abstract v

List of Principal Symbols and Acronyms vi

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Modern Automation . 1

1.1.1 Machine Learning (ML) . 2
1.1.2 Deep Learning (DL) . 2

1.2 Neural Network (NN) . 2
1.2.1 Artificial Neural Networks (ANN) 3
1.2.2 Working Principle of Artificial Neural Networks 3
1.2.3 Artificial Neuron . 4

1.3 Training of NN . 5
1.4 Testing of NN . 5
1.5 Types of Artificial Neural Network 6
1.6 Outline of Thesis . 7

2 System Level Implementation 8
2.1 Flow of Implementation . 8

2.1.1 Collecting Data for Network 8
2.1.2 Implementing Network using TensorFlow 9

2.2 Transfer Function in NN . 11
2.3 Activation Function in NN . 12

2.3.1 Linear or Identity Activation Function 13
2.3.2 Non-linear Activation Function 13

2.4 Sigmoid Activation Function . 15
2.4.1 Second-order Sigmoid Approximation 16

iii

3 Architecture of Neural Network and AFSM 19
3.1 Sigmoid Activation Function . 19

3.1.1 Proposed Architecture of Sigmoid Function 20
3.1.2 Behavioural Analysis of the Sigmoid Function 24
3.1.3 Power Analysis of the Sigmoid Function 26

3.2 Architecture for the Transfer Function 26
3.2.1 Behavioural Analysis of the Transfer Function 27

3.3 Architecture for the Artificial Neural Network 28
3.4 AFSM Design . 30

3.4.1 Behavioural Analysis of the FSM 31
3.5 Speed Analysis . 32

4 Chip Design 33
4.1 Introduction . 33
4.2 VLSI Design Flow . 33
4.3 Electric EDA Tool Design Flow . 34
4.4 Digital Integrated Circuits using Electric VLSI 36

4.4.1 Logic and Arithmetic Elements 36
4.4.2 Designing of Storage Element 39

4.5 Final Chip . 42
4.5.1 Area . 44

5 CONCLUSION AND FUTURE RESEARCH 45
5.1 Summary and Conclusions . 45
5.2 Future Research . 46

References 48

Appendix A Standard Cell Layout and Simulation 54
A.1 Layout of Standard Cell . 54
A.2 Simulation . 56

iv

Abstract

This thesis reports the VLSI implementation of an NN (Neural Network) based
emergent behavior model for high-speed robot control. Augmented FSM (Finite-
State Machine) is considered to implement the emergent behavior. We performed
a system-level simulation using our proposed model. For system level simula-
tion, we have used Python base TensorFlow model to implement the Neural Net-
work. Then, we transformed the model to RTL (Register-Transfer Level) for circuit
simulation. For RTL modeling we have used Verilog (Xilinx, Quartus Prime and
iVerilog) and for simulation we have used (Modelsim and GTK wave). In this
study, we considered multiple inputs and multiple-outputs NN. Our implemen-
tation method improves the speed of execution and accuracy and compares the
result with the conventional neural network. For activation function in NN, we
implemented sigmoid function with second-order approximation to reduce com-
plexity. We used the walking gesture of the Kondo KHR-3HV robot to verify the
model. Finally, we design NN based augmented-AI chip for high-speed robotics
applications.

v

List of Principal Symbols and Acronyms

AFSM Augmented Finite State Machine

AI Artificial Intelligence

ANN Artificial Neural Network

DL Deep Learning

FSM Finite State Machine

ML Machine Learning

NN Neural Network

RL Reinforcement Learning

RNN Recurrent Neural Networks

SNN Simulated Neural Network

VLSI Very Large Scale Integration

vi

List of Tables

3.1 Comparing precision for different input. 26
3.2 Comparing precision for different output. 26
3.3 Power comparison for different set of inputs. 26
3.4 State based on motion with their priority. 30
3.5 Input combination for given FSM. 31
3.6 Speed analysis. 32

4.1 Possible input combination for given FSM. 42
4.2 Speed analysis. 44

vii

List of Figures

1.1 (a) Biological neural-network (NN), (b) Representation of artificial
neural-network (ANN) [27] . 4

1.2 Trained model for testing the new datasets in [a.u.]. 6

2.1 Data of 22 different Servo angles are obtained using the Kondo
KHR-3HV robot [42]. 9

2.2 Simple dense artificial neural-network (ANN) containing two-hidden
layers. 10

2.3 Matrix based representation of proposed ANN. 10
2.4 Classified data obtained using ANN created using Python. 11
2.5 Transfer function and activation function used in ANN. 12
2.6 Sigmoid activation function curve in [a.u.]. 14
2.7 tanh activation function curve in [a.u.]. 15
2.8 ReLU activation function curve in [a.u.]. 15
2.9 Flow of proposed approximated sigmoid function. 17
2.10 Comparison between conventional sigmoid function and proposed

sigmoid function. 17

3.1 Proposed behavior-based architecture implemented using a neural
network (NN) and an augmented finite-state machine (AFSM). . . 19

3.2 Simplified block diagram of proposed sigmoid function. 20
3.3 Architecture of proposed sigmoid function. 21
3.4 RTL overview of the proposed sigmoid function. 21
3.5 RTL for stage-1 (identification stage). 22
3.6 RTL for stage-2 (squaring stage). 23
3.7 RTL for stage-3 (normalizing stage). 24
3.8 Data flow for Sigmoid function without pipeline. 24
3.9 Data flow for Sigmoid function with pipeline. 24

viii

3.10 Simulated output of a proposed Sigmoid function with various pre-
cision. (a) with 8bit of input, (b) with 16bit of input and (c) with
32bit of input, respectively. 25

3.11 Architectural representation of Transfer function. 27
3.12 Data flow for transfer function without pipeline. 28
3.13 Data flow for transfer function with pipeline. 28
3.14 Architectural representation of Artificial Neural Network (ANN). . 29
3.15 State diagram for motion prediction. 30
3.16 Waveform of FSM with different set of inputs. 31

4.1 VLSI design abstraction levels. 34
4.2 EDA tool design flow. 35
4.3 Cross section of the array of adder and multiplier. 37
4.4 Layout of transfer function. 37
4.5 Layout of Sigmoid function. 38
4.6 Schematic of the master slave D flip-flop. 39
4.7 Cross section of the register. 40
4.8 Schematic of the 12T SRAM. 40
4.9 Layout of the SRAM. 41
4.10 Cross section of the SRAM layout. 41
4.11 Data flow for the FSM with different set of input combination. . . . 43

A.1 (a) NAND gate layout, (b) NOR gate layout. 54
A.2 XOR gate layout. 55
A.3 2x1 Multiplexer layout. 55
A.4 1bit Full-Adder layout. 56
A.5 NAND gate waveform. 56
A.6 NOR gate waveform. 57
A.7 XOR gate waveform. 57
A.8 2x1 Multiplexer waveform. 57
A.9 1-bit Full-Adder waveform. 57

ix

CHAPTER 1

Introduction

Our civilization has been heading toward full automation over the last few decades,
whether in manufacturing, production, surveillance, security, or other areas. Nowa-
days, for automation, AI (Artificial Intelligence) and neural networks are used for
classification and identification [1], [2]. Brooks et al., reported a new method for
the application of AI to robotics, known as emergent behaviour-based robotics
[3]. Simple control system was represented by AFSM (Augmented Finite-State
Machine). However, for a complex robotic system, knowledge-based behaviour
is also required for full control which can be implemented as a neural network [2].

1.1 Modern Automation

Future automation refers to a variety of technologies that lessen the need for hu-
man intervention in robot operations. The requirement for human involvement
can be reduced by associated activities, nested links, predetermining decision cri-
teria and encoding such predeterminations in robot [4]. Complete automation
requires various technology and control systems, such as manufacturing opera-
tions, machinery, boilers and switching on telephone networks, stabilisation of
ships, steering and other applications and vehicles, with minimum human con-
tact [5] which includes a wide range of applications, ranging from a household
thermostat controlling a boiler to a large control systems with large numbers of
input and feedback signals [6]. In terms of control strategy, it ranges from a sim-
ple switch-control to multi-variable algorithms.

1

1.1.1 Machine Learning (ML)

Machine learning (ML) is applicable to intelligent artificial systems that may im-
prove themselves dynamically via knowledge and data use. It is thought to be a
sub-part of artificial intelligence (AI). ML algorithms construct a model with the
help of sample data, referred to as training data, in order to predict or finalize
decisions without being explicitly programmed in an artificial system [7]. ML al-
gorithms are commonly used in numerous applied areas such as machine vision,
speech recognition, medicine, email filtering, etc., when traditional algorithms are
difficult or impossible to build[8].

1.1.2 Deep Learning (DL)

Deep Learning (DL) which is also known as deep structured learning, is a subset
of ML technique that relies on artificial neural networks (ANN). Learning may oc-
curs under supervision, unsupervised or semi supervised [9]. Architectures such
as deep neural networks (DNN), recurrent neural networks (RNN), deep rein-
forcement learning (Deep-RL), and convolutional neural networks (CNN) applied
to various domains such as machine vision, natural language processing, machine
translation, speech recognition, medical image analysis, drug design, climate re-
search, material inspection, board game programmes, and producing results that
are equivalent to and, in some cases, superior to traditional methods [49] [10] [11].

1.2 Neural Network (NN)

A neural network (NN) is a network or circuit of biological neurons, while an ar-
tificial neural network (ANN) is one comprised of artificial neurons or nodes in
the modern sense [19]. As a result, a neural network can be either a biological
neural network made up of biological neurons or an artificial neural network in-
tended to address artificial intelligence (AI) challenges. Artificial neural networks
mimic biological neuron connections as weights between nodes. Positive weights
represent activating connections, whereas negative weights represent regulatory
connections. All entries are weighted and totaled. This is known as a linear com-
bination. Finally, the NN output amplitude is controlled by an activation func-
tion. For example, an acceptable NN output range is normally between 0 and 1,
although it might also be between −1 and 1.

2

1.2.1 Artificial Neural Networks (ANN)

Artificial neurons were originally proposed in 1943 by neurophysiologist Warren
Sturgis and logician Walter Pitts, who were both affiliated with the University of
Chicago at the time [17]. The concept of neural networks appears to have been
first proposed by Alan Turing in the 1948 paper Intelligent Machinery, where he
called them "chaotic B-type machines" [18]. An artificial neural networks (ANN)
is used for predictive modeling, adaptive control, etc., that is generally trained
on the basis of datasets. The experience-based self-learning is done within a net-
work where conclusions is drawn from a complex and seemingly irrelevant set of
datasets [20].

In case of an ANN, a simulated neural-network (SNN) forms a mathematical
or computational model for processing information, of natural or artificial neu-
rons. An interconnected group is considered for calculations based on a connectivity-
oriented approach. ANN system is often an adaptive system that changes its
structure in response to an external or an internal information passing through
the network. NN in practical terms, are nonlinear statistical data modelling or
decision-making tools. These may be used to describe complicated interactions
between inputs and outputs of an environment, as well as to discover patterns
in datasets. ANNs are made up of basic processing elements such as artificial
neurons that may exhibit complicated global behaviour based on connections be-
tween processing elements and element characteristics.

1.2.2 Working Principle of Artificial Neural Networks

Artificial Neural Networks (ANNs), sometimes known as Neural Networks (NNs),
are computing systems that are inspired by the biological neural networks that
comprise an animal’s brain. ANN is built on a network of linked units or nodes
known as artificial neurons. Artificial neurons roughly model the neurons of the
biological brain. Like the synapses of the biological brain, each connection can
signal other neurons. Artificial neurons can receive and process signals and send
signals to the neurons connected to them. The "signal" at the link is a real number,
and each neuron’s output is determined by a non-linear function of the sum of
its inputs. The link is referred to as an edge. Neurons and edges usually have
weights that are adjusted as learning progresses. Weights increase or decrease the
signal strength of the connection. You can set a threshold on a neuron so that the
signal is sent only when the sum of the signals exceeds that threshold. Neurons
are normally organised in layers. Different layers may apply various modifica-

3

tions to their inputs. Signals go from the first layer (the input layer) to the last
layer (the output layer), sometimes many times.

Figure 1.1: (a) Biological neural-network (NN), (b) Representation of artificial
neural-network (ANN) [27]

1.2.3 Artificial Neuron

ANN is made up of artificial neurons that have been theoretically developed from
biological neurons. Each artificial neuron receives an input and generates a single
output that may be shared by several neurons [27]. The input can be a feature
value of a sample of external data such as an image or document, or it can be the
output of another neuron. To find the output of a neuron, we first need to take the
weighted sum of all the inputs and weight them by the weight of the connection
from the input to the neuron. Add a bias term to this sum [28]. This weighted
sum is sometimes called activation. This weighted sum then passes through an

4

activation function (usually non-linear) to produce an output. The first input is
external data such as images and documents. The final output performs tasks
such as B. Recognize the objects in the image [29].

1.3 Training of NN

A training dataset is a sample dataset that is used during the training process to
adjust parameters such as classifiers (such as weights) [23] [24]. The supervised
learning method analyses the training dataset to find or train the ideal combina-
tion of variables to build the right prediction model for classification tasks [25].
The goal is to create a trained (fit) model that successfully generalizes to new
unknown data [26]. The fitted model is tested against "new" instances from the
retained datasets (validation and test datasets), and its accuracy in categorising
new data is assessed [22]. Avoid using test dataset samples for model training to
avoid issues like overfitting [22]. Most methods for obtaining training data for
empirical relationships overfit the data. This implies you can spot and capitalise
on evident correlations in training data that are often overlooked.

1.4 Testing of NN

The test dataset is independent of the training dataset, although it has the same
probability distribution. Overfitting is reduced if the model that works well on
the training dataset also works well on the test dataset (shown in Figure 1.2).
Overfitting is generally indicated by a strong fit of the training dataset to the test
dataset.

A check set is really a predetermined collection of examples that are best evalu-
ate the performance (i.e. generalization) of a totally targeted classifier [23] [24]. To
do this, the very last version of check set is used to expect classifications of exam-
ples withinside the check set. Those predictions are as compared to the examples‘
authentic classifications to evaluate the version’s accuracy [25]. In a situation in
which each validation and check datasets are used, the check statistics set is com-
monly used to evaluate the very last version this is decided on all through the
validation process. In the case in which the authentic statistics set is partitioned
into subsets (education and check datasets), the check statistics set would possibly
determine the version best once (e.g., withinside the holdout method) [21]. Note
that a few reassets propose towards such a technique [26]. However, while the
use of a technique consisting of cross-validation, walls may be enough and pow-

5

Figure 1.2: Trained model for testing the new datasets in [a.u.].

erful given that effects are averaged after repeated rounds of version education
and checking out to assist lessen bias and variability [22] [26].

1.5 Types of Artificial Neural Network

ANN has grown into a diverse family of technologies that have enhanced cutting-
edge technology in a variety of fields. The most basic kinds have one or more
static components, such as the number of units, layers, unit weights, and topol-
ogy. Learning allows you to grow one or more of these dynamic categories. The
latter is significantly more difficult, but it can shorten learning time and produce
greater outcomes. Some kinds allow the operator to "supervise" learning, whilst
others function autonomously. Some are totally hardware-based, while others are
entirely software-based and operate on general-purpose computers.

The main breakthroughs are Convolutional neural networks that have proven
to be particularly successful in processing visual and other 2D data [31] [32] Long
short-term memory avoids the vanishing gradient problem [33] and signals that
represent mixing. Low-frequency and high-frequency components that support
speech recognition for large vocabularies [34] [35] Text-to-speech synthesis, [36]
[37] photorealistic speakers, [38] Generative hostile networks, etc. Competitive

6

network. Networks (different structures) compete for tasks such as winning the
game [39] and deceiving opponents in terms of input authenticity [40].

1.6 Outline of Thesis

In this thesis, we considered a hybrid approach which is the combination of both
knowledge-based behaviour and sensor control priority-based behaviour based
on AFSM. The main objective of this work is the VLSI implementation of a be-
havioural model with lesser delay and complexity compared to conventional im-
plementation to speed up the robot control.

Normally, implementation of a behavioural based AI model using Python re-
sults in higher processing time (millisecond) in robot control the Python based
implementation is cover in chapter-2. It contains the behevioural implementation
of the Artificial Neural Network using Python and also include the results obtain
by the network. To implement the ANN, we approximated the sigmoid function
instead of the conventional method and the flow of that method is discussed in
chapter-2.

The hardware implementation is discussed in chapter-3. The comparison of
the Python based results and Verilog based results are discussed in chapter-3. This
work focusses on the implementation of emergent behaviour model at the hard-
ware level and all the archetectures and behavioural analysis related to hardware
implementation are discussed in chapter-3. We have also included the data flow
analysis for the NN in chapter-3, obtained almost the same S-curve with lesser
complexity. We have implemented AFSM with respect to four states of sensor in-
puts. The RTL level implementation and analysis of NN is described in Chapter-3.

In Chapter-4, we have discussed about the chip design for the proposed archi-
tecture. It also contain information regarding the flow of layout design and the
modules which we have use to design our layout.

7

CHAPTER 2

System Level Implementation

ANNs (Artificial Neural Networks) usually known as NNs are computing sys-
tems inspired by the biological neural network that contains animal brains [1]. In
ANN, we used artificial neurons to perform different mathematical functions like
transfer function, sigmoid function, summation, multiplication, etc. In NN, each
artificial neuron is connected to other artificial neurons and all artificial neurons
are categorized in different layers. A simple ANN consists of at least 2 layers, one
input layer, and one output layer but in some complex neural network, there are
some hidden layers to improve the accuracy of the results and reduce the errors.
As each artificial neuron is connected to other artificial neurons, creates a dense
and complex network, thus by adding more layers, we increased the complexity
of the network, thereby the accuracy is increased.

2.1 Flow of Implementation

To implement the neural network, weight, and bias values are needed which are
obtained by training the network which is performed by using TensorFlow and
Keras. After training the network, we collected all the necessary parameters. Us-
ing those parameters, we tested the network, measure accuracy, and error margin.
Here, we have used this neural network to classify the motion of the humanoid
robot such as forward motion, backward motion, right motion, and left motion.

2.1.1 Collecting Data for Network

We also included sensor data responses which we collected from sensors, con-
nected to the robot. Figure 2.1 shows the sensor data are corresponding to 22
different servo motor angles, used as input data for the neural network. The data
we have used is a 1-dimensional form.

Since we have 22-input data, we considered 22 neurons in the input layer and,

8

the output layer consists of 4 neurons. We classified four different motions after
classifying the motion, we have four different combinations of data by using that
predict next motion for the robot and, by implementing this neural network-on-
chip, we can reduce delay and can perform prediction in real-time. Here, we
avoided the hidden layers because of the lesser complexity of our application if
the complexity of classification is higher.

Figure 2.1: Data of 22 different Servo angles are obtained using the Kondo KHR-
3HV robot [42].

2.1.2 Implementing Network using TensorFlow

NN-based classified data is shown in Figure 2.4, Whereas Figure 2.2 shows each
layer except the input layer, there are artificial neurons, and each neuron operates
on two basic functions i.e., transfer function and sigmoid function. 1) In the trans-
fer function, there are two operations, multiplying weight values with input and
then adding it with bias value. 2) The sigmoid activation function decides how
likely the prediction is true for a given input set. As shown in Figure 2.2 there

9

are two operations, which are performed to achieve the predicted output range
between 0 to 1. That’s why the sigmoid function is used as an activation function
to get an S-shaped curve that has an output range between 0 to 1. Therefore, the
sigmoid function has a very important operation that must be implemented very
precisely.

Figure 2.2: Simple dense artificial neural-network (ANN) containing two-hidden
layers.

Figure 2.3: Matrix based representation of proposed ANN.

As shown in Fig 2.3, we have collected the data and store it in memory and
read it as matrix (22 x 32). Here all inputs are stored in each row, then we have
separated those input and make it to 1D data for the process. We provided all
the inputs to the network which we have created using TensorFlow. NN captured
the output as 1D data after that to store the result in to memory we have created
matrix (4 x 32) where each row contains the output results generated by the output
layer, and the results are stored in the memory. Based on the output, we tuned the
sensor data to control the humanoid robot, and classified the motion to predict the

10

next motion by just adding one more data like proximity sensor data which gives
the information about the obstacle around the robot. Here are the output results
which we have generated after training and testing the network. As we can see
in the Figure 2.4, we have successfully classified the different motion (Forward
motion, back motion, right motion, and left motion).

Figure 2.4: Classified data obtained using ANN created using Python.

2.2 Transfer Function in NN

Transfer functions are mathematical functions that describe a system’s output y(t)
(a time-varying function) in relation to its input x(t). It is worth noting that both
the input and the output have a notation that specifies their pattern. A transfer
function seeks the mathematical link between the input pattern and the desired
pattern (output).

Figure 2.5 shows that the transfer function collects multiplication of the input
data and weights values and adds them and feeds to the activation function in

11

this case it feeds the output to the sigmoid function for activation of the neuron.
Equation (1.1) describes this function,

Z = B +
n

∑
i=1

wi ∗ xi ... (2.1)

Here, Z is the final output that feeds to the sigmoid function. We considered n
(1, 2, 3, , n) number of inputs, corresponding weight values wi varies from
w1 to wn same for input data, varies from x1 to xn. Here B is the bias value which
is fixed for each neuron. The bias and weight values are obtained after completing
the training of the network.

Figure 2.5: Transfer function and activation function used in ANN.

2.3 Activation Function in NN

Each neuron in an artificial neural network creates a weighted sum of its inputs
and sends the resulting scalar value through a function known as an activation
function or transfer function. If a neuron has n inputs x1, x2, ...xn the output or
activation of a neuron is a = g(w1x1 + w2x2 + w3x3 + ...wnxn + b). The activation
function is denoted by the function g. The neuron performs linear regression or
classification if the function g is considered as the linear function g(z) = z. To do
nonlinear regression and solve classification issues that are not linearly separable,
g is assumed to be a nonlinear function. When g is assumed to be a sigmoidal
or’s’ shaped function with values ranging from 0 to 1 or -1 to 1, the neuron’s

12

output value can be read as a YES/NO answer or binary choice. In deep networks,
however, a saturating activation function might result in the vanishing gradient
issue. For the first time, deeper networks may be trained by replacing saturating
sigmoidal activation functions with activation functions with greater derivative
values, such as ReLU. Non-monotonic and oscillatory activation functions that
surpass ReLU have subsequently been discovered [41].

2.3.1 Linear or Identity Activation Function

A linear function is one with a straight line as its graph. The linear function is
written as y = f (x) = a+ bx. Linear functions include independent variables and
dependent variables. The independent variable is x, and the dependent variable
is y.

Range: (Infinity to Infinity) Not useful for the complexity and various param-
eters of normal data supplied to neural networks.

2.3.2 Non-linear Activation Function

The nonlinear activation function is the most used activation function. Non-linear
means that the graph is not a straight line. The non-linear function graph is a
curve. A curve is a line that changes direction constantly. Note: Economists are
accustomed to calling every line in a graph a curve, both a straight line and a line
that is actually a curve. This makes it easier to generalize or fit different data in
the model and distinguish the output.

1. Sigmoid Activation Function

The sigmoid function curve is shaped like a S. The sigmoid function is useful
because it occurs between (0 and 1). Figure 2.6 shows the S shape curve generated
by the Sigmoid function. Therefore, this is especially used for models that need to
predict probabilities as output. Sigmoid is the right choice because the probability
of something is only between 0 and 1.

a =
1

1 + e−z ... (2.2)

The function is differentiable. That is, you can find the slope of the sigmoid
curve at any two points. The function is monotonous, but the derivative of the
function is not monotonous. Logistic sigmoid functions can cause neural net-
works to hang during training.

13

Figure 2.6: Sigmoid activation function curve in [a.u.].

2. Hyperbolic Tangent or tanh Activation Function

tanh is related to, but superior to, logistic sigmoid. The tanh function has a value
range of (-1 to 1). Tanh is a sigmoid as well (S-shaped). The curve obtained using
tanh function is shown in Figure 2.7.

a =
ez − e−z

ez + e−z ... (2.3)

In the tanh plot, negative inputs are strongly negatively mapped, whereas zero
inputs are mapped near zero. The function can be differentiated. Although the
function is monotonic, its derivative is not.

3. ReLU Activation Function

ReLU (Rectified Linear Unit) is the most widely utilised activation function in
the world today. It has since been used in practically all convolutional neural
networks and deep learning algorithms.

a = max(0, z) ... (2.4)

Range: [0 to infinity), both the function and its derivatives are monotonous.
The concern is that all negative numbers rapidly become zero. This affects the
model’s capacity to correctly fit or train the data. This implies that a negative

14

Figure 2.7: tanh activation function curve in [a.u.].

input to the ReLU activation function will immediately reset the chart’s value to
zero. This has an effect on the resultant chart by incorrectly mapping negative
values. Figure 2.8 shows the curve generated by the ReLU activation function.

Figure 2.8: ReLU activation function curve in [a.u.].

2.4 Sigmoid Activation Function

The sigmoid function is a form of activation function that is commonly employed
in artificial neural networks (ANN) [45] [46]. A sigmoid equation is a mathe-

15

matical function with a characteristic "S" shaped curve or sigmoid curve, and its
output range is typically 0 to 1. Because of the form and output range of the curve,
NN uses it.

s(z) =
1

1 + e−z =
ez

ez + 1
... (2.5)

Two basic operations are observed in the equation which are an exponential
component and division. Direct implementation of these two operations at the
hardware level is quite complex. Therefore, instead of direct implementing Equa-
tion (2.5), we can approximate it up to second-order which is described below.

2.4.1 Second-order Sigmoid Approximation

Now, as we have seen that sigmoid function contains various complicated oper-
ations such as exponential and division operation which makes hardware-level
implementation complicated. So, to make it easier we have proposed an efficient
way of implementing sigmoid function using second-order approximation. The
proposed function contains operations such as multiplication, addition, and sub-
traction which are not complex as compared to exponential and division opera-
tions. The proposed equation of the sigmoid function using second-order approx-
imation is mentioned in Equation (1.6). The result of second-order approximation
is almost accurate, also the complexity of the equation is reduced significantly
as it requires multiplication, addition, and subtraction operation instead of expo-
nential, so the implementation of this equation is simpler compared to the con-
ventional one. According to our discussion on the proposed equation, the flow
for the equation is depicted in Fig. 2.9.

s(z) =

0, z < −4
1
2(

z
22 + 1)2, −4 ≤ z ≤ 0

1 − 1
2(

z
22 − 1)2, 0 < z ≤ 4

1, z ≥ 4

... (2.6)

As we can see in the Figure 2.9 there is only three major operations are going
to perform based on the input we provide, and the operation are addition, sub-
traction, and multiplication there is not any division or exponential operation are
required now so the complexity of the sigmoid activation function is reduced sig-
nificantly. For the comparison we have implemented the original sigmoid func-
tion with exponential and division term in it, and approximated sigmoid function
we have implemented with help of Equation (2.6) which we have derived using

16

Figure 2.9: Flow of proposed approximated sigmoid function.

Figure 2.10: Comparison between conventional sigmoid function and proposed
sigmoid function.

17

approximation method. Using the proposed sigmoid function, we avoided the
exponential operation, also the accuracy is very high. Figure 2.10 shows the com-
parison between conventional sigmoid function and proposed sigmoid function.
We observed that the curve of the proposed sigmoid function is S-shaped, almost
identical to the conventional one.

As shown in Figure 2.10 blue doted line represents the output of conven-
tional sigmoid function whereas the red line represents the output obtained by
the second-order approximation of sigmoid function. Hence, the results obtained
are almost identical and thus we have used second-order approximation function.

18

CHAPTER 3

Architecture of Neural Network and AFSM

As we have discussed in previous chapter we are using Artificial Neural Network
to classifying the humanoid robot motions, after that we are predicting the next
motion for the robot by using the classified data and the extra input in our case
its proximity sensor data. Using this data we have build Finite State Machine
which can provide next action which should be perform by the robot. Proposed
architecture for robot motion detection is shown in Figure 3.1.

Figure 3.1: Proposed behavior-based architecture implemented using a neural
network (NN) and an augmented finite-state machine (AFSM).

Figure 3.1 is the proposed method for predicting the next motion and to predict
the motion first step requires the collecting the data and that has to be provided
to the Artificial Neural Network for classification. Based on the values obtained
from each neuron i.e., in the range of 0 to 1 and the proximity sensor data, the
next motion is being predicted.

3.1 Sigmoid Activation Function

Since activation function is the heart of ANN, it has to function as fast as possi-
ble and also it should be accurate because the neuron activation depends on the

19

activation function. Here we have chosen sigmoid function as activation func-
tion because it gives ’S’ shape curve and the output range it provides is 0 to 1
so we can easily identify the activated neuron. Since sigmoid function contains
exponential and division operation we have proposed new approach to perform
sigmoid function. We have used second order approximation method to approx-
imate the results of sigmoid function which are almost identical to conventional
sigmoid function.

3.1.1 Proposed Architecture of Sigmoid Function

Hardware implementation of the sigmoid function requires adder, comparator,
registers, and multiplier [47] [48] [50]. Figure 3.2 shows the simplified block dia-
gram for the proposed architecture where Figure 3.3 gives the information of the
data path for the digital logic design.

Figure 3.2: Simplified block diagram of proposed sigmoid function.

Proposed architecture doesn’t consist of any exponential or division opera-
tion. Instead, only addition, subtraction, and multiplication operations are used
as shown in Equation (2.6). Here we have divided the flow in three parts (for
pipeline) so we can improve the speed of the operation more. The first stage
known as Identification stage, second stage is known as squaring stage and the
third stage is known as normalizing stage.

RTL generated for the proposed architecture is shown in Figure 3.4 and we
have used pipeline method to optimize the architecture and it will improve the
speed of operation by significant margin.

20

Figure 3.3: Architecture of proposed sigmoid function.

Figure 3.4: RTL overview of the proposed sigmoid function.

21

Stage-1: Identification Stage

RTL generated for the stage-1 (Identification stage) is shown in Figure 3.5 which
contains comparators, adders and subtractors.

Figure 3.5: RTL for stage-1 (identification stage).

In this stage we are identifying the input range in three different range whether
the input is less than -4 or it is in between -4 to 4 or it is greater than 4. Based on
the input range we are performing arithmetic shift right operation (divide by 4)
and add 1 or subtract 1 according to the input, if input is negative then we add 1
and if its positive then we subtract 1. So, in simple term stage one is performing
two operations based on the input range and the operations are mention below

22

z
22 + 1, i f − 4 < input < 0 ... (3.1)

z
22 − 1, i f − 4 < input < 0 ... (3.2)

Stage-2: Squaring Stage

In this stage we are performing multiplication operation to generate the square of
the output generated by the stage 1. Compare to adder and subtractor multiplier
is more complex that’s why second stage only contains one operation in order to
generate output faster. Squaring stage will give the output in from of

(
z
22 + 1)

2
, i f − 4 < input < 0 ... (3.3)

(
z
22 − 1)

2
, i f − 4 < input < 0 ... (3.4)

Figure 3.6: RTL for stage-2 (squaring stage).

Figure 3.6 is the RTL generated for the stage-2 (Squaring stage). Here we have
used array multiplier for simplicity. Also, to optimize the performance, we can
use Modified booth multiplier or Wallace tree multiplier.

Stage-3: Normalizing Stage

In this stage we are normalizing the output generated by the squaring stage and
also reduced the number of bits of the output to saving space in memory. Since
the output generated by the sigmoid function is in range of 0 to 1 we can remove
the MSB bits because its always remains zero. Here we have use fixed point rep-
resentation so we can change the range of floating bits according to requirement.
RTL for the stage-3 is shown in Figure 3.7.

23

Figure 3.7: RTL for stage-3 (normalizing stage).

3.1.2 Behavioural Analysis of the Sigmoid Function

For sigmoid function, we used multiple components and, we have computed the
output in three stage-1 (Identification stage), stage-2 (Squaring stage), and stage-3
(Normalizing stage). Identification stage performs addition and subtraction based
on the given input and initially. The data passing input through the comparator
to identify which operation should be perform on the input after that we are per-
forming the squaring (multiplication) the output generated by the Identification
stage and in the final Normalizing stage. The final output generated by the Nor-
malizing stage is in range of 0 to 1 same as sigmoid function output for that we
used to fix point conversion where, we have fixed 28 bits as fraction bits and re-
maining 4 bits for signed integer the reason for taking more number of bits for
fraction is because the output, generated is in range of 0 to 1.

Figure 3.8: Data flow for Sigmoid function without pipeline.

Figure 3.9: Data flow for Sigmoid function with pipeline.

24

As we discussed in data flow for sigmoid function, we have used three stages
which are observed in the wave form and after completing Normalizing stage.
It will load new data for the process, also by using pipeline we have optimize
and reduce time to generate output. We generated the output in each clock cycle
instead of generating output every third clock. Figure 3.8 and Figure 3.9 are for
without pipeline and with pipeline and we can observe that with pipeline we can
generate output much faster than the architecture without pipeline.

Figure 3.10: Simulated output of a proposed Sigmoid function with various pre-
cision. (a) with 8bit of input, (b) with 16bit of input and (c) with 32bit of input,
respectively.

We have discussed earlier in Chapter-2 is that an activation function plays a
crucial role in NN, which makes it necessary for the hardware implementation
to be accurate, with minimal errors. The hardware-level implementation is per-
formed for different numbers of input bits i.e., the higher the number of bits, the
higher is the accuracy, as well as precision which we can observe in Figure 3.10.
During testing, we have considered 8-bit, 16-bit, and 32-bit fixed numbers as an
input to the proposed sigmoid function, one at a time. Of course, 32-bit fixed
input would have higher precision, also the shape of the curve is sharper com-
pared to the other two inputs i.e., 8-bit and 16-bit, but at the cost of more memory
space. In 8-bit fixed input, 4 bits are used for representing fractions. In 16-bit, 8
bits are used for representing fractions. In 32-bit, 14 bits are used for the same.
Hence, 8-bit fixed input is having a precision of 6.25×10-2, for 16-bit it becomes
3.9×10-3 and for 32-bit it becomes 6.1×10-5. For output the case is different, 8-bit,
16-bit, and 28-bit are used to represent fractions, also the precision comes out to

25

be 3.9×10-3, 1.52×10-5, and 3.72×10-9 respectively for 8-bit, 16-bit, and 32-bit fixed
inputs.The precision values for input data and output data is mention in the Table
3.1 and Table 3.2 respectively. Hence, we have proposed the hardware design of
the sigmoid function with 32-bit fixed input for higher precision.

Representation for input No. of fraction bit for input Input precision
8 bits 4 bits 6.25 ∗ 10−2

16 bits 8 bits 3.9 ∗ 10−3

32 bits 14 bits 6.1 ∗ 10−5

Table 3.1: Comparing precision for different input.

Representation for output No. of fraction bit for output Output precision
12 bits 8 bits 3.9 ∗ 10−3

20 bits 16 bits 1.52 ∗ 10−5

32 bits 28 bits 3.72 ∗ 10−9

Table 3.2: Comparing precision for different output.

3.1.3 Power Analysis of the Sigmoid Function

As we can see in the Table 3.3 we have calculated power for technology 180nm
in Quartus Prime (intel tool) we can reduce dynamic power by selecting the 8-
bit sigmoid function but the precision of the 8bit sigmoid function is very less
compare to other two also I/O thermal power is half compare to 32bit sigmoid
function. So, we can select 16 bit sigmoid function for overall performance and
power optimization. The data collected from the tool is mention in the Table 3.3.

Input Core Core I/O Total(mW)
size Dynamic(mW) Static(mW) Thermal(mW)

8bits 2.18 89.93 14.69 106.80
16bits 2.59 89.96 20.78 113.33
32bits 5.33 90.00 28.64 123.97

Table 3.3: Power comparison for different set of inputs.

3.2 Architecture for the Transfer Function

Transfer function only contains array of multiplier an adder and the adders are
arrange in stages according to number of inputs in our case there are 7 stages of
adders since we have 22 inputs. Here we need weight values and bias values for

26

each neuron and all the weight and bias values are stored in SRAM and it can
be obtained by training the network. We have trained our network using Python
TensorFlow and collected those values for testing the network. The architecture
of the transfer function is shown in Figure 3.11.

Figure 3.11: Architectural representation of Transfer function.

As per the equation we have to first multiply all the weight values with the
respective input. So for that we have use the weight values which we have store
in SRAM and multiply with the inputs in first stage then for addition we have use
savaral stages and in the last stage we have added the bias value which we have
obtained during the training phase. The output generated by the transfer function
is given to sigmoid function for the enabling or disabling the particular neuron.

3.2.1 Behavioural Analysis of the Transfer Function

For transfer function we have used multiple multiplier and adder. Since the trans-
fer function is performing only two operations, we have used two SRAM one for
the storing weight and bias values, and second for storing input data and output
data generated by the final circuit. Circuit consists of multiple input and multi-
ple output, and each input and output data is having 32 bits. We used SRAM for
storing all the data for the reduction of number of pins.

We can observe the waveform shown in Figure 3.12 and Figure 3.13 that there

27

are multiple stages to generate final output, and adder stages are dependent on
the number of inputs. For example if we have 8 different inputs then we need 4
adder stages, and one multiplication stage. As we have 22 inputs, 6 adder stages
and one multiplication stage is needed.

Figure 3.12: Data flow for transfer function without pipeline.

Figure 3.13: Data flow for transfer function with pipeline.

3.3 Architecture for the Artificial Neural Network

To make Artificial Neural Network we require Artificial Neuron and as we have
seen earlier To mane Neuron we need Transfer function as well as Sigmoid func-
tion as activation function by connecting several neuron we can create Artificial
Neural Network the architecture shown in fig. is simplified version of connect-
ing those neuron with the inputs in such a way that we can get dense network

28

because here each neuron is connecting with all inputs. Also we have provided
weight and bias values from the SRAM.

Figure 3.14: Architectural representation of Artificial Neural Network (ANN).

As shown in Figure 3.14 the architecture we have used for the Neural Network
contains two major section first is transfer function and other one is sigmoid func-
tion. Here output of transfer function is fed to the sigmoid function. As we know
that the output of sigmoid function is in range of 0 to 1 so to identify which neu-
ron is activated, we need to check the neuron with value near to 1. Here We have
used four neuron in output layer because we are classifying four motions. Also,
we can add more number neurons as per the number of different motions being
added. Also, we can add hidden layer to get more accurate results.

29

3.4 AFSM Design

After classifying the motion, we have used one more sensor (Proximity sensor)
data to predict next motion. Initially we are trying with four basic motion forward
motion, backward motion, right motion, and left motion. As shown in Figure
3.15 the state diagram we have created has many possibilities and all possible
combination are mentioned in the table, since we have 4 motion we have total
16 different combination of input set Which are shown in Table 3.5 also prioritise
the motion according to requirement, here we have given forward motion highest
priority and backward motion has lowest priority and priorities are mention in
Table 3.4.

State Representation Priority
Forward 00 Highest

Right 01 High
Left 10 Low
Back 11 Lowest

Table 3.4: State based on motion with their priority.

Figure 3.15: State diagram for motion prediction.

Here, we have used 4 proximity sensors in each direction to collect data and
based on that data we are predicting the next motion. Here, we have given prior-
ity to forward motion. Also, we can add more motion such as jump, sit, moving

30

Possible input set Representation
No obstacles 0000

Obstacle in forward 0001
Obstacle in right 0010

Obstacle in forward and right 0011
Obstacle in left 0100

Obstacle in forward and left 0101
Obstacle in right and left 0110

Obstacle in forward, right and left 0111
Obstacle in back 1000

Obstacle in forward and back 1001
Obstacle in right and back 1010

Obstacle in forward, right and back 1011
Obstacle in left and back 1100

Obstacle in forward, left and back 1101
Obstacle in right, left and back 1110

Obstacle in all directions 1111

Table 3.5: Input combination for given FSM.

upstairs, moving downstairs, etc. The state diagram will change according to the
number of motion we want to classifying and based on that we can add more
number of state. Complexity of the FSM will increase by adding more number of
motion.

3.4.1 Behavioural Analysis of the FSM

As we have discussed earlier AFSM is use to predict motion based on the classifi-
cation data and four proximity sensor data. For prediction we can define priorities
and it is mention in Table 3.4 and according to the priority we have simulated the
results and the results are shown in Figure 3.16.

Figure 3.16: Waveform of FSM with different set of inputs.

Form the Figure 3.16 and Table 3.4 we can observe that next motion can be de-
cided by the current motion and the sensor data coming from proximity sensors.
In no obstacle case robot will take previous motion and if the obstacle come in to

31

the same direction where robot is moving it will take next motion accourding to
the priority we have given, so in our case it will first check forward then right, left
and back respectively.

3.5 Speed Analysis

As we can see in the Table 3.6 there is significant time difference when we compare
the results of Python and Verilog. So, by using hardware we can improve speed
significantly also there is huge difference in processing time when we compare
conventional sigmoid function with the proposed sigmoid function. We can re-
duce around 50% time by using second-order approximation method for sigmoid
function. When we compare the results of the sigmoid function with different
numbers of bits we have different time so from the result we can say that 16bit
sigmoid function has accurate output as well as time it takes is less. Here results
obtained from Python required more processing time compared to that of Verilog.

Implementation method Average time
ANN Using Python 900ms
ANN Using Verilog 44ns

Conventional Sigmoid (Python) 2ms
Proposed sigmoid (Python) 1ms

Proposed sigmoid 2.5ns
8 bits (Verilog)

Proposed sigmoid 4.2ns
16 bits (Verilog)

Proposed sigmoid 6.5ns
32 bits (Verilog)

Table 3.6: Speed analysis.

32

CHAPTER 4

Chip Design

4.1 Introduction

Electronic systems are extremely important in human life. EDA (Electronic De-
sign Automation) tools are used to develop and produce electronic systems span-
ning from Integrated Circuits (ICs) to PCB (Printed Circuit Boards). EDA is a
set of techniques, methodologies, and tools for automating electronic system de-
sign, verification, and testing. Cadence, Mentor Graphics, Synopsys, and other
commercial EDA tools are industry standards and extremely expensive to licence.
Students and teachers can only learn and execute their ideas by altering the source
code using Free/Open-Source Software (FOSS) EDA tools. From schematics through
layout, the Electric VLSI Design System is a powerful open-source CAD system
that can handle a range of technologies such as CMOS and Bipolar. It includes a
number of generic analysis and synthesis tools that can automate design and save
time and effort. It also supports EDIF, VHDL, GDS, LEF/DEF, and other common
interchange and manufacturing formats [52], [53], [57].

4.2 VLSI Design Flow

Figure 1.1 depicts the various degrees of VLSI design abstraction [53], [54]. These
VLSI design abstraction levels are used by hardware designers to ensure that all
of the standards and major goals, such as power consumption and speed, are
met. The major goal at the system level using the given set of standards is to de-
fine the system divisions and their interfaces. The next stage is to use high-level
programming languages to model the behaviour of the subsystem. We could de-
termine whether the model satisfied the requirements using behavioural verifica-
tion. The next phase in the design process is to specify the design at the Register
Transfer Level after the specifications have been confirmed (RTL) [56]. Timing
and data transfers between simple functional units like registers, full-adders, de-

33

coders, counters, and so on are defined in RTL. The design is made up of gates,
latches, and flip-flops at the gate level. The precise area and delay are estimated
at this level [55]. It also completes the design’s floor planning, positioning, and
sequencing. The designer can utilise the Electric VLSI tool to design an IC from
the gate level to the physical level. It cannot simulate Verilog code because it lacks
an integrated Verilog simulator, but it can create Verilog decks for simulation in
other Verilog simulators.

Figure 4.1: VLSI design abstraction levels.

4.3 Electric EDA Tool Design Flow

Figure 4.2 shows the flow for the EDA tool for layout design. So, to make layout
of the circuit we have to follow these steps and each step several process such as
Schematic design, Schematic verification, Schematic simulation, Layout design,
etc.

34

Figure 4.2: EDA tool design flow.

35

4.4 Digital Integrated Circuits using Electric VLSI

All of the physical level designs were created using MOSIS design guidelines for
TSMC 180nm technology. The transistor model files were downloaded from the
MOSIS website.

As we have discussed in previous chapters to design Neural Network we re-
quire several mathematical operations to be perform and to design those elements
we need logic elements such as AND, OR, NAND, NOR, Shift register, Compara-
tor etc. Where as for arithmetic operation we need Adder, Subtractor, Multiplier,
Counter, etc.

4.4.1 Logic and Arithmetic Elements

For designing Logic elements we need some standard cell such as 2 input AND,
OR, NAND, NOR and also we need 3 input and 4 input standard cells to design
32 bit logical elements.

Using those standard cell we have design 32bit Comparator we have use sev-
eral 2 input, 3 input and 4 input AND, OR, Ex-OR, and inverters and the design
we have created for Comparator, similarly to design arithmetic unit we need full
adder as basic element and using that adder we can design Multiplier, Subtractor,
Counter, etc. so for designing the transfer function we require multiple adder as
well as adder in each stage, for that we have use sevaral adder and design array
of multiplier and array of adder which can perform addition and multiplication
as per the function suggest the cross section of that array of multiplier and array
of adder is shown in Figure 4.3. and the layout of transfer function and sigmoid
function are shown in Figure 4.4 and Figure 4.5 respectively. As shown in the
Figure 4.4 layout there are two major components in Transfer function i.e., array
of multiplier and array of adder. Sigmoid function contains comparator, multi-
plexer, register for holding data for short time, adder, subtractor and multiplier
which is shown in Figure 4.5.

36

Figure 4.3: Cross section of the array of adder and multiplier.

Figure 4.4: Layout of transfer function.

37

Figure 4.5: Layout of Sigmoid function.

38

4.4.2 Designing of Storage Element

Storage element is important element in the design because it will stores the weights,
bias and some other important values which are very important for proper oper-
ation. Also we need Registers which are very fast and good for holding data for
short time period. To improve the speed of operation the read and write operation
perform in storage element should be as fast as possible.

Register design

Registers can be used as temporary storage elements because it is fastest storage
element we can get and for some case we have hold data for short time so for that
we can use registers instead of SRAM. To design register we can use flip-flop as
we all know flip-flop can also hold data so by using flip-flop we can make register
which can hold data for short time. Here we have use master slave D flip-flop to
make register. The schematic of 1 bit master slave D flip-flop is shown in figure
4.6.

Figure 4.6: Schematic of the master slave D flip-flop.

For designing Shift register we have use D flip-flop for designing the simple
32bit register and use that register and provide some logic elements using basic
gates for shifting operation and also provide some extra signals to control or se-
lecting the Shift register. Figure 4.2 shows the cross section of layout of the shift

39

register.

Figure 4.7: Cross section of the register.

SRAM Design

We have used SRAM as we need a small amount of memory. Also using SRAM
gives a faster access to data. It is treated as a cache memory also. Conventional
SRAMs have less reliability while holding the data in presence of noise, since 12T
SRAM provides this as an advantage over the conventional SRAMs.[15] [16] We
thought of using 12T SRAM, as our application is used for prediction and needs
data that is error free i.e., less affected by noise. Though this would increase area
requirement and a bit of power consumption. Figure 4.8 shows the schematic of
the 12T SRAM.

Figure 4.8: Schematic of the 12T SRAM.

40

We have used 2 SRAMs of size 64×4 bits each designed using 12T SRAM cell.
SRAM1 is used for weight and bias values and SRAM2 is used to store input data
and output data generated by the sigmoid function. The layout of SRAM is shown
in Figure 4.9 where the cross section of the SRAM layout is shown in Figure 4.10.

Figure 4.9: Layout of the SRAM.

Figure 4.10: Cross section of the SRAM layout.

41

4.5 Final Chip

The Neural network chip is having 72 pins in total where 32 pins are used for
input and output, there are 2 pins are for two different clocks, since we have use
2 SRAM for storing data of weight, bias, input, and output data we need read,
write, enable, select, etc. The pin description is mentioned in Table 4.1.

PIN no. DESCRIPTION
1 VCC
2 GND

3-18 Data [0:15]
19-20 Data select [0:1]

21 Select multiplication
22-24 Select adder [0:2]

25 Select subtractor
26-27 Select multiplexer [0:1]
28-30 Select register [0:2]

31 Select Transfer function
32 Select Sigmoid function

33-34 Select Sigmoid stage [0:1]
35-50 Data [16:31]

51 SRAM1 write
52 SRAM1 read
53 SRAM1 clock
54 SRAM1 enable

55-57 Select1 [0:2]
58-61 Address1 [0:3]
62-65 Address2 [0:3]
66-68 Select2 [0:2]

69 SRAM2 enable
70 SRAM2 clock
71 SRAM2 read
72 SRAM2 write

Table 4.1: Possible input combination for given FSM.

42

Figure 4.11: Data flow for the FSM with different set of input combination.

43

4.5.1 Area

Area of the final chip is 7.5mm ∗ 11.5mm its around 86.25mm2 and all other mod-
ules area are mention in the Table 4.2.

Layout Area (mm2)
Adder 0.566

Subtractor 0.592
Multiplier 0.692
Register 0.656

Comparator 0.355
SRAM 3.448

Array of multiplier 16.543
Array of adder 14.848

Transfer function 40.553
Sigmoid function 25.264

Table 4.2: Speed analysis.

44

CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

5.1 Summary and Conclusions

To summarize the whole work, we first started with the research and reviewed
many papers and articles about the research going on in the field of neural-network
and found that there is less research done on reducing the processing time. This
gave an ideology to us that leads to use of hardware instead of software for AI
which is the base of neural network. First, we tried to analyze the existing projects
done on neural network for walking robot (section II) describes the same. We
used Python to implement the training part and succeeded in obtaining the de-
sired results. Now for testing part we implemented the hardware level coding on
Xilinx ISE/Quartus Prime. Once the hardware level coding was done, we started
working on layout in open-source tool Electric VLSI. Here we first started with
standard cell layouts and their simulations. Then we implemented large modules
using those standard cells, and finally we designed layout for the whole Network.
At the end we used that layout and made a chip out of it, which was the final tar-
get of our thesis.

In this work, we have designed the layout using 180nm technology, as our
priority for now is to implement the neural network on VLSI accelerator. Once
we start getting the desired outputs in 180nm technology, we will scale it down.
As mentioned above we need to implement dynamic coding and some addition
of functionalities, seeing this there would be some changes in the hardware also
which would lead to layout design changes. So, it would be more practical to
stick to 180nm until we have incorporated all the changes and reached to desired
outputs.

45

5.2 Future Research

We can add more motion for better functionality and also we can improve each
module sigmoid function, transfer function and FSM to generate faster and ac-
curate output. To improve sigmoid function we can use faster multiplier such as
Modified Booth-Wallace Tree multiplier which has lowest critical delay but the
complexity is increased and also it is difficult to implement.

Same thing we can do for transfer function we can use more efficient multiplier
and adder so the run time can be reduce also we can reduce the number of stages
in transfer function so that we can generate output more faster. To improve FSM
we can add more number of motions and use different scenarios such as if robot
is stuck at any location, if robot falls. Also, we can identify the type of obstacle in
front of the robot.

46

Publications from This Thesis

1. Jimmy Patel, Harsh Advani, Tapas Kumar Maiti, "VLSI Implementation of
Neural Network Based Emergent Behavior Model for Robot Control" Sub-
mitted in International Conference on Distributed Computing, VLSI, Elec-
trical Circuits and Robotics May, 2022

2. Harsh Advani, Jimmy Patel, Tapas Kumar Maiti, "Hardware-Efficient Q-
Learning Accelerator for Robot Path Planning", Published in Springer, 5th
International Symposium on Devices, Circuits and Systems, March, 2022.

3. Jimmy Patel, Harsh Advani, Tapas Kumar Maiti, "VLSI Implementation of
Neural Network Driven Augmented FSM", In progress

4. Harsh Advani, Jimmy Patel, Tapas Kumar Maiti, "Q-Learning Accelerator
Chip Design for Robot Path Planning", In progress

47

References

[1] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 4th US
ed., Pearson, Apr. 2020.

[2] R. R. Murphy and R. C. Arkin, Introduction to AI Robotics, 1st ed., MIT Press,
Jan. 2001.

[3] R. A. Brooks, Cambrian Intelligence-The Early History of the New AI. MIT
Press, Cambridge, MA, 1999.

[4] Groover, Mikell (2014). Fundamentals of Modern Manufacturing: Materials,
Processes, and Systems.

[5] Lyshevski, S.E. Electromechanical Systems and Devices 1st Edition. CRC
Press, 2008. ISBN 1420069721.

[6] Lamb, Frank. Industrial Automation: Hands On (English Edition). NC,
McGraw-Hill Education, 2013. ISBN 978-0071816458

[7] Mitchell, Tom (1997). Machine Learning. New York: McGraw Hill. ISBN 0-
07-042807-7. OCLC 36417892.

[8] Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F., "Voronoi-Based Multi-
Robot Autonomous Exploration in Unknown Environments via Deep Rein-
forcement Learning" IEEE Transactions on Vehicular Technology, 2020.

[9] Bengio, Yoshua; LeCun, Yann; Hinton, Geoffrey (2015). "Deep Learn-
ing". Nature. 521 (7553): 436–444. Bibcode:2015Natur.521..436L.
doi:10.1038/nature14539. PMID 26017442. S2CID 3074096.

[10] arXiv:1202.2745. doi:10.1109/cvpr.2012.6248110. ISBN 978-1-4673-1228-8.
S2CID 2161592.

[11] Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffry (2012). "ImageNet Classi-
fication with Deep Convolutional Neural Networks" (PDF). NIPS 2012: Neu-

48

ral Information Processing Systems, Lake Tahoe, Nevada. Archived (PDF)
from the original on 2017-01-10. Retrieved 2017-05-24.

[12] A. Bermak and A. Bouzerdoum, “VLSI Implementation of a Neural Net-
work Classifier Based on the Saturating Linear Activation Function”, Pro-
ceedings of the 9th International Conference on Neural Information Process-
ing (ICONIP), pp. 1-4, Nov. 2002, Singapore

[13] H. M. EI-Bakry and N. Mastorakis “A Simple Design and Implementation of
Reconfigurable Neural Networks”, International Joint Conference on Neural
Networks (IJCNN), Jun 2009, Atlanta, GA, USA.

[14] J. Sun and H. Jiao, "A 12T Low-Power Standard-Cell Based SRAM Circuit for
Ultra-Low-Voltage Operations," IEEE International Conference on IC Design
and Technology (ICICDT), pp. 1-4, August 2019.

[15] J. Jiang, D. Lin, J. Xiao and S. Zou, "A Novel Highly Reliable 12T SRAM
Bitcell Design," IEEE International Conference on Electron Devices and Solid-
State Circuits (EDSSC), pp. 1-2, July 2019.

[16] R. Navajothi and A. K. Rahuman, "Implementation of high performance 12T
SRAM cell," IEEE International Conference on Electrical, Instrumentation
and Communication Engineering (ICEICE), pp. 1-6, December 2017.

[17] McCulloch, Warren; Pitts, Walter (1943). "A Logical Calculus of Ideas Im-
manent in Nervous Activity". Bulletin of Mathematical Biophysics. 5 (4):
115–133. doi:10.1007/BF02478259.

[18] Copeland, B. Jack, ed. (2004). The Essential Turing. Oxford University Press.
p. 403. ISBN 978-0-19-825080-7.

[19] Hopfield, J. J. (1982). "Neural networks and physical systems with emer-
gent collective computational abilities". Proc. Natl. Acad. Sci. U.S.A. 79 (8):
2554–2558. Bibcode:1982PNAS...79.2554H. doi:10.1073/pnas.79.8.2554. PMC
346238. PMID 6953413.

[20] "Neural Net or Neural Network - Gartner IT Glossary". www.gartner.com.

[21] Kohavi, Ron (2001-03-03). "A Study of Cross-Validation and Bootstrap for
Accuracy Estimation and Model Selection"

[22] Brownlee, Jason (2017-07-13). "What is the Difference Between Test and Vali-
dation Datasets?". Retrieved 2017-10-12.

49

[23] Ripley, B.D. (1996) Pattern Recognition and Neural Networks, Cambridge:
Cambridge University Press, p. 354

[24] "Subject: What are the population, sample, training set, design set, valida-
tion set, and test set?", Neural Network FAQ, part 1 of 7: Introduction (txt),
comp.ai.neural-nets, Sarle, W.S., ed. (1997, last modified 2002-05-17)

[25] Larose, D. T.; Larose, C. D. (2014). Discovering knowledge in data : an intro-
duction to data mining. Hoboken: Wiley. doi:10.1002/9781118874059. ISBN
978-0-470-90874-7. OCLC 869460667.

[26] Xu, Yun; Goodacre, Royston (2018). "On Splitting Training and Valida-
tion Set: A Comparative Study of Cross-Validation, Bootstrap and System-
atic Sampling for Estimating the Generalization Performance of Supervised
Learning". Journal of Analysis and Testing. Springer Science and Business
Media LLC. 2 (3): 249–262. doi:10.1007/s41664-018-0068-2. ISSN 2096-241X.

[27] Abbod, Maysam F (2007). "Application of Artificial Intelligence to the Man-
agement of Urological Cancer". The Journal of Urology. 178 (4): 1150–1156.
doi:10.1016/j.juro.2007.05.122. PMID 17698099.

[28] DAWSON, CHRISTIAN W (1998). "An artificial neural network approach
to rainfall-runoff modelling". Hydrological Sciences Journal. 43 (1): 47–66.
doi:10.1080/02626669809492102.

[29] "The Machine Learning Dictionary". www.cse.unsw.edu.au. Archived from
the original on 26 August 2018. Retrieved 4 November 2009.

[30] Ciresan, Dan; Ueli Meier; Jonathan Masci; Luca M. Gambardella; Jur-
gen Schmidhuber (2011). "Flexible, High Performance Convolutional Neural
Networks for Image Classification". Proceedings of the Twenty-Second In-
ternational Joint Conference on Artificial Intelligence-Volume Volume Two.
2: 1237–1242. Retrieved 17 November 2013.

[31] LeCun et al., "Backpropagation Applied to Handwritten Zip Code Recogni-
tion," Neural Computation, 1, pp. 541–551, 1989.

[32] Yann LeCun (2016). Slides on Deep Learning Online

[33] Hochreiter, Sepp; Schmidhuber, Jürgen (1 November 1997). "Long
Short-Term Memory". Neural Computation. 9 (8): 1735–1780.
doi:10.1162/neco.1997.9.8.1735. ISSN 0899-7667. PMID 9377276. S2CID
1915014.

50

[34] Sak, Hasim; Senior, Andrew; Beaufays, Francoise (2014). "Long Short-Term
Memory recurrent neural network architectures for large scale acoustic mod-
eling" (PDF). Archived from the original (PDF) on 24 April 2018.

[35] Li, Xiangang; Wu, Xihong (15 October 2014). "Constructing Long Short-
Term Memory based Deep Recurrent Neural Networks for Large Vocabulary
Speech Recognition". arXiv:1410.4281 [cs.CL].

[36] Fan, Y.; Qian, Y.; Xie, F.; Soong, F. K. (2014). "TTS synthesis with bidirectional
LSTM based Recurrent Neural Networks". Proceedings of the Annual Con-
ference of the International Speech Communication Association, Interspeech:
1964–1968. Retrieved 13 June 2017.

[37] Zen, Heiga; Sak, Hasim (2015). "Unidirectional Long Short-Term Memory
Recurrent Neural Network with Recurrent Output Layer for Low-Latency
Speech Synthesis" (PDF). Google.com. ICASSP. pp. 4470–4474.

[38] Fan, Bo; Wang, Lijuan; Soong, Frank K.; Xie, Lei (2015). "Photo-Real Talking
Head with Deep Bidirectional LSTM" (PDF). Proceedings of ICASSP.

[39] Silver, David; Hubert, Thomas; Schrittwieser, Julian; Antonoglou, Ioannis;
Lai, Matthew; Guez, Arthur; Lanctot, Marc; Sifre, Laurent; Kumaran, Dhar-
shan; Graepel, Thore; Lillicrap, Timothy; Simonyan, Karen; Hassabis, Demis
(5 December 2017). "Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm". arXiv:1712.01815 [cs.AI].

[40] Goodfellow, Ian; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-
Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua (2014). Gener-
ative Adversarial Networks (PDF). Proceedings of the International Confer-
ence on Neural Information Processing Systems (NIPS 2014). pp. 2672–2680.

[41] Gustineli, Murilo (2022-04-06). "A survey on recently proposed
activation functions for Deep Learning". arXiv:2204.02921 [cs].
doi:10.48550/arxiv.2204.02921.

[42] Specification of KHR-3HV Ver.2 Robot, Dec. 2018, [online] Available:
https://kondo-robot.com/product/03178.

[43] Rifkin, Jeremy (1995). The End of Work: The Decline of the Global Labor
Force and the Dawn of the Post-Market Era. Putnam Publishing Group. pp.
66, 75. ISBN 978-0-87477-779-6.

51

[44] M. F. E. Rohmer and S. P. N. Singh, “V-rep: a versatile and scalable robot
simulation framework”, Proceeding of the International Conference on In-
telligent Robots and Systems (IROS), pp.1321-1326, Nov. 2013, Tokyo, Japan.

[45] C.-W. Lin and J.-S. Wang, “A Digital Circuit Design of Hyperbolic Tangent
Sigmoid Function for Neural Networks”, IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1-4, 2008, Seattle, WA, USA.

[46] S. Satyanarayana and H. P. Graf, “A Reconfigurable VLSI Neural Network”,
IEEE Journal of Solid-State Circuits, pp. 67-81, vol. 27, Iss. 1, Jan 1992.

[47] A. H. Namin, K. Leboeuf, R. Muscedere, H. Wu, and M. Ahmadi, “Effi-
cient Hardware Implementation of the Hyperbolic Tangent Sigmoid Func-
tion” IEEE International Symposium on Circuits and Systems (ISCAS), pp.
1-4, May 2009, Taipei, Taiwan

[48] I. Tsmots, V. Rabyk, and O. Skorokhoda, “Hardware Implementation of Sig-
moid Activation Functions using FPGA”, IEEE 15th International Conference
on the Experience of Designing and Application of CAD Systems (CADSM),
pp. 1-4, Mar. 2019, Polyana, Ukraine.

[49] Ciresan, D.; Meier, U.; Schmidhuber, J. (2012). "Multi-column deep neural
networks for image classification". 2012 IEEE Conference on Computer Vi-
sion and Pattern Recognition. pp. 3642–3649.

[50] S. Xing and C. Wu, “Implementation of A Neuron Using Sigmoid Activa-
tion Function with CMOS”, IEEE 5th International Conference on Integrated
Circuits and Microsystems (ICICM), pp. 1-4, Oct. 2020, Nanjing, China.

[51] P. Treleaven, M. Pacheco, and M. Vellasco “VLSI Architectures for Neural
Network”, pp. 1-4, May 1989, Portland, OR, USA

[52] A.H. Farrahi, D.J. Hathaway, M. Wang, and M. Sarrafzadeh, Quality of eda
cad tools: definitions, metrics and directions, Quality Electronic Design,
2000. ISQED 2000. Proceedings. IEEE 2000 First International Symposium on,
2000, pp. 395–405.

[53] Nanoelectronic Mixed-Signal System Design, no. 9780071825719 and
0071825711, McGraw-Hill Education, 2015.

[54] Energy and Transient Power Minimization during Behavioral Synthesis,
Ph.D. thesis, Department of Computer Science and Engineering, University
of South Florida, Fall, 2003.

52

[55] Saraju P Mohanty, N Ranganathan, and Vamsi Krishna, Datapath scheduling
using dynamic frequency clocking, VLSI, 2002. Proceedings. IEEE Computer
Society Annual Symposium on, IEEE, 2002, pp. 58–63.

[56] Saraju P Mohanty, Ramakrishna Velagapudi, and Elias Kougianos, Physical-
aware simulated annealing optimization of gate leakage in nanoscale data-
path circuits, Design, Automation and Test in Europe, 2006. DATE’06. Pro-
ceedings, vol. 1, IEEE, 2006, pp. 6–pp.

[57] Steven M. Rubin, Using the electric vlsi design system, R.L. Ranch Press,
2015, Oracle and Static Free Software , ISBN 0972751432.

[58] Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Tim Cheng, Elec-
tronic design automation: synthesis, verification, and test, Morgan Kauf-
mann, 2009.

53

CHAPTER A

Standard Cell Layout and Simulation

A.1 Layout of Standard Cell

Here are the some of the basic standard cell layout design which we have use to
design our final chip.

Figure A.1: (a) NAND gate layout, (b) NOR gate layout.

54

Figure A.2: XOR gate layout.

Figure A.3: 2x1 Multiplexer layout.

55

Figure A.4: 1bit Full-Adder layout.

A.2 Simulation

Here are the simulated wave forms of all the standard cell which we have dis-
cussed in section A.1.

Figure A.5: NAND gate waveform.

56

Figure A.6: NOR gate waveform.

Figure A.7: XOR gate waveform.

Figure A.8: 2x1 Multiplexer waveform.

Figure A.9: 1-bit Full-Adder waveform.

57

	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	Modern Automation
	Machine Learning (ML)
	Deep Learning (DL)

	Neural Network (NN)
	Artificial Neural Networks (ANN)
	Working Principle of Artificial Neural Networks
	Artificial Neuron

	Training of NN
	Testing of NN
	Types of Artificial Neural Network
	Outline of Thesis

	System Level Implementation
	Flow of Implementation
	Collecting Data for Network
	Implementing Network using TensorFlow

	Transfer Function in NN
	Activation Function in NN
	Linear or Identity Activation Function
	Non-linear Activation Function

	Sigmoid Activation Function
	Second-order Sigmoid Approximation

	Architecture of Neural Network and AFSM
	Sigmoid Activation Function
	Proposed Architecture of Sigmoid Function
	Behavioural Analysis of the Sigmoid Function
	Power Analysis of the Sigmoid Function

	Architecture for the Transfer Function
	Behavioural Analysis of the Transfer Function

	Architecture for the Artificial Neural Network
	AFSM Design
	Behavioural Analysis of the FSM

	Speed Analysis

	Chip Design
	Introduction
	VLSI Design Flow
	Electric EDA Tool Design Flow
	Digital Integrated Circuits using Electric VLSI
	Logic and Arithmetic Elements
	Designing of Storage Element

	Final Chip
	Area

	CONCLUSION AND FUTURE RESEARCH
	Summary and Conclusions
	Future Research

	References
	Appendix Standard Cell Layout and Simulation
	Layout of Standard Cell
	Simulation

