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Abstract

In the domain of image denoising, there has been significant and rapid devel-
opment recently. Many prior noise-modeling based and deep-learning based al-
gorithms have shown outstanding results in denoising. However, the networks
used by the state-of-the-art methods are very deep and complex. We propose a
simple yet effective Deep Multi-patch Hierarchical Network that uses less mem-
ory and has fewer network parameters. In this network, multiple features of noisy
image patches from different spatial regions are combined using a fine-to-coarse
hierarchical representation to get a clean image. While deep neural networks
have had great success in denoising images using additive white Gaussian noise
(AWGN), their performance on real-world noisy images is weak. This is because
their trained models are likely to overfit the simplified AWGN model, which dif-
fers significantly from the complex real-world noise model. Hence we trained our
model by real-world noisy data to generalize the ability of the denoise network.
In the encoder section of the network, we also added a non-local module to extract
dependencies between long-distant pixels in the image, which enhanced PSNR to
0.25 dB. Additionaly, The parallel connection of channel attention (CA) and pixel
attention (PA) is added into the decoder to further enhance the performance. Dif-
ferent channels and pixels contain different levels of important information, and
attention can give more weight to relevant information so that the network can
learn more useful information. This resulted in a PSNR increment of 0.17 dB.
When compared to most deep learning approaches, our architecture shows com-
petitive results while using fewer network parameters.

Keywords: real-world noise, image denoising, non-local, channel-pixel attention

v



List of Principal Symbols and Acronyms

AWGN Additive White Gaussian Noise

CA Channel Attention

DMPHN Deep Multi-Patch Hierarchical Network

PA Pixel Attention

PSNR Peak Signal-to-Noise Ratio

SPM Spatial Pyramid Matching

SSIM Structural SIMilarity

TV Total Variation

vi



List of Tables

4.1 Ablation study: modified weights of the four losses . . . . . . . . . 18
4.2 Quantitative results on SIDD Validation Dataset . . . . . . . . . . . 22
4.3 Results on Nam Dataset [24] . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Experimental results on SIDD Validation Dataset . . . . . . . . . . . 24

vii



List of Figures

3.1 Deep Multi-Patch Hierarchical Network (DMPHN) architecture . . 10
3.2 DMPHN Encoder and Decoder Architecture . . . . . . . . . . . . . 11
3.3 Image redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 NL-means scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Non-local Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Attention Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Qualitative results on SIDD Validation Dataset (Ex.1) . . . . . . . . 21
4.2 Qualitative results on SIDD Validation Dataset (Ex.2) . . . . . . . . 22
4.3 Qualitative results on different scenarios (SIDD Dataset) . . . . . . 23

viii



CHAPTER 1

Introduction

Almost all the imaging equipment induces noise to a certain extent during image
acquisition and transmission. As a result, the quality of captured or received im-
ages often becomes low. Image denoising is a significant and fundamental task in
low-level vision due to its wide range of applications in different domains, such
as medical image denoising [15], remote-sensing image denoising [41], satellite
image denoising [33], and compression noise removal [34]. Even the higher-level
vision tasks such as object detection [27] and recognition [12] require the image to
be as clean as possible.

The main objective of image denoising is to remove or correct noise in an im-
age, either for aesthetic purposes or to improve the performance of several other
down-stream tasks. Over decades of study, several promising approaches [10] for
the removal of additive white Gaussian noise (AWGN) have been discovered, and
near-optimal results have been achieved [19, 29]. On the contrary, image noise in
real-world camera systems arises from a number of sources (e.g., thermal noise,
dark current noise, shot noise, and so on). Further, an image gets impacted by the
in-camera processing (ISP) pipeline (e.g., demosaicing, compression, etc). Hence,
the distribution of real-world noise is different than the AWGN. To reduce the
effect of real-world noise from an image, we propose a deep learning technique
based on a hierarchical framework.

We consider three stages for denoising an image. The output features of the
third stage are fed to the second, and the output of the second stage is fed to
the first to produce the final denoised result. At the last stage, we segment the
input image into four patches, thus focusing on local details, whereas we fed the
entire image into the first stage, thus looking at the global aspect. Hence, in our
architecture, we consider local-to-global information of an image while denoising
in our architecture.

Each stage of the network consists of an encoder and a decoder. The encoder
is designed with a few non-local blocks to explore the non-local patch similarity.
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The decoder is equipped with an attention mechanism, where channel and pixel
attention modules are used in parallel. Channel attention assigns weights to each
channel according to the relevance, whereas pixel attention focuses on each pixel’s
information.

1.1 Objectives

The objectives of the work are

• To denoise an image using a deep learning framework when the noise can
have any kind of distribution.

• To incorporate local-to-global information while denoising an image.

• To utilize similar information in an image, as has been done in many classi-
cal denoising methods.

• To assign weights to each channel and pixel according to their relevance.

1.2 Contribution

The main objective of our network is to improve performance by combining fea-
tures of multiple image patches from different spatial regions of the image. Due
to residual connections in our model, our encoder and decoder parameters are
relatively less, which enables faster denoising inference. So the main idea here is
to make the lower-level network focus on retrieving local feature details from the
finer grid to generate residual information for the upper-level network. The global
information can be obtained from both the finer and coarser grid by concatenating
convolutional features. Furthermore, the network is lightweight so that it can be
used on mobile GPUs as well.

Also, existing deep learning algorithms do not make use of attention and non-
local self-similarity of natural images. To use those similarities, we included a
non-local module [39] in the encoder section, which calculates the output at a
position as a weighted sum of the features at all positions. Thus, it can detect the
long-distance dependencies among distant pixels in an image.

In the decoder, we added a parallel combination of channel and pixel atten-
tion since channel attention (CA) may bring out channel-wise relevant informa-
tion while pixel attention (PA) propagates pixel-level attention. [43] has made
use of their serial connections. However, as compared to serial connections, their
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parallel connection might better complement each other. In the case of serial con-
nections, any failure in channel attention can disturb the pixel attention process
also. Furthermore, in the output of channel attention, the pixel-level information
may get affected. Therefore , pixel attention on the output of channel attention
will be ineffective since the PA will be unable to assess the unaffected pixel-level
data. This problem can be addressed by attaching CA and PA in parallel.
Following are the key aspects of our method:

• Denoising performance improved by combining features of multiple image
patches from different spatial regions of the image while considering non-
locality of multiple patches.

• Due to residual connections in the proposed model, our encoder and de-
coder parameters are relatively low, enabling faster denoising inference.

• We added a parallel combination of channel and pixel attention in the de-
coder to get channel-wise and pixel-level relevant information from an im-
age.

• In the case of serial connections, any failure in channel attention can disturb
the pixel attention process, so a parallel connection of CA and PA is used.

1.3 Organization of Thesis

The rest of the thesis is arranged as follows. Chapter 2 contains a literature survey
of existing denoising techniques. Chapter 3 explains the proposed model and in-
cludes a detailed explanation of its components like non-local and attention mod-
ules. Chapter 4 consists of the experimental results of the proposed method, com-
paring different existing approaches of denoising, followed by other additional
experiments. Chapter 5 gives the conclusion of the work and discusses the future
scope.
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CHAPTER 2

Literature survey

2.1 Classical image denoising methods

In [5], authors proposed a novel sparse representation based denoising method
of block-matching and 3D filtering (BM3D). This method is mainly focused on 3
components 1) 3-D transformation of a group 2) reduction of the transform spec-
trum 3) inverse 3D transformation. Buades et al. [4] proposed a novel algorithm
named the non-local means (NLM), this algorithm is based on a non-local aver-
aging of distant image pixels. This non-local method was transformed in a neural
network block by [39], which showed significant improvement in classification
and segmentation tasks. Zhang et al. [10] proposed WNNM, which is a model-
based technique that provides a low-rank recovery method for estimating the de-
noised image using the rank minimization. The WNNM model presumes that
the underlying data may be represented by a low-dimensional linear structure
or subspace. It seeks and stacks non-local identical patches for each underlying
patch, then uses a convex optimization approach to build a low rank matrix by
minimizing an objective function.

The review of various denoising methods reveals that traditional model-based
approaches are flexible in dealing with noise at various levels, but they suffer from
a number of limitations such as a time-consuming optimization techniques, re-
liance on appropriate prior noise model and patches with non-local self-similarity.

2.2 CNN based methods

The use of convolutional neural networks (CNNs) for image denoising has risen
rapidly in recent years [49]. When compared to prior model-based techniques,
CNNs deliver faster inference and better performance. The number of factors in
CNN designs has increased in recent years, raising the architecture’s complexity.
Most of these models have improved their performance over time [42]. A variety
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of models, on the other hand, require prior knowledge [36] about the type and de-
gree of the noise, or an approximation of it, in order to get the best results. Modern
neural networks of image denoising [38] have been shown to function effectively
with lesser parameters. Although these models are trained for a specific noise
level and need the construction of a model instance for each noise level. Zuo
et al. [46] proposes a CNN-based denoising architecture (DnCNN) that outper-
forms all classical non-CNN-based algorithms on AWGN noise. They modified
simple CNN by adding batch normalization (BN) [14] and residual learning [28]
into a model to make the network stable and faster. It is an end-to-end denoising
system that does not involve any additional noise information. But, the model’s
performance is sub-standard while using real noise and it also smoothes out the
edges in the images. Zhang et al. [47] have introduced the FFDNet (fast and flex-
ible denoising network), which can handle a broad variety of noise levels with a
single denoising model. They claim that traditional image denoising models are
trained to eliminate noise from images with a certain noise level, forcing them to
train different models for various noise levels [46, 35]. To deal with multiple noise
levels, FFDNet trains its model using training images with different noise levels.
However, FFDNet has a drawback when removing noise from images with an un-
known noise level since it needs the image noise level as input data. Lefkimmiatis
presented another technique to overcome the constraint of traditional denoising
networks, which need a model for each noise level. He proposed the universal
denoising network (UDN) [18], covering half of the noise level range with a sin-
gle network. Although, UDN requires the image’s noise level as input. Liu et al.
[21] introduced multi-level wavelet CNN (MWCNN), a model that incorporates
a modified UNet [30] architecture with the wavelet transform [22]. While they
increased the receptive field of their model while lowering its computational cost,
they were unable to overcome the drawback that their model is only useful for a
single noise level. Furthermore, their usage of the wavelet transform might de-
grade performance by forcing their network to utilize wavelet transform feature
information.

2.3 SPM based methods

Svetlana et al. [17] suggest Spatial Pyramid Matching (SPM) for image classifica-
tion and object recognition. It splits images into coarse-to-fine grids and computes
feature histograms. It combines many image patches to enhance the scene recog-
nition performance. Inspired by this idea, SPM-based architecture is also used
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in image deblurring [44] and image dehazing [6]. We use it for image denoising.
Using an SPM-like model has two major advantages. The input of multiple lev-
els has an identical spatial resolution. Therefore, residual-like learning requires a
lower filter size and faster inference performance. Second, by utilizing an SPM-
like model, more training data could be exposed to the finest scale, which leads to
more patches, resulting in improved performance.

Existing multi-scale-based techniques require a considerable amount of time
and memory. To solve this limitation [7] proposed DMPHN and DMSHN which
has multi-level architecture. Also, this method has a very short time to execute
as compared to other multi-scale-based methods. DMPHN contains 3 levels with
different scales 1,2 and 4 respectively. The model integrates local features gener-
ated from a finer to a coarser resolution level. The encoder-decoder architecture
is used in each level of the model. This Architecture’s encoder includes 15 convo-
lution layers and six residual connections. The architectures of the encoder and
decoder are identical, except for two convolutions that have been replaced by De-
convolution layers.

2.4 Image denoising datasets

Based on the source of the given noisy images within the dataset, image denoising
datasets can be classified as: synthetic noisy image dataset [48] and real-world
noisy image dataset [40]. To create a synthetic image dataset, first collect ground
truth noise-free images by down sampling a high-resolution image or by post-
process a low-ISO image [26]; then add synthetic noise based on statistic models
(such as the Gaussian model or Poisson-Gaussian mixture model [9]) to obtain
noisy images. A method to create a real-world noisy dataset is: 1) Gathering
many real-world noisy images in a short period of time to ensure the minimum
content change in the image, such as scene brightness changes or scene object
motions; 2) merging all these images to obtain ground truth "noise-free" image.
The real-world noisy dataset is closer to the actual image data handled in practical
applications than the synthetic noise dataset. Therefore, we consider denoising on
the real-world noisy dataset.

Many datasets with real-world noisy images were proposed. Anaya et al. pro-
posed the RENOIR dataset [2], which comprises pairs of low or high ISO im-
ages. The low-ISO photos still have considerable noise, and the dataset fails to
capture precise spatial alignment. Plotz et al. [26] proposed Darmstadt Noise
Dataset (DND). It performs post-processing to 1) spatially align low-ISO images
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with their high-ISO equivalents and 2) eliminate intensity variations caused by
atmospheric light or light flickering. Although majority of DND images contain
minimal levels of noise and lighting settings. Hence, there are only a few instances
of high noise levels or low lighting conditions. Abdelhamed et al. [1] proposed the
SIDD dataset, which addressed issues with previous datasets such as spatial mis-
alignment and clipped intensities because of low-light scenarios. We used SIDD
dataset to analyze the denoising performance of our proposed approach. Because
of the wide range of noise levels and lighting settings, SIDD is a good choice for
benchmarking models’ denoising performance.
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CHAPTER 3

Multi-patch Hierarchical Network with Non-
local Information

3.1 Multi-patch Hierarchy

The multi-patch hierarchy schemes are referred to as structures that convey infor-
mation through levels of the hierarchy and aggregation of several image patches.
The multi-patch hierarchy comprises numerous low-to-high layers, using image
blocks of different sizes as input to each level. Information from different stages
is combined through residual connections between features and images. The
scheme is illustrated in Figure 3.1.

More image blocks are available on the lowest level by processing image patches
individually, which is equivalent to increasing training data. Therefore, the input
image’s local features can be maintained and transferred up the hierarchy through
residual connections. Hence, each hierarchy level can focus on various intensities
of noise. Unlike prior methods that used Gaussian pyramids as input, the multi-
patch hierarchy approach takes advantage of an image’s inherent spatial scale
patches, which significantly reduces the feature extraction time. In summary, the
new algorithm is more focused on local details of images and speeds up feature
extraction. Higher-level image interpretation is facilitated by lower-level features
and images conveyed through residual connections in the multi-patch architec-
ture. The network generally takes input in the form of multi-patch hierarchical
images to take advantage of higher and middle-level information while maintain-
ing low-level information. The encoder and decoder outputs of the lower level are
sent up to the upper level by residual connections. An image is gradually recov-
ered from each level.
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3.2 Skip connection

Noroozi et al. [25] designed a skip connection across input and output to decrease
the effort of image restoration while maintaining image consistency. In general,
we establish a skip link between the generated image and the input image to con-
firm that the output image matches the original. However, we use a skip connec-
tion between the input image and semi-processed image restored on each level, to
accumulate details of all levels on the final level. This concatenation propagates
not just the information lost because of down-sampling, but also some interfer-
ing information. The high-level features become more ample as data propagates
across the network, and noisy deviation in the image is decreased.

3.3 Network Architecture

We use Deep Multi-patch Hierarchical Network (DMPHN), which is basically de-
signed for single image deblurring [45]. In this research, we employ the (1-2-4)
form of DMPHN. To be thorough, we will go over the architecture in the follow-
ing sections. The DMPHN architecture is multi-level. Each level has an encoder-
decoder pair. Each level operates on a different number of patches. Correspond-
ingly, the number of patches utilized in DMPHN(1-2-4) is 1,2 and 4 from top to
bottom levels. The highest level (level-1) takes into account only one patch per
image. The image is divided into two sections vertically in the following level
(level-2). At the bottom-most level (level-3) the patches are further divided hori-
zontally, giving a total of 4 patches.

Consider the input noisy image IN. IN
i,j denotes the j-th patch in the i-th level.

IN is not separated into patches in level 1. IN is separated vertically in IN
2,1 and

IN
2,2 on level 2. further, IN

2,1 and IN
2,2 are separated horizontally on level 3 to form 4

patches, IN
3,1, IN

3,2, IN
3,3, and IN

3,4. At the i-th level, encoders and decoders are labeled
as Ei and Di, respectively. In DMPHN, information of features flows from bottom
to up. Patches at the lowest level are passed into the encoder E3 to produce feature
maps.

F3,j = E3

(
IN
3,j

)
, where j ∈ [1, 4] (3.1)

All these spatially adjacent feature maps are concatenated to get a new feature
map representation.

R3,j =
[
F3,2j−1, F3,2j

]
, where j ∈ [1, 2] (3.2)
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Figure 3.1: Deep Multi-Patch Hierarchical Network (DMPHN) architecture

then these new concatenated features are fed to D3 decoder D3.

S3,j = D3
(

R3,j
)

, where j ∈ [1, 2] (3.3)

this decoder output is added with subsequent level patches and passed to the
encoder.

F2,j = E2

(
IN
2,j + S3,j

)
, where j ∈ [1, 2] (3.4)

In the next step, the outputs of the encoder are added to the corresponding de-
coder inputs from the previous level. After that, the resulting features are con-
catenated spatially.

F∗
2,j = F2,j + R3,j, where j ∈ [1, 2]

R2 =
[

F∗
2,1, F∗

2,2

] (3.5)

After that,R2 is passed to decoder D2 to obtain a residual feature map for the
second level.

S2 = D2 (R2) (3.6)

The output of the level-2 decoder is added with the input image and sent via
encoder E1. Level-2 adds encoder output F1 to the decoder output.

F1 = E1

(
IN + Q2

)
(3.7)

To generate the final clean output image Î, F1 is added to P2 and fed to decoder
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Figure 3.2: DMPHN Encoder and Decoder Architecture

D1.

R1 = F1 + R2 Î = D1 (R1) (3.8)

3.3.1 Encoder and Decoder Architecture:

Many computer vision tasks have shown the effectiveness of the symmetrical
encoder-decoder architecture [30, 3]. Encoder-decoder networks are symmetri-
cal CNN architectures that gradually transform input images into feature maps
with smaller-scale spatial dimensions and a greater number of channels (in the
encoder) and then convert it back to the original input shape (in the decoder).
Gradient propagation is improved and convergence is accelerated by this design.
We employ an encoder to extract features and a decoder to restore images at each
level. In encoder-decoders, residual links between the feature maps are exten-
sively used to integrate information of multiple levels. Extra convolution layers
are usually added in each level to further improve any network’s performance.
But [44] has shown that adding extra residual connection within convolutional
blocks will improve result quality more than blindly increasing depth by addi-
tional convolutions. Hence, the proposed method uses six residual connections in
both encoder and decoder modules.

At all levels of DMPHN, we use identical encoder and decoder architecture.
Fifteen convolutional layers, two Non-local (NL) block, six residual connections,
and six ReLU units are used in the encoder. The decoder architecture is the same
as the encoder, except that 2 convolutional layers are replaced with deconvolu-
tional layers to generate a clean output image. Also we replaced NL block with
the CA ∥ PA block into decoder part which is a parallel combination Channel
Attention (CA) and pixel Attention (PA).

In the architecture, we added NL(non-local) block in the encoders to get rich
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image features from a entire image instead of considering local patches only. After
getting the rich features from the encoder, channel and pixel attention is applied
to that features. Because when generating the output, channel and pixel attention
determines the relative importance of the set of input features.

3.3.2 Non-local Block

Non-local self-similarity:
The main idea of classical non-local means [4] is based on the fact that natural
images have a lot of redundancy. For example, in Figure 3.3, we can observe that
the same color squares have many similarities. So, we can use this non-local self-
similarity of the image to infer pixel values.

The algorithm essentially updates each pixel’s value by a weighted average
of all of the other pixels, with the weight values calculated by considering local
neighborhood similarity:

I(p) =
1
C ∑

q∈N
wp,q I(q) (3.9)

N is a neighborhood of the pixel p, and C is a normalizing factor. An illustra-
tion of the equation (3.1) is shown in the figure 3.4. Equation (3.2) calculates the
weights wp,q :

wp,q = exp
(
−∥ω(I(p))− ω(I(q))∥2

h2

)
(3.10)

where ω(p) denotes a window centred at pixel p.

Figure 3.3: Image redundancy Figure 3.4: NL-means scheme
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Non-local neural network module:
We used non-local bock presented in [39], which converts above traditional ap-
proach into neural network module. It is basically developed for image classifica-
tion and segmentation tasks to increase receptive field of networks. The architec-
ture of the non-local block is shown in Figure. 3.5.

Figure 3.5: Non-local Module

The generic equation for non-local operation in the network is:

yi =
1

C(x) ∑
∀j

f
(
xi, xj

)
g
(
xj
)

(3.11)

where i is the index of an output position and j enumerates all possible posi-
tions. x is the input features, and y is the output with a same size as x.

f is the function that represents the relationship of a pixel at location i with
all the j positions.The Gaussian function is a natural choice for f as it is generally
used in non-local mean [4] and bilateral filters [37] for similar scenarios. In this
paper we consider: f

(
xi, xj

)
= exT

i xj here xT
i xj denotes dot product similarity.

g is the unary function used to compute input signal representation at position
j. It it just a linear embedding, which can be calculated as, g

(
xj
)
= Wgxj, where

Wg is the weight matrix to be learned. The normalization factor C is set as

C(x) = ∑
j

f
(
xi, xj

)
(3.12)

so the final equation for the non-local block is zi = Wzyi + xi. where yi is the
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Equation-(1) and xi is a residual link to the output. Wz initially set to 0.

3.3.3 Attention Block

The decoder comprises attention blocks. As shown in Figure. 3.6, the attention
block combines both channel and pixel attention in parallel (CA ∥ PA).

Figure 3.6: Attention Block

The channel attention method defines by

Ac = σ(MLP(AvgPool(F)) (3.13)

Where F represents the input feature. The average pooling procedure on F is used
to first aggregates the spatial data. After that, the features are passed into an MLP
layer. Finally, the feature is fed to a sigmoid activation function to generate chan-
nel attention Ac, which multiplies with F as Fc = Ac ⊗ F. On the contrary, pixel
attention Ap is generated via 1 × 1 convolution following sigmoid activation F.
The output of the pixel attention mechanism is Fp = Ap ⊗ F. The resulting feature
map is created by multiplying the output of CA and PA elementwise. The chan-
nel attention (CA) reveals crucial information at the channel level, whereas the
pixel attention (PA) provides pixel-level attention. In comparison to their serial
connections, their parallel connection might better complement each other. The
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reason for this is that channel attention output will be weighted. As a result, the
information at the pixel level is compromised. As a result, pixel attention on the
output of channel attention will be ineffective since the PA will be unable to assess
the unaffected pixel-level data. Our technique solves this problem by joining CA
and PA in a parallel manner.
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CHAPTER 4

Implementations and Results

4.1 Dataset Description

The SIDD [1] benchmark is used to analyze the denoising performance and qual-
ity of our proposed approach in this section. These training images are collected
from 160 distinct scene instances, with each instance including two pairs of high-
resolution photos, one noisy image, and its associated ground-truth image. So,
There are 160 total image pairs. Five different brands’ smartphone cameras are
used to take these photos with various lighting environments and ISO settings.
ISO values varied between 50 to 10,000. The variety of noise levels and lighting
conditions in this dataset make it an ideal benchmark for comparing denoising
performance. Furthermore, this dataset has a larger size, giving adequate data for
training learning-based approaches, particularly convolutional neural network
(CNN) based methods.

We used the SIDD small data set for model training, which has over 160 image
pairs of clean and noisy images. The validation set is also provided for evalu-
ation, which contains 40 pairs of clean-noisy image patches. During training, a
small input size results in faster performance and less memory consumption for
GPUs. As a result, we divided each high-resolution image into small patches
rather than supplying a whole image to the network. Each image is divided into
non-overlapping patches. As a result, we have a training set of 102518 image
pairs with a dimension of 120 × 160 pixels. The validation data included 1280
noisy image crops, each of with the size 256 × 256 pixels. The blocks are made up
of 32 blocks from each of 40 images (40 × 32 = 1280). all these blocks represented
in a single 4D array of size [40, 32, 256, 256], where the 4 dimension parameters
denotes the image index, the block index in particular image, the height, and the
width of the block, correspondingly. The blocks are numbered in the same way as
the training data.
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4.2 Training Details

We implemented our model into PyTorch framework. We used Tesla T4 GPU
for the training and evaluation. We used the Adam optimizer[16] to train our
networks with values of β1 and β2, 0.9 and 0.99, respectively. The batch size used
is 26. The learning rate is 1e-4 at first, then gradually reduced to 5e-5. The model
is trained until the point of convergence. We normalized image pixels into [0,1]
range and subtract value 0.5 from each pixel.

4.3 Loss optimization Function

MSE or L2 loss is a basic loss function used in many denoising methods. It re-
duces the noise effect but blurs the image details and edges, so we added L1 loss
to reduce blurring. Since both L1 and L2 are pixel-wise loss functions and aver-
age over all the pixels, it does not consider the human visual perception. Thus we
added perceptual loss which considers the image’s gray values with texture qual-
ity and content quality to generate perceptually better images. Although the good
quantitive results, some generated images contain artifacts, so TV loss is used to
reduce artifacts while retaining the image sharpness. It ensures spatial continu-
ity and smoothness in the generated image. Hence, we used the combined loss
function of the following losses for the model loss optimization.

Reconstruction loss: it helps the model to produce denoise images that are
near to the ground truth. The weighted sum of the L1 loss and L2 loss is our
reconstruction loss. The reconstruction loss is calculated as follows:

Lrec = λ1L1 + λ2L2 (4.1)

where L1 = ∥x̂ − x∥1 and L2 = ∥x̂ − x∥2

Perceptual loss: it calculated as L2 distance between features of conv4_3 layer
of ground truth and predicted images extracted from pretrained VGGnet [32].

Lp = ∥ϕ(x̂)− ϕ(x)∥2 (4.2)

TV loss: It helps to generate smoother predictions. The loss is calculated as
follows:

LTV = ∥∇X x̂∥2 + ∥∇Y x̂∥2 (4.3)

Where, ∇X and ∇Y is basically the L2 norm of the image gradient in X and Y
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directions
The final loss optimization computed as following,

L = γ1Lrec + γ2Lp + γ3LTV (4.4)

the hyperparameters we choose for the experiment are γ1 = 1, γ2 = 6e − 3, γ3 =

2e − 8. λ1 and λ2 is chosen to be 0.6 and 0.4 respectively.
Generally, both L1 and L2 losses reduce the pixel-wise dissimilarity. But L2 helps
reduce noise while smoothing the image details, and L1 suppresses noise while
preserving the edges, so we use a combination of both losses as reconstruction
loss with 1 = 0.6(L1) and λ2 = 0.4(L2), instead of giving 0.5 to each.

Only reducing the pixel-wise differences does not give visually good results,
so we have given γ2 = 0.6 weightage to perceptual loss. This weight is less than
the reconstruction loss (γ1 = 1) because, while reducing style and content loss the
perceptual loss sometimes generates highly pixellated noisy outputs and artifacts
too.

TV loss helps reduce artifacts but also smooth the edges if more weightage is
given, so we set γ3 = 0.2.

For the hyperparameters, we tried two other experiments by two times in-
creasing and two times decreasing all parameter values. The results of these two
experiments are shown in the Table 4.1. The table demonstrates that we achieved

Loss function PSNR SSIM
0.3 * L1 + 0.2 ∗ L2 + 0.003 ∗ perc + 1e − 8 ∗ tv 38.27 0.9287
1.2 * L1 + 0.8 ∗ L2 + 0.012 ∗ perc + 4e − 8 ∗ tv 37.32 0.9271
0.6 * L1 + 0.4 ∗ L2 + 0.006 ∗ perc + 2e − 8 ∗ tv 38.37 0.9301

Table 4.1: Ablation study: modified weights of the four losses

better results when we set our loss function’s hyperparameters to 0.6, 0.4, 0.006,
and 2e-8, respectively.

4.4 Evaluation metrics

Many assessment measures [31] are there to determine the quality of the resultant
image. Here we will talk about PSNR and SSIM, which are widely used in most
denoising methods’ evaluations.
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4.4.1 PSNR

PSNR (peak signal-to-noise ratio) is an objective metric for determining image
quality. The higher the PSNR value of the restored image, the closer the denoising
image to the clean image, and the error rate is low. PSNR is the inverse of MSE,
which can be computed by

MSE =
∑h,w(G − P)2

h × w
, (4.5)

where h and w are the image dimensions, and G and P are the ground truth and
predicted images, respectively. if MSE is given then PSNR can be calculated as

PSNR =
I2

MSE
(4.6)

Here, I is the highest possible pixel intensity value. Hence, we use an 8-bit integer
representation for each pixel, I = 255.

4.4.2 SSIM

Structural Similarity (SSIM) is a useful statistic for assessing image similarity. The
similarity value of the full image can be determined by evaluating the luminance,
contrast, and structural similarity of the image incorporating mean, variance, and
covariance. It has a value between 0 and 1. The restored image’s higher SSIM
value shows that the outcome of denoising is more similar to the ground truth
image. It can be computed as follows:

SSIM(G, P) =
(2µGµP + C1) (2σGP + C2)(

µ2
G + µ2

P + C1
) (

σ2
G + σ2

P + C2
) , (4.7)

where G, P are the identical dimension window of the ground truth image and
the predicted image respectively. µG and µP are the mean values of G and P,
correspondingly. σG and σP are the variances of G and P, respectively . σGP is the
covariance of G and P . C1 and C2 are both constants.

4.5 Geometric Self-ensemble

To enhance the overall model performance further, we use the self-ensemble tech-
nique, as described in [20]. During the testing phase, the input image IN is flipped
and rotated to produce seven augmented input images IN

n,i = Ti
(

IN
n
)

for each sam-

19



ple, in which Ti indicates the eight geometric variations including self image. Us-
ing the model, we produce equivalent denoised images

{
ID
n,1, ID

n,2, · · · , ID
n,8

}
from

the given augmented noisy images. The initial basic geometry ĨD
n,i = T−1

i

(
ID
n,i

)
is

then obtained by applying an inverse transformaion to the resulting images. At
last, we combine the transformed output images by taking average, to obtain the
self-ensemble result shown below:

ID
n =

1
8

8

∑
i=1

ĨD
n,i (4.8)

The self-ensemble approach has a benefit over the other ensemble methods
since it does not need the additional model training. It is highly beneficial when
the model’s size or preparation time is important. Even though the self-ensemble
technique maintains the overall number of parameters quite equivalent, we find
that it provides nearly the same performance improvement as the traditional model
ensemble method, which needs separate model training.

4.6 Results

The 256 x 256 pixel validation patches are fed into DMPHN for model evalua-
tion. Table 4.1 shows the PSNR, SSIM, and number of network parameters for
a detailed comparison with competitive state-of-the-art denoising methods. As
shown in Table 4.1, our proposed method gives better PSNR results and signifi-
cantly moderate results for SSIM compared to other methods, demonstrating the
effectiveness of real-world noise removal through the use of localize information
in the model. It is worth noting that our model is simpler than competing meth-
ods, as we do not use any dense modules. In the table bold values represent the
best result, and underlined values represent the 2nd best result among all the val-
ues in the particular column.

Figures 4.1 and 4.2 shows denoised images from the SIDD dataset. Figure
4.1 shows the denoising performance of various models on an image with high
brightness and excessive noise. For clarity, we zoom in on a small section of the
image. In Figure. 4.2, we have chosen an image with very low light and heavy
noise since many methods do not perform well in this scenario. It can be observed
that our proposed method removed most of the noise from the image and also
recovered the edges better than other methods.

Moreover to our model’s higher PSNR and SSIM, DMPHN is, to the best of
our knowledge, the best deep denoising method that can function in real-time
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also. For instance, It requires 30ms for processing a 720 x 1280 image, implying
that it provides real-time 720p image denoising at 30fps. However, because of the
runtime overhead costs associated with I/O operations, the real-time denoising
system requires quick transfers between a video grabber and GPU, greater GPU
memory capacity and an SSD disk, and so on. Our faster runtime is due to the
following factors: 1) shorter encoder-decoder with small scale convolutional fil-
ters; 2) elimination of unwanted linkages, such as skip or recurrent links; and 3)
lower number of upsampling/downsampling between convolutional features of
various levels.

Compared with other approaches, we use shallower CNN encoders-decoders
with smaller model sizes (only 21.7 MB) and parameters than all other methods.
This is due to our simplified CNN architecture.

Figure 4.1: Qualitative results on SIDD Validation Dataset (Ex.1)
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Figure 4.2: Qualitative results on SIDD Validation Dataset (Ex.2)

Methods PSNR SSIM # of parameters

BM3D [5] 25.65 0.685 -

NLM [4] 26.75 0.699 -

DnCNN [46] 30.71 0.695 558K

CBDNet [11] 33.28 0.868 4347K

MRDN [3] 36.42 0.875 485K

MCUNet [3] 36.54 0.878 1499K

FFDNet [47] 38.28 0.948 685K

Ours 38.37 0.931 449K

Table 4.2: Quantitative results on SIDD Validation Dataset

We test our technique on another real-world benchmark, the Nam dataset [24],
to evaluate its robustness in general real-world denoising tasks. Also, the results
are compared with many state-of-the-art methods. These comparative results are
shown in table 4.3.

Metrics BM3D NLM DnCNN CBDNet FFDNet Ours
PSNR 35.36 35.33 35.68 39.20 38.57 38.49
SSIM 0.8708 0.8812 0.8811 0.9676 0.9570 0.9759

Table 4.3: Results on Nam Dataset [24]

More qualitative examples for different scenarios are shown in Figure 4.3.
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Here, images 1 and 2 are captured with very low light, whereas images 3 and
4 are captured in excessive light, and the last image contains very high noise. The
result demonstrates that the noise is almost removed, and edges are preserved
well for each case.

Figure 4.3: Qualitative results on different scenarios (SIDD Dataset)
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4.7 Additional Experiments

4.7.1 SE Block

In 2018 J. Hu et al. [13] introduced SE (Squeeze-and-Excitation) block. The ob-
jctive of block is to to increase a network’s representation capability by explicitly
modeling the inter-dependencies between its convolutional features’ channels. To
accomplish this, they presented a technique that enables the network to execute
feature recalibration, allowing it to learn using global information to selectively
enhance important features while suppressing less relevant ones. We incorpo-
rated this block into network as it captures channel-wise feature dependency very
well.

4.7.2 NLSA Module

The advantages of sparse representation and non-local operation are combined
in Non-Local Sparse Attention (NLSA) [23]. NLSA globally determines the most
informative regions without considering unrelated areas, resulting in an efficient
and reliable global modelling operation. Their evaluations suggested that NLSA
seems to be a better operation than normal non-local attention when inserted into
deep networks.

Experiments PSNR SSIM
SE block [13] 38.21 0.9293

NLSA module [23] 37.65 0.9132

Table 4.4: Experimental results on SIDD Validation Dataset

24



CHAPTER 5

Conclusion & Future Scope

5.1 Conclusion

We propose a deep multi-patch hierarchical network, which performs denoising
of the image by aggregating features generated from finer to coarser levels, and
we observe it is well suitable for the denoising task. Also, we demonstrate the sig-
nificance of the non-local module, which uses the non-local self-similarity of natu-
ral images. Major improvement in results is achieved by simply adding non-local
blocks into the network. We also suggest channel and pixel attention to enhance
the network’s capacity to capture inter-dependencies between channels and pix-
els. In terms of qualitative and quantitative evaluation, our proposed architecture
generates denoised results that are equivalent to the state-of-the-art methods.

5.2 Future Work

Nowadays, vision transformers [8] are defeating state-of-the-art performances of
many image processing tasks, so we can try using transformer blocks in the net-
work instead of convolutional blocks. Also, we can attempt multi-scaling coarse-
to-fine approaches to find global and local information at a different scale. The
model’s capability can be checked over specific noise such as thermal, dark cur-
rent, or shot noise.
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