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Abstract

The availability of dehazing datasets has enabled various deep learning tech-
niques to perform effectively on hazy images. Most of the developed frame-
works focus on removing homogeneous haze. However, homogeneous-centric
methods produce sub-optimal results on non-homogeneous haze. The primary
reason is that the architectures devised to handle homogeneous haze fail to ad-
dress the non-uniformity of haze in non-homogeneous case. The secondary rea-
son is the unavailability of enough data for the non-homogeneous scenario. Al-
though many works cite the lack of data as a primary concern for poor perfor-
mance, we find that even if the homogeneous-centric networks are trained with
non-homogeneous data, the produced results are sub-standard. Hence, there is a
requirement for a network architecture that can handle non-homogeneous haze
in a better way. In this work, we propose to use multiple attention mechanisms
in parallel along with pre-trained ConvNeXt blocks. Specifically, we use pixel,
channel, and residual channel attention mechanisms. Pixel attention can comple-
ment the channel attention in dealing with space-variant haze when connected in
parallel. On the other hand, residual channel attention fetches hazy image-related
features and caters to better information flow towards the output. Concatenating
the attention-based features can yield better results as compared to the existing
approaches.

Keywords: Attention mechanism, ConvNeXt, Image Dehazing, Non-homogeneous
haze,
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CHAPTER 1

Introduction

Atmospheric particles often hinders the visibility of a scene by creating phenom-
ena like haze, fog, etc. This is because that the object reflected light gets attenuated
along the line of path. Further, the atmospheric light gets scattered by the atmo-
spheric particles as shown in Fig. 1.1. As a result, a portion of atmospheric light
(a.k.a airlight) is added with the direct light, received by a camera. Hence, the
captured image suffers from lower contrast, color distortion, etc.

Figure 1.1: Atmospheric Scattering Model(ASM)

This kind of degraded image is not desirable in vision related applications.
Hence, the effect of haze or other atmospheric phenomena needs to be reduced.
For example, we need to produce an image like Fig.1.3(b) from 1.3(a), which is
degraded by haze.
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((a)) Hazy Image ((b)) Haze-free Image

Figure 1.2: Example of homogeneous image dehazing

((a)) Hazy Image ((b)) Haze-free Image

Figure 1.3: Example of non-homogeneous image dehazing

Haze can be of two types: i) homogeneous, and ii) non-homogeneous. In ho-
mogeneous hazy images, haze is evenly distributed at the same depth level. As
illustrated in Fig.1.2(a), the haze is evenly distributed throughout the entire scene.
In contrast to homogeneous hazy images, haze presence is unequally distributed
in non-homogeneous hazy images, which means that part of the scene is hazy or
has a high density compared to other regions. As shown in Fig.1.3(a), the haze is
distributed unevenly across the entire scene, with some areas having high-density
haze and others having very-low-density haze.

The homogeneous haze type degradation can be approximated by atmospheric
scattering model (ASM) [27, 29, 28] as

I (x) = J (x) t(x) + A(1 − t(x)). (1.1)
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Here, I(x), J(x), and t(x) denote the hazy image captured using the camera,
the original scene (haze-free image), and the transmission map, respectively. A is
the global atmospheric light, and x indicates the pixel location of the image. In
the equation, the first term J(x)t(x) is the direct component, and the second term
A(1 − t(x)) is known as Airlight. We need to find two unknowns in this method:
t(x) and A from I(x). Here, t(x) is directly related to the distance d(x) of the scene
point from the camera as t(x) = e−βd(x).

Here β is the scattering coefficient. Several dehazing methods follow this
model to find out a haze-free image. However, the ASM can not reflect the non-
homogeneous nature of haze. As a result, methods developed based on ASM
find it difficult to produce an optimal dehazing result on non-homogeneous hazy
image.

1.1 Objective

The objective of the thesis are summarized as follows:

• Design an architecture that is suitable for dealing with non-homogeneous
haze.

• We require an architecture that can handle limited data challenges and the
non-homogeneous nature of haze.

• Even if the dataset is available, one needs to devise an architecture that can
address the varying density of non-homogeneous haze images.

• To address the color cast issue, we must include a module in our architecture
that can handle it.

1.2 Contribution

We are mainly focused on different attention strategies along with pre-trained
deep architecture. The main contributions of the thesis are summarized as fol-
lows:

• We propose a deep architecture based on an attention mechanism to dehaze
an image that is degraded by a non-homogeneous haze.

• Demonstrate the effectiveness of the pre-trained model for Non-Homogeneous
dehazing.
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• We investigate and demonstrate that the parallel combination of channel
attention and pixel attention is more effective than its serial counterpart for
the problem.

• We demonstrate that a pre-trained model for classification can assist in ad-
dressing the issue of a lesser amount of data, which is often the case for
image dehazing.

• Additionally, we address the issue of the color cast effect on images by em-
ploying a multi-colored module in the network.

1.3 Organization of Thesis

The rest of the thesis is structured as follows: Chapter 2 includes Existing tech-
niques for image dehazing, including the classical method and deep learning-
based methods. Chapter 3 includes the proposed method containing network
architecture and loss function details. In this chapter, we will explained how two
branches of our network can use pertained model and attention mechanism to
handle non-homogeneous haze. Chapter 3.3 includes the results of our experi-
ments. This chapter compares our results with the existing state-of-the-art meth-
ods. Also, we include an ablation study to see the effectiveness of pre-trained
models and attention mechanisms. We also include some of the different exper-
iments we did during our thesis work. Chapter 4 includes a chromatic casting
image dehazing method containing detailed information about network architec-
ture and how we create the different colored datasets for our training purpose.
This chapter discussed how chromatic cast effects work in our network architec-
ture and the conclusion is in chapter 5.
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CHAPTER 2

Literature Survey

Image Dehazing is a challenging task because the hazy image does not contain
any haze-related information. The distance between camera and object is an im-
portant factor to deal with the density of haze in hazy images. Also, hazy images
do not carry this distance information. In this chapter, we will go over the various
image dehazing methods briefly.

2.1 Classical Methods

According to eq 1.1, we need to find two unknowns for finding haze-free images:
atmospheric light and a transmission map that depends on the depth(distance) of
the scene point from the camera. Because this distance information is not carried
by the image, determining the distance value is tricky. This limitation turned con-
centration into the classical method[11, 28, 36, 12, 18, 26]. The dehazing task based
on a single reference image depends on the characteristics of the haze-free image.
Tan[36] noticed that haze-free images have more contrast than hazy images and
suggested approaches for boosting image visibility through optimization of local
contrast. Dark Channel Prior (DCP) [20] relies on dark pixels in the most haze-free
outdoor images that have at least one color channel with very low intensity. DCP
fails in the case of sky regions since its color is entirely equivalent to atmospheric
light.

2.2 Deep Learning Methods

Instead of relying on hand-crafted features like classical approaches, deep learn-
ing methods learn features automatically from training data. Hence, it has become
a popular choice for many vision applications, including image dehazing.
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2.2.1 Homogeneous Dehazing

Cai et al.[13] have developed DehazeNet as a deep learning method for deter-
mining medium transmission map t(x). After computing the transmission map,
DehazeNet uses the atmospheric scattering model to find haze-free images. As
we discussed above, we required an Atmospheric light value in eq (1.1). The au-
thor uses the highest intensity value of hazy images I(x) for atmospheric light.
When any white object is present in a scene, then this white object is detected as
an atmospheric value which is not valid. In Dehazenet, we still use prior for com-
puting atmospheric light value. There will be some end-to-end mapping between
hazy images and haze-free images.

Unlike DehazeNet, AOD-net[23] calculates the atmospheric light and trans-
mission map simultaneously and then uses ASM to produce a haze-free image.
Several deep learning approaches calculate haze-free images directly without us-
ing ASM by mapping end-to-end between haze-free and hazy images. Qin et
al.[30] suggested FFA-net, an attention-based neural network that can directly
generate haze-free images without calculating atmospheric light or transmission
map. In FFA-net, the input is a Hazy image, which is subsequently processed by
an N-group architecture consisting of several skip connections and residual con-
nections. In each group, there is B basic block with an attention mechanism.Finally,
they employ the Attention block (Channel attention + pixel attention) and two
convolution layers to produce a haze-free image. These approaches perform well
on homogeneous hazy images but fail to produce satisfactory results on non-
homogeneous datasets.

2.2.2 Non-Homogeneous Dehazing

To handle the non-homogeneous nature of haze, numerous deep learning algo-
rithms have been proposed in NTIRE2020[9] and NTIRE2021[10] challenges.

Existing multi-scale-based approaches require a significant amount of time
and memory. To overcome this limitation, Das and Dutta[14] have suggested
Deep Multi patch/scale Hierarchical Network (DMSHN and DMPHN) techniques,
which rely on hierarchy-based multi-patch and multi-scale neural networks. It
also has a shorter runtime than current multi-scale approaches. DMPHM used
multi-level architecture, With different patch sizes at each level. They use 1,2 and
4 patches from top to bottom. The top level has only one patch per image. Then,
the next level images are divided vertically, so we got two patches per image. At
the last level, image is divided horizontally, so we got four patches per image. In-
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stead of using patches, DHSHM uses different levels of scale. The structure of the
encoder-decoder is the same as DHPHM. When we go through the upper level to
the bottom level, Image size is downsampled by scales 1,2 and 4, respectively. In
this encoder-decoder architecture, 15 convolution layers and six residual connec-
tions are used in encoder. Encoder and decoder architectures are the same except
for two convolutions replaced with De-convolution layers. The author demon-
strates that DMPHN outperforms DMSHN because DMPHN integrates local fea-
tures generated from a finer to a coarser level.

Haze is not entirely removed from hazy images because of non-homogeneous
hazy image data scarcity. Some haze is still visible in the images. The pre-trained
model is the best solution in deep learning to tackle this issue. Wu et al.[38] have
presented KTDN, which uses pre-trained ResNet for feature extraction in the en-
coder and an attention mechanism in the decoder. This team got the second rank
in NTIRE2020[9] challenge, and the method gives significant results compared
to other existing methods, although pre-trained models train on a 1k ImageNet
dataset and are utilized for classification purposes. As a result, these pre-trained
algorithms cannot remove haze from small objects in images successfully.

To take advantage of pre-trained models and work with current data, Yankun
et al.[40] introduced two-branch neural networks. This approach extends the
KDTN[38] notion by adding another branch that works with current data. This
procedure produces excellent results.

2.3 Chapter Summary

In image dehazing, the classical and homogeneous methods work well with a ho-
mogeneous dataset. We have lots of data for homogeneous haze like RESIDE[24],
D-HAZY[1], DENSE[4, 7], I-HAZE[8], O-HAZE[6], and FRIDA[37]. We can also
create data for homogeneous haze by using the Atmospheric scattering model.
We need data that contain a depth of scene information like the NYU[35] dataset.

Many deep learning-based methods are introduced which use this homoge-
neous data. These methods work well with homogeneous haze but fail to address
the non-homogeneous haze scenario. We need to face two main challenges when
dealing with non-homogeneous dehazing, which are 1) the non-homogeneous na-
ture of haze and 2) limited non-homogeneous data. We can take advantage of a
pre-trained model that gives better feature representation and attention mecha-
nisms (channel attention and pixel attention) to deal with these challenges.
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CHAPTER 3

Proposed Method

3.1 Network Structure

The network architecture of our method is shown in Fig. 3.1. The main compo-
nents of our architecture are i) ConvNeXt encoder [25], ii) decoder with attention
block, which is a parallel connection of channel attention and pixel attention, iii)
Residual Channel Attention Network (RCAN), and iv) feature fusion. The first
two components are used in sequence in one stream, whereas the third compo-
nent is used in parallel to the first two as a second stream. Finally, the features
from both the streams are fused to generate a final dehazed result using the last
component of our architecture.

Figure 3.1: The architecture of the proposed model
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3.1.1 ConvNeXt Encoder

Datasets consist of hazy and haze-free images have limited number of data. Hence,
a deep encoder, trained with very limited data may not be able to provide better
representation. Hence, we use pre-trained ConvNeXt model [25] to achieve a suit-
able and robust feature from the input data. Since, the model is pre-trained with
ImageNet dataset to classify images effectively, the pre-trained weights need to
be fine-tuned for dehazing purpose using transfer learning method.

The ConvNext architecture [25] is a modified version of ResNet with Con-
vNet modules, tailored to emulate the vision transformer design. It uses fewer
activation fucntions in the form of GELU along with layer normalization. Un-
like ResNet, ConvNext uses non-overlapping and depth-wise convolution in an
inverted bottleneck structure. This structure supports regularization and FLOPS
reduction. For our network, we use only the front part of the ConvNext with 16
times down sampling.

3.1.2 Decoder with Attention Block

The decoder consists of attention blocks, up-sampling blocks and an enhancement
block. The attention block contains channel attention and pixel attention in paral-
lel (CA || PA), as can be seen in Fig. 3.2. The channel attention mechanism can be
described by

Ac = σ (MLP(AvgPool(F)) , (3.1)

where F is the input feature. It first aggregate spatial information by average pool-
ing operation on F. The resultant features are then fed to an MLP layer. Finally
the feature is passed through a sigmoid activation function to produce channel at-
tention Ac, which can be multiplied with F as Fc = Ac ⊗ F. On the other hand, the
pixel attention Ap is produced by 1 × 1 convolution followed by sigmoid activa-
tion on F. The Fp = Ap ⊗ F is the output of pixel attention mechanism. The output
of CA and PA are multiplied element-wise to produce the final feature map.
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Figure 3.2: Attention Block

The channel attention (CA) brings out channel wise significant information
while the pixel attention (PA) conveys pixel level attention. Their parallel con-
nection can complement each other in better manner as compared to their serial
interconnection. The reason being that the output of channel attention will be
weighted. As a result, the pixel level information is affected. Hence, pixel atten-
tion on the output of channel attention will not be suitable as the PA will not be
able to explore the unaffected pixel level information. This issue is resolved in
our method by connecting CA and PA in parallel. The output of attention mecha-
nism is fed to PixelShuffle layer [34], followed by an enhancement block that fuse
multi-scale features.

3.1.3 Residual Channel Attention Block

This stream of network (see Fig. 3.3) assists in complementing the first stream,
where the pre-trained ConvNext model is used along with CA || PA. In the first
stream, the attention mechanism works on the pre-trained robust feature with
fine-tuning to the new data. In the second stream, the residual channel attention
blocks (RCAB) [41] play the lead role.
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Figure 3.3: Attention Group

In RCAB, the channel attention directly faces the input hazy data to produce a
feature with weights highlighting channel-wise important features. Further, short
and long skip connections enable a smoother information flow from the input
towards output. Additionally, it assists in addressing the over-fitting issue, which
is often encountered by deep-learning models due to lesser data.

3.1.4 Feature Fusion

Here we concatenate the features from both the streams and apply one layer of
convolution followed by tanh activation function to produce the dehazed results.

3.2 Loss Function

The loss function is,

L = γ1Ll1 + γ2LMS−SSIM + γ3Lperc + γ4Ladv (3.2)

L comprises of four different components: i) smooth L1 loss (Ll1), ii) structural
similarity loss (LMS−SSIM), iii) perceptual loss (Lperc), and iv) adversarial loss
(Ladv). Hyper-parameters γ1, γ2, γ3, and γ4 are used to balance losses.
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3.2.1 Smooth L1 loss

To assure that the predicted images are similar to clean images, we use the smooth
L1 loss[19].

Ll1 =
1
N

N

∑
x=1

smoothL1(j(x)− fθ(i(x))) (3.3)

smoothL1(p) =

0.5p2 if |p| < 1.

|p| − 0.5 otherwise.
(3.4)

Here i(x) and j(x) are hazy image and ground truth image (vector form), respec-
tively at pixel x. fθ(·) represents network function, parameterized by θ. N denotes
total number of pixels.

3.2.2 Structure Similarity loss

We use multi-scale structure similarity (MS-SSIM) loss[42] such that the network
learns to generate visually pleasing results. Let H and G indicate two common-
size windows in the dehazed and clear images, respectively, centered at pixel x.
We compute the means and standard deviations of H, G, as µH, µG, σH, and σG.
The covariance of H and G is given by σHG. For pixel x, the SSIM is defined as:

SSIM(x) =
2µHµG + C1

µ2
H + µ2

G + C1
· 2σHG + C2

σ2
H + σ2

G + C2
= l(x) · cs(x) (3.5)

where C1, C2 are variables to stabilize weak denominator. l(·) is the luminance,
and cs(·) denotes contrast and structure measures.

LMS−SSIM(x) = 1 − lα
M(x) ·

M

∏
k=1

[csk(x)]βk (3.6)

M denotes number of scale.

3.2.3 Perceptual loss

We use perceptual loss[22] to give extra supervision in high-level feature space.
It is well known that training using perceptual loss helps the model reconstruct
useful details more accurately. The perceptual loss function is defined as follows:

Lperc =
1
N ∑

k

1
CkHkWk

||ϕk( fθ(i))− ϕk(j)||22 (3.7)
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where, fθ(i) is dehazed image. j and i are ground truth and hazy images respec-
tively, ϕk(·) stands for feature map of size Ck × Hk × Wk.

3.2.4 Adversarial loss

Adversarial loss is said to aid in restoring photo-realistic images. Specifically for
small-scaled datasets, the pixel-wised loss function often fails to give adequate su-
pervised data to train a network for extracting photo-realistic features. We include
adversarial loss[43] Ladv = ∑N

k=1 −logD( fθ(i)). Here, D is a discriminator and
D( fθ(i)) is related to the probability of dehazed image fθ(i) closer to the ground
truth.

3.3 Experiments and Results

We begin by discussing the datasets, training details, and evaluation metrics in
this section. Then, we compare our method quantitatively and qualitatively with
state-of-the-art dehazing methods. Finally, to further understand the effects of the
various modules, we undertake ablation studies.

3.3.1 Dataset for Training

We use two datasets: NTIRE2020[5] and NTIRE2021, for training our model. NTIRE2020
and NTIRE2021 contain 45 and 25, respectively for training. Both datasets contain
five pairs of hazy and ground truth images for validation and testing. Ground
truths of validation and testing of NTIRE2021 are not available. So we took five
pairs of images from training data to test our model. We have 65 images for train-
ing, five images for validation and ten images for testing.

3.3.2 Training Details

Since there are less number of images available, we flip the training images hor-
izontally as well as vertically. Further, we considered rotating the images by 90,
180, and 270 degrees. We extract overlapping patches of size 256 × 256 from the
images for training purpose.

We chose 0.0001 as the initial learning rate. Loss function hyper-parameters
γ1, γ2, γ3, and γ4 are 1.0, 0.5, 0.01, and 0.0005, respectively. The Pytorch library
is used to implement our technique. All of the tests are conducted using Nvidia
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Tesla P100 GPUs. We use the peak signal-to-noise ratio (PSNR), and the structural
similarity index (SSIM) measures for quantitative evaluation.

3.3.3 Comparison with state-of-the-art Methods

Here, we compare our method with state-of-the-art methods: DCP[20], AOD[23],
FFA-Net[30], DMPHN[14] and Two Branch NN[40]. To compare our method with
state-of-the-art methods, we train all methods with the same dataset of NTIRE2020
and NTIRE2021. The results of all experiments are shown in the Fig.3.4 One can
observe that DCP generates dehazed results with color distortion. we can ob-
serve that DCP can generate blueish results and is also not able to remove haze.
AOD produces undesirable results that we can clearly see in our figure. Unlike
AOD, FFAnet removes haze in some images but most images lose their structure
and edges. They produce an unacceptably dense color impression. Both meth-
ods work fine with homogeneous data but fail in the non-homogeneous dataset.
When compared to the previous methods, DMPHN can remove haze from im-
ages, however, it cannot entirely remove haze from a hazy image.
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(a) Results on NTIRE2020[5]

(b) Results on NTIRE2021

Figure 3.4: Qualitative comparison of NTIRE2020 and NTIRE2021 datasets

Our proposed method and Two branch NN can effectively remove haze from
hazy images. When compared to our approach, however, two branch NN has low
contrast and Some small regions contain haze. However, if we look closely at the
results, we can see that our methods outperform the Two branch NN method (See
Fig. 3.5), which follow channel attention and pixel attention in sequence. The im-
provements in visual results are reflected in the quantitative comparison in terms
of PSNR and SSIM values, as can be observed in Table 3.1.
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Figure 3.5: Zoomed version of the NTIRE2021 test set image result

Table 3.1: Quantitative comparison

Method NTIRE2020 NTIRE2021
PSNR SSIM PSNR SSIM

DCP[20] 13.26 0.494 11.67 0.71
AOD-net[23] 8.1 0.313 9.66 0.517

FFA[30] 13.74 0.507 12.44 0.624
DMPHN[14] 17.29 0.631 18.16 0.798

Two Branch NN[40] 19.3 0.682 21.09 0.856
Ours 21.11 0.715 22.87 0.893

3.3.4 Ablation Study

To analyze the effectiveness of the pre-trained model and parallel connection
of channel attention(CA) and pixel attention(PA), we performed ablation study
by considering these factors: two pre-trained models (ResNet and ConvNext)
and the connection of CA and PA (serial and parallel). We conducted four ex-
periments: i) using ResNet as pre-trained model and serial connection ii) us-
ing ResNet as pre-trained model and parallel connection iii) using ConvNext as
pre-trained model and serial connection, and iv) using ConvNext as pre-trained
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model and parallel connection. One can observe in Table 3.2 that for fixed type of
connection between CA and PA, ConvNext produces better results. On the other
hand, when we fixed the pre-trained model, the CA||PA produces better results
as compared to their serial interconnections.

Table 3.2: Ablation study: The best outcomes are highlighted in bold.

Method NTIRE2020 NTIRE2021
PSNR SSIM PSNR SSIM

ResNet + CA → PA 19.3 0.682 21.09 0.856
ResNet + CA ∥PA 20.78 0.702 22.12 0.879
ConvNext + CA → PA 20.31 0.709 22.09 0.879
ConvNext + CA ∥PA 21.11 0.715 22.87 0.893

We conducted one another ablation study for various loss function in order to
compare the effectiveness of the various loss function combinations for our model.
The results of the ablation study shown in the below Table 3.3.

Table 3.3: Ablation study: various combinations of the loss function

Loss function NTIRE2020 NTIRE2021
PSNR SSIM PSNR SSIM

L1 + 0.5 * ssim 20.70 0.713 22.75 0.889
L1 + 0.0005 * adv 20.95 0.711 22.31 0.878
L1 + 0.01 * perc 21.02 0.690 22.71 0.864

L1 + 0.5 * ssim + 0.0005 * adv 20.83 0.713 22.40 0.882
L1 + 0.5 * ssim + 0.01 * perc 20.72 0.703 22.77 0.863

L1 + 0.01 * perc + 0.0005 * adv 20.37 0.666 21.94 0.833
L1 + 0.5 * ssim + 0.01 * perc + 0.0005 * adv 21.11 0.715 22.87 0.893

Notation in Table : ( L1 : Smooth L1 loss , ssim : Structure Similarity loss, perc:
Perceptual loss , adv: Adversarial loss )

In the Table 3.3, we can observe that we get better results when we use all four
losses than in other experiments. So we consider this loss as our final loss. If we
try to change the hyper-parameters values, we have many possibilities. So for
that reason, we tried two other experiments (two times increase and two times
decrease all parameter values). The results of these two experiments are shown in
the below Table 3.4 .

The Table 3.4 demonstrates that we achieved better results when we set our
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Table 3.4: Ablation study: modified weight of the four losses

Loss function NTIRE2020 NTIRE2021
PSNR SSIM PSNR SSIM

L1 + 1 * ssim + 0.02 * perc + 0.0010 * adv 20.46 0.699 22.68 0.864
L1 + 0.25 * ssim + 0.005 * perc + 0.00025 * adv 20.77 0.701 22.86 0.861

L1 + 0.5 * ssim + 0.01 * perc + 0.0005 * adv 21.11 0.715 22.87 0.893

loss function’s hyper-parameters γ1, γ2, γ3, and γ4 to 1.0, 0.5, 0.01, and 0.0005
respectively.

3.3.5 Real-world images and results

During fumigation on the campus of DA-IICT, we are taking some images from
the cafeteria area. Captured images show non-homogeneous nature because smoke
is unevenly distributed over the scene. Fig.3.6 shows an example of captured
photos. In Fig.3.6, the first column shows captured hazy images, and the second
column shows our model output. So, we test this image in our model. We can
observe that our algorithm can remove some haze levels but not wholly remove
haze from images. One reason behind this is that the image is captured in the
presence of sunlight, so sunlight is additionally added. Another reason is that
we are training our model on the smoggy data set, and here this real-world im-
age contains smoke. However, smog and smoke have different light scattering
characteristics. That’s why they fail to handle smoggy images.
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Figure 3.6: Qualitative results of real world non-homogeneous image

3.3.6 Other Experiments

In other experiments, we used a different method and added attention mechanism
to check the effectiveness of the method. We conducted four other experiments:
i) (ResNet + RCAB + Attention): used Pre-trained ResNet as encoder and RCAB
with parallel attention in the decoder part ii)(Simple UNet): used Simple UNet
architecture iii)(UNet + Attention): used UNet architecture with parallel attention
in the decoder part iv)(UNet + Attention) + (RCAB) : used UNet Architecture and
attention mechanism in first branch and RCAB in second branch.

Experiment ii and iii in Table 3.5 demonstrate that by applying the attention
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mechanism to UNet, we achieve a significant improvement in results over the
simple UNet model. This shows the importance of the attention mechanism in
boosting the performance. However, if we use the two-branch network with UNet
architecture without pre-trained weights, we don’t see much improvement in the
results as shown in Table 3.5. This shows the effectiveness of pre-trained weights
in improving the performance.

Table 3.5: Result of other Experiments : The best outcomes are highlighted in
bold.

Method NTIRE2020 NTIRE2021
PSNR SSIM PSNR SSIM

(ResNet + RCAB + Attention) 19.19 0.599 19.29 0.725
(Simple Unet) 17.53 0.657 17.88 0.830
(Unet + Attention) 18.22 0.673 18.90 0.855
(Unet + Attention) + (RCAB) 18.351 0.664 18.885 0.857
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CHAPTER 4

Vari-color Image Dehazing

Due to poor weather, the quality of images captured in the presence of atmo-
spheric particles is frequently hampered by low visibility and chromatic casts. In
Fig 4.1, we can see an example of this type of image. Most methods can focus
on improving visibility, but existing image dehazing methods fail to restore color
balance from colored hazy images. In this chapter, we will discuss networks that
concentrate on restoring color and improving hazy images’ visibility.

((a)) ((b))

Figure 4.1: Example of multi-color hazy images

4.1 Network Structure

The network structure is divided into two parts 1) Restoring Color (RC) Module
and 2) Enhancement of Visibility(EV) Module. Network structure is as shown in
fig 4.2.
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Figure 4.2: Architecture of our vari-color image dehazing

4.1.1 Restoring Color(RC) Module

As shown in Fig 4.1, we can see an image dominated by a particular color cast.
Gray-world assumption (GWA)[31] has been used in previous literature[2, 21, 3,
33] to restore color balance in a multi-colored hazy image. According to GWA, The
average radiance of the scene is low contrast. One of the easiest ways to preserve
color balance in an image is to scale the pixel values by a factor (avgG/ avgC),
where avgG is a global average of an image and avgC represents the channel-wise
average. In the RC network, hazy input image (I) passes through independent
convolution with each channel to get different color maps Cp.

Ci
P = { f 3×3

i (IR); f 3×3
i (IG); f 3×3

i (IB)} (4.1)

Here, f 3×3 represents the convolution with window size 3 × 3, R, G, B represents
color channels, i describes the number of convolution filters used, and i ∈{1:16}.
We applied color correction on each color map’s Cp to find improved feature
mapsFr.

Fi
r(x) = Cc

p(x)×
Gp

Ip(c)
; c ∈ {r, g, b} (4.2)

Where x indicates the pixel location in the image, Gp and Ip(c) represents the
image’s global average and a channel-wise average of each RGB channel of the
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image. After finding color maps, we concatenated all improved feature maps
Fr together, along with the channel axis, followed by two convolution blocks to
create the color-balanced hazy image.

4.1.2 Enhancing Visibility(EV) Module

Inspired by the varicolored[15] method, we are using our proposed network,
which contains the ConvNeXt pre-Trained model and Attention mechanism for
enhancing image visibility. As we see in Fig.4.2 we use our two branch network
as an Enhancing module. The restoring color module’s output is considered the
input of the EV module. In terms of network structure, we have not modified the
EV module.

4.2 Loss Function

L = γ1Ll1 + γ2LMS−SSIM + γ3Lperc + γ4LSmooth−l1 + γ5LMS−SSIMc . (4.3)

L comprises of five different components: i) L1 loss(L1) , ii) structural similarity
loss (LMS−SSIM), iii) perceptual loss (Lperc), iv) smooth L1 loss (LSmooth−l1) and
v)structural similarity loss (LMS−SSIMc). Hyper-parameters γ1, γ2, γ3, γ4 and γ5

are used to balance losses. Here, i),ii) & iii) losses is for reconstructing Haze-free
image and vi) & v) losses is for reconstructing color balanced hazy images. We
already discussed the specifics of these losses in section 3.2.

4.3 Experiments and Results

4.3.1 Dataset

In the available dataset for the dehazing task, we don’t have any dataset that
contains different colored hazy images with its ground truth. Even very few pro-
posed methods can take care of this chromatic cast effect. To handle this chromatic
cast effect, we need a dataset containing colored hazy images with ground truth
values. As discussed in Chapter 1, the atmospheric scattering model (ASM) de-
pends on two parameters 1) scene depth and 2)atmospheric light intensity. That
means we need a dataset that contains depth information about images. The
NYU-Depth[35] dataset contains 1449 indoor images with depth information. A
sample of the dataset is shown in Fig 4.3.
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((a)) Original Image ((b)) Depth Image

Figure 4.3: Sample image of NYU-Depth[35] dataset

We can use depth information from this dataset, and then we need an Atmo-
spheric light value. Ten colours that are commonly seen in an atmospheric envi-
ronment are considered for atmospheric light value. The color-set that we used in
our dataset is shown in Fig4.4.

Figure 4.4: The colours we employed for atmospheric lighting

Let’s consider ASM as follows.

I(x) = J(x) ∗ t + A(1 − t)

In the above eq, we already have J(x) and A, which are ground-truth values and
atmospheric light values respectively.

t(x) = e−βd(x)
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Here we already have depth information about the scene and we know that β is
used for the density of haze. We consider three different β values, which are 1, 3,
and 5. Now we put all parameters A, J(x), d(x), and β values, so we got hazy im-
ages which are I(x). We selected random 450 images from NYU-Depth[35] dataset
for creating the dataset. For each image, we have ten color values and three beta
values. So we have 450 * 10 * 3 = 13500 images for training our network. We can
see the generated sample dataset in Fig. 4.5. We chose colour value #CCCCCC to
create ground truth for colour balanced hazy images.

Figure 4.5: Sample of our training dataset

4.3.2 Training Details

As shown in Fig 4.2, we passed a colored hazy image to the Restoring Color(RC)
Module, which produces a color-balanced hazy image. The color-balanced hazy
image is then passed to the Enhancing Visibility(EV) Module, which produces the
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final haze-free images. We provided the ground truth of a color-balanced and
haze-free image here. Both modules’ output is used for backpropagation. More-
over, we extracted randomly cropped patches of size 256 × 256 from the images
for training purposes.

We chose 0.0001 as the initial learning rate. Loss function hyper-parameters
γ1, γ2, γ3, γ4 and γ5 are 1.0, 0.7, 0.1,1.0 and 0.75, respectively. The Pytorch library
is used to implement our technique. All of the tests are conducted using Nvidia
Tesla P100 GPUs. We use the peak signal-to-noise ratio (PSNR), and the structural
similarity index (SSIM) measures for quantitative evaluation.

4.3.3 Comparison with state-of-art Methods

We compare our multi-color dehazing method with state-of-the-art methods: TPAMI-
11 [20],ECCV-16 [32],ICCV-17[23],NIPS-18[39],CVPRW-18[17],CVPRW-19 [16] and
Varicolored[15], We train our model with the NYU Depth[35] dataset, which is
also used in the varicolored method. As a result, we can directly take the results
of other methods from the varicolored[15] paper.

Table 4.1: Quantitative comparison on D-Hazy[1]

Method PSNR SSIM
TPAMI-11 [20] 12.5876 0.7060
ECCV-16 [32] 12.8203 0.7231
ICCV-17[23] 12.4110 0.7177
NIPS-18[39] 15.5456 0.7726
CVPRW-18[17] 15.4130 0.6490
CVPRW-19 [16] 18.8167 0.8179
Varicolored[15] 23.3142 0.8901
Ours 24.81 0.916

The D-Hazy[1] dataset contains 1449 hazy images with their ground truth
value. The D-Hazy dataset is a synthetic dataset constructed by adjusting at-
mospheric light A and attenuation coefficient (β). Table 4.1 displays the results
of other methods as well as ours. The table 4.1 clearly shows that our method
achieves significantly better results than other existing techniques.
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Table 4.2: Quantitative comparison on SOTS indoor[24]

Method PSNR SSIM
TPAMI-11 [20] 16.6215 0.8179
ECCV-16 [32] 17.5731 0.8102
ICCV-17 [23] 19.0868 0.8512
CVPRW-19 [16] 21.5600 0.8600
Varicolored[15] 28.2688 0.9511
Ours 28.51 0.968

In contrast to D-hazy, the SOTS-indoor [24] dataset is made up of 500 syn-
thetic images of indoor scenes with varying attenuation coefficients (beta). All
500 images were considered for evaluation. The quantitative results of existing
techniques and our method are shown in Table 4.2. We can see from table 4.2 that
our method outperformed existing methods.

4.3.4 Real World Multi-colored Image Testing

Visual testing was performed on real-world hazy images. We have three columns,
as shown in Fig. 4.6. The first column contains the colored input image, the
second column contains the output of the Restoring Color (RC) Module, which
is a color balanced hazy image, and the third column contains the output of the
Enhancing Visibility (EV) Module, which is our haze-free image. The images in
Fig 4.6 have various haze colors such as yellow, blue, orange, and grey. Many
previous techniques can remove haze, but they cannot address the issue of color
restoration. In contrast, our method performs both the color restoration and the
haze removal tasks. By looking at Fig 4.6, we can see that our model removes this
color from the image and also performs well in the haze removal task.
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Figure 4.6: Qualitative results of real world colored image
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CHAPTER 5

Conclusions

In this thesis, we have proposed a two-stream deep architecture to remove non-
homogeneous haze from image, based on attention mechanism. In the first stream,
we have used pre-trained ConvNext model along with attention mechanism. The
pre-trained ConvNext model extracts significant and robust feature from the data.
On the output of ConvNext, we have used channel attention in parallel to the
pixel attention. The parallel interconnection enables our network to learn about
the non-homogeneous nature of haze at pixel as well as in channel levels, inde-
pendently. We have concatenated the learned features with the output of a second
stream, which is residual channel attention network. The second stream extracts
information directly from the data. Further, the residual connection enables a
smoother information flow towards the output. The produced results emphasize
the importance of attention mechanism when they are interconnected in parallel.
We also proposed multi-color image dehazing to address color casting issues. We
conclude from the results of real-world colored images that our module effectively
handles chromatic cast issues as well as image dehazing tasks.
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