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Abstract

Shadow removal from images and videos is an essential task in computer vi-
sion that concentrates on detecting the shadow generated by the obstructed light
source and obtaining realistic shadow-free results. The features of shadows are
the same as those of objects. As a result, it has the potential to be misclassified
as a part of the object, resulting in degrading the performance of many computer
vision tasks. In recent years, several deep learning-based frameworks have been
presented to solve this issue. This work presents a method based on Genera-
tive Adversarial Networks (GANs) for shadow removal by supervised learning.
Specifically, we train two generators and two discriminators to learn the mapping
between shadow and shadow-free domains. We employ generative adversarial
constraints with cycle consistency and content constraints to learn the mapping
efficiently. We also propose an adaptive exposure correction module to handle the
over-exposure problem in the shadow area of the result. We additionally present
a method for improving the quality of benchmark datasets and eventually achiev-
ing better shadow removal results. We also show ablation studies to analyze the
importance of the ground-truth data with the adaptive exposure correction mod-
ule in the proposed framework and explore the impact of using different learning
strategies in the presented method. We validate the proposed approach on the
two large-scale supervised benchmark datasets and show quantitative and visual
improvements in the state-of-the-art results.

Keywords: Shadow detection, Shadow removal, Generative adversarial networks,
Adaptive exposure correction, Benchmark dataset correction

v



List of Principal Symbols and Acronyms

BCE Binary Cross Entropy

BER Balance Error Rate

CGAN Conditional Generative Adversarial Network

CNN Convolutional Neural Network

DL Deep Learning

DTR Decision-Tree Regressor

GAN Generative Adversarial Network

GT Ground-Truth

KNNR K-Nearest-Neighbor Regressor

LR Linear Regressor

MSE Mean Square Error

MSGAN Mask-ShadowGAN

ReLU Rectified Linear Unit

RMSE Root Mean Square Error

RNN Recurrent Neural Network

YOLO You Only Look Once

vi



List of Tables

2.1 Details of type and aspect of methods . . . . . . . . . . . . . . . . . 10
2.2 Details of data requirement of deep learning-based methods . . . . 11
2.3 Details of large-scale shadow datasets . . . . . . . . . . . . . . . . . 11

4.1 Quantitative shadow removal results with RMSE on ISTD test
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Quantitative shadow removal results with RMSE on SRD test
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Quantitative shadow detection results with BER on ISTD test
ataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Quantitative results of ISTD test dataset correction with RMSE . . . 29
4.5 Quantitative shadow removal results with RMSE, trained and

tested on corrected ISTD . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Ablation study on exposure correction module and ground-

truth data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Ablation study on adversarial loss . . . . . . . . . . . . . . . . . . . 32
4.8 Ablation study on using additional shadow mask as an input

to shadow-free generator . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.9 Ablation study on discriminator learning . . . . . . . . . . . . . . . 33

vii



List of Figures

1.1 Types of shadow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Shadow effect in object detection task . . . . . . . . . . . . . . . . . 2
1.3 Comparision of shadow removal result . . . . . . . . . . . . . . . . 3

2.1 Learning process of GAN and CGAN . . . . . . . . . . . . . . . . . 6
2.2 Nguyen et al.’s method . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Wang et al.’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Hu et al.’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Tan et al.’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Illustration of the architecture of the proposed method . . . . . . . 13
3.2 Need for a correction module . . . . . . . . . . . . . . . . . . . . . . 15
3.3 ISTD triplets, showing issue in non-shadow area . . . . . . . . . . . 20
3.4 Impact of using incorrect benchmark dataset during training . . . 20
3.5 Regressor learning for dataset correction . . . . . . . . . . . . . . . . 21

4.1 Visual comparison of shadow removal results on ISTD test
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Visual performance of shadow removal results on SRD test
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Visual comparison of shadow detection results on ISTD test
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Visual results of ISTD dataset correction task . . . . . . . . . . . . . 30
4.5 Visual comparison on GT and corrected GT training . . . . . . . . . 30
4.6 Visual performance of exposure correction module’s ablation

study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Shadow edge issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

viii



CHAPTER 1

Introduction

Shadow detection and removal are fundamental and challenging tasks in the com-
puter vision and computer graphics domain. It concentrates on detecting and
removing the shadow, keeping the non-shadow area unchanged. Shadow is the
darkest area in the image where the light from the light source is occluded by
the object. Figure 1.1 shows different types of shadow, where the shadow is
mainly classified into two categories: self shadow and cast shadow. Self shadow
is formed by an occluded object portion not being exposed by the light, and cast
shadow is produced by an object creating shadows on the area of another object.
Moreover, the cast shadow is separated into umbra and penumbra regions. The
Umbra region is a darker zone in which direct light is wholly obstructed, whereas
the penumbra region is a lighter zone of the cast shadow.

Figure 1.1: Types of shadow.

1.1 Motivation

Shadows have similar characteristics as the object, so sometimes, they can be mis-
classified as part of the object. Due to that, the accuracy of several computer vi-
sion tasks, such as object segmentation, object detection, and object tracking, can
be badly affected.
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Figure 1.2: Shadow effect in object detection task.

Figure 1.2 shows the example of object detection experiment in the shadow image
and corresponding shadow-free image, where the pretrained model of YOLOv5
[1] was used as an object detector. In the experiment with a shadow-free image,
the object is detected correctly, whereas, in the experiment with a shadow image,
some portion of the shadow is detected as a part of an object. Also, it gives less
confidence (0.48) compared to shadow-free image object confidence (0.66). Con-
sequently, shadow detection and removal tasks are essential in many computer
vision and computer graphics tasks to improve efficiency and achieve better re-
sults.

1.2 Objective

Given the domain of shadow images Dx and the domain of shadow-free images
Dy, we are primarily focused on learning the mapping function G f : Dx → Dy,
which transforms shadow domain image to the shadow-free domain image.

1.3 Contributions

In this work, we propose a novel method based on Generative Adversarial Net-
works (GANs) with cycle and content constraints, and introduce an adaptive
exposure correction module for handling the common over-exposure problem.
Figure 1.3 shows a shadow removal result of the proposed method compared
with state-of-the-art Mask-ShadowGAN [2] method, which suffers from over-
exposure, particularly in the shadow area. However, our approach handles that
problem, and generates a result close to the ground-truth.

2



(a) (b) (c) (d)

Figure 1.3: Comparision of shadow removal result; (a) input shadow image, (b)
ground-truth shadow-free image, (c) output of Mask-ShadowGAN [2] method,
(d) output of proposed method.

The key contributions of this work are as follows.

• We present a framework that removes the shadow using generative adversar-
ial constraints along with cycle consistency and content constraints.

• We introduce an adaptive exposure correction module for handling the common
over-exposure problem.

• We introduce the method for enhancing the quality of benchmark datasets
and subsequently improving the shadow removal results.

• We analyze the impact of using ground-truth data with the adaptive ex-
posure correction module in the proposed framework. Also, we show the
impact of using different learning strategies in the proposed methodology.

1.4 Thesis Organization

The rest of the thesis report is organized as follows. Chapter 2 shows the litera-
ture survey on shadow detection and removal. Chapter 3 explains the proposed
framework. Chapter 4 presents experimental results along with the ablation stud-
ies. Finally, we conclude and provide future work in Chapter 5.
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CHAPTER 2

Literature Survey

In computer vision, the problem involving shadow detection and removal has
received much attention. Early works related to this task [3] used different hand-
crafted features like texture, chromaticity, intensity, etc., for shadow detection and
removal. Model-based strategies and property-based strategies are the two pri-
mary shadow detection and removal algorithms categories. Model-based tech-
niques were further divided into physical-model-based and geometry-based meth-
ods, and property-based techniques were divided into texture-based and color-
based methods. Several characteristics, such as camera localization, light source
direction, and the shape of objects, are assumed to be known for approaches based
on physical models [4]. With previous information on the ground surface, camera
position, and object geometry, geometry-based techniques [5] may predict the ori-
entation, size, and shape of shadows. The principle behind using texture-based
techniques [6] is that the foreground item’s texture differs from the background’s
texture, and the task is performed using texture descriptors. The color-based tech-
niques [7, 8, 9, 10] attempt to analyze the color changes, intensity, and illumination
for shadow detection and removal. However, these all hand-crafted feature-based
methods suffer in understanding the high-level features and related semantic con-
tent.

In recent years, deep learning-based approaches for analyzing the mapping re-
lation have made significant progress in this field. The model of Qu et al. [11]
(DeshadowNet) is based on an end-to-end multi-context embedding framework
to extract essential characteristics from multiple aspects and accumulate them to
determine shadow matte. It basically learns the mapping function among the
shadow image and its shadow matte and uses predicted shadow matte to recon-
struct a shadow-free image with Equation (2.1).

Is = Is f · Sm (2.1)
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where Is is a shadow image, which is counted as a pixel-wise product of a shadow-
free image Is f and its shadow matte Sm.

Bansal et al. [12] developed an approach based on deep Convolutional Neural
Network (CNN), which extracts features from the shadow image and uses them
to detect shadows automatically in images. Fan et al. [13] presented a deep CNN
network structure to learn the relation between the shadow image and its shadow
matte. It is made up of two sub-network models: an encoder-decoder model for
extracting features and reconstructing images, and a small refinement model that
takes into account a multi-context strategy for local detail correction. Shadow-free
image is recovered from the shadow matte according to Equation (2.1). Vicente
et al. [14] developed StackedCNN, an approach that utilizes a Fully Connected
Network (FCN) with a patchCNN for the shadow detection. Fu et al. [15] pre-
sented a network that uses exposure estimation to learn numerous over-exposure
pictures by correcting the shadow region with varying exposure levels, then cre-
ating fusion weight maps and doing pixel-wise fusing the input image with its
over-exposure counterparts to generate the final shadow-free result.

These CNN-based methods [11, 13, 15] achieve better performance compared
to hand-crafted feature-based methods but suffer from random artifacts in non-
shadow area and fail to obtain realistic shadow-free results.

2.1 GAN-Based Methods

2.1.1 Introduction to GAN and CGAN

The Generative Adversarial Networks (GANs) [16] and its extensions, presented
in recent years, are dominant strategies for dealing with different image to image
translation challenges. A GAN consists of two deep neural network architectures:
a generator G and a discriminator D. The generator model G generates realistic
fake images. The discriminator model D is used to determine if an input image
was created by G or it is a real image from the training set. The two models trained
together in an adversarial manner until the discriminator model fooled, meaning
the generator model is generating samples such that it can fool the discriminator
model. G focuses on generating images that make it difficult for D to discriminate
G’s creation from the real set of data. D, on the other hand, wants to avoid getting
a fool by G.

5



GAN [16] CGAN [17]

Figure 2.1: Learning process of GAN and CGAN.

The Conditional Generative Adversarial Networks (CGANs) [17] are significant
GAN extensions that incorporate conditioning information to the generator G
and the discriminator D models. It forces G to produce images that are indistin-
guishable from real images, and according to conditioning information. Figure 2.1
shows the learning process of GAN and CGAN in detail.

2.1.2 Supervised Learning-Based Methods

The Pix2PixGAN [18] is a well-known method for paired image-to-image trans-
lation. It is based on the CGAN, where the generator generates a target image,
keeping the input image as conditional information, and the discriminator guides
generator to produce a better result.

Nguyen et al. [19] demonstrated the first method of shadow detection with ad-
versarial learning and constructed a CGAN-based architecture inspired by the
Pix2PixGAN. Figure 2.2 shows the architecture, where the generator is trained to
output a shadow mask that can realistically correspond to the ground-truth mask.
The shadow mask is a binary image, where zero value indicates a shadow-free re-
gion and one value indicates a shadow region. The discriminator is trained to
decide if the pair of shadow image and mask comes from the training data or not.
Shadow image with an adjustable sensitivity factor is used as the conditioning
information for the generator and discriminator.
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Figure 2.2: Nguyen et al.’s method. [19]

Wang et al. [20] presented a model based on Stacked Conditional Generative Ad-
versarial Network (ST-CGAN) that uses paired data to tackle shadow detection
and removal problems simultaneously in an end-to-end manner. The proposed
method by the authors is shown in Figure 2.3. Two arranged CGANs, each one
with a pair of generator and discriminator, build up the model. Pair G1 − D1 is for
shadow detection, and pair G2 − D2 is for shadow removal. The shadow image is
applied as input to produce a shadow mask image in the shadow detection gener-
ator G1. G2 is a shadow removal generator that takes a four-channel input with a
shadow image and mask and produces a shadow-free image. The shadow detec-
tion discriminator D1 takes a four-channel input, including the input shadow im-
age and the mask generated by G1. The shadow removal discriminator D2 takes
a seven-channel input containing the input shadow image, mask from G1, and
the shadow-free image generated by G2. Both discriminators will discriminate
whether the generated sample is real or fake, and accordingly, weights and biases
are updated. The loss function is made with the adversarial constraint along with
the ground-truth content constraint. After the training, the model will be able to
determine the optimum weights for detecting and removing shadows.

Nagae et al. [21] developed a model based on [20], with minor changes in the
shadow removal CGAN, that estimates the illumination ratio and uses that esti-
mation to produce the shadow-free output. Hu et al. [22] presented a Direction-
aware Spatial Context (DSC) module based on Recurrent Neural Network (RNN)
utilized with CNNs, to learn the spatial context in a direction-aware manner and
subsequently detect and remove the shadow.

7



Figure 2.3: Wang et al.’s method. [20] (ST-CGAN)

Although these approaches [20, 21, 22] effectively remove the shadow, they tend
to generate artifacts and inconsistent colors, particularly in the non-shadow area,
resulting in performance degradation in the non-shadow area.

2.1.3 Unsupervised Learning-Based Methods

The CycleGAN [23] is a common method for unpaired image-to-image transla-
tion. The method is based on CGAN architecture. It uses two generative adver-
sarial networks to establish cycle consistency restrictions and learn the mapping
for translation using unpaired training data.

Hu et al. [2] presented a Mask-ShadowGAN (MSGAN) framework based on the
CycleGAN [23] approach. Mask-ShadowGAN enforces cycle consistency by the
guidance of the produced binary mask in the generative process. The key idea is
to learn the bidirectional mapping within the shadow and shadow-free domains.
Figure 2.4 depicts the Mask-ShadowGAN framework’s overall network architec-
ture. By using adversarial learning, the network G f takes a shadow image as input
and generates a shadow-free image that is indistinguishable from the shadow-free
domain. In addition, network Gs is also trained, which takes a shadow-free image
and shadow-mask image and generates a shadow image that is indistinguishable
from the shadow domain. Thus cycle-consistency constraints are imposed to train
G f and Gs. D f discriminates real and generated shadow-free images, and Ds dis-
criminates real and generated shadow images. Along with the cycle consistency

8



Figure 2.4: Hu et al.’s method. [2] (Mask-ShadowGAN)

and adversarial constraints, identity loss is also calculated to preserve the color
combination. After the training, the model can remove shadows efficiently.

Tan et al. [24] developed a target consistency generative adversarial network (TC-
GAN) for the shadow removal using unpaired training data. TCGAN aims to
learn a unidirectional mapping to translate shadow images into shadow-free im-
ages, as opposed to MaskShadowGAN, which learns bidirectional mapping. The
architecture is shown in the Figure 2.5. TCGAN uses two generative adversarial

Figure 2.5: Tan et al.’s method. [24] (TCGAN)

networks, generators Gres1 and Gres2 to generate two feature images from a sin-
gle input shadow image. Two different shadow-free images are produced from
two feature images and a shadow image, and a target consistency constraint is

9



formed on those generated shadow-free images. Two discriminators, D1 and D2

discriminate input image as real or fake and guide corresponding generators to
produce better realistic output. Additionally, the Model Selection Module (MSM)
is presented at the end of GANs, which is a pretrained binary classifier model for
shadow. It selects one image with the higher confidence from the two produced
shadow-free images as the final shadow-free result.

These methods [2, 24] remove the shadow by maintaining a non-shadow region
with cycle and target consistency but suffer from overexposure problems and ran-
dom artifacts. Also, they require unpaired shadow and shadow-free datasets with
the same statistical distribution for better learning.

2.2 Overview of Methods

Table 2.1 shows the overall details regarding the type of each method, describ-
ing whether the method is hand-crafted feature-based or deep learning-based.
The table also shows the aspect of each method, telling whether the method does
shadow detection and/or shadow removal.

Table 2.1: Details of type and aspect of methods.

Method Type of method Aspect
Prati [4] Feature (Physical) Shadow detection

Chang [5] Feature (Geometry) Shadow detection, Shadow removal
Leone [6] Feature (Texture) Shadow detection, Shadow removal
Guo [7] Feature (Color) Shadow detection, Shadow removal
Yang [8] Feature (Color) Shadow removal
Gong [9] Feature (Color) Shadow removal

Khare [10] Feature (Color) Shadow detection, Shadow removal
DeshadowNet [11] DL (CNN) Shadow removal

Bansal [12] DL (CNN) Shadow detection
Fan [13] DL (CNN) Shadow removal

StackedCNN [14] DL (CNN) Shadow detection
FusionNet [15] DL (CNN) Shadow removal

SCGAN [19] DL (GAN) Shadow detection
ST-CGAN [20] DL (GAN) Shadow detection, Shadow removal

Nagae [21] DL (GAN) Shadow detection, Shadow removal
DSC [22] DL (GAN) Shadow detection, Shadow removal

MSGAN [2] DL (GAN) Shadow detection, Shadow removal
TCGAN [24] DL (GAN) Shadow removal

10



Table 2.2 shows the type of images required and type of data needed for each
deep learning-based method.

Table 2.2: Details of data requirement of deep learning-based methods.

Method Data required Type of data
DeshadowNet [11] Shadow, Shadow-free Paired

Bansal [12] Shadow, Shadow-mask Paired
Fan [13] Shadow, Shadow-free Paired

StackedCNN [14] Shadow, Shadow-mask Paired
SCGAN [19] Shadow, Shadow-mask Paired

ST-CGAN [20] Shadow, Shadow-mask, Shadow-free Paired
Nagae [21] Shadow, Shadow-mask, Shadow-free Paired
DSC [22] Shadow, Shadow-mask, Shadow-free Paired

FusionNet [15] Shadow, Shadow-mask, Shadow-free Paired
MSGAN [2] Shadow, Shadow-free Unpaired
TCGAN [24] Shadow, Shadow-free Unpaired

2.3 Overview of Datasets

Table 2.3 shows the details of large-scale available shadow datasets with the amount
and type of data.

Table 2.3: Details of large-scale shadow datasets.

Dataset Amount Content Type of data
SRD [11] 3088 Shadow, Shadow-free Paired
ISTD [20] 1870 Shadow, Shadow-mask, Shadow-free Paired
USR [2] 2445 Shadow, Shadow-free Unpaired
SBU [14] 4723 Shadow, Shadow-mask Paired

CUHK [25] 10500 Shadow, Shadow-mask Paired

These large-scale datasets are generally used to train various deep learning-based
models for shadow detection and/or shadow removal.
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CHAPTER 3

Proposed Method

The overall scheme of the proposed method is depicted in Figure 3.1. The method
is based on CycleGAN [23], in which each adversarial generator learns a mapping
to another domain, and the corresponding discriminator guides the learning pro-
cedure. Apart from the adversarial and cycle constraints, we also employ content
and identity constraints as guidance for better learning. Compared to the base-
line MaskShadowGAN [2], which required unpaired data with an equal statisti-
cal distribution of shadow and shadow-free domain, our method utilizes avail-
able shadow, shadow-free, and shadow-mask images to learn better mapping for
shadow removal.

3.1 Generators and Discriminators Learning

The proposed method learns from both the shadow domain Dx and the shadow-
free domain Dy. While learning from domain Dx, the generator network G f takes
a real shadow image Is ∈ Dx as input, and generates a shadow-free image Î f ∗. The
discriminator network D f is used to differentiate whether the produced shadow-
free image Î f ∗ is a real shadow-free image or not. To achieve the cycle-consistency,
another generator Gs is used to reconstruct the shadow image Îs from the gener-
ated shadow-free image Î f ∗ using a ground-truth shadow mask Mgt∗ for the im-
age Is as a guide.

In the process of learning from the shadow-free domain Dy, the generator net-
work Gs takes a real shadow-free image I f ∈ Dy as input and a ground-truth
shadow mask Mgt for the image I f as a guide, and generates a shadow image Îs∗.
The discriminator network Ds determines if the created shadow image Îs∗ is a real
shadow image or not. To formulate the cycle-consistency loop, the generator G f

reconstructs the shadow-free image Î f from the generated shadow image Îs∗.

12



Figure 3.1: Illustration of the architecture of the proposed method.
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To summarize, the generator network G f generates the shadow-free result Î f ∗
for the Is, and generator Gs generates the shadow result Îs∗ for the I f . The dis-
criminator network Ds takes either real sample Is or fake sample Îs∗ as input and
discriminates whether the input is from Ds or not. Similarly, discriminator D f

takes either real sample I f or fake sample Î f ∗ as input and discriminates whether
the input is from D f or not.

3.2 Shadow Detection Using Mask Producer

The intermediate shadow mask M̂∗ for the input shadow image Is is obtained by
the Equation (3.1).

M̂∗ = B( Î f ∗ − Is, t) (3.1)

where the binarization operation B is performed on the difference between gener-
ated shadow-free image Î f ∗ and the real input shadow image Is, and t is a thresh-
old obtained by Otsu’s algorithm [26]. B sets the value as zero or one, where zero
indicates non-shadow regions (difference <= t) and one indicates the shadow re-
gion (difference > t).

The final shadow mask M̂c∗, after applying the correction module, for the input
shadow image Is is obtained by the Equation (3.2).

M̂c∗ = B( Î f c∗ − Is, t) (3.2)

where the binarization operation B is performed on the difference between the
final shadow-free image Î f c∗ (after applying the correction module, described in
the next section) and the real input shadow image Is.

3.3 Adaptive Exposure Correction Module

3.3.1 Importance of Correction Module

The generator network G f is trained to produce a shadow-free result. But in the
absence of any constraints, sometimes it produces results with a much brighter
shadow area, resulting in a shadow-free result with an over-exposed shadow area.
Figure 3.2 shows a shadow removal result of the proposed method without using
correction module (denoted as Ours (-c)) compared with state-of-the-art Mask-
ShadowGAN [2] method. While Mask-ShadowGAN suffers from over-exposure,

14



Input MSGAN [2] Ours (-c)

Figure 3.2: Need for a correction module.

particularly in the shadow area, Ours (-c) reduces the degree of over-exposure.
However, still, it shows the need for a correction module to handle the over-
exposure problem.

3.3.2 Methodology for Exposure Correction

In the adaptive exposure correction module, we apply gamma correction (power-
law transformation) in the shadow area. Following are the steps we followed for
the exposure correction.

Step 1: Extract the shadow and shadow-free areas using the generated mask
M̂∗ and transform the shadow area to HSV (Hue, Saturation, and Value)
color space.

Step 2: Apply gamma correction on the value channel of the shadow area.
Here, the value channel is selected for gamma correction because it
is responsible for the brightness in the image.

Step 3: Transform the gamma-corrected HSV shadow area image back to the
RGB (Red, Green, and Blue) color space.

Step 4: Combine the gamma-corrected shadow area image with the original
shadow-free area image to generate Î f c∗ which is the final shadow-free
image with exposure correction.

3.3.3 Methodology for Gamma Estimation and Correction

The following steps are performed to estimate the value of gamma and subse-
quently do gamma correction in the shadow area.

Step 1: Transform the image to HSV color space.

Step 2: Calculate shadow area mean of value channel (Let it denote as m1).
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Step 3: Calculate shadow-free area mean of value channel (Let it denote as m2).

Step 4: Calculate mean difference of m1 and m2 as per Equation (3.3).

di f f = m1 − m2 (3.3)

Step 5: Calculate gamma value by the Equation (3.4). The expected range for
the di f f is between -128 to 128, and we are mapping the di f f to the
gamma value range 0 to 2. Ideally, for a non-overexposed shadow area
image, di f f will be 0, and the gamma value will be set as 1. For an
over-exposed shadow area image, m1 will be higher than m2, making
di f f positive, resulting in the gamma value greater than 1. Similarly,
for an under-exposed shadow area image, m1 will be lower than m2,
making di f f negative, resulting in the gamma value less than 1.

gamma = (di f f /128) + 1 (3.4)

Step 6: Apply gamma correction on the value channel of the shadow area im-
age with the calculated gamma by the Equation (3.5). The Equation (3.5)
is formed such that the intensity value for a pixel remains in the range
0 to 255.

val = [(val/255)gamma] ∗ 255 (3.5)

3.4 Objectives and Loss Functions

3.4.1 Adversarial Losses

The primary principle behind adversarial learning is that the discriminator will
differentiate between real and generated results for both domains, encouraging
the corresponding generator to deliver a better output concerning image quali-
ties. Here, Mean Square Error (MSE) loss function is used to calculate adversarial
losses. The shadow-free adversarial loss and the shadow adversarial loss for gen-
erators and discriminators are given as:

Lgan-s f (G) = MSE(P, D f ( Î f ∗)) (3.6)

Lgan-s(G) = MSE(P, Ds( Îs∗)) (3.7)
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Lgan-s f (D) = MSE(P, D f (I f )) + MSE(Q, D f ( Î f ∗)) (3.8)

Lgan-s(D) = MSE(P, Ds(Is)) + MSE(Q, Ds( Îs∗)) (3.9)

where P and Q are one and zero matrix, respectively, with a size as the discrimina-
tor’s output size. Î f ∗ (generated as (G f (Is))) and Îs∗ (generated as (Gs

(
I f , Mgt

)
)

are the generated shadow-free and shadow images, respectively, and Is and I f are
the input shadow and shadow-free images, respectively.

3.4.2 Cycle Consistency Losses

Cycle consistency L1 losses defined in Equation (3.10) and Equation (3.11) are ap-
plied to encourage the reconstructed images to be comparable to the original in-
put images, to prevent random artifacts in the non-shadow area, and to effectively
improve the bidirectional mapping in the G f and Gs networks.

Lcyc-s = ∥ Îs − Is∥1 (3.10)

Lcyc-s f = ∥ Î f − I f ∥1 (3.11)

Here, Îs (generated as Gs(G f (Is), Mgt∗)) and Î f (generated as G f (Gs(I f , Mgt)) are
the reconstructed shadow and shadow-free images, respectively.

3.4.3 Identity Losses

The identity L1 losses shown in Equation (3.12) and Equation (3.13) will motivate
generators not to change the input image if it is from the desired type and main-
tain color consistency.

Lidt-s = ∥ Îsi − Is∥1 (3.12)

Lidt-s f = ∥ Î f i − I f ∥1 (3.13)

Here, Îsi (generated as Gs (Is, Mx)) and Î f i (generated as G f
(

I f
)
) are the generated

identity shadow and shadow-free images, respectively. Mask Mx with all zero
values used as the input of Gs, along with the real shadow image Is. Ideally, if the
shadow-free image is given as input to generator G f , it should generate the same
image. Similarly, if the shadow image is given as input to Gs, it should generate
the same image.
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3.4.4 Content Losses

The L1 content constraints defined in Equation (3.14) and Equation (3.15) encour-
ages generators to produce images that are closer to the ground-truth images.

Lcont-s = ∥ Îs∗ − Is∗∥1 (3.14)

Lcont-s f = ∥ Î f ∗ − I f ∗∥1 (3.15)

Here, Is∗ and I f ∗ are the ground-truth shadow and shadow-free images, respec-
tively, and Î f ∗ (generated as (G f (Is))) and Îs∗ (generated as (Gs

(
I f , Mgt

)
) are the

generated shadow-free and shadow images, respectively.

3.4.5 Loss Function for Generators

The total generator loss for the proposed method is obtained as a weighted sum of
the adversarial losses, cycle consistency losses, identity losses, and content losses,
given as:

LG = λ1(Lgan-s(G) + Lgan-s f (G)) + λ2(Lcyc-s + Lcyc-s f )

+λ3(Lidt-s + Lidt-s f ) + λ4(Lcont−s + Lcont−s f )
(3.16)

where λ1, λ2, λ3, λ4 are appropriately chosen weights.

3.4.6 Loss Function for Discriminators

The discriminator loss for the shadow-free discriminator D f and shadow dis-
criminator Ds in the proposed method are shown in Equation (3.17) and Equa-
tion (3.18), respectively.

LD f = λ5(Lgan-s f (D)) (3.17)

LDs = λ5(Lgan-s(D)) (3.18)

Here, λ5 is appropriately chosen weight.

3.5 Network Architecture and Training Strategy

We use the model of Johnson et al. [27] as the generator network, which consists of
3 convolutional layers, 9 residual blocks, and 2 deconvolution layers. After each
convolution and deconvolution operation, the network employs instance normal-
ization and the Rectified Linear Unit (ReLU) activation function.
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For the discriminator network, we use PatchGAN [18], which focuses on clas-
sifying image patches as real or fake. Here, 4 convolutional layers are used with
instance normalization and leaky ReLU activation function (slope=0.2).

Adam optimization [28] with a learning rate of 0.0002, with first and second mo-
mentum as 0.5 and 0.999, is adopted during training. A zero-mean Gaussian dis-
tribution with a standard deviation of 0.02 initializes network parameters.

For data augmentation during training, images are resized to 286×286 and ran-
domly cropped to 256×256. We have chosen the median range image size 256×256
for the processing since the size less than 256×256 will result in information loss,
and the size greater than 256×256 will result in high computational cost. The net-
work is trained for 200 epochs keeping the mini-batch size as 1 with the PyTorch
module and NVIDIA GeForce-RTX2080-Ti GPU. In the experiments, the hyper-
parameters λ1, λ2, λ3, λ4, λ5 are set as 1, 10, 5, 5, 0.5. The models take 2∼2.5 days
of training to converge.

3.6 Benchmark Dataset Correction

3.6.1 Importance of Correcting Benchmark Dataset

Ideally, in the benchmark dataset for the shadow removal task, the shadow-free
area of shadow and corresponding shadow-free image should be the same. Still,
there is a significant difference in the color consistency, brightness, and contrast,
since both shadow and shadow-free images, were captured at different times of
the day. On the whole testing dataset of ISTD [20], the Root Mean Square Error
(RMSE) in the LAB color space between the shadow and shadow-free images in
the non-shadow area is 6.83, which should ideally be close to 0. Figure 3.3 shows
the sample triplets from the ISTD dataset, where the difference in the non-shadow
area is clearly visible.

Supervised models are trained to give output close to the ground-truth shadow-
free image, and accordingly, the loss function is made, and models are trained.
However, methods give the color, brightness, and contrast inconsistent output
compared to the non-shadow area of the shadow image. Hence it is essential to
correct those ground-truth shadow-free images to achieve better results.
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Shadow-mask Shadow Shadow-free

Figure 3.3: ISTD triplets, showing issue in non-shadow area.

Figure 3.4 shows the impact of using an incorrect ground-truth database during
training. Our method tends to generate output that is close to the ground-truth
shadow-free image. Since there is an inconsistent non-shadow area in the bench-
mark dataset, our approach also ends up providing an inconsistent non-shadow
result compared with the input shadow image.

Shadow-mask Shadow Shadow-free Ours

Figure 3.4: Impact of using incorrect benchmark dataset during training.

3.6.2 Methodology for Benchmark Dataset Correction

To correct the ground-truth shadow-free images, we processed each image indi-
vidually and used the regression technique that transforms the pixel value of the
non-shadow area of a shadow-free image into the corresponding pixel value of the
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shadow image. Figure 3.5 shows the regressor learning, where the non-shadow
area of shadow and shadow-free images were used as data to train the regressor,
and finally, after training, a shadow-free image was given to the regressor to pro-
vide the corrected shadow-free image.

Figure 3.5: Regressor learning dataset correction.

We conducted various experiments by using three well-known regressors, Linear
Regressor (LR), Decision-Tree Regressor (DTR), and K-Nearest-Neighbor Regres-
sor (KNNR). We experimented with RGB and LAB color space. Also, we executed
experiments by using single-output regression, where regression is performed on
three individual color channels, and by using multi-output regression, where re-
gression is performed on three combined color channels. Finally, we used the op-
timal decision-tree multioutput regressor in RGB color space for the benchmark
dataset correction.
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CHAPTER 4

Experimental Results

In this chapter, we show experimental results of the proposed method on two
benchmark datasets. We also show the experimental results of different bench-
mark dataset correction methods and subsequently show observed results of the
proposed method on the corrected benchmark dataset. At the end of this chapter,
we also show the results of various ablation studies.

4.1 Description of Datasets

To analyze the performance of the suggested framework, we experimented with
the dataset containing image shadow triplets termed as ISTD [20] and trained
models accordingly. ISTD has 1870 triplets of shadow, shadow-mask, and shadow-
free image, with 1330 image triplets in the training split and 540 in the testing
split. We also experimented with the shadow removal dataset termed as SRD [11]
dataset, which contains 3088 pairs of shadow, and shadow-free image, with 2680
pairs for training and 408 pairs for testing purposes.

4.2 Evaluation Parameters

We followed [14, 19, 20] and used Balance Error Rate (BER) as an evaluation met-
ric for a quantitative comparison of shadow detection. BER for a shadow-mask
image is calculated as:

BER = 1 − 1
2

(
TP

TP + FN
+

TN
TN + FP

)
(4.1)

where,

• True Positive (TP) denotes, Predictive model labeled the pixel as a shadow,
and actually, it is a shadow.
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• True Negative (TN) denotes, Predictive model labeled the pixel as a non-
shadow, and actually it is a non-shadow.

• False Negative (FN) denotes, Predictive model labeled the pixel as a non-
shadow, and actually it is a shadow.

• False Positive (FP) denotes, Predictive model labeled the pixel as a shadow,
and actually it is a non-shadow.

For the quantitative assessment of shadow removal, we followed recent proce-
dures [20, 22, 15, 2, 24] and used Root Mean Square Error (RMSE) in LAB color
space computed among the ground-truth and produced shadow-free images. We
resized all images to 256×256 for a fair comparison.

Additionally, we calculated the RMSE value on the four scenarios: RMSE value by
comparing the resulting shadow-free image Î f c∗ with the ground-truth shadow-
free image I f ∗ for all pixels (represented with O), for pixels in the shadow region
(represented with S), for pixels in the non-shadow region (represented with SF),
and by comparing Î f c∗ with input shadow image Is for pixels in the non-shadow
region (represented with SF-I). The best and second-best results in all result tables
are highlighted in bold and blue, respectively.

4.3 Evaluation on Shadow Removal

4.3.1 Evaluation on ISTD Dataset

We compare the shadow removal performance of the proposed method (trained
with ISTD [20]) with the methods [8, 9, 7, 20, 2, 24, 22] on the test dataset of ISTD.
The results are shown in Table 4.1, where the lowest RMSE value denotes a better
one. Our method achieves the best performance in the O and SF scenarios and the
second-best performance in S and SF-I scenarios. Although TCGAN [24] achieves
the best result in SF-I, it has poor performance in S. Similarly, DSC [22] achieves
the best result in S but performs poorly in SF and SF-I. Our approach achieves
comparable results in all aspects and gets the best overall value O, compared to
all other methods.

Figure 4.1 shows visual performance compared to methods [20, 2]. While ST-
CGAN [20] suffers from color-inconstancy and random artifacts, and MaskShad-
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Table 4.1: Quantitative shadow removal results with RMSE on ISTD test dataset.

Method O S SF SF-I
Original 10.97 32.67 6.83 0
Yang [8] 15.63 19.82 14.83 -
Gong [9] 9.3 18.95 7.46 -
Guo [7] 8.53 14.98 7.29 -

ST-CGAN [20] 7.47 10.33 6.93 7.45
Mask-ShadowGAN [2] 6.99 11.41 6.17 6.75

TCGAN [24] 6.85 11.49 5.91 6.29
DSC [22] 6.67 9.22 6.39 6.61

Ours 6.54 10.03 5.88 6.49

owGAN [2] has an over-exposure problem, particularly in the non-shadow area,
our approach handles those issues and produces better visual output.

4.3.2 Evaluation on SRD Dataset

We compare the shadow removal performance of the proposed method (trained
with SRD [11]) with the methods [8, 7, 9, 23, 2, 11, 22] on the test dataset of SRD.
The results are shown in Table 4.2. Our method achieves the best performance in
the overall O scenario. Note that we compared quantitative results only on O sce-
nario, and scenarios S, SF, SF-I cannot be compared since ground-truth shadow-
mask images are not available in this dataset.

Table 4.2: Quantitative shadow removal results with RMSE on SRD test dataset.

Method O
Original 14.41
Yang [8] 22.57
Guo [7] 12.60

Gong [9] 8.73
CycleGAN [23] 9.14

Mask-ShadowGAN [2] 7.32
DeshadowNet [11] 6.64

DSC [22] 6.21
Ours 5.63

Figure 4.2 shows the visual performance of our method with the ground-truth
data. Our approach produces a shadow-free result close to the ground-truth
shadow-free image.
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Input GT ST-CGAN [20] MSGAN [2] Ours

Figure 4.1: Visual comparison of shadow removal results on ISTD test dataset.
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Input GT Ours

Figure 4.2: Visual performance of shadow removal results on SRD test dataset.
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4.4 Evaluation on Shadow Detection

We evaluate the shadow detection performance of our method (trained with ISTD
[20]) with the recent methods [19, 14, 20, 2] on the ISTD test dataset. The quan-
titative results are shown in Table 4.3. The proposed method outperforms the
baseline Mask-ShadowGAN [2] and methods [14, 19]. Methods in [19, 20] achieve
better results since these methods specifically train models for the detection task.
As our goal is shadow removal, we do not train any separate network for detec-
tion; instead, we extract the shadow mask from the final shadow-free image and
input image as discussed in Section 3.2.

Table 4.3: Quantitative results of shadow detection with BER(%) on ISTD test
dataset.

Method BER
CGAN [19] 9.64

StackedCNN [14] 8.6
SCGAN [19] 4.7

ST-CGAN [20] 3.85
Mask-ShadowGAN [2] 7.66

Ours 6.48

Figure 4.3 shows the visual performance compared to state-of-the-art MaskShad-
owGAN [2]. Our approach produces a shadow-mask result close to the ground-
truth shadow-mask image.

4.5 Benchmark Dataset Correction

To correct ground-truth shadow-free images, we experimented with Linear Re-
gressor (LR), Decision-Tree Regressor (DTR), and K-Nearest-Neighbor Regressor
(KNNR) in RGB and LAB color space. While doing regression in LAB color space,
both shadow and shadow-free images were transferred to the LAB image from
the RGB image, and after doing regression and correction, they again moved back
to the RGB image. Also, we have done experiments by using a regression for each
individual color channel (there will be three 1 input to 1 output regressor) and by
using a regression for combine color-channel (multioutput regressor) (there will
be one 3 input to 3 output regressor). The results of the experiments are shown in
Table 4.4.
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Figure 4.3: Visual comparison of shadow detection results on ISTD test dataset.
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Table 4.4: Quantitative results of ISTD test dataset correction with RMSE.

Original Individual Channel
RGB LAB RGB LAB RGB LAB
LR LR DTR DTR KNNR KNNR

O 10.97 8.78 8.39 8.41 7.61 11.80 8.04
S 32.67 40.67 39.54 39.63 39.26 41.55 39.23
SF 6.83 2.81 2.55 2.56 1.68 6.23 2.20

Original Combine Channel
RGB LAB RGB LAB RGB LAB
LR LR DTR DTR KNNR KNNR

O 10.97 8.67 8.23 7.56 7.57 7.95 7.92
S 32.67 40.76 39.37 39.06 39.05 39.03 38.98
SF 6.83 2.66 2.39 1.66 1.67 2.12 2.11

Decision-tree combine channel repressor in RGB color space has lower RMSE
value in O and SF scenarios. So finally, we used that method and created a new
corrected ISTD training and testing dataset. Figure 4.4 shows the visual output of
this database correction task by using the selected method.

4.6 Evaluation on Shadow Removal with Corrected

Benchmark ISTD Dataset

We compare the shadow removal performance of the proposed method with the
methods [20, 2], trained and tested on the corrected dataset of ISTD [20]. Since
the official code for the ST-CGAN method [20] is not available, we use the com-
munity code [29] for evaluating purpose. The results are shown in Table 4.5. The
proposed method achieves the best performance in O, S, and SF scenarios com-
pared to state-of-the-art methods.

Table 4.5: Quantitative shadow removal results with RMSE, trained and tested on
corrected ISTD.

Method O S SF SF-I
Original 7.56 39.06 1.66 0

ST-CGAN [29] 8.79 11.35 8.31 4.28
MSGAN [2] 4.47 10.13 3.41 3.18

Ours 4.36 9.52 3.40 3.19
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GT GT Corrected-GT
Shadow Shadow-free Shadow-free

Figure 4.4: Visual results of ISTD dataset correction task.

Input Ours (GT) Ours (Corrected-GT)

Figure 4.5: Visual comparison on GT and corrected GT training.
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We also show the visual results of the proposed method in Figure 4.5, trained on
both ground-truth and corrected ground-truth ISTD datasets. From the results, it
is clear that the corrected ground-truth dataset helps to produce brightness con-
sistent, contrast consistent, and color consistent output and tries to keep the non-
shadow area of the original shadow image as it is in the final shadow-free output
production.

4.7 Ablation Studies

We have done an ablation study on the proposed framework by removing the ex-
posure correction module (represented by -c) along with not using ground-truth
shadow and shadow-free images (represented by -gt) and not using ground-truth
masks (represented by -gtm). While performing an experiment with -gt, we ig-
nored content losses, and for the -gtm experiment, initially, we generated masks
by ground-truth shadow and shadow-free images according to Section 3.2. Re-
moval and detection results for all the experiments are shown in Table 4.6. Visual
performance for -c is shown in Figure 4.6. Our approach achieves the best overall
performance for removal and detection, and shows the importance of ground-
truth data and correction module to achieve the best result.

Table 4.6: Ablation study on exposure correction module and ground-truth data.

Aspect Removal Detection
Method O S SF SF-I BER

Ours 6.54 10.03 5.88 6.49 6.48
Ours (-gt) 6.98 11.07 6.22 6.54 8.37

Ours (-gtm) 6.85 10.11 6.23 6.93 6.64
Ours (-c) 6.57 10.62 5.82 6.43 6.76

Ours (-gt -c) 7.03 11.68 6.15 6.47 8.41
Ours (-gtm -c) 6.93 10.63 6.24 6.94 6.76

We also have done an ablation study on the adversarial loss of the presented
method. The state-of-the-art MaskShadowGAN [2] method uses Binary Cross
Entropy (BCE) loss as an adversarial loss, and our method uses Mean Squared
Error (MSE) loss as an adversarial loss. We experimented with our method by
using BCE adversarial loss (represented by Ours (BCE)). The results are in Ta-
ble 4.7, showing our method with MSE adversarial loss (represented by Ours
(MSE)) achieves the best performance.
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Figure 4.6: Visual performance of exposure correction module’s ablation study.

Table 4.7: Ablation study on adversarial loss.

Aspect Removal Detection
Method O S SF SF-I BER

Ours (MSE) 6.54 10.03 5.88 6.49 6.48
Ours (BCE) 6.68 10.29 6.01 6.69 6.97

Table 4.8: Ablation study on using additional shadow mask as an input to
shadow-free generator.

Method O S SF SF-I
Ours 6.54 10.03 5.88 6.49

FusionNet [15] 5.95 7.82 5.60 6.77
Ours (+sm) 5.72 8.87 5.13 5.83
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For making a comparison with the method Auto-Exposure-FusionNet [15], which
uses shadow and shadow-mask images as input during training and testing, we
additionally used shadow mask as an input to Generator G f in the proposed
framework. The comparison result is depicted in Table 4.8, which shows our
method with an additional shadow mask (represented by Ours (+sm)) performs
better in O, SF, and SF-I scenarios.

We also experimented with the discriminator learning technique, in which we
used only one discriminator instead of two discriminators, that will discriminate
whether a pair of shadow image and shadow-free image is a real one (comes from
the ground-truth training data) or a fake one (comes from the generator). The
results of the experiment are shown in Table 4.9, where the approach with one
discriminator performs well in the S region, while the original approach with two
individual discriminators performs well in the O, SF, and SF-I aspects.

Table 4.9: Ablation study on discriminator learning.

Method O S SF SF-I
Ours 6.54 10.03 5.88 6.49

Ours (with 1 discriminator) 6.86 9.83 6.31 6.66

These ablation studies show the importance of ground-truth data with the over-
exposure correction module in the proposed framework. Also, it shows the effec-
tiveness of the selected learning strategy in generating better quality results.
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CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

We proposed a method based on a Generative Adversarial Network (GAN) to
address the shadow removal task from images. We used different constraints to
effectively learn the bidirectional relationship between shadow and shadow-free
domains under the paired setting. We also presented a novel process to handle
the over-exposure problem after the training. As a result, the proposed method
with an exposure correction module achieves the best or comparable performance
compared to existing state-of-the-art methods, both quantitatively and visually.

We explored the issue in benchmark datasets and introduced a technique for cor-
recting those benchmark datasets to additionally improve the shadow removal
results. We also conducted various experiments to analyze the importance of
ground-truth data and the exposure correction module in the presented method.
In addition, we experimented with different learning strategies like changing ad-
versarial loss function, adding an extra shadow mask as an input to the generator,
changing discriminator learning, etc., to study the proposed method’s behavior
for generating better quality output.

5.2 Future Work

The proposed approach generates the shadow-free result effectively, but still, the
shadow is not appropriately removed on the shadow edges. Figure 5.1 shows
the edge issue, where the shadow is clearly visible on the edges in the generated
shadow-free results. In the future, a refinement module can be introduced to han-
dle the shadow edge issue to obtain trace-less shadow-free results.
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Figure 5.1: Shadow edge issue.

One discriminator learning strategy, as described in Section 4.7, achieves the best
result in the shadow area compared with state-of-the-art methods along with the
proposed method. At the same time, our approach earns the best result in the rest
areas. The fusion method can be introduced in the future, which takes advantage
of one discriminator learning strategy for the shadow area, and two discriminator
learning strategy for the rest areas, to achieve the overall best performance.

Also, the proposed method can be tested on other shadow datasets with more
evaluation parameters. Furthermore, this work can be extended for automated
shadow detection and removal in video applications.
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