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Abstract

The definition of basis in the study of vector space is very antagonistic. As a result

of that, one might look for a prominent substitute. Frames are such a notion, as

the linear independence between the frame elements is not required. Further, the

additional degree of freedom coming from the structure of C∗-algebra A enriches

the theory of frames in Hilbert C∗-modules. This thesis aims to introduce various

notions of frame theory in Hilbert C∗-modules as they are the subjects of the recent

study. We also introduced the notion of a regular k-distance frame in Hilbert space.

The thesis is planned to be organized into six chapters, along with the introductory

and literature survey chapter and a chapter for conclusions and the scope of

future research. Chapter 1 of the thesis is the introductory chapter, where a brief

introduction of frame theory in Hilbert space as well as in Hilbert C∗-module has

been discussed. The interest in taking the particular research problem has been

outlined. A concise but sufficient literature survey has been presented. In Chapter

2, we introduced the concept of a regular k-distance frame in Hilbert space as well

as focused on k-distance tight frames for the underlying space. We have introduced

the definition of dual frames for a regular k-distance set. Finally, the perturbation

result for regular k-distance frames is established. The objective of Chapter 3 is to

introduce woven g-frames in Hilbert C∗-modules and to develop its fundamental

properties. This study establishes sufficient conditions under which two g-frames

possess weaving properties. We also investigated the sufficient conditions under

which a family of g-frames includes weaving properties. Chapter 4 is concerned

with weaving K-frames in Hilbert C∗-module. We introduced the concept of

weaving K-frames and defined an atomic system for weaving K-frames in Hilbert

C∗-module. We studied weaving K-frames in this chapter from the operator
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theoretic approach. Moreover, we gave an equivalent definition for weaving K-

frames. In Chapter 5, we introduced the notion of a controlled K-frame in Hilbert

C∗-modules. We established the equivalent condition for controlled K-frame in

Hilbert C∗-modules. We investigated some operator theoretic characterizations of

controlled K-frames and controlled Bessel sequences. Moreover, we established the

relationship between the K-frames and controlled K-frames. We also investigated

the invariance of a C-controlled K-frame under a suitable map T. At last, we

proved a perturbation result for controlled K-frame in Hilbert C∗-modules.

An equivalent definition is much easier to apply and permits us to study the various

types of frames from the operator theory point of view. The multiple notions of

frame theory developed in this thesis will draw the attention of researchers to work

in this area. At last, in Chapter 6, we summarize all the work that has been done

so far and feature the potential avenues for the future scope of research.

Motivation and Objective of the Thesis

In a vector space, a set of vectors is referred to as a basis if every element in the

underlying space can be expressed in terms of a finite linear combination of the

basis vectors uniquely. The definition of basis in the study of vector space is very

antagonistic. As a result of that, one might look for a prominent substitute. Frames

are such a notion as the linear independence between the frame elements is not

required. In addition to that, the additional degree of freedom coming from the

structure of C∗-algebra A enriches the theory of frames in Hilbert C∗-modules.

We intend to see whether the results of frame theory in Hilbert spaces hold for

frame theory in Hilbert C∗-modules and, if not, then to study what modifications

we need. In Chapter 2, we investigated the concept of a regular k-distance frame

in Hilbert space which is the extension of a regular two-distance frame in Hilbert

space. A regular two-distance frame is a particular type category of frame which

has some nice properties. Motivated by this, we studied regular k-distance frames,

in particular, regular tight k-distance frames in Hilbert space. Tight frames are those

in which the lower and upper frame bounds are equal. Tight frames play a key role

in wide applications as tight frames look like a more natural way to reconstruct
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vectors. Tight frames are closest to orthonormal bases as they are a redundant set

of vectors and have properties like basis. In Chapter 3 and Chapter 4, we studied

the concept of woven frames in Hilbert C∗-modules. Recently many people got

significant results in frame theory by generalizing the results which are present in

Hilbert space to Hilbert C∗-modules. The concept of weaving frames is applicable

in wireless sensor networks that require distributed processing under different

frames, as well as pre-processing of signals using Gabor frames. Generalized

frames (or g-frames) include standard frames, bounded invertible linear operators,

and many recent generalizations of frames. g-frames in Hilbert C∗-modules interest

many useful properties with their comparable tools in Hilbert space. As we know,

K-frames and standard frames diverge in many aspects; we introduce the concept

of weaving K-frames and define an atomic system for weaving K-frames in Hilbert

C∗-modules. As it is easier to work, we gave an equivalent definition for weaving

K-frames and characterized weaving K-frames from the operator theory point of

view. In Chapter 5, we introduced the notion of controlled K-frames in Hilbert C∗-

modules. Controlled frames have been an area of interest because of their expertise

in improving the numerical efficiency of iterative algorithms for inverting the

frame operator.

vii



List of Principal Symbols and Acronyms

N Set of natural numbers

Rn n-dimensional real space

i, j Indexes

I, J Index set

I Identity matrix

J Matrix whose all entries are 1’s

H Hilbert space

H Hilbert C∗-module over unital C∗-algebra A

L(H) The set of all adjointable operators on Hilbert C∗-module H

GL+(H) The set of all bounded linear positive invertible operators on H

with bounded inverse

[m] The set {1, 2, ..., m}, where m is any natural number

□ End of the proof

viii



List of Figures

1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ix



CHAPTER 1

Introduction

For a Hilbert space H, the Plancherel equality states that

∑
k
|⟨ f , ek⟩| = ∥ f ∥2, ∀ f ∈ H. (1.1)

Each orthonormal basis {ek} for a Hilbert space H satisfies the Plancherel equality.

However, to satisfy the Plancherel equality, a sequence may not be orthonormal

or a basis. A sequence that satisfies the Plancherel equality is called a Parseval

frame; the definition of a frame in Hilbert space H enforces a weak requirement.

Also, the basis is one of the important concepts in the field of vector spaces. The

set of vectors { fk}∞
k=1 in a Hilbert space H forms a basis if { fk}∞

k=1 spans H and

also linearly independent. Every f ∈ H can be represented as

f =
∞

∑
k=1

ck fk. (1.2)

The coefficient ck are uniquely determined.

The condition of linear independence is very restrictive; thus, one might look

for an alternative tool. Frames are such a notion that provides liberty in linear

independence. A frame also allows every vector in the space to be written as in

equation (1.2), but the corresponding coefficients are not necessarily unique.

We begin with the definition of frame in Hilbert space H.

Definition 1.1. A sequence { fk}∞
k=1 of elements in Hilbert space H is a frame for H if
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there exist constants A, B > 0 such that

A∥ f ∥2 ≤
∞

∑
k=1

|⟨ f , fk⟩|2 ≤ B∥ f ∥2, ∀ f ∈ H. (1.3)

The constants A and B are called lower and upper frame bounds, respectively. The

optimal upper frame bound is the infimum over all upper frame bounds and the

optimal lower frame bound is the supremum over all lower frame bounds.

Gabor [32] carried out a method in 1946 to analyze the information conveyed

and its transmission by different communication channels such as speech, teleg-

raphy, telephony, radio, or television. In 1952, Duffin and Schaeffer [23] formally

introduced frames in Hilbert spaces while studying the non-harmonic Fourier se-

ries. Duffin and Schaeffer extracted Gabor’s method to define the notion of frames

for a Hilbert space. As the linear independence between the frame elements is not

required, they can be viewed as more relaxed substitutes of bases in Hilbert spaces.

The subject does not grab the attention of people for quite some time. It took

almost three decades to realize the potential of the frame theory. In 1980, Robert

M. Young [56] wrote an introductory book entirely devoted to the non-harmonic

Fourier series. As the wavelet era began in 1985, Daubechies, Grossmann, and

Meyer [22] reintroduced and developed the theory of frames in 1986. After this

revolutionary work, frame theory started getting the attention of the community

because it plays as a central tool in many applied areas like signal processing [30],

coding and communications [52], image processing [11], time-frequency analysis,

sampling theory[24, 25], data compression, numerical analysis, wavelet theory,

filter theory [10]. Moment, indeed more applications of the frame theory are being

found, such as signal detection, compressive sensing, data analysis, optics, and

numerous other areas.

Frame theory still has plenty of open fundamental problems from various advanced

fields, like Gabor frames or Weyl-Heisenberg frames, related to a dynamical sam-

pling in a Hilbert space H. The problem of finding good estimates for the lower

frame bound for a finite collection of exponentials in L2(−π, π).

Fusion frame is a generalization of frames that Cassaza and Kutyniok [14]

introduced in 2003 and investigated in [2, 15, 44, 46]. The purpose of introducing
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a fusion frame or frame of subspace comes from signal processing, to be more

specific, the ambition of accurately processing and analyzing huge data sets. Fu-

sion frames have wide applications in distributed sensing, parallel processing,

packet encoding, and so on. Perturbation theorems for frames in Hilbert space are

essential and valuable tools to construct new frames near the given one. Over the

last decade, numerous researchers have generalized the Paley-Wiener perturbation

theorem to the perturbation of frames in Hilbert spaces (see [3], [18], [20], [19]).

Casazza and Christensen [18] attained the most general result of these.

Equiangular tight frames (ETFs) are helpful for signal reconstruction when all the

phase information is lost [8]. Strohmer and Heath [52] and Holmes and Paulsen [39]

initiated the study of equiangular tight frames. In particular, [39] studied frames

from the viewpoint of coding theory and found that equiangular tight frames give

error-correcting codes that are robust against two erasures. Latterly equiangular

tight frames (ETFs) are generalized to two-distance tight frames. Equiangular tight

frames (ETFs) are an essential class of finite-dimensional frames. Barg et al. [5] in

2015 characterized finite tight frames, which are also of two-distance sets. Finite

tight frames are the most spontaneous generalization of orthonormal bases. In [17],

authors deeply study regular two-distance sets. They presented various properties

of these sets as well as focused on the case where they form tight frames for the

underlying space. They discussed some constructions of regular two-distance

sets, in particular, two-distance tight frames. Tight frames play a crucial part in

wide operations as they look like a more natural way to reconstruct vectors. Tight

frames are closest to orthonormal bases as they are a spare set of vectors and have

properties like basis.

Feichtinger and Werther [29] presented a family of analysis and synthesis systems

with frame-like properties for the closed subspaces of a separable Hilbert space.

The motivation for the definition of atomic system (or local atoms) is based on

examples from sampling theory [28]. The atomic system (or local atoms) is capable

of generating a proper subspace, although they do not belong to them. Li and

Ogawa [48] proposed the family of local atoms for a closed subspace of Hilbert

space called pseudo-frame. In 2012, L.Gǎvruta [33] introduced the notion of K-
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frames in Hilbert space to study the atomic systems with respect to a bounded

linear operator K, which advance the results of Feichtinger and Werther. In this, a

generalization of frames is discussed, which allows to reconstruct elements from

the range of a linear and bounded operator in a Hilbert space.

Controlled frames in Hilbert spaces have been introduced by P.Balazs [4] to im-

prove the numerical effectiveness of iterative algorithms for flipping the frame

operator. In 2005, controlled frames were used as a tool for spherical wavelets [9].

In 2016, Hua and Huang [40] introduced a controlled K − g-frame and proposed

several methods to construct controlled K − g-frames. In 1977, Coifman and Weiss

[21] introduced the concept of atomic decomposition for function spaces, the Hp

spaces. After that, Feichtinger and Gröchenig [27] extended this idea to Banach

spaces. Gröchenig [35] introduced a more general notion of Banach frames for

Banach spaces and called them atomic decompositions. Casazza, Han, and Larson

[13] also studied atomic decompositions and Banach frames for Banach spaces.

Lately, several generalizations of frames in Banach spaces have been introduced

and studied. Han and Larson [38] defined a Schauder frame for a Banach space E

to be an inner direct summand (i.e., a compression) of a Schauder basis of E. Frame

theory plays a vital part in the study of Besov spaces in Banach’s space theory.

In recent times, numerous mathematicians got significant results by generaliz-

ing the frame theory in Hilbert spaces to frame theory in Hilbert C∗-modules which

enrich the theory of frames. Hilbert C∗-modules are generalizations of Hilbert

spaces by allowing the inner product to take values in a C∗-algebra rather than

in the field of real or complex numbers. They were introduced and investigated

originally by Kaplansky [42]. Frank and Larson [31] defined the concept of stan-

dard frames in finitely or countably generated Hilbert C∗-modules over a unital

C∗-algebra. For further details of frames in Hilbert C∗-modules, one may relate to

Doctoral Dissertation [41], Han et al. [37] and Han et al. [36].

In [31], authors proved that every countably generated Hilbert module over a

unital C∗-algebra admits frames by using Kasparov’s stabilization theorem.

Paschke [50] defined pre-Hilbert B-modules without the restriction that B be

commutative in an analogous way as I. Kaplansky’s "C∗-modules" [43]. Later,
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Kasparov’s stabilization theorem and work done by Paschke in [50] turn out to

be a provocation for frames in Hilbert C∗-modules. In [49], Najati et al. intro-

duced the concepts of the atomic system for operators and K-frames in Hilbert

C∗-modules. Rashidi and Rahimi [51] introduced controlled frames in Hilbert

C∗-modules and showed that they share various beneficial properties with their

corresponding notions in a Hilbert space. The notion of weaving frames in Hilbert

space was introduced in [6] and investigated in [12, 16]. The concept of weaving

frames is partially motivated by preprocessing of Gabor frames and has potential

applications in wireless sensor networks that require distributed processing under

different frames, as well as preprocessing of signals using Gabor frames. In 2018,

Deepshikha and Lalit K. Vashisht [55] studied the weaving properties of K-frames

in Hilbert space. They presented necessary and sufficient conditions for weaving

K-frames in Hilbert spaces and sufficient conditions for Paley–Wiener type pertur-

bation of weaving K-frames. Also, it is shown that woven K-frames and weakly

woven K-frames are equivalent. Woven frames for finitely or countably generated

Hilbert C∗-module were introduced and studied in [34]. Authors have investigated

some properties of woven frames and obtained some conditions on a perturbed

family of sequences. In [45], Khosravi introduced fusion frames and g-frames in

Hilbert C∗ modules and showed that they share many useful properties with their

corresponding notions in Hilbert space. They also generalized a perturbation result

in frame theory to g-frames in Hilbert spaces. In [45], fusion frames in Hilbert

C∗-modules were introduced, and authors showed that they share many beneficial

properties with their corresponding notions in Hilbert space.

Chapter 1 of the thesis is the introductory chapter, where a brief introduction of

frame theory in Hilbert space as well as in Hilbert C∗-module have been discussed.

The interest in taking the particular research problem has been outlined. A concise

but sufficient literature survey has been discussed.

In Chapter 2, we introduced the concept of regular k-distance frame in Hilbert

space. Additionally, we discussed various characteristics of regular k-distance

frames and focused on k-distance tight frames for the underlying space. We have

introduced the definition of dual frames for regular k-distance set and in support
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presented example also. Finally, the perturbation result for regular k-distance

frames is established. When k-distance sets form frames and tight frames for the

space, we call them k-distance frames and k-distance tight frames, respectively.

The objective of Chapter 3 is to introduce woven g-frames in Hilbert C∗-

modules, and to develop its fundamental properties. Woven frames are widely

applicable in wireless sensor networks and are induced by a problem in distributed

signal processing. g-frames provide more choices for analyzing functions from

the frame expansion coefficients. This study establishes sufficient conditions un-

der which two g-frames possess the weaving properties. We also investigated

the sufficient conditions under which a family of g-frames possesses weaving

properties.

Chapter 4 is concerned with weaving K-frames in Hilbert C∗-module. As K-

frames and standard frames diverge in many aspects, we introduced the concept of

weaving K-frames and defined an atomic system for weaving K-frames in Hilbert

C∗-module. In this chapter, we studied weaving K-frames from the operator

theoretic approach. Moreover, we gave an equivalent definition for weaving K-

frames and characterized weaving K-frames in terms of bounded linear operators.

We also studied that woven Bessel sequences are invariant under an adjointable

operator.

In Chapter 5 we introduced the notion of controlled K-frame in Hilbert C∗-

modules. Controlled frames have been the subject of interest because of their

ability to improve the numerical efficiency of iterative algorithms for inverting the

frame operator. We established the equivalent condition for controlled K-frame in

Hilbert C∗-modules. We investigate some operator theoretic characterizations of

controlled K-frames and controlled Bessel sequences. Moreover, we established the

relationship between the K-frames and controlled K-frames. We also investigated

the invariance of a C-controlled K-frame under a suitable map T. At last, we

proved a perturbation result for controlled K-frame in Hilbert C∗-modules.

Finally, in Chapter 6, we summarize all the work that has been done so far and

feature the potential avenues for the future scope of research.
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1.1 Frames in Hilbert space

First we recall the definition of frame in Hilbert space H.

Definition 1.2. A sequence { fk}∞
k=1 of elements in Hilbert space H is a frame for H if

there exist constants A, B > 0 such that

A∥ f ∥2 ≤
∞

∑
k=1

|⟨ f , fk⟩|2 ≤ B∥ f ∥2, ∀ f ∈ H. (1.4)

The constants A and B are called lower and upper frame bounds, respectively.

Definition 1.3. A sequence { fk}∞
k=1 of elements in Hilbert space H is called a Bessel

sequence for H if there exists a real constant B > 0 such that

∞

∑
k=1

|⟨ f , fk⟩|2 ≤ B∥ f ∥2, ∀ f ∈ H. (1.5)

B is referred as Bessel bound for the Bessel sequence { fk}∞
k=1.

Definition 1.4. Assume { fk}∞
k=1 is a frame for a Hilbert space H.

1. If A = B, then { fk}∞
k=1 is called a tight frame, to be precise we say that { fk}∞

k=1 is

an A-tight frame.

2. If A = B = 1, { fk}∞
k=1 is called a Parseval frame.

3. If { fk}∞
k=1 ceases to be a frame whenever any single element is deleted from the

sequence, then { fk}∞
k=1 is called an exact frame.

One fruitful approach to frame theory for infinite-dimensional Hilbert spaces is to

study frames in an operator theoretic approach. Suppose that { fk}∞
k=1 is a frame

for a Hilbert space H. Then we define the following operators.

The operator T : H → ℓ2 is defined by

T f = {⟨ f , fk⟩}∞
k=1
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is called the analysis operator.

The adjoint operator T∗ : ℓ2 → H is obtained as

T∗{ck}∞
k=1 =

∞

∑
k=1

ck fk.

T∗ is called pre-frame operator or the synthesis operator.

By composing T and T∗, we obtain the frame operator S : H → H

S f = T∗T f =
∞

∑
k=1

⟨ f , fk⟩ fk. (1.6)

Now we give an example of a frame in Hilbert Space.

Example 1.1. Let {ek}∞
k=1 be an orthonormal basis for a Hilbert space H.

(1) By repeating each element of {ek}∞
k=1 thrice we have

{ fk}∞
k=1 = {e1, e1, e1, e2, e2, e2, e3, e3, e3, · · ·}

which is a tight frame with frame bound A = B = 3.

(2) Let

{ fk}∞
k=1 = {e1,

1√
2

e2,
1√
2

e2,
1√
3

e3,
1√
3

e3,
1√
3

e3, · · ·}

For each f ∈ H, we have

∞

∑
k=1

|⟨ f , fk⟩|2 =
∞

∑
k=1

k|⟨ f ,
1√
k

ek⟩|2 = ∥ f ∥2.

Therefore, { fk}∞
k=1 is a Parseval frame.

Let’s state some of the important properties of S:

Proposition 1.1. Let { fk}∞
k=1 be a frame with frame operator S and frame bounds A, B.

Then the following holds:

1. S is bounded, invertible, self-adjoint, and positive.
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2. {S−1 fk}∞
k=1 is a frame with bounds B−1, A−1. The frame operator for {S−1 fk}∞

k=1

is S−1.

Now we give a reconstruction formula for any vector f in Hilbert space H using

the inverse frame operator. A direct calculation yields that

f = SS−1 f =
∞

∑
k=1

⟨S−1 f , fk⟩ fk =
∞

∑
k=1

⟨ f , S−1 fk⟩ fk =
∞

∑
k=1

⟨ f , S−1/2 fk⟩S−1/2 fk. (1.7)

{⟨S−1 f , fk⟩}∞
k=1 are called the frame coefficients for f ∈ H and S−1/2 denote the

positive square root of inverse frame operator S−1.

Dual frames play an essential role in the reconstruction of vectors (or signals ) in

terms of frame elements.

Definition 1.5. Let { fk}∞
k=1 be a frame of a Hilbert space H. We call a sequence {gk}∞

k=1 ⊆

H a dual frame of { fk}∞
k=1 if

f =
∞

∑
k=1

⟨ f , gk⟩ fk

holds true for every f ∈ H. In particular, {S−1 fk}∞
k=1 is called the canonical dual (or

standard dual) of { fk}∞
k=1, where S is the frame operator of { fk}∞

k=1.

We now list some characterizations of frames in Hilbert spaces from the operator

theory point of view.

Theorem 1.1. ([41]) A sequence { fk}∞
k=1 in Hilbert space H is a frame for H if and only if

T : {ck}∞
k=1 →

∞

∑
k=1

ck fk

is a well-defined mapping of ℓ2 onto H.

Theorem 1.2. ([41]) A sequence { fk}∞
k=1 in Hilbert space H is a frame for H with bounds

A, B if and only if the following conditions are satisfied:

1. span{ fk}∞
k=1 = H;

2. The pre-frame operator T is well defined on ℓ2 and

A
∞

∑
k=1

|ck|2 ≤ ∥T{ck}∞
k=1∥ ≤ B

∞

∑
k=1

|ck|2, ∀ {ck}∞
k=1 ∈ (KerT)⊥.
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1.2 Frames in Hilbert C∗-modules

First we recall the notion of C∗-algebra and Hilbert C∗ module.

Definition 1.6. A ∗-algebra A is an algebra with a ∗-structure.

∗ : A → A

1. (a + b)∗ = a∗ + b∗

2. (ab)∗ = b∗a∗

3. (αa)∗ = αa∗

4. (a∗)∗ = a (Involution), for all a, b ∈ A and any scalar α ∈ C.

Definition 1.7. A C∗-algebra is a ∗-unital subalgebra of B(H).

Definition 1.8. Let A be a C∗-algebra. An inner product A-module is a complex vector

space H such that

(i) H is a right A-module i.e there is a bilinear map

H×A → A : (x, a) → x · a

satisfying (x · a) · b = x · (ab) and (λx) · a = x · (λa), and x · 1 = x, where A has a

unit 1.

(ii) There is a map H×H → A : (x, y) → ⟨x, y⟩ satisfying

1. ⟨x, x⟩ ≥ 0

2. ⟨x, y⟩∗ = ⟨y, x⟩

3. ⟨ax, y⟩ = a⟨x, y⟩

4. ⟨x + y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩

5. ⟨x, x⟩ = 0 if and only if x = 0 (for every x, y, z ∈ H, a ∈ A).

Definition 1.9. A Hilbert C∗-module over A is an inner product A-module with the

property that (H, ∥ · ∥H) is complete with respect to the norm ∥x∥ = ∥⟨x, x⟩∥
1
2
A, where

∥.∥A denotes the norm on A.

Note that in Hilbert C∗-modules the Cauchy-Schwartz inequality is valid.

10



Proposition 1.2. Let H be a Hilbert C∗-module, and x, y ∈ H, then

∥⟨x, y⟩∥2 ≤ ∥⟨x, x⟩∥ · ∥⟨y, y⟩∥.

Let A be a C∗-algebra and consider

ℓ2(A) = {{aj}j∈J ∈ A : ∑
j∈J

aja∗j converges in ∥ · ∥A}.

It is easy to see that ℓ2(A) is a Hilbert C∗-module with point wise operations with

the inner product and norm defined as

⟨{aj}, {bj}⟩j∈J = ∑
j∈J

ajb∗j , {aj}, {bj} ∈ ℓ2(A)

and

∥{aj}∥j∈J =
√
∥∑

j∈J
aja∗j ∥.

Definition 1.10. ([41]) Let A be a unital C∗-algebra and j ∈ J be a finite or countable

index set. A sequence {ψj}j∈J of elements in a Hilbert A -module H is said to be a frame

if there exist two constants C, D > 0 such that

C⟨ f , f ⟩ ≤ ∑
j∈J

⟨ f , ψj⟩⟨ψj, f ⟩ ≤ D⟨ f , f ⟩, ∀ f ∈ H. (1.8)

The frame {ψj}j∈J is said to be a tight frame if C = D, and is said to be Parseval or a

normalized tight frame if C = D = 1.

Suppose that {ψj}j∈J is a frame of a finitely or countably generated Hilbert C∗-

module H over a unital C∗-algebra A. The operator T : H → ℓ2(A) defined by

T f = {⟨ f , ψj⟩}j∈J

is called the analysis operator.

The adjoint operator T∗ : ℓ2(A) → H is given by

T∗{cj}j∈J = ∑
j∈J

cjψj.

11



T∗ is called pre-frame operator or the synthesis operator.

By composing T and T∗, we obtain the frame operator S : H → H

S f = T∗T f = ∑
j∈J

⟨ f , ψj⟩ψj. (1.9)

Theorem 1.3. ([31]) Let A be a unital C∗-algebra, H be a finitely or countably generated

Hilbert A-module and {xj}j∈J be a Parseval frame (not necessarily standard orthonormal

basis) of H. Then the reconstruction formula

x = ∑
j∈J

⟨x, xj⟩xj

holds for every x ∈ H in the sense of convergence with respect to the topology that is

induced by the set of semi-norms {| f (⟨·, ·⟩)|1/2 : f ∈ A∗}. The sum converges always in

norm if and only if the frame {xj}j∈J is standard.

We now give an example of a frame in the Hilbert C∗-module.

Example 1.2. Let ℓ∞ be the unitary C∗-algebra of all bounded complex-valued sequences

with the following operations

uv = {ujvj}j∈J , u∗ = {uj}j∈j, , ∥u∥ = max
j∈J

|ui|, ∀ u = {uj}j∈J , v = {vj}j∈J ∈ ℓ∞

Let H = C0 be the set of all sequences converging to zero. Then C0 is a Hilbert ℓ∞-module

with ℓ∞-valued inner product

⟨u, v⟩ = uv∗ = {ujv∗j }j∈J = {ujvj}j∈J ∀ u, v ∈ C0.

We define {xj}j∈J ∈ C0 as follows:

{xj}j∈J = {e1, e2, e3, e4, e5, ...},

where {ej}j∈J be the standard orthonormal basis for H.

Let x = {α1, α2, α3, α4, α5, ...} ∈ H. Then ⟨x, x⟩ = {α1α∗1, α2α∗2, α3α∗3, α4α∗4, ....}. Here

partial ordering ′ ≤′ means pointwise comparision.
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Now, for the upper bound, we have

∑
j∈J

⟨x, xj⟩⟨xj, x⟩ = ⟨x, e1⟩⟨e1, x⟩+ ⟨x, e2⟩⟨e2, x⟩+ ⟨x, e3⟩⟨e3, x⟩+ ...

= {α1α∗1 , 0, 0, 0, 0, ...}+ {0, α2α∗2 , 0, 0, 0, ...}+ {0, 0, α3α∗3 , 0, 0, ...}+ ...

= {α1α∗1 , α2α∗2 , α3α∗3 , ...}

= ∑
j∈J

⟨x, ej⟩⟨ej, x⟩

= ⟨x, x⟩.

On the other hand, x can be written as x = ∑
j∈J

αjej. Thus, we have

⟨x, x⟩ =
〈
∑
j∈J

αjej, ∑
j∈J

αjej
〉

= ∑
j∈J

⟨x, xj⟩⟨xj, x⟩.

Hence {xj}j∈J is a Parseval or a normalized tight frame with frame bound 1.

Lemma 1.1. ([41]) Let {xj}j∈J be a Bessel sequence of a finitely or countably generated

Hilbert A-module H over a unital C∗-algebra A. Then the analysis operator T : H →

ℓ2(A) defined by

Tx = ∑
j∈J

⟨x, xj⟩ej

is adjointable and fulfills T∗ej = xj for all j.

We have the following equivalent definition for Bessel sequences in Hilbert C∗-

modules. The main advantage of an equivalent definition of frames in Hilbert

C∗-module is that it is much easier to compare the norms of two elements than to

compare two elements in C∗-algebras.

Lemma 1.2. ([41]) Let {xj}j∈J be a sequence of a finitely or countably generated Hilbert

A-module H over a unital C∗-algebra A. Then {xj}j∈J is a Bessel sequence with bound D

if and only if

∑
j∈J

⟨x, xj⟩⟨xj, x⟩ ≤ D∥x∥2

13



holds for all x ∈ H.

Proposition 1.3. ([41]) Let H be a finitely or countably generated Hilbert A-module H

over a unital C∗-algebra A and {xj}j∈J ⊆ H a sequence. Then {xj}j∈J is a frame of H

with bounds C and D if and only if

C∥x∥2 ≤ ∑
j∈J

⟨x, xj⟩⟨xj, x⟩ ≤ D∥x∥2

for all x ∈ H.

The following result characterizes Bessel sequences in terms of operators in Hilbert

C∗-modules.

Proposition 1.4. ([41]) Let {xj}j∈J be a sequence of a finitely or countably generated

Hilbert A-module H over a unital C∗-algebra A. Then {xj}j∈J is a Bessel sequence with

Bessel bound D if and only if the operator U : ℓ2(A) → H defined by

U{cj}j∈J = ∑
j∈J

cjxj

is a well-defined bounded operator from ℓ2(A) into H with ∥U∥ ≤
√

D.

The following result gives a necessary and sufficient perturbation theorem of

frames in a Hilbert C∗-module.

Theorem 1.4. ([41]) Suppose that H is a Hilbert C∗-module. Let {xj}j∈J be a frame for

H with frame bounds CX and DX and {yj}j∈J be a sequence of H. Then the following

statements are equivalent:

1. {yj}j∈J is a frame of H.

2. There is a constant M > 0 so that for all x ∈ H we have

∥∑
j∈J

⟨x, xj − yj⟩⟨xj − yj, x⟩∥ ≤ M∥∑
j∈J

⟨x, xj⟩⟨xj, x⟩∥

and

∥∑
j∈J

⟨x, xj − yj⟩⟨xj − yj, x⟩∥ ≤ M∥∑
j∈J

⟨x, yj⟩⟨yj, x⟩∥.

Moreover, if {yj}j∈J is a Bessel sequence, then (1) and (2) are equivalent to
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3. There exists a constant M > 0 so that

∥∑
j∈J

⟨x, xj − yj⟩⟨xj − yj, x⟩∥ ≤ M∥∑
j∈J

⟨x, yj⟩⟨yj, x⟩∥

holds for all x ∈ H.
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CHAPTER 2

Representation of frames as regular k-distance

sets

In this chapter, we introduce the concept of a regular k-distance frame in Hilbert

space. Here, we discuss various characteristics of regular k-distance sets and focus

on k-distance tight frames for the underlying space. We also discuss the dual

frames for regular k-distance sets and provide some examples. In the end, we

establish a perturbation result for regular k-distance frames.

2.1 Introduction and Preliminaries

Frames have shown to be very useful in a variety of applications. Regular two-

distance is a special type of category of the frame which has some nice properties.

Recently, authors make a deep study of regular two-distance sets [17].

Now we recall some basic definitions from the literature.

Definition 2.1. A set X ⊂ Rn is called a two-distance set if there are two numbers p and

q such that the distances between any pairs of points of X are either p or q.

A two distance set X is called a spherical two-distance set if it lies in the unit

sphere of Rn. To put in another way, a set of unit vectors X in the Euclidean

space Rn is a spherical two-distance set if there are two real numbers α and β,

−1 ≤ α, β ≤ 1 such that the inner product of any two vectors of X are either α or β.

We will say that α and β are the angles of X.

For a set of vectors X = {xi}m
i=1 in Rn, its Gram matrix G is the m×m matrix with en-
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tries Gij = ⟨xi, xj⟩ for i, j ∈ [m]([m] = {1, 2, 3, ..., m}, where m is any natural number).

G =



⟨x1, x1⟩ ⟨x1, x2⟩ ... ⟨x1, xm⟩

⟨x2, x1⟩ ⟨x2, x2⟩ ... ⟨x2, xm⟩

· · ·

· · ·

· · ·

⟨xm, x1⟩ ⟨xm, x2⟩ ... ⟨xm, xm⟩


.

Let X = {xi}m
i=1 be a spherical two-distance set in Rn at angle α and β. For each

i ∈ [m], we define the sets

Iα
i = {j ∈ [m] : ⟨xi, xj⟩ = α}, Iβ

i = {j ∈ [m] : ⟨xi, xj⟩ = β}. (2.1)

It is easy to see that |Iα
i |+ |Iβ

i | = m − 1 for all i ∈ [m].

Definition 2.2. [17] A spherical two-distance set X = {xi}m
i=1 in Rn at angles α and β

is said to be regular if the cardinality of the set Iα
i (and hence the set Iβ

i ) does not depend on

i. We call this number kα = |Iα
i |, and kβ = |Iβ

i |, the multiplicities of α and β, respectively.

Example 2.1. A pentagon is a regular two-distance set in R2.

Figure 1.1

The following theorem gives a simple characterization of regular two-distance sets.

Theorem 2.1 ([17]). A spherical two-distance set is regular if and only if its Gram matrix

has constant row sum.

With the help of frame potential, we deliver important characterization of tight

frames.
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Definition 2.3. Let X = {xi}m
i=1 be a collection of vectors in Rn. The frame potential for

X is the quantity

FP(X) =
m

∑
i=1

m

∑
j=1

|⟨xi, xj⟩|2. (2.2)

Theorem 2.2. [7] Let m ≥ n. If X = {xi}m
i=1 is any set of unit norm vectors in Rn, then

FP(X) ≥ m2

n
, (2.3)

and equality holds if and only if X is a tight frame.

Corollary 2.1. [17] Let X be a regular two-distance set of m vectors in Rn at angles α, β

with respective multiplicities kα, kβ. Then

1 + kαα2 + kββ2 ≥ m
n

, (2.4)

and equality holds if and only if X is a two-distance tight frame.

Definition 2.4. A set of vectors X = {xi}m
i=1 in Rn is said to be balanced if

m

∑
i=1

xi = 0.

Proposition 2.1. [17] A set X = {xi}m
i=1 is balanced if and only if each row sum of its

Gram matrix is zero.

2.2 Main Results

In this section, we undertake a deep study of k-distance sets and we investigate

the case where spherical k-distance sets form frames for the underlying spaces.

Definition 2.5. A set X in Euclidean space Rn is called a k-distance set if there are k

numbers a1, a2, ..., and ak such that the distances between any pairs of points of X are

either a1, or a2, ..., or ak.

Definition 2.6. A set of unit vectors in n-dimensional Euclidean space is a spherical k-

distance set if there are k real numbers α1, α2, ......, and αk, −1 ≤ α1, α2, ..., αk ≤ 1, αi ̸= αj

for i ̸= j such that the inner product of any two vectors of X are either α1 or α2, ......, or αk.

We will say that α1, α2, ......, and αk are the angles of X.
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Let X = {xi}m
i=1 be a spherical k-distance set in Rn at angle α1, α2, ......, and αk. For

each i ∈ [m], we define the sets

Iα1
i = {j ∈ [m] : ⟨xi, xj⟩ = α1}

Iα2
i = {j ∈ [m] : ⟨xi, xj⟩ = α2}

�

�

�

Iαk
i = {j ∈ [m] : ⟨xi, xj⟩ = αk}

It is clear that |Iα1
i |+ |Iα2

i |+ ... + |Iαk
i | = m − 1 for all i ∈ [m].

Generally, the cardinalities of these sets, Iα1
i , Iα2

i , ..., and Iαk
i , depending on i. When

they are independent with i, we say that the set is regular.

Definition 2.7. A spherical k-distance set X = {xi}m
i=1 in Rn at angles α1, α2, ..., and

αk is said to be regular if the cardinality of the set Iα1
i (and hence the set Iα2

i , ..., Iαk
i ) does

not depend on i. We call this number kα1 = |Iα1
i |, kα2 = |Iα2

i |, ..., and kαk = |Iαk
i |, the

multiplicities of α1, α2, ..., and αk, respectively.

For a regular k-distance set X, the sum of the entries in every row of its Gram

matrix is the same. We will call this common number the Grammian constant

(c) of X. This constant is always greater than or equal to zero and less than the

cardinality of X. When k-distance sets form frames and tight frames for the space,

we call them k-distance frames and k-distance tight frames, respectively.

Let {ϕj}j∈J be a regular k-distance frame of a Hilbert space H and J be an index

set, then we define the corresponding pre-frame operator, analysis operator, and

frame operator as follows.

The operator T : H → ℓ2 defined by

T f = {⟨ f , ϕj⟩}j∈J , ∀ f ∈ H
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is called the analysis operator. The adjoint operator T∗ : ℓ2 → H is given by

T∗{cj} = ∑
j∈J

cjϕj.

T∗ is called pre-frame operator or the synthesis operator. By composing T and T∗, we

obtain the frame operator S : H → H defined by

S f = T∗T f = ∑
j∈J

⟨ f , ϕj⟩ϕj, ∀ f ∈ H.

We now provide an example of a regular three-distance set.

Example 2.2. Insert a cube inside a sphere with radius 1. That is the corners of the cube

must touch the surface of the sphere. There are eight corner points.

X =
{( 1√

3
,

1√
3

,
1√
3

)
,
(−1√

3
,

1√
3

,
1√
3

)
,
( 1√

3
,
−1√

3
,

1√
3

)
,
( 1√

3
,

1√
3

,
−1√

3

)
,

(−1√
3

,
−1√

3
,

1√
3

)
,
(−1√

3
,

1√
3

,
−1√

3

)
,
( 1√

3
,
−1√

3
,
−1√

3

)
,
(−1√

3
,
−1√

3
,
−1√

3

)}
.

Here α =
1
3

, β =
−1
3

and γ = −1.

The Gram matrix G is

G =



1 1/3 1/3 1/3 −1/3 −1/3 −1/3 −1

1/3 1 −1/3 −1/3 1/3 −1 1/3 −1/3

1/3 −1/3 1 −1/3 1/3 1/3 −1 −1/3

1/3 −1/3 −1/3 1 −1 1/3 1/3 −1/3

−1/3 1/3 1/3 −1 1 −1/3 −1/3 1/3

−1/3 −1 1/3 1/3 −1/3 1 −1/3 1/3

−1/3 1/3 −1 1/3 −1/3 −1/3 1 1/3

−1 −1/3 −1/3 −1/3 1/3 1/3 1/3 1


Iα
1 = {⟨x1, x2⟩, ⟨x1, x3⟩, ⟨x1, x4⟩}, Iβ

1 = {⟨x1, x5⟩, ⟨x1, x6⟩, ⟨x1, x7⟩}, Iγ
1 = {⟨x1, x8⟩}

Iα
2 = {⟨x2, x1⟩, ⟨x2, x5⟩, ⟨x2, x7⟩}, Iβ

2 = {⟨x2, x3⟩, ⟨x2, x4⟩, ⟨x2, x8⟩}, Iγ
2 = {⟨x2, x6⟩}

Iα
3 = {⟨x3, x1⟩, ⟨x3, x5⟩, ⟨x3, x6⟩}, Iβ

3 = {⟨x3, x2⟩, ⟨x3, x4⟩, ⟨x3, x8⟩}, Iγ
3 = {⟨x3, x7⟩}

Iα
4 = {⟨x4, x1⟩, ⟨x4, x6⟩, ⟨x4, x7⟩}, Iβ

4 = {⟨x4, x2⟩, ⟨x4, x3⟩, ⟨x4, x8⟩}, Iγ
4 = {⟨x4, x5⟩}
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Iα
5 = {⟨x5, x2⟩, ⟨x5, x3⟩, ⟨x5, x8⟩}, Iβ

5 = {⟨x5, x1⟩, ⟨x5, x6⟩, ⟨x5, x7⟩}, Iγ
5 = {⟨x5, x4⟩}

Iα
6 = {⟨x6, x3⟩, ⟨x6, x4⟩, ⟨x6, x8⟩}, Iβ

6 = {⟨x6, x1⟩, ⟨x6, x5⟩, ⟨x6, x7⟩}, Iγ
6 = {⟨x6, x2⟩}

Iα
7 = {⟨x7, x2⟩, ⟨x7, x4⟩, ⟨x7, x8⟩}, Iβ

7 = {⟨x7, x1⟩, ⟨x7, x5⟩, ⟨x6, x1⟩}, Iγ
7 = {⟨x7, x3⟩}

Iα
8 = {⟨x8, x5⟩, ⟨x8, x6⟩, ⟨x8, x7⟩}, Iβ

6 = {⟨x8, x2⟩, ⟨x8, x3⟩, ⟨x8, x4⟩}, Iγ
8 = {⟨x8, x1⟩}

Here c = 0 and kα = 3, kβ = 3, kγ = 1.

We now introduce the definition of dual frames for regular k-distance set. To

reconstruct a vector from its frame coefficients, we require the notion of dual

frame.

Definition 2.8. Let {ϕj}j∈J be a regular k-distance frame. Then there is another regular

k-distance frame {ϕ̃j}j∈J ⊂ H, such that

{ϕ̃j} = (T∗T)−1ϕj = S−1ϕj, j ∈ J. (2.5)

The family {S−1ϕj}j∈J is also a regular k-distance frame for H, called the canonical

dual frame.

In general, a regular k-distance frame {ψj}j∈J ⊂ H is called alternate dual or simply

a dual for {ϕj}j∈J if

f = ∑
j∈J

⟨ f , ψj⟩ϕj, ∀ f ∈ H. (2.6)

Theorem 2.3. Suppose {ϕj}j∈J is a regular k-distance frame of a Hilbert space H, with

associated frame operator S = T∗T and frame bounds 0 < A ≤ B < ∞. Then the set

{ϕ̃j = (T∗T)−1ϕj = S−1ϕj} is another regular k-distance frame of H, with

1
B
∥ f ∥2 ≤ ∥T̃ f ∥2 ≤ 1

A
∥ f ∥2, ∀ f ∈ H.

The set {ϕ̃j} is called the canonical dual frame associated with the original regular k-

distance frame.

Proof. If {ϕ̃j} is to be a regular k-distance frame then there is some operator T̃
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satisfying

T̃ f = ⟨ f , ϕ̃j⟩ = ⟨ f , (T∗T)−1ϕj⟩.

(T∗T)−1 is the inverse of a bounded self-adjoint operator, so it is also self-adjoint,

and

(T̃ f )j = ⟨ f , (T∗T)−1ϕj⟩.

By definition this is the jth component of T(T∗T)−1. Thus,

T̃ = T(T∗T)−1.

We also have

T̃∗ = (T∗T)−1T∗.

and

∥T̃ f ∥2 = ⟨T̃∗T̃ f , f ⟩

= ⟨(T∗T)−1T∗T(T∗T)−1 f , f ⟩

= ⟨(T∗T)−1 f , f ⟩.

Let g = (T∗T)−1 f , so that

∥T̃ f ∥2 = ⟨(T∗T)−1 f , f ⟩

= ⟨g, T∗Tg⟩

= ⟨Tg, Tg⟩

= ∥Tg∥2.

Since {ϕj}j∈J is a regular k-distance frame for H, we have

A∥g∥2 ≤ ∥Tg∥2 ≤ B∥g∥2, g ∈ H.

22



After rearranging the above inequality, we get

1
B
∥Tg∥2 ≤ ∥g∥2 ≤ 1

A
∥Tg∥2.

Inserting g = (T∗T)−1 f back into this inequality, we have

1
B
∥T̃ f ∥2 ≤ ∥(T∗T)−1 f ∥2 ≤ 1

A
∥T̃ f ∥2 (∵ ∥T̃ f ∥2 = ∥Tg∥2).

This implies

1
B
⟨T̃ f , T̃ f ⟩ ≤ ∥S−1 f ∥2 ≤ 1

A
⟨T̃ f , T̃ f ⟩

1
B
⟨T̃∗T̃ f , f ⟩ ≤ ⟨(S−1)2 f , f ⟩ ≤ 1

A
⟨T̃∗T̃ f , f ⟩.

This gives us

1
B
⟨ f , f ⟩ ≤ ⟨S−1 f , f ⟩ ≤ 1

A
⟨ f , f ⟩.

If {ϕj}j∈J is a regular k-distance set with distances α1, α2, ..., and αk then by di-

rect computation, one can see that {ϕ̃j} is a regular k-distance set with distances

∥S−1∥α1, ∥S−1∥α2, ..., and ∥S−1∥αk. Also, {ϕ̃j} is a regular k-distance frame with

bound 0 <
1
B
≤ 1

A
≤ ∞ and S−1 = S̃ is the frame operator for a regular k-distance

frame {ϕ̃j} .

Example 2.3. The set X =
{(

0, 1
)
,
(
0,−1

)
,
(−1√

2
,

1√
2

)
,
( 1√

2
,
−1√

2

)}
is a regular three-

distance frame for R2.

The Gram matrix is given by

G =


1 −1 1/

√
2 −1/

√
2

−1 1 −1/
√

2 1/
√

2

1/
√

2 −1/
√

2 1 −1

−1/
√

2 1/
√

2 −1 1

 .

Here α =
1√
2

, β =
−1√

2
and γ = −1.
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The analysis operator is

T =


0 1

0 −1

−1/
√

2 1/
√

2

1/
√

2 −1/
√

2

 .

and the synthesis operator is given by

T∗ =

 0 0 −1/
√

2 1/
√

2

1 −1 1/
√

2 −1/
√

2

 .

The frame operator S = T∗T

S =

 1 −1

−1 3

 .

Here X is a regular three-distance frame with lower and upper bounds A = 0.58 and

B = 3.41, respectively.

Now

S−1 =

 3/2 1/2

1/2 1/2

 .

and

T̃ = TS−1 =


1/2 1/2

−1/2 −1/2

−1/
√

2 0

1/
√

2 0

 .

Therefore, the set Y =
{(1

2
,

1
2
)
,
(−1

2
,
−1
2

)
,
(−1√

2
, 0
)
,
( 1√

2
, 0
)}

is a canonical dual frame

of X with lower and upper frame bounds 0.3 and 1.7, respectively. Also, the set Y

is a regular three-distance set if we convert the set of vectors in Y to unit vectors as{( 1√
2

,
1√
2

)
,
(−1√

2
,
−1√

2

)
, (−1, 0), (1, 0)

}
. The Gram matrix for the canonical dual frame
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of X is as follows:

G̃ =


1 −1 −1/

√
2 1/

√
2

−1 1 1/
√

2 −1/
√

2

−1/
√

2 1/
√

2 1 −1

1/
√

2 −1/
√

2 −1 1

 .

Proposition 2.2. Let X = {xi}m
i=1 be a regular k-distance set of m vectors in Rn at angles

α1, α2, ..., and αk with respective multiplicities kα1 , kα2 , ..., and kαk . Then

1 + kα1α2
1 + kα2α2

2 + ... + kαk α2
k ≥

m
n

(2.7)

and equality holds if and only if X is a k-distance tight frame.

Proof. We know that

FP(X) ≥ m2

n
. (2.8)

Also,

FP(X) = m[kα1α2
1 + kα2α2

2 + ... + kαk α2
k + 1]. (2.9)

Using equation (2.8) and (2.9), we get

m[kα1α2
1 + kα2α2

2 + ... + kαk α2
k + 1] ≥ m2

n
[kα1α2

1 + kα2α2
2 + ... + kαk α2

k + 1] ≥ m
n

.

The equality part of the theorem holds true as we know that FP(X) =
m2

n
if and

only if X is a tight frame.

Tight frames are those frames in which the frame bounds are equal. For tight

frames, we do not require the inverse of a frame operator. They play a key role

in wide applications as tight frames look-like a more natural way to reconstruct

vectors. Tight frames are closest to orthonormal bases as they are redundant set of
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vectors and have properties like bases.

Theorem 2.4. Assume X = {xi}m
i=1 is a regular k-distance frame in Rn with angles α1,

α2, ..., and αk. Then the following are equivalent:

(1) X is a m/n-tight frame.

(2) For some J ⊂ [m] with span {xi}i∈J = Rn,

α1 ∑
j∈I

α1
i

xj + α2 ∑
j∈Iα2

i

xj + ... + αk ∑
j∈I

αk
i

xj =
(m

n
− 1

)
xi, for every i ∈ J.

Proof. First we assume that X = {xi}m
i=1 is a regular k-distance m/n-tight frame.

So, for any i ∈ [m], we deduce

m
n

xi =
m

∑
j=1

⟨xi, xj⟩xj

= ∑
j∈I

α1
i

⟨xi, xj⟩xj + ∑
j∈Iα2

i

⟨xi, xj⟩xj + ... + ∑
j∈I

αk
i

⟨xi, xj⟩xj + ⟨xi, xi⟩xi

= α1 ∑
j∈I

α1
i

xj + α2 ∑
j∈Iα2

i

xj + ... + αk ∑
j∈I

αk
i

xj + xi.

This implies

α1 ∑
j∈I

α1
i

xj + α2 ∑
j∈Iα2

i

xj + ... + αk ∑
j∈I

αk
i

xj =
(m

n
− 1

)
xi, for all i ∈ J.

for some J ⊂ [m] with span {xi}i∈J = Rn.

For the converse part, we have

α1 ∑
j∈I

α1
i

xj + α2 ∑
j∈Iα2

i

xj + ... + αk ∑
j∈I

αk
i

xj =
(m

n
− 1

)
xi, for every i ∈ J.

From this it follows that

m
n

xi =
m

∑
j=1

⟨xi, xj⟩xj

=⇒ m
n

xi = Sxi, for every i ∈ J,
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where S is the frame operator of X = {xi}m
i=1. Now Sx =

m
n

x, for every x ∈ Rn

follows from span{xi}i∈J = Rn. Therefore, X = {xi}m
i=1 is a m/n-tight frame.

The following theorem shows an approach to creating balanced, regular k-distance

sets in one lower dimension using a non-balanced set.

Theorem 2.5. Let X = {xi}m
i=1 be a regular k-distance set of distinct vectors in Rn with

its Grammian constant c. Let α1, α2, ..., and αk be its angles with multiplicities kα1 , kα2 , ...,

and kαk , respectively. Assume that X is not balanced and let P be the orthogonal projection

onto span{z}, where z =
m

∑
i=1

xi. Then Y =
{ (I − P)xi

∥(I − P)xi∥
}m

i=1 is a balanced, regular

k-distance set of distinct vectors in Rn−1 at angles
m

m − c
(α1 −

c
m
),

m
m − c

(α2 −
c
m
), ...,

and
m

m − c
(αk −

c
m
) with respective multiplicities kα1 , kα2 , ..., and kαk .

Proof. For every x ∈ Rn, we have that

Px =
〈

x,
z

∥z∥
〉 z
∥z∥ .

Now, we compute

∥z∥2 = ⟨
m

∑
j=1

xi,
m

∑
j=1

xj⟩ = mc,

and for all i,

∥(I − P)xi∥2 = ∥xi∥2 − ∥Pxi∥2

= ⟨xi, xi⟩ − ⟨Pxi, Pxi⟩

= 1 − 1
∥z∥2 |⟨xi, z⟩|2 (∵ X is a regular distance set)

= 1 − c2

mc

=
m − c

m
.
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If we set yi =
(I − P)xi

∥(I − P)xi∥
, then

⟨yi, yj⟩ =
m

m − c
(⟨xi, xj⟩ − ⟨Pxi, Pxj⟩)

=
m

m − c
(
⟨xi, xj⟩ −

1
∥z∥2 ⟨xi, z⟩⟨xj, z⟩

)
=

m
m − c

(
⟨xi, xj⟩ −

c2

∥z∥2

)
=

m
m − c

(
⟨xi, xj⟩ −

c
m
)
. (2.10)

This shows that Y is also regular k-distance set with the same multiplicities as of X

because X is regular k-distance set. One can easily see that the vectors in the set Y

are distinct since

m
m − c

(
⟨xi, xj⟩ −

c
m
)
= 1 if and only if ⟨xi, xj⟩ = 1.

Now, we compute the Grammian constant for the set Y. So, for any i (let’s say

i = 1), we have

m

∑
j=1

⟨y1, yj⟩

= ⟨y1, y1⟩+ ⟨y1, y2⟩+ · · ·+ ⟨y1, ym⟩

=
m

m − c

(
⟨x1, x1⟩ −

c
m

)
+

m
m − c

(
⟨x1, x2⟩ −

c
m

)
+ · · ·+ m

m − c

(
⟨x1, xm⟩ −

c
m

) (
Using (2.10)

)
=

m
m − c

[(
⟨x1, x1⟩ −

c
m

)
+

(
⟨x1, x2⟩ −

c
m

)
+ · · ·+

(
⟨x1, xm⟩ −

c
m

)]
=

m
m − c

[
⟨x1, x1⟩+ ⟨x1, x2⟩+ · · ·+ ⟨x1, xm⟩ − m

( c
m

)]
= 0

(
∵

m

∑
j=1

⟨x1, xj⟩ = c
)
.

This implies that Y is balanced set.

Proposition 2.3. Let X = {xi}m
i=1 be a k-distance tight frame for Rn at angles α1, α2, ...,

and αk. Also, αi ̸= −αj for i ̸= j and |Iα2
i |, ..., |Iαk

i | independent of i, then X is regular. In

addition to that the Grammian constant of X is either 0 or
m
n

.

Proof. By using second part of Theorem 2.4 , we have
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α1 ∑
j∈I

α1
i

xj + α2 ∑
j∈Iα2

i

xj + ... + αk ∑
j∈I

αk
i

xj = (
m
n
− 1)xi, ∀ i ∈ [m].

Now, by taking the inner product on both sides of above equation with xi, we get

|Iα1
i |α2

1 + |Iα2
i |α2

2 + · · ·+ |Iαk
i |α2

k =
m
n
− 1.

Using |Iα1
i |+ |Iα2

i |+ · · ·+ |Iαk
i | = m − 1 in the above equation, we have

|Iα1
i |α2

1 + |Iα2
i |α2

2 + · · ·+ |Iαk−1
i |α2

k−1 + (m − 1 − |Iα1
i | − |Iα2

i | − · · · − |Iαk−1
i |)α2

k =
m
n
− 1

=⇒ |Iα1
i |(α2

1 − α2
k) + |Iα2

i |(α2
2 − α2

k) + · · ·+ |Iαk−1
i |(α2

k−1 − α2
k) + (m − 1)α2

k =
m
n
− 1

Solving for |Iα1
i |, we get

|Iα1
i | =

(m
n − 1

)
+ (1 − m)α2

k + |Iα2
i |(α2

k − α2
2) + ... + |Iαk−1

i |(α2
k − α2

k−1)

α2
1 − α2

k

which is independent of i, if αi ̸= −αj for i ̸= j and |Iα2
i |, ..., |Iαk

i | independent of i.

Therefore X is regular.

Now we want to prove that the Grammian constant of X is either 0 or
m
n

. Since X

is a finite unit-norm tight frame for Rn, we can say that Gram matrix G of X has

one nonzero eigenvalue
m
n

of multiplicity n and an eigenvalue 0 of multiplicity

m − n i.e. G has only two eigenvalue
m
n

and 0.

For all i ∈ [m]

m

∑
j=1

⟨xi, xj⟩ =
m

∑
j=1

Gij = c.

Then we have

G1 = c1,

where 1 denote the vector of all 1’s. Also we observe that the row sum of the Gram

matrix G is an eigenvalue of G. This implies that the Grammian constant (c) of X

is either 0 or
m
n

.

Now the next result shows that there is a constraint on the cardinalities of the
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set Iα1
i , Iα2

i , · · ·, and Iαk
i if a regular k-distance set in Rn contains odd number of

elements.

Proposition 2.4. Let X = {xi}m
i=1 be a regular k-distance set in Rn at angles α1, α2, ...,

and αk with multiplicities kα1 , kα2 , ..., and kαk , respectively. Then kα1 , kα2 , ..., and kαk are

even if m is odd.

Proof. The Gram matrix G of X is defined by Gij = ⟨xi, xj⟩, 1 ≤ i, j ≤ m which is a

m × m self-adjoint (i.e. G = G∗) matrix. Now as we have X is a regular k-distance

set of m vectors in Rn, each row of G has exactly kα1 elements α1, kα2 elements α2,

..., and kαk elements αk. Also, we have

kα1 + kα2 + · · ·+ kαk = m − 1 =⇒ mkα1 + mkα2 + · · ·+ mkαk = m(m − 1).

If m is odd then m(m − 1) is an even number. This implies that mkα1 , mkα2 , ..., and

mkαk are even otherwise the Gram matrix of X would not be self-adjoint matrix

and hence we deduce that mkα1 , mkα2 , ..., and mkαk should be even and thus kα1 , kα2 ,

..., and kαk are even.

Lemma 2.1. Let X = {xi}m
i=1 be a regular k-distance tight frame for Rn at angles

α1, α2, ..., and αk with multiplicities kα1 , kα2 , ..., and kαk respectively. Then we have

1 + kα1α1 + kα2α2 + · · ·+ kαk αk = 0, or 1 + kα1α1 + kα2α2 + · · ·+ kαk αk =
m
n

,

and

1 + kα1α2
1 + kα2α2

2 + · · ·+ kαk α2
k =

m
n

.

Proof. One can refer ([17]).

Theorem 2.6. Let X = {xi}m
i=1 be a regular k-distance tight frame in Rn at angles

α1, α2, ..., and αk with multiplicities kα1 , kα2 , ..., and kαk respectively. Let G be the Gram

matrix of X with its Grammian constant c. Define a new matrix G
′

as

G
′
ij = β − Gij, for i ̸= j

= 1, for i = j
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where β =
−2

m − 1
if c = 0, and β =

2(m − n)
n(m − 1)

if c = m/n.

Then G
′

has the following characteristics:

(1) G
′

is a m × m self-adjoint matrix and each row has exactly kα1 elements β − α1, kα2

elements β − α2, ..., and kαk elements β − αk.

(2) G
′

has constant row sum. Indeed,

1 + kα1(β − α1) + kα2(β − α2) + · · ·+ kαk(β − αk) = 0 if β =
−2

m − 1
, and

1 + kα1(β − α1) + kα2(β − α2) + · · ·+ kαk(β − αk) = m/n if β =
2(m − n)
n(m − 1)

.

(3) It also possess 1 + kα1(β − α1)
2 + kα2(β − α2)

2 + · · ·+ kαk(β − αk)
2 = m/n for

both the values of β.

Proof. As we know G is a m × m self-adjoint matrix and each row has exactly kα1

elements α1, kα2 elements α2, ..., and kαk elements αk. So we can deduce (1) easily.

For (2), we first consider the case β =
−2

m − 1
.

By definition
m

∑
j=1

⟨xi, xj⟩ = c = 1 + kα1α1 + kα2α2 + · · ·+ kαk αk = 0.

Thus, we have

1 + kα1(β − α1) + kα2(β − α2) + ... + kαk(β − αk)

= 1 − (kα1α1 + kα2α2 + ... + kαk αk) + β(kα1 + kα2 + ... + kαk)

= 1 − (−1) + β(m − 1)

= 2 − (m − 1)
2

m − 1
= 0.

Now we consider the case for β =
2(m − n)
n(m − 1)

.

Again by definition, we have

m

∑
j=1

⟨xi, xj⟩ = c = 1 + kα1α1 + kα2α2 + · · ·+ kαk αk =
m
n

.
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So, we have

1 + kα1(β − α1) + kα2(β − α2) + ... + kαk(β − αk)

= 1 − (kα1α1 + kα2α2 + ... + kαk αk) + β(kα1 + kα2 + ... + kαk)

= 1 −
(m

n
− 1

)
+ β(m − 1)

= 1 −
(m

n
− 1

)
+ (m − 1)

[2(m − n)
n(m − 1)

]
= 2 − m

n
+

2(m − n)
n

=
2n − m + 2m − 2n

n
=

m
n

which is the required claim.

For (3), first we have β =
−2

m − 1
and c = 1 + kα1α1 + kα2α2 + · · ·+ kαk αk = 0

Thus,

1 + kα1(β − α1)
2 + kα2(β − α2)

2 + · · ·+ kαk(β − αk)
2

= 1 + (kα1α2
1 + kα2α2

2 + · · ·+ kαk α2
k)− 2β(kα1α1 + kα2α2 + · · ·+ kαk αk) + β2(m − 1)

= 1 +
(m

n
− 1

)
− 2β(−1) + β2(m − 1) (∵ 1 + kα1α2

1 + kα2α2
2 + · · ·+ kαk α2

k =
m
n
)

=
m
n
+ 2β + β2(m − 1)

=
m
n
+ 2

( −2
m − 1

)
+ (m − 1)

( −2
m − 1

)2

=
m
n

.

Similarly, for the case β =
2(m − n)
n(m − 1)

and c = 1 + kα1α1 + kα2α2 + · · ·+ kαk αk =
m
n

.
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We have,

1 + kα1(β − α1)
2 + kα2(β − α2)

2 + · · ·+ kαk(β − αk)
2

= 1 + (kα1α2
1 + kα2α2

2 + · · ·+ kαk α2
k)− 2β(kα1α1 + kα2α2 + · · ·+ kαk αk) + β2(m − 1)

= 1 +
(m

n
− 1

)
− 2β(

m
n
− 1) + β2(m − 1) (∵ 1 + kα1α2

1 + kα2α2
2 + · · ·+ kαk α2

k =
m
n
)

=
m
n
− 2β

(m − n
n

)
+ β2(m − 1)

=
m
n
− 2

(2(m − n)
n(m − 1)

)(m − n
n

)
+ (m − 1)

(2(m − n)
n(m − 1)

)2

=
m
n

which is the required claim.

Lemma 2.2. Let X = {xi}m
i=1 be a regular k-distance tight frame for Rn. Then G is the

Gram matrix of X if and only if it satisfies the following conditions:

(1) G2 =
m
n

G.

(2) Gii = 1 for all i.

(3) There exists α1, α2, ..., and αk such that Gij equals either α1, α2, ..., or αk, where αi ̸= αj

for i ̸= j.

Proof. First we assume that G is the Gram matrix of a regular k-distance tight frame

X = {xi}m
i=1 for Rn. As we know that X is a finite unit-norm tight frame for Rn,

we can say that Gram matrix G of X has only two eigenvalue
m
n

and 0. Therefore

G2 =
m
n

G holds true. Since all the vectors of X are unit norm thus for all i, Gii = 1.

Condition (3) also holds true because X is a regular k-distance set for Rn.

For the converse part, we assume that G satisfies conditions (1), (2) and (3) and we

want to prove that G is the Gram matrix of X.

From condition (1), we have G2 =
m
n

G. This implies G is positive semi-definite and

hence for some set of vectors G is the Gram matrix as G has only two eigenvalue
m
n

and 0.

Let
m
n

be an eigenvalue of G of multiplicity k as tr(G) = m > 0. Then we have,

tr(G) = m = k
m
n

.
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The above equation is only true when k = n and so this implies span{xj}m
j=1 = Rn,

where {xj}m
j=1 is set of vectors in Rn. This shows {xj}m

j=1 is a frame for Rn.

Now we present a method to select the vectors from Rn.

Let D be defined as

D =

m
n

I 0

0 0


which is a diagonal matrix of order m and I is the identity matrix of order n.

Then there exists an unitary matrix U of eigenvectors of G such that

G = UDU∗

=
[
U1 U2

] m
n

I 0

0 0

U∗
1

U∗
2

 =
m
n

U1U∗
1

where U1 and U2 are m × n and m × (m − n) submatrices of U whose columns are

eigenvectors of G with eigenvalues
m
n

and 0, respectively.

Now we choose the set of vectors to be the column of the n× n matrix X =

√
m
n

U∗
1 .

Since XX∗ =
m
n

U∗
1 U1 =

m
n

I, these set of vectors form a tight frame. And its Gram

matrix G satisfies condition (2) which implies that these set of vectors are unit

norm and (3) shows that it is a k-distance set. Thus, G is the Gram matrix of X.

Theorem 2.7. Let X be a regular k-distance tight frame of m vectors in Rn at angles

α1, α2, ..., and αk with multiplicities kα1 , kα2 , ..., and kαk respectively. Let G be its Gram

matrix and c be its Grammian constant. Let G′ be defined by

G
′
= (2 − γ)I + γJ − G,

where γ =
−2

m − 1
if c = 0, and γ =

2(m − n)
n(m − 1)

if c = m/n. Also, here I the identity

matrix, and J is the matrix whose all entries are 1.

Then we have the following:

(1) For γ =
−2

m − 1
, G

′
is the Gram matrix of a regular k-distance tight frame Y for Rn if

and only if m = 2n + 1.

(2) For γ =
2(m − n)
n(m − 1)

, G
′

is the Gram matrix of a regular k-distance tight frame Y for

Rn if and only if m = 2n − 1.
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In addition to that, the angles of Y are γ − α1 and γ − α2, ..., and γ − αk with the

same multiplicities of X, i.e., kα1 , kα2 , ..., kαk , respectively. Also, Y is a balanced set if

γ =
−2

m − 1
.

Proof. First, we will prove the result (1). By Lemma 2.2 and Theorem 2.6, it is

sufficient to find conditions for which G
′2 =

m
n

G
′
. Also, we observe that GJ =

JG = (1 + α1kα1 + α2kα2 + · · ·+ αkkαk)J = 0, G2 =
m
n

G and J2 = mJ.

Now, we deduce that

G
′2 = [(2 − γ)I + γJ − G]2

= (2 − γ)2I2 + γ2J2 + G2 + 2γ(2 − γ)J − 2(2 − γ)G − 2γJG

= (2 − γ)2I + γ2mJ +
m
n

G + 2γ(2 − γ)J − 2(2 − γ)G

= (2 − γ)2I + γ[γm + 2(2 − γ)]J − 2(2 − γ)G +
m
n

G

= (2 − γ)2I + γ(2 − γ)J − (2 − γ)
[
2 − m

n(2 − γ)

]
G

= (2 − γ)
[
(2 − γ)I + γJ − (2 − m

n(2 − γ)
)G

]
.

Therefore, G
′2 =

m
n

G
′

if and only if 2 − γ = m/n if and only if m = 2n + 1. The

moreover part follows from Theorem 2.6. In a similar way we can prove second

part of the theorem as well.

For proving the perturbation result for regular k-distance frame, we need the

following result which is given by Casazza and Christensen ([18]).

Theorem 2.8. Let X = {xj}j∈J be a frame for a Hilbert space H with frame bounds C and

D. Assume that {yj}j∈J is a sequence of H and that there exist λ1, λ2, µ ≥ 0 such that

max
{

λ1 +
µ√
C

, λ2
}
< 1. Suppose one of the following conditions holds for any finite

scalar sequence {cj}j∈J and every x ∈ H. Then {yj}j∈J is also a frame for H.

(i) (∑
j∈J

|⟨x, xj − yj⟩|2)1/2 ≤ λ1(∑
j∈J

|⟨x, xj⟩|2)1/2 + λ2(∑
j∈J

|⟨x, yj⟩|2)1/2 + µ∥x∥;

(ii) ∥
n

∑
j=1

cj(xj − yj)∥ ≤ λ1∥
n

∑
j=1

cjxj∥+ λ2∥
n

∑
j=1

cjyj∥+ µ(
n

∑
j=1

|cj|2)1/2.

Moreover, if {xj}j∈J is a Riesz basis for H and {yj}j∈J satisfies (ii), then {yj}j∈J is also a

Riesz basis for H.
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Theorem 2.9. Let X = {xj}j∈J be a regular k-distance frame for a Hilbert space H with

frame bounds C and D. Assume that {yj}j∈J is a sequence of H such that {yj}j∈J =

T{xj}j∈J where T is unitary, and that there exist λ1, λ2, µ ≥ 0 such that max
{

λ1 +
µ√
C

, λ2
}
< 1. Suppose one of the following conditions holds for any finite scalar sequence

{cj}j∈J and every x ∈ H. Then {yj}j∈J is also a regular k-distance frame for H.

(i) (∑
j∈J

|⟨x, xj − yj⟩|2)1/2 ≤ λ1(∑
j∈J

|⟨x, xj⟩|2)1/2 + λ2(∑
j∈J

|⟨x, yj⟩|2)1/2 + µ∥x∥;

(ii) ∥
n

∑
j=1

cj(xj − yj)∥ ≤ λ1∥
n

∑
j=1

cjxj∥+ λ2∥
n

∑
j=1

cjyj∥+ µ(
n

∑
j=1

|cj|2)1/2.

Proof. By using Theorem 2.8, we can say that {yj}j∈J is a frame for H if one of the

conditions holds for any finite scalar sequence {cj}j∈J and every x ∈ H. Since

{yj}j∈J = T{xj}j∈J where T is unitary, one can easily verify that {yj}j∈J is a regular

k-distance set as it is given that {xj}j∈J is a regular k-distance set. Thus, {yj}j∈J is

also a regular k-distance frame for H.

Example 2.4. Consider a regular three-distance frame as given

{xj}4
j=1 =

{
(0, 1), (0,−1),

(−1√
2

,
1√
2

)
,
( 1√

2
,
−1√

2

)}
with lower and upper bound C = 1 and D = 3, respectively. Now let

{yj}4
j=1 =

{( 1√
2

,
1√
2

)
,
(−1√

2
,
−1√

2

)
, (−1, 0), (1, 0)

}
and λ1 = 0.36, λ2 = 0.80 and µ = 0.

Then {yj}4
j=1 is a regular three-distance frame with lower and upper frame bound 0.6 and

3.4, respectively.

2.3 Conclusions

Frame theory in Hilbert space has emerged as a significant tool for immense

applications in science and engineering. In this chapter, we have introduced

the concept of a regular k-distance frame in Hilbert space. Here, we discussed

various characteristics of regular k-distance sets as well as focused on k-distance

tight frames for the underlying space. We also studied them from an operator
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theoretic approach and discussed the dual frames for regular k-distance sets and

provide some examples. In the end, we established a perturbation result for regular

k-distance frames.
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CHAPTER 3

Weaving g-frames in Hilbert C∗-modules

Woven frames are motivated by distributed signal processing with potential appli-

cations in wireless sensor networks. g-frames provide more choices for analyzing

functions from the frame expansion coefficients. This chapter aims to introduce wo-

ven g-frames in Hilbert C∗-modules, and to develop their fundamental properties.

In this investigation, we establish sufficient conditions under which two g-frames

possess the weaving properties. We also investigate the sufficient conditions under

which a family of g-frames possesses weaving properties.

3.1 Introduction and Preliminaries

Sun [53] introduced the concept of g-frame or generalized frames in Hilbert spaces.

A. Khosravi and B. Khosravi [45] defined g-frame in Hilbert C∗-module. Weaving

frames are powerful tools in wireless sensor networks and pre-processing signals.

Bemrose et al. [6] introduced weaving frames in Hilbert space, and fundamental

properties of woven frames were developed.

Now we recall some basic definitions from the literature.

Let X and Y be separable Hilbert spaces, and {Yj : j ∈ J} be a sequence of closed

subspaces of Y. Let L(X, Yj) be the collection of all bounded linear operators from

X into Y.

Definition 3.1. [53] We call a sequence {Λj ∈ L(X, Yj) : j ∈ J} a generalized frame, or

simply a g-frame, for X with respect to {Yj : j ∈ J} if there are two positive constants A
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and B such that

A∥x∥2 ≤ ∑
j∈J

∥Λjx∥2 ≤ B∥x∥2, ∀ x ∈ X. (3.1)

Definition 3.2. [6] Let I be a countable indexing set. A family of frames {{ϕij}j∈I : i ∈

[m]} for H is said to be woven, if there are universal constants A and B such that for every

partition {σi}i∈[m] of I, the family
⋃

i∈[m]

{ϕij}j∈σi is a frame for H with frame bounds A

and B.

Definition 3.3. [47] A family of g-frames {Λij}i∈I,j∈[m] for a Hilbert space H is said to

be woven if there are universal constants A and B so that for every partition {σj}j∈[m] of I,

the family {Λij}i∈σj,j∈[m] is a g-frame for H with lower and upper frame bounds A and B,

respectively.

Let U and V be finitely or countably generated Hilbert A-modules, and {Vi : i ∈ I}

be a sequence of closed Hilbert submodules of V . Let End∗A(U ,Vi) be the collection

of all adjointable A-linear maps from U to Vi.

Definition 3.4. [45] A sequence {Λi ∈ End∗A(U ,Vi) : i ∈ I} is called a g-frame or a

generalized frame in U with respect to {Vi : i ∈ I} if there exist constants C, D > 0 such

that for every f ∈ U ,

C⟨ f , f ⟩ ≤ ∑
i∈I

⟨Λi f , Λi f ⟩ ≤ D⟨ f , f ⟩. (3.2)

Definition 3.5. [34] A family {{Λij}i∈I}j∈J of frames for H is called woven if there exist

universal constants 0 < A < B < ∞ such that for every partition {σj}j∈J of I, the family

{{Λij}i∈I}j∈J is a frame for H with lower and upper frame bounds A and B, respectively.

Each family {{Λij}i∈σi}j∈J is called a weaving.

We now give an example of woven frames in Hilbert C∗-module.

Example 3.1. Let ℓ∞ be the unitary C∗-algebra of all bounded complex-valued sequences

with the following operations

uv = {uivi}i∈N, u∗ = {ui}i∈N, ∀ u = {ui}i∈N, v = {vi}i∈N ∈ ℓ∞.
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Let H = C0 be the set of all sequences converging to zero. Then C0 is a Hilbert ℓ∞-module

with ℓ∞-valued inner product

⟨u, v⟩ = uv∗ = {uiv∗i }i∈N = {uivi}i∈N ∀ u, v ∈ C0

Let J = N and we define Λ = {Λ1j}∞
j=1 ∈ H and Γ = {Λ2j}∞

j=1 ∈ H as follows:

{Λ1j}∞
j=1 = {e1, e2, 0, e3, 0, e4, 0, e5, ...}

{Λ2j}∞
j=1 = {0, e2, e2, e3, e3, e4, e4, e5, e5, ...}

where {ej}∞
j=1 be the standard orthonormal basis for H.

Let f = {α1, α2, α3, α4, α5, ...} ∈ H. Then ⟨ f , f ⟩ = {α1α∗1, α2α∗2, α3α∗3, α4α∗4, ....}. Here

partial ordering ′ ≤′ means pointwise comparision.

For any subset σ of N, we have

∑
j∈σ

⟨ f , Λ1j⟩⟨Λ1j, f ⟩+ ∑
j∈σc

⟨ f , Λ2j⟩⟨Λ2j, f ⟩ ≤ 2
∞

∑
j=1

⟨ f , ej⟩⟨ej, f ⟩ = 2⟨ f , f ⟩.

On the other hand, let f ∈ H. Then we have

⟨ f , f ⟩ =
∞

∑
j=1

⟨ f , ej⟩⟨ej, f ⟩

≤ ∑
j∈σ

⟨ f , Λ1j⟩⟨Λ1j, f ⟩+ ∑
j∈σc

⟨ f , Λ2j⟩⟨Λ2j, f ⟩.

Hence Λ and Γ are woven frames with universal lower and upper frame bounds 1 and 2,

respectively.

3.2 Main Results

The above literature motivates us to introduce the notion of weaving g-frames in

Hilbert C∗-modules.

Definition 3.6. Two g-frames Λ = {Λi}i∈I and Γ = {Γi}i∈I for U are said to be g-woven

if there exist universal positive constants A and B such that for any partition σ of I = N,
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the family {Λi}i∈σ
⋃{Γi}i∈σc is a g-frame for U with lower and upper g-frame bounds A

and B, respectively i.e.

A⟨ f , f ⟩ ≤ ∑
i∈σ

⟨Λi f , Λi f ⟩+ ∑
i∈σc

⟨Γi f , Γi f ⟩ ≤ B⟨ f , f ⟩, ∀ f ∈ U .

Definition 3.7. A family of g-frames {{Λij}∞
j=1 : i ∈ I} for U with respect to {Vi : i ∈ I}

is said to be g-woven if there exist universal positive constants A and B such that for any

partition {σi}i∈I of N, the family
⋃
i∈I

{Λij}j∈σi is a g-frame for U with lower and upper

g-frame bounds A and B, respectively.

Let {Vi : i ∈ I} be a sequence of Hilbert A-modules, we define the space

⊕
i∈I

Vi = {{cij}j∈σi,i∈I : cij ∈ Vi and ∑
j∈σi,i∈I

⟨cij, cij⟩is norm convergent in A}

with the inner product defined by

⟨{cij}, {dij}⟩i∈I,j∈σi = ∑
i∈I

∑
j∈σi

⟨cij, dij⟩.

Associated with a woven g-frame {{Λij}∞
j=1 : i ∈ I}, we define the analysis,

synthesis, and frame operator as follows:

The operator T : U →
⊕
i∈I

Vi defined by

T f = {Λij f }i∈I,j∈σi

is called the analysis operator.

The synthesis operator T∗ :
⊕
i∈I

Vi → U is given by

T∗{cij}i∈I,j∈σi = ∑
i∈I

∑
j∈σi

Λ∗
ijcij.
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By composing T and T∗, we obtain the frame operator S : U → U as

S f = T∗T f

= ∑
i∈I

∑
j∈σi

Λ∗
ijΛij f ,

where Λ∗
ij is the adjoint operator of Λij.

Proposition 3.1. Let {{Λij}∞
j=1 : i ∈ I} be g- woven frame for U with universal bounds

A and B. Then the frame operator S is self adjoint, positive, bounded and invertible on U .

Proof. Since S∗ = (T∗T)∗ = T∗T = S, the frame operator S is self adjoint.

Let {{Λij}∞
j=1 : i ∈ I} be woven g-frame for U with universal lower and upper

frame bounds A and B, respectively.

Let f ∈ U and S f = ∑
i∈I

∑
j∈σi

Λ∗
ijΛij f then

⟨S f , f ⟩ =
〈
∑
i∈I

∑
j∈σi

Λ∗
ijΛij f , f

〉
= ∑

i∈I
∑
j∈σi

⟨Λij f , Λij f ⟩.

=⇒ A⟨ f , f ⟩ ≤ ⟨S f , f ⟩ ≤ B⟨ f , f ⟩

=⇒ AI ≤ S ≤ BI.

Therefore, the frame operator S is positive, bounded and invertible.

Theorem 3.1. Let {{Λij}∞
j=1 : i ∈ I} be a g-Bessel sequence for U with respect to

{Vi : i ∈ I} and with g-Bessel bounds Bj. Then, every weaving is a g-Bessel sequence

with bound
m

∑
j=1

Bj.

Proof. Let {σj}j∈J be any partition of I. Then for every f ∈ H, we have

m

∑
j=1

∑
i∈σj

⟨Λij f , Λij f ⟩ ≤
m

∑
j=1

∑
i∈I

⟨Λij f , Λij f ⟩

≤
m

∑
j=1

Bj⟨ f , f ⟩.
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Proposition 3.2. Let Λ = {Λi}i∈N and Γ = {Γi}i∈N be g-Bessel sequences in U

with respect to {Vi : i ∈ N} with g-Bessel bounds B1, B2, respectively. If J ⊂ N, and

ΛJ ≡ {Λj}j∈J and ΓJ ≡ {Γj}j∈J are woven g-frames, then Λ and Γ are woven g-frames

for U .

Proof. Let A be lower g-frame bound for ΛJ and ΓJ , and let σ ⊂ N be an arbitrary

subset. Then,

A⟨ f , f ⟩ ≤ ∑
j∈σ∩J

⟨Λj f , Λj f ⟩+ ∑
j∈σc∩J

⟨Γj f , Γj f ⟩

≤ ∑
j∈σ

⟨Λj f , Λj f ⟩+ ∑
j∈σc

⟨Γj f , Γj f ⟩

≤ (B1 + B2)⟨ f , f ⟩.

Hence, Λ and Γ are woven g-frames for U .

Theorem 3.2. Let Λ = {Λi}i∈N and Γ = {Γi}i∈N be g-woven frame for U with respect

to {Vi : i ∈ I} with universal g-frame bounds A and B. If J ⊂ N and

∑
j∈J

⟨Λj f , Λj f ⟩ ≤ D⟨ f , f ⟩

for all f ∈ U and for some 0 < D < A, then Λ0 ≡ {Λi}i∈N\J and Γ0 ≡ {Γi}i∈N\J are

g-woven frames for U with universal g-frame bounds A − D and B.

Proof. Let σ be any subset of N\J. We compute

∑
j∈σ

⟨Λj f , Λj f ⟩+ ∑
j∈(N\J)\σ

⟨Γj f , Γj f ⟩

=
(

∑
j∈σ

⋃
J
⟨Λj f , Λj f ⟩ − ∑

j∈J
⟨Λj f , Λj f ⟩

)
+ ∑

j∈(N\J)\σ

⟨Γj f , Γj f ⟩

=
(

∑
j∈σ

⋃
J
⟨Λj f , Λj f ⟩+ ∑

j∈(N\J)\σ

⟨Γj f , Γj f ⟩
)
− ∑

j∈J
⟨Λj f , Λj f ⟩

≥ (A − D)⟨ f , f ⟩.
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On the other hand, for all f ∈ U , we have

∑
j∈σ

⟨Λj f , Λj f ⟩+ ∑
j∈(N\J)\σ

⟨Γj f , Γj f ⟩ ≤ ∑
j∈σ

⋃
J
⟨Λj f , Λj f ⟩+ ∑

j∈(N\J)\σ

⟨Γj f , Γj f ⟩

≤ B⟨ f , f ⟩.

Hence, Λ0 and Γ0 are g-woven frames for U with the universal lower and upper

g-frame bounds A − D and B, respectively.

We require the following lemmas to prove our results.

Lemma 3.1. [1] Let A be a C∗-algebra. Let U and V be two Hilbert A-modules and

T ∈ End∗A(U ,V). Then the following statements are equivalent:

1. T is surjective.

2. T∗ is bounded below with respect to norm i.e there exists m > 0 such that ∥T∗ f ∥ ≥

m∥ f ∥ for all f ∈ U .

3. T∗ is bounded below with respect to inner product i.e there exists m > 0 such that

⟨T∗ f , T∗ f ⟩ ≥ m⟨ f , f ⟩ for all f ∈ U .

Lemma 3.2. [50] Let U and V be Hilbert A-modules over a C∗-algebra A and let T :

U → V be a linear map. Then the following conditions are equivalent:

1. The operator T is bounded and A-linear.

2. There exists k ≥ 0 such that ⟨Tx, Tx⟩ ≤ k⟨x, x⟩ holds for all x ∈ U .

Theorem 3.3. Let Λ = {Λi}i∈N and Γ = {Γi}i∈N be a family of g-frame for U with

respect to {Vi : i ∈ N}. Then for every partition σ of N, Λ and Γ are g-woven frames for

U with the universal lower and upper g-frame bounds A and B, respectively if and only if

A∥⟨ f , f ⟩∥ ≤ ∥ ∑
i∈σ

⟨Λi f , Λi f ⟩+ ∑
i∈σc

⟨Γi f , Γi f ⟩∥ ≤ B∥⟨ f , f ⟩∥

for all f ∈ U .
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Proof. ( =⇒ ) Obvious.

Now we assume that there exist constants 0 < A, B < ∞ such that for all f ∈ U

A∥⟨ f , f ⟩∥ ≤ ∥ ∑
i∈σ

⟨Λi f , Λi f ⟩+ ∑
i∈σc

⟨Γi f , Γi f ⟩∥ ≤ B∥⟨ f , f ⟩∥. (3.3)

We prove that Λ and Γ are g-woven frames for U with the universal lower and

upper g-frame bounds A and B, respectively.

As S is positive, self adjoint and invertible operator. We have

⟨S 1
2 f , S

1
2 f ⟩ = ⟨S f , f ⟩ = ∑

i∈σ

⟨Λi f , Λi f ⟩+ ∑
i∈σc

⟨Γi f , Γi f ⟩.

From equation (3.3), we have

√
A∥ f ∥ ≤ ∥S

1
2 f ∥ ≤

√
B∥ f ∥.

By using Lemma 3.1, we have

⟨S 1
2 f , S

1
2 f ⟩ = ⟨S f , f ⟩ ≥ A⟨ f , f ⟩.

Since S
1
2 is bounded and A-linear, by using Lemma 3.2, we have

⟨S 1
2 f , S

1
2 f ⟩ = ⟨S f , f ⟩ ≤ B⟨ f , f ⟩.

From the above two inequalities we conclude that Λ and Γ are g-woven frames for

U with the universal lower and upper g-frame bounds A and B, respectively.

Theorem 3.4. Let Λ = {Λi}i∈N and Γ = {Γi}i∈N be g-frame for U with respect to

{Vi : i ∈ N} with g-frame bounds A1, B1 and A2, B2, respectively. Assume that there are

constants 0 < λ1, λ2, µ < 1 such that

λ1
√

B1 + λ2
√

B2 + µ ≤ A1

2(
√

B1 +
√

B2)
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and

∥ ∑
i∈N

⟨(Λ∗
i − Γ∗

i ) fi, (Λ∗
i − Γ∗

i ) fi⟩∥
1
2

≤ λ1∥ ∑
i∈N

⟨Λ∗
i fi, Λ∗

i fi⟩∥
1
2 + λ2∥ ∑

i∈N
⟨Γ∗

i fi, Γ∗
i fi⟩∥

1
2 + µ∥⟨{ fi}, { fi}⟩∥

1
2 (3.4)

for all { fi}i∈N ∈
( ⊕

i∈N
Vi
)
. Then, Λ and Γ are g-woven frames with universal lower and

upper g-frame bounds
A1

2
, B1 + B2, respectively.

Proof. Let T and R be the synthesis operator for the frames {Λi}i∈N and {Γi}i∈N,

respectively defined as follows T :
⊕
i∈N

Vi → U is given by

T{ fi} = ∑
i∈N

Λ∗
i fi

and R :
⊕
i∈N

Vi → U is given by

R{ fi} = ∑
i∈N

Γ∗
i fi

For each σ ⊂ N, define bounded operators

Tσ, Rσ : (
⊕
i∈N

Vi) → U

Tσ({ fi}) = ∑
i∈σ

Λ∗
i fi and Rσ({ fi}) = ∑

i∈σ

Γ∗
i fi.

We note that ∥Tσ∥ ≤ ∥T∥, ∥Rσ∥ ≤ ∥R∥ and ∥Tσ − Rσ∥ ≤ ∥T − R∥.

As we know ∥ f ∥2 = ∥⟨ f , f ⟩∥, ∀ f ∈ U and using equation (3.4), we have

λ1∥T({ fi}i∈N)∥+ λ2∥R({ fi}i∈N)∥+ µ∥{ fi}i∈N∥ ≥ ∥ ∑
i∈N

⟨(Λ∗
i − Γ∗

i ) fi, (Λ∗
i − Γ∗

i ) fi⟩∥
1
2

= ∥(T − R)({ fi}i∈N)∥

This gives ∥T − R∥ ≤ λ1∥T∥+ λ2∥R∥+ µ.
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Using this, for any σ ⊂ N, we compute

∥ ∑
i∈σ

Λ∗
i Λi f − ∑

i∈σ

Γ∗
i Γi f ∥ = ∥Tσ({Λi f )}i∈σ − Rσ({Γi f )}i∈σ∥

= ∥TσT∗
σ f − RσR∗

σ f ∥

= ∥TσT∗
σ f − TσR∗

σ f + TσR∗
σ f − RσR∗

σ f ∥

≤ ∥(TσT∗
σ − TσR∗

σ) f ∥+ ∥(TσR∗
σ − RσR∗

σ) f ∥

≤ ∥Tσ∥∥T∗
σ − R∗

σ∥∥ f ∥+ ∥Tσ − Rσ∥∥R∗
σ∥∥ f ∥

≤ ∥T∥∥T − R∥∥ f ∥+ ∥T − R∥∥R∥∥ f ∥

≤ (λ1∥T∥+ λ2∥R∥+ µ)(∥T∥+ ∥R∥)∥ f ∥

≤ (λ1∥T∥+ λ2∥R∥+ µ)(
√

B1 +
√

B2)∥ f ∥

<
A1

2(
√

B1 +
√

B2)
(
√

B1 +
√

B2)∥ f ∥

=
A1

2
∥ f ∥. (3.5)

Now, by using equation (3.5), it follows that

∥ ∑
i∈σc

Λ∗
i Λi f + ∑

i∈σ

Γ∗
i Γi f ∥ = ∥ ∑

i∈σc
Λ∗

i Λi f + ∑
i∈σ

Λ∗
i Λi f − ∑

i∈σ

Λ∗
i Λi f + ∑

i∈σ

Γ∗
i Γi f ∥

= ∥ ∑
i∈N

Λ∗
i Λi f + ∑

i∈σ

Γ∗
i Γi f − ∑

i∈σ

Λ∗
i Λi f ∥

≥ ∥ ∑
i∈N

Λ∗
i Λi f ∥ − ∥ ∑

i∈σ

Λ∗
i Λi f − ∑

i∈σ

Γ∗
i Γi f ∥

≥ A1∥ f ∥ − ∥ ∑
i∈σ

Λ∗
i Λi f − ∑

i∈σ

Γ∗
i Γi f ∥

≥ A1∥ f ∥ − A1

2
∥ f ∥

=
A1

2
∥ f ∥.

This gives universal lower g-frame bound. By using Theorem 3.1, we get B1 + B2

as universal upper g-frame bound. Hence, Λ and Γ are g-woven frames with

universal lower and upper g-frame bounds
A1

2
, B1 + B2, respectively. .

Theorem 3.5. Let Λ = {Λi}i∈N and Γ = {Γi}i∈N be g-frame for U with respect to

{Vi : i ∈ N} with g-frame bounds A1, B1 and A2, B2, respectively. Assume that there are
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constants 0 < λ, µ, γ < 1 such that

λB1 + µB2 + γ < A1

and

∥ ∑
i∈σ

⟨(Λ∗
i Λi − Γ∗

i Γi) f , (Λ∗
i Λi − Γ∗

i Γi) f ⟩∥ 1
2

≤ λ∥ ∑
i∈σ

⟨Λ∗
i Λi f , Λ∗

i Λi f ⟩∥ 1
2 + µ∥ ∑

i∈σ

⟨Γ∗
i Γi f , Γ∗

i Γi f ⟩∥ 1
2 + γ(∑

i∈σ

∥Λi f ∥2)
1
2 (3.6)

for all f ∈ U and for every σ ⊂ N. Then, Λ and Γ are g-woven frames with universal

g-frame bounds (A1 − λB1 − µB2 − γ
√

B1) and (B1 + λB1 + µB2 + γ
√

B1).

Proof. For any σ ⊂ N, we use the fact that for f ∈ U ,

∥ ∑
i∈σ

Λ∗
i Λi f ∥ ≤ B1∥ f ∥ and ∥ ∑

i∈σ

Γ∗
i Γi f ∥ ≤ B2∥ f ∥

and as we know that ∥ f ∥2 = ∥⟨ f , f ⟩∥, ∀ f ∈ U , (3.6) implies

∥ ∑
i∈σ

(Λ∗
i Λi − Γ∗

i Γi) f ∥ ≤ λ∥ ∑
i∈σ

Λ∗
i Λi f ∥+ µ∥ ∑

i∈σ

Γ∗
i Γi f ∥

+ γ(∑
i∈σ

∥Λi f ∥2)
1
2 (3.7)

We compute

∥ ∑
i∈σc

Λ∗
i Λi + ∑

i∈σ

Γ∗
i Γi f ∥ = ∥ ∑

i∈N
Λ∗

i Λi + ∑
i∈σ

Γ∗
i Γi f − ∑

i∈σ

Λ∗
i Λi f ∥

≥ ∥ ∑
i∈N

Λ∗
i Λi f ∥ − ∥ ∑

i∈σ

Γ∗
i Γi f − ∑

i∈σ

Λ∗
i Λi f ∥

≥ A1∥ f ∥ − ∥ ∑
i∈σ

Γ∗
i Γi f − ∑

i∈σ

Λ∗
i Λi f ∥

≥ A1∥ f ∥ − λ∥ ∑
i∈σ

Λ∗
i Λi f ∥ − µ∥ ∑

i∈σ

Γ∗
i Γi f ∥ − γ(∑

i∈σ

∥Λi f ∥2)
1
2

≥ (A1 − λB1 − µB2 − γ
√

B1)∥ f ∥
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and

∥ ∑
i∈σc

Λ∗
i Λi f + ∑

i∈σ

Γ∗
i Γi f ∥ = ∥ ∑

i∈N
Λ∗

i Λi f + ∑
i∈σ

Γ∗
i Γi f − ∑

i∈σ

Λ∗
i Λi f ∥

≤ ∥ ∑
i∈N

Λ∗
i Λi f ∥+ ∥ ∑

i∈σ

Γ∗
i Γi f − ∑

i∈σ

Λ∗
i Λi f ∥

≤ B1∥ f ∥+ λ∥ ∑
i∈σ

Λ∗
i Λi f ∥+ µ∥ ∑

i∈σ

Γ∗
i Γi f ∥+ γ(∑

i∈σ

∥Λi f ∥2)
1
2

≤ (B1 + λB1 + µB2 + γ
√

B1)∥ f ∥.

Therefore, Λ and Γ are g-woven frames with the universal lower and upper bounds

(A1 − λB1 − µB2 − γ
√

B1) and (B1 + λB1 + µB2 + γ
√

B1), respectively.

Theorem 3.6. For i ∈ I, let Λi = {Λij}j∈J be a family of g-frame for U with respect

to {Vi : i ∈ I} with bounds Ai and Bi. For any σ ⊂ J and a fix t ∈ I, let Pσ
i ( f ) =

∑
j∈σ

Λ∗
ijΛij f − ∑

j∈σ

Λ∗
tjΛtj f for i ̸= t. If Pσ

i is a positive linear operator, then the family of

g-frames {Λi}i∈I is g-woven.

Proof. Let {σi}i∈I be any partition of J. Then, for every f ∈ U , a fix t ∈ I and j ∈ σi,

we have

∑
j∈σi

⟨Λ∗
tjΛtj f , f ⟩ = ∑

j∈σi

〈
Λ∗

ijΛij f − Pσ
i ( f ), f

〉
≤ ∑

j∈σi

〈
Λ∗

ijΛij f , f
〉

(As Pσ
i is a positive linear operator )(3.8)

Now,

At⟨ f , f ⟩ ≤ ∑
j∈J

⟨Λ∗
ijΛij f , f ⟩

= ∑
j∈σ1

⟨Λ∗
tjΛtj f , f ⟩+ ... + ∑

j∈σi

⟨Λ∗
tjΛtj f , f ⟩+ ... + ∑

j∈σm

⟨Λ∗
tjΛtj f , f ⟩

≤ ∑
j∈σ1

⟨Λ∗
1jΛ1j f , f ⟩+ ... + ∑

j∈σi

⟨Λ∗
ijΛij f , f ⟩+ ... + ∑

j∈σm

⟨Λ∗
mjΛmj f , f ⟩ (Using (3.8))

≤ (B1 + ... + Bi + ... + Bm)⟨ f , f ⟩

= ∑
i∈I

Bi⟨ f , f ⟩
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which implies

At⟨ f , f ⟩ ≤ ∑
i∈I

∑
j∈σi

⟨Λ∗
ijΛij f , f ⟩ ≤ ∑

i∈I
Bi⟨ f , f ⟩.

Theorem 3.7. For each j ∈ [m], let Λi = {Λij}i∈I be a family of g-frame for U with

bounds Aj and Bj. Suppose there exists K > 0 such that

∑
i∈J

∥⟨(Λij − Λil) f , (Λij − Λil) f ⟩∥ ≤ K min
{

∑
i∈J

∥⟨Λij f , Λij f ⟩∥, ∑
i∈J

∥⟨Λil f , Λil f ⟩∥
}

,

(j, l ∈ [m], j ̸= l)

for all f ∈ U and for all subsets J ⊂ I. Then the family of g-frames {{Λij}i∈I : j ∈ [m]}

is woven with universal frame bounds

∑
j∈[m]

Aj

2(m − 1)(K + 1) + 1
and ∑

j∈[m]

Bj.
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Proof. Let {σj}j∈[m] be any partition of I. For the lower frame inequality, we have‘

∑
j∈[m]

Aj∥⟨ f , f ⟩∥

= A1∥⟨ f , f ⟩∥+ ... + Am∥⟨ f , f ⟩∥

≤ ∑
i∈I

∥⟨Λi1 f , Λi1 f ⟩∥+ ... + ∑
i∈I

∥⟨Λim f , Λim f ⟩∥

=
(

∑
i∈σ1

∥⟨Λi1 f , Λi1 f ⟩∥+ ... + ∑
i∈σm

∥⟨Λi1 f , Λi1 f ⟩∥
)
+ ...

+
(

∑
i∈σ1

∥⟨Λim f , Λim f ⟩∥+ ... + ∑
i∈σm

∥⟨Λim f , Λim f ⟩∥
)

≤
[

∑
i∈σ1

∥⟨Λi1 f , Λi1 f ⟩∥+ 2
(

∑
i∈σ2

∥⟨(Λi1 − Λi2) f , (Λi1 − Λi2) f ⟩∥+ ∑
i∈σ2

∥⟨Λi2 f , Λi2 f ⟩∥
)
+ ...

+2
(

∑
i∈σm

∥⟨(Λi1 − Λim) f , (Λi1 − Λim) f ⟩∥+ ∑
i∈σm

∥⟨Λim f , Λim f ⟩∥
)]

+ ...

+
[
2
(

∑
i∈σ1

∥⟨(Λim − Λi1) f , (Λim − Λi1) f ⟩∥+ ∑
i∈σ1

∥⟨Λi1 f , Λi1 f ⟩∥
)
+ ...

+2
(

∑
i∈σm−1

∥⟨(Λim − Λi(m−1)) f , (Λim − Λi(m−1)) f ⟩∥+ ∑
i∈σm

∥⟨Λi(m−1) f , Λi(m−1) f ⟩∥
)

+ ∑
i∈σm

∥⟨Λim f , Λim f ⟩∥
]

≤
[

∑
i∈σ1

∥⟨Λi1 f , Λi1 f ⟩∥+ 2
(
K ∑

i∈σ2

∥⟨Λi2 f , Λi2 f ⟩∥+ ∑
i∈σ2

∥⟨Λi2 f , Λi2 f ⟩∥
)
+ ...

+2
(
K ∑

i∈σm

∥⟨Λim f , Λim f ⟩∥+ ∑
i∈σm

∥⟨Λim f , Λim f ⟩∥
)]

+ ...

+
[
2
(
K ∑

i∈σ1

∥⟨Λi1 f , Λi1 f ⟩∥+ ∑
i∈σ1

∥⟨Λi1 f , Λi1 f ⟩∥
)
+ ...

+2
(
K ∑

i∈σm−1

∥⟨Λi(m−1) f , Λi(m−1)) f ⟩∥+ ∑
i∈σ(m−1)

∥⟨Λi(m−1) f , Λi(m−1) f ⟩∥
)

+ ∑
i∈σm

∥⟨Λim f , Λim f ⟩∥
]

= ∑
i∈σ1

∥⟨Λi1 f , Λi1 f ⟩∥+ ... + ∑
i∈σm

∥⟨Λim f , Λim f ⟩∥

+(m − 1)2(K + 1)
(

∑
i∈σ1

∥⟨Λi1 f , Λi1 f ⟩∥+ ... + ∑
i∈σm

∥⟨Λim f , Λim f ⟩∥
)

=
[
2(m − 1)(K + 1) + 1

]
∑

j∈[m]
∑
i∈σj

∥⟨Λij f , Λij f ⟩∥

for all f ∈ U . From Proposition 4.1, we know that {{Λij}i∈I : j ∈ [m]} satisfies

upper frame inequality with universal upper frame bound ∑
j∈[m]

Bj. Hence, for all
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f ∈ U , we have

∑
j∈[m]

Aj

2(m − 1)(K + 1) + 1
∥⟨ f , f ⟩∥ ≤ ∑

j∈[m]
∑
i∈σj

∥⟨Λij f , Λij f ⟩∥ ≤ ∑
j∈[m]

Bj∥⟨ f , f ⟩∥.

The proof is completed.

Proposition 3.3. Let {Λij}i∈I,j∈[m] be a family of woven g-Bessel sequence for U with

respect to {Vi : i ∈ I} and with g-Bessel with bound B. Then, {ΛijT}i∈I,j∈[m] is also

woven g-Bessel sequence with bound B∥T∥2 for every T ∈ L(U ).

Proof. Suppose {Λij}i∈I,j∈[m] be a family of woven g-Bessel sequence for U with

respect to {Vi : i ∈ I} and with g-Bessel bound B. Then for any partiotion {σj}j∈[m]

of I, we have

m

∑
j=1

∑
i∈σj

⟨Λij f , Λij f ⟩ ≤ B⟨ f , f ⟩.

Now

m

∑
j=1

∑
i∈σj

⟨ΛijT f , ΛijT f ⟩ ≤ B⟨T f , T f ⟩

≤ B∥T∥2⟨ f , f ⟩.

Theorem 3.8. Let {Λij}i∈I,j∈[m] be a family of g-frame for U with respect to {Vi : i ∈ I}.

Then {Λij}i∈I,j∈[m] is a woven g-Bessel sequence with bound D if and only if

∥
m

∑
j=1

∑
i∈σj

⟨Λij f , Λij f ⟩∥ ≤ D∥ f ∥2, ∀ f ∈ U

holds for any partition {σj}j∈[m] of I.

Proof. ( =⇒ ) Obvious
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On the other hand, we define a linear operator T : U →
⊕
i∈I

Vi by

T f =
m

∑
j=1

∑
i∈σj

Λij f eij

for any partiotion {σj}j∈[m] of I, where {eij}i∈σj,j∈[m] are the standard orthonormal

basis for Vi.

Then

∥T f ∥2 = ∥⟨T f , T f ⟩∥ = ∥
m

∑
j=1

∑
i∈σj

⟨Λij f , Λij f ⟩∥ ≤ D∥ f ∥2

which implies that ∥T f ∥ ≤
√

D∥ f ∥. Hence T is bounded. It is obvious that T is

A-linear. Then by Lemma 3.2, we have

⟨T f , T f ⟩ ≤ D⟨ f , f ⟩.

Equivalently,
m

∑
j=1

∑
i∈σj

⟨Λij f , Λij f ⟩ ≤ D⟨ f , f ⟩, as desired.

Example 3.2. Let A = ℓ∞, U = C0 the Hilbert A-module of the set of all null sequences

equipped with the A-inner product

⟨u, v⟩ = uv∗ = {uiv∗i }∞
i=1 = {uivi}∞

i=1

for any u = {ui}∞
i=1 ∈ U and v = {vi}∞

i=1 ∈ U .

Let j ∈ J = N and define Aj ∈ B(U ) by Aj{ fi}i∈N = {δij f j}i∈N, ∀{ fi}i∈N ∈ U .

Let Λ = {Λj}∞
j=1 and Γ = {Γj}∞

j=1 be defined as follows:

{Λj}∞
j=1 = {A1 + A2, A1 + A2, 0, 0, 0, ...}

{Γj}∞
j=1 = {0, 0, A3, A4, A5, ...}

Let f = {α1, α2, α3, α4, α5, ...} ∈ H. Then ⟨ f , f ⟩ = {α1α∗1, α2α∗2, α3α∗3, α4α∗4, ....}. Here

partial ordering ′ ≤′ means pointwise comparision.
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For any subset σ of N, we have

∑
j∈σ

⟨Λj f , Λj f ⟩+ ∑
j∈σc

⟨Γj f , Γj f ⟩ ≤ 2⟨ f , f ⟩.

On the other hand, it is clear that

⟨ f , f ⟩ ≤ ∑
j∈σ

⟨Λj f , Λj f ⟩+ ∑
j∈σc

⟨Γj f , Γj f ⟩.

Hence Λ and Γ are woven g-frames with universal lower and upper frame bounds 1 and 2,

respectively.

Theorem 3.9. Let Λ = {Λi}i∈N be a g-frame for U with respect to {Vi : i ∈ N} with

upper and lower g-frame bounds A and B, respectively. Suppose S is the g-frame operator

of Λi such that S−1Λi is self adjoint for all i ∈ N. Then {Λi}i∈N and {Λ∗
i S−1}i∈N are

woven g-frames for U .

Proof. Let σ be any partition of N. Since S−1 and S−1Λi are self adjoint, we have

A⟨ f , f ⟩ = ∑
i∈N

⟨Λi f , Λi f ⟩

= ∑
i∈σ

⟨Λi f , Λi f ⟩+ ∑
i∈σc

⟨Λi f , Λi f ⟩

= ∑
i∈σ

⟨Λi f , Λi f ⟩+ ∑
i∈σc

⟨SS−1Λi f , SS−1Λi f ⟩

≤ ∑
i∈σ

⟨Λi f , Λi f ⟩+ ∑
i∈σc

∥S∥2⟨S−1Λi f , S−1Λi f ⟩

≤ ∑
i∈σ

⟨Λi f , Λi f ⟩+ B2 ∑
i∈σc

⟨(S−1Λi)
∗ f , (S−1Λi)

∗ f ⟩

= ∑
i∈σ

⟨Λi f , Λi f ⟩+ B2 ∑
i∈σc

⟨Λ∗
i S−1 f , Λ∗

i S−1 f ⟩

≤ max{1, B2}
(

∑
i∈σ

⟨Λi f , Λi f ⟩+ ∑
i∈σc

⟨Λ∗
i S−1 f , Λ∗

i S−1 f ⟩
)
.

Thus, min{A,
A
B2}is a universal lower g-frame bound. To find a universal upper
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g-frame bound, we compute

∑
i∈σ

⟨Λi f , Λi f ⟩+ ∑
i∈σc

⟨Λ∗
i S−1 f , Λ∗

i S−1 f ⟩ = ∑
i∈σ

⟨Λi f , Λi f ⟩+ ∑
i∈σc

⟨(S−1Λi)
∗ f , (S−1Λi)

∗ f ⟩

= ∑
i∈σ

⟨Λi f , Λi f ⟩+ ∑
i∈σc

⟨S−1Λi f , S−1Λi f ⟩

≤ ∑
i∈σ

⟨Λi f , Λi f ⟩+ ∑
i∈σc

∥S−1∥2⟨Λi f , Λi f ⟩

≤ ∑
i∈σ

⟨Λi f , Λi f ⟩+ 1
A2 ∑

i∈σc
⟨Λi f , Λi f ⟩

≤ max{1,
1

A2} ∑
i∈N

⟨Λi f , Λi f ⟩

≤ B max{1,
1

A2}⟨ f , f ⟩.

Hence, {Λi}i∈N and {Λ∗
i S−1}i∈N are woven g-frames for U with universal lower

g-frame bound min{A,
A
B2} and universal upper g-frame bound max{B,

B
A2}.

3.3 Conclusions

In this chapter, we extended the concept of weaving frames to weaving g-frames

in Hilbert C∗-modules and defined woven g-frames in Hilbert C∗-modules and

developed its fundamental properties. We established sufficient conditions under

which two g-frames possess the weaving properties. We also investigated the

sufficient conditions under which a family of g-frames possesses weaving proper-

ties. We also established the equivalent definition for woven g-frames in Hilbert

C∗-modules.
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CHAPTER 4

Weaving K-frames in Hilbert C∗-modules

In [34], F. Ghobadzadeh et al. studied and investigated various fundamental

properties of weaving frames in Hilbert C∗-module. As K-frames and standard

frames differ in many aspects, we introduce the concept of weaving K-frames and

an atomic system for weaving K-frames in Hilbert C∗-module. In this chapter, we

study weaving K-frames from an operator theoretic point of view. We give an

equivalent definition for weaving K-frames and characterize weaving K-frames in

terms of bounded linear operators. We also investigate the invariance of woven

Bessel sequence under an adjointable operator.

4.1 Introduction and Preliminaries

Deepshikha and Lalit K. Vashisht [55] studied weaving properties of K-frames

in Hilbert space and presented necessary and sufficient conditions for weaving

K-frames in Hilbert space. They have also shown that woven K-frames and weakly

woven K-frames are equivalent.

Now we recall some basic definitions from the literature.

Definition 4.1. [49] A sequence {ψj}j∈J of elements in a Hilbert A-module H is said to

be a K-frame (K ∈ L(H)) if there exist constants C, D > 0 such that

C⟨K∗ f , K∗ f ⟩ ≤ ∑
j∈J

⟨ f , ψj⟩⟨ψj, f ⟩ ≤ D⟨ f , f ⟩, ∀ f ∈ H. (4.1)

Definition 4.2. [55] A family of K-frames {{ϕij}j∈I : i ∈ [m]} for H is said to be

K-woven if there exist universal positive constants A and B such that for any partition
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{σi}i∈[m] of N, the family
⋃

i∈[m]

{ϕij}j∈σi is a K-frame for H with lower and upper K-frame

bounds A and B, respectively. Each family
⋃

i∈[m]

{ϕij}j∈σi is called a weaving.

Hilbert C∗-modules are generalizations of Hilbert spaces by allowing the inner

product to take values in a C∗-algebra rather than in the field of real or complex

numbers.

4.2 Main Results

We define weaving K-frame in Hilbert C∗-modules.

Definition 4.3. Let H be a Hilbert A-module over a unital C∗-algebra. A family of

K-frames {{ fij}∞
j=1 : i ∈ I} for H is said to be K-woven if there exist universal positive

constants A and B such that for any partition {σi}i∈I of N, the family
⋃
i∈I

{ fij}j∈σi is a

K-frame for H with lower and upper K-frame bounds A and B, respectively. Each family⋃
i∈I

{ fij}j∈σi is called a weaving.

The woven frame is called tight woven frame if A = B and it is called normalized

woven tight frame if A = B = 1.

For any partition {σi}i∈I of N, we define the space as

⊕
i∈I

ℓ2(σi) =
{
{cij}j∈σi,i∈I |cij ∈ A, ∑

i∈I
∑
j∈σi

cijc∗ij converges in ∥ · ∥A
}

with the inner product

⟨{cij}j∈σi,i∈I , {dij}j∈σi,i∈I⟩ = ∑
i∈I

∑
j∈σi

cijd∗ij.

Let the family of K-frames {Fi = { fij}j∈J : i ∈ I} be woven for H, for any

partition {σi}i∈I of J and W = { fij}j∈σi,i∈I be a K-frame for H, then we have

the corresponding synthesis, analysis, and frame operator as follows:
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The operator TW :
⊕
i∈I

ℓ2(σi) → H defined by

TW({cij})i∈I,j∈σi = ∑
i∈I

TFi Dσi({cij})

= ∑
i∈I

∑
j∈σi

cij fij (4.2)

is called the synthesis or pre-frame operator, where TFi is the synthesis operator of Fi

and Dσi is a |J| × |J| diagonal matrix with djj = 1 for j ∈ σi and otherwise 0.

The adjoint of TW is

⟨ f , TW{cij}⟩i∈I,j∈σi = ⟨ f , ∑
i∈I

∑
j∈σi

cij fij⟩

= ∑
i∈I

∑
j∈σi

c∗ij⟨ f , fij⟩. (4.3)

=⇒ ⟨ f , TW{cij}⟩ = ⟨{⟨ f , fij⟩}, {cij}⟩

=⇒ T∗
W( f ) = {⟨ f , fij⟩}i∈I,j∈σi .

The adjoint operator T∗
W : H →

⊕
i∈I

ℓ2(σi) is given by

T∗
W( f ) = ∑

i∈I
Dσi T

σi∗
Fi

( f )

= {⟨ f , fij⟩}i∈I,j∈σi (4.4)

and is called the analysis operator.

By composing TW and T∗
W , we obtain the frame operator SW : H → H

SW( f ) = TW T∗
W( f )

= (∑
i∈I

TFi Dσi)(∑
i∈I

TFi Dσi)
∗

= ∑
i∈I

∑
j∈σi

⟨ f , fij⟩ fij. (4.5)

We now state some of the important properties of the synthesis, analysis, and frame

operator of weaving K-frames in Hilbert C∗-module.

Lemma 4.1. Let {{ fij}∞
j=1 : i ∈ I} be a woven Bessel sequence then the synthesis operator

TW is linear and bounded.
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Proof. Let {{ fij}∞
j=1 : i ∈ I} be a woven Bessel sequence with universal Bessel

bound B.

Now,

TW({λcij + dij}) = ∑
i∈I

∑
j∈σi

(λcij + dij) fij

= ∑
i∈I

∑
j∈σi

λcij fij + ∑
i∈I

∑
j∈σi

dij fij

= λTW({cij}) + TW({dij}). (4.6)

and

∥TW f ∥2 = ∥⟨TW f , TW f ⟩∥

= ∥⟨TW T∗
W f , f ⟩∥

= ∥⟨SW f , f ⟩∥

≤ B∥ f ∥2. (4.7)

=⇒ ∥TW f ∥ ≤
√

B∥ f ∥.

Hence, the synthesis operator TW is linear and bounded.

Lemma 4.2. Let {{ fij}∞
j=1 : i ∈ I} be woven frame for H with universal bounds A and

B. Then the frame operator SW is self adjoint, positive, bounded and invertible on H.

Proof. Since S∗
W = (TW T∗

W)∗ = TW T∗
W = SW , the frame operator SW is self adjoint.

Let {{ fij}∞
j=1 : i ∈ I} be woven frame for H with universal bounds A and B.

Let f ∈ H and SW( f ) = ∑
i∈I

∑
j∈σi

⟨ f , fij⟩ fij then

⟨SW f , f ⟩ =
〈
∑
i∈I

∑
j∈σi

⟨ f , fij⟩ fij, f
〉

= ∑
i∈I

∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩.

=⇒ A⟨ f , f ⟩ ≤ ⟨SW f , f ⟩ ≤ B⟨ f , f ⟩

=⇒ AI ≤ SW ≤ BI.

Therefore, the frame operator SW is positive, bounded and invertible.
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We now give an example of woven K-frames in Hilbert C∗-module.

Example 4.1. Let H = C0 be the set of all sequences converging to zero and let K

be the orthogonal projection of H onto span{ej}∞
j=3. For any u = {uj}∞

j=1 ∈ H and

v = {vj}∞
j=1 ∈ H,

⟨u, v⟩ = uv∗ = {ujv∗j }∞
j=1.

Let ϕ = {ϕ1j}∞
j=1 ∈ H and ψ = {ϕ2j}∞

j=1 ∈ H be defined as follows:

{ϕ1j}∞
j=1 = {0, e3, 0, e4, 0, e5, 0, e6, ...}

{ϕ2j}∞
j=1 = {0, e3, e3, e4, e4, e5, e5, e6, e6, ...},

where {ej}∞
j=1 be the standard orthonormal basis for H.

Let f = {α1, α2, α3, α4, α5, ...} ∈ H. Then ⟨ f , f ⟩ = {α1α∗1 , α2α∗2 , α3α∗3 , α4α∗4 , ....}

For any subset σ of N, we have

∑
j∈σ

⟨ f , ϕ1j⟩⟨ϕ1j, f ⟩+ ∑
j∈σc

⟨ f , ϕ2j⟩⟨ϕ2j, f ⟩ ≤ 2
∞

∑
j=1

⟨ f , ej⟩⟨ej, f ⟩ = 2⟨ f , f ⟩.

On the other hand, let f ∈ H. Then f =
∞

∑
j=1

αjej. Thus, we have

⟨K∗ f , K∗ f ⟩ =
〈
K∗(

∞

∑
j=1

αjej), K∗(
∞

∑
j=1

αjej)
〉

=
〈 ∞

∑
j=3

αjej,
∞

∑
j=3

αjej
〉

=
∞

∑
j=3

⟨ f , ej⟩⟨ej, f ⟩

≤ ∑
j∈σ

⟨ f , ϕ1j⟩⟨ϕ1j, f ⟩+ ∑
j∈σc

⟨ f , ϕ2j⟩⟨ϕ2j, f ⟩.

Hence ϕ and ψ are K-woven frames with universal lower and upper frame bounds 1 and 2,

respectively.

We now introduce a woven atomic system for weaving K-frames in Hilbert C∗-

module.
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Definition 4.4. The sequence {{ fij}∞
j=1 : i ∈ I} of H is said to be a woven atomic system

for K ∈ L(H), if for any partition {σi}i∈I of N, the family
⋃
i∈I

{ fij}j∈σi is a woven atomic

system for K, i.e. the following statements hold:

(i) The series ∑
i∈I

∑
j∈σi

cij fij converges for all {cij}j∈σi,i∈I ∈ ℓ2(A).

(ii) There exist C > 0 such that for every f ∈ H, there exists {aij, f }j∈σi,i∈I ∈ ℓ2(A) such

that ∑
i∈I

∑
j∈σi

aij, f a∗ij, f ≤ C⟨ f , f ⟩ and K f = ∑
i∈I

∑
j∈σi

aij, f fij.

Theorem 4.1. If K ∈ L(H), then there exists a woven atomic system for K.

Proof. Let {{ fij}∞
j=1 : i ∈ I} be a standard normalized woven tight frame for H

with universal frame bound A = B = 1.

Since

f = ∑
i∈I

∑
j∈σi

⟨ f , fij⟩ fij

We have

K f = ∑
i∈I

∑
j∈σi

⟨ f , fij⟩K fij.

For f ∈ H, aij, f = ⟨ f , fij⟩ and gij = K fij

∑
i∈I

∑
j∈σi

⟨ f , gij⟩⟨gij, f ⟩ = ∑
i∈I

∑
j∈σi

⟨ f , K fij⟩⟨K fij, f ⟩

= ∑
i∈I

∑
j∈σi

⟨K∗ f , fij⟩⟨ fij, K∗ f ⟩

= ⟨K∗ f , K∗ f ⟩

≤ ∥K∗∥2⟨ f , f ⟩.

Therefore, {{gij}∞
j=1 : i ∈ I} is a woven Bessel sequence for H with Bessel bound

∥K∗∥2 and we conclude that the series ∑
i∈I

∑
j∈σi

cijgij converges for all {cij}j∈σi,i∈I ∈

ℓ2(A).
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We also have

∑
i∈I

∑
j∈σi

aij, f a∗ij, f = ∑
i∈I

∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩

= ⟨ f , f ⟩

which completes the proof.

Since it is more convenient to work with an equivalent definition of weaving K-

frames in Hilbert C∗-modules, we would like to introduce an equivalent definition

in the following result. We quote the following results from the literature that will

be used in our work.

Theorem 4.2. [26] Let F ,H,K be Hilbert C∗-modules over a C∗-algebra A. Also let

S ∈ L(K,H) and T ∈ L(F ,H) with R(T∗) orthogonally complemented. The following

statements are equivalent:

(i) SS∗ ≤ λTT∗ for some λ > 0;

(ii) there exists µ > 0 such that ∥S∗z∥ ≤ ∥T∗z∥ for all z ∈ H;

(iii) there exists D ∈ L(K,F ) such that S = TD, i.e., TX = S has a solution;

(iv) R(S) ⊆ R(T).

Theorem 4.3. For any partition {σi}i∈I of N, let the family
⋃

i∈I{ fij}j∈σi be a woven

Bessel sequence for H and K ∈ L(H). Suppose that T∗ ∈ L(H, ℓ2(A)) given by

T∗( f ) = {⟨ f , fij⟩}i∈I,j∈σi and R(T∗) is orthogonally complemented then the following

statements are equivalent:

(i) The sequence {{ fij}∞
j=1 : i ∈ I} of H is a woven atomic system for K.

(ii) There exist A, B > 0 such that

A∥K∗ f ∥2 ≤ ∥∑
i∈I

∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩∥ ≤ B∥ f ∥2.

(iii) There exist D ∈ L(H, ℓ2(A)) such that K = TD.
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Proof. (i) =⇒ (ii) For every f ∈ H, we have

∥K∗ f ∥ = sup
∥g∥=1

∥⟨g, K∗ f ⟩∥

= sup
∥g∥=1

∥⟨Kg, f ⟩∥

Since {{ fij}∞
j=1 : i ∈ I} is a woven atomic system for K, there exist C > 0 such that

for every g ∈ H, there exist ag = {aij,g}j∈σi,i∈I ∈ ℓ2(A) for which ∑
i∈I

∑
j∈σi

aij,ga∗ij,g ≤

C⟨g, g⟩ and Kg = ∑
i∈I

∑
j∈σi

aij,g fij.

Therefore,

∥K∗ f ∥2 = sup
∥g∥=1

∥⟨Kg, f ⟩∥2

= sup
∥g∥=1

∥⟨∑
i∈I

∑
j∈σi

aij,g fij, f ⟩∥2

= sup
∥g∥=1

∥∑
i∈I

∑
j∈σi

aij,g⟨ fij, f ⟩∥2

≤ sup
∥g∥=1

∥∑
i∈I

∑
j∈σi

aij,g∥2∥∑
i∈I

∑
j∈σi

⟨ fij, f ⟩∥2

= sup
∥g∥=1

∥∑
i∈I

∑
j∈σi

aij,ga∗ij,g∥∥∑
i∈I

∑
j∈σi

⟨ f , fij⟩ ⟨ fij, f ⟩∥

≤ sup
∥g∥=1

C∥⟨g, g⟩∥∥∑
i∈I

∑
j∈σi

⟨ f , fij⟩ ⟨ fij, f ⟩∥

= sup
∥g∥=1

C∥g∥2∥∑
i∈I

∑
j∈σi

⟨ f , fij⟩ ⟨ fij, f ⟩∥

= C∥∑
i∈I

∑
j∈σi

⟨ f , fij⟩ ⟨ fij, f ⟩∥ (4.8)

which implies
1
C
∥K∗ f ∥2 ≤ ∥∑

i∈I
∑
j∈σi

⟨ f , fij⟩ ⟨ fij, f ⟩∥.

Moreover, {{ fij}∞
j=1 : i ∈ I} is a woven Bessel sequence for H. Hence (ii) holds.

(ii) =⇒ (iii) Since {{ fij}∞
j=1 : i ∈ I} is a woven Bessel sequence for H, we get

T({eij}) = ∑
i∈I

∑
j∈σi

eij fij

= fij

where {eij}j∈σi,i∈I is the standard orthonormal basis for ℓ2(A).
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Therefore, for every f ∈ H

A∥K∗ f ∥2 ≤ ∥∑
i∈I

∑
j∈σi

⟨ f , fij⟩ ⟨ fij, f ⟩∥

= ∥∑
i∈I

∑
j∈σi

⟨ f , T{eij}⟩ ⟨T{eij}, f ⟩∥

= ∥∑
i∈I

∑
j∈σi

⟨T∗ f , {eij}⟩ ⟨{eij}, T∗ f ⟩∥

= ∥T∗ f ∥2.

By using Theorem 4.2, there exist an operator D ∈ L(H, ℓ2(A)) such that K = TD.

(iii) =⇒ (i) For every f ∈ H, we have

D f = ∑
i∈I

∑
j∈σi

⟨D f , eij⟩eij

=⇒ TD f = ∑
i∈I

∑
j∈σi

⟨D f , eij⟩Teij. (4.9)

Let aij, f = ⟨D f , eij⟩, so for all f ∈ H, we get

∑
i∈I

∑
j∈σi

aij, f a∗ij, f = ∑
i∈I

∑
j∈σi

⟨D f , eij⟩⟨eij, D f ⟩

= ⟨D f , D f ⟩

≤ ∥D∥2⟨ f , f ⟩.

Since the sequence {{ fij}∞
j=1 : i ∈ I} is a woven Bessel sequence for H, we conclude

that {{ fij}∞
j=1 : i ∈ I} is a woven atomic system for K.

Corollary 4.1. Let {{ fij}∞
j=1 : i ∈ I} be a woven frame for H with universal frame

bounds A, B > 0 and K ∈ L(H). Then {{ fij}∞
j=1 : i ∈ I} is a woven atomic system for K

with lower and upper frame bounds
1

A−1∥K∥2 and B, respectively.

Proof. Let S be the frame operator of {{ fij}∞
j=1 : i ∈ I}.

Since {{S−1 fij}∞
j=1 : i ∈ I} is a woven frame for H with bounds B−1, A−1 > 0 and
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f = ∑
i∈I

∑
j∈σi

⟨ f , fij⟩S−1 fij, for all f ∈ H.

∥K∗ f ∥2 = sup
∥g∥=1

∥⟨K∗ f , g⟩∥2

= sup
∥g∥=1

∥
〈
∑
i∈I

∑
j∈σi

⟨ f , fij⟩K∗S−1 fij, g
〉
∥2

= sup
∥g∥=1

∥∑
i∈I

∑
j∈σi

⟨ f , fij⟩⟨K∗S−1 fij, g⟩∥2

≤ sup
∥g∥=1

∥∑
i∈I

∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩∥∥∑
i∈I

∑
j∈σi

⟨Kg, S−1 fij⟩⟨S−1 fij, Kg⟩∥

≤ sup
∥g∥=1

A−1∥∑
i∈I

∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩∥∥Kg∥2

≤ sup
∥g∥=1

A−1∥∑
i∈I

∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩∥∥K∥2∥g∥2

= A−1∥K∥2∥∑
i∈I

∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩∥

which implies

1
A−1∥K∥2∥K∗ f ∥2 ≤ ∥∑

i∈I
∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩∥ ≤ B∥ f ∥2

and shows that the condition (ii) of Theorem 4.3 hold.

Therefore, {{ fij}∞
j=1 : i ∈ I} is a woven atomic system for K with lower and upper

frame bounds
1

A−1∥K∥2 and B, respectively.

Corollary 4.2. Let {{ fij}∞
j=1 : i ∈ I} be a woven atomic system for K. If K ∈ L(H) is

onto, then {{ fij}∞
j=1 : i ∈ I} is a woven frame for H.

Proof. As we know, K ∈ L(H) is surjective if and only if there exists M > 0 such

that

M∥ f ∥ ≤ ∥K∗ f ∥, ∀ f ∈ H. (4.10)

Since {{ fij}∞
j=1 : i ∈ I} is a woven atomic system for K, so there exists A, B > 0

such that

A∥K∗ f ∥2 ≤ ∥∑
i∈I

∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩∥ ≤ B∥ f ∥2 (4.11)
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for any partition {σi}i∈I of N.

By using (4.10) and (4.11), we get

AM2∥ f ∥2 ≤ ∥∑
i∈I

∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩∥ ≤ B∥ f ∥2

which completes the proof.

Proposition 4.1. Let {{ fij}∞
j=1 : i ∈ I} be a family of K-frames for H with K-frame

bounds Ai and Bi. Then, for any partition {σi}i∈I of N, the family
⋃
i∈I

{ fij}j∈σi is a woven

Bessel sequence with Bessel bound ∑
i∈I

Bi.

Proof. Let {σi}i∈I be any partition of N. Then, for any f ∈ H

∑
i∈I

∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩ ≤ ∑
i∈I

∑
j∈N

⟨ f , fij⟩⟨ fij, f ⟩

≤ ∑
i∈I

Bi⟨ f , f ⟩.

The following theorem gives a characterization of weaving K-frames in terms of a

bounded linear operator in Hilbert C∗-module.

Theorem 4.4. For each i ∈ I, suppose {{ fij}∞
j=1 : i ∈ I} is a family of K-frames for H

with bounds Ai and Bi. Then the following conditions are equivalent:

(i) The family {{ fij}∞
j=1 : i ∈ I} is K-woven.

(ii) There exist A > 0 such that for any partition {σi}i∈I of N, there exist a bounded linear

operator Mσ : l2(A) → H such that

Mσ(ej) =



f1j, j ∈ σ1

f2j, j ∈ σ2

·

·

fmj, j ∈ σm

and AKK∗ ≤ Mσ M∗
σ, where {ej}∞

j=1 is the standard orthonormal basis.
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Proof. (i) =⇒ (ii): Suppose A is a universal lower K-frame bound for the family

{{ fij}∞
j=1 : i ∈ I}. For any partition {σi}i∈I of N, let Tσ be the synthesis operator

associated with the Bessel sequence
⋃
i∈I

{ fij}j∈σi .

Choose Mσ = Tσ.

Then Mσ(ej) = Tσ(ej) = fij, ∀ i ∈ I, j ∈ σi.

Now,

A⟨K∗ f , K∗ f ⟩ = A⟨KK∗ f , f ⟩

≤ ∑
i∈I

∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩

= ∑
j∈N

⟨ f , Mσ(ej)⟩⟨Mσ(ej), f ⟩

= ∑
j∈N

⟨M∗
σ f , ej⟩⟨ej, M∗

σ f ⟩

=
〈

∑
j∈N

⟨M∗
σ f , ej⟩ej, M∗

σ f
〉

= ⟨M∗
σ f , M∗

σ f ⟩

= ⟨Mσ M∗
σ f , f ⟩.

This implies AKK∗ ≤ Mσ M∗
σ.

(ii) =⇒ (i)

Let {σi}i∈I be any partition of N.

Now,

A⟨KK∗ f , f ⟩ ≤ ⟨Mσ M∗
σ f , f ⟩

= ⟨M∗
σ f , M∗

σ f ⟩

= ∑
j∈N

⟨M∗
σ f , ej⟩⟨ej, M∗

σ f ⟩

= ∑
i∈I

∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩.

This gives the universal lower K-frame bound A. And by Proposition 4.1, ∑
i∈I

Bi is

one of the choice of an universal upper K-frame bound.

In the following result, we investigate the invariance of the woven Bessel sequence
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under an adjointable operator.

Lemma 4.3. Let H be a Hilbert A-module and {{ fij}∞
j=1 : i ∈ I} be a family of woven

Bessel sequences with universal Bessel bound D. Then {{M fij}∞
j=1 : i ∈ I} are a family of

woven Bessel sequences with universal Bessel bound with D∥M∗∥2 for every M ∈ L(H).

Proof. Suppose {{ fij}∞
j=1 : i ∈ I} are woven Bessel sequences with universal Bessel

bound D, then we have

∑
i∈I

∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩ ≤ D⟨ f , f ⟩

for any partition {σi}i∈I of N.

Then for any f ∈ H,

∑
i∈I

∑
j∈σi

⟨ f , M fij⟩⟨M fij, f ⟩ = ∑
i∈I

∑
j∈σi

⟨M∗ f , fij⟩⟨ fij, M∗ f ⟩

≤ D⟨M∗ f , M∗ f ⟩

≤ D∥M∗∥2⟨ f , f ⟩.

This completes the proof.

In the following result we study the action of an operator on a K-woven frames.

Proposition 4.2. Let {{ fij}∞
j=1 : i ∈ I} be a family of K-frames for H. Then the following

statements are equivalent:

(i) {{ fij}∞
j=1 : i ∈ I} is K-woven.

(ii) {{U fij}∞
j=1 : i ∈ I} is UK-woven for all U ∈ L(H).

Proof. (i) =⇒ (ii) : Let {{ fij}∞
j=1 : i ∈ I} be a family of K-frames for H with

universal frame bounds A and B.

Let {σi}i∈I be any partition of N. Then for any f ∈ H, we have

∑
i∈I

∑
j∈σi

⟨ f , U fij⟩⟨U fij, f ⟩ = ∑
i∈I

∑
j∈σi

⟨U∗ f , fij⟩⟨ fij, U∗ f ⟩

≤ B⟨U∗ f , U∗ f ⟩

≤ B∥U∗∥2⟨ f , f ⟩.
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Similarly, for any f ∈ H we have

∑
i∈I

∑
j∈σi

⟨ f , U fij⟩⟨U fij, f ⟩ = ∑
i∈I

∑
j∈σi

⟨U∗ f , fij⟩⟨ fij, U∗ f ⟩

≥ A⟨K∗U∗ f , K∗U∗ f ⟩

≥ A⟨(UK)∗ f , (UK)∗ f ⟩.

Hence, the family {{U fij}∞
j=1 : i ∈ I} is UK-woven with universal frame bounds

A and B∥U∗∥2.

(ii) =⇒ (i) : The family {{ fij}∞
j=1 : i ∈ I} is K-woven if we choose U = I, the

identity operator on H.

In the following example, we show that if ϕ and ψ are K-frames for H such that

Uϕ and Uψ are UK-woven for some U ∈ L(H). Then, in general ϕ and ψ are not

K-woven.

Example 4.2. Let H = C0 be the set of all sequences converging to zero and let K be the

orthogonal projection of H onto span{ej}∞
j=2.

Let ϕ = {ϕ1j}∞
j=1 and ψ = {ϕ2j}∞

j=1 be defined as follows:

ϕ ≡ {ϕ1j}∞
j=1 = {0, e1, 0, e2, 0, e3, 0, e4, 0, e5, ...}

ψ ≡ {ϕ2j}∞
j=1 = {e1, 0, e2, 0, e3, e3, e4, e4, e5, e5, ...}

where {ej}∞
j=1 is the standard orthonormal basis for H. Then, ϕ is K-frame for H with

lower and upper frame bound 1. One can easily verify ψ is also K-frame for H.

Let f = {α1, α2, α3, α4, α5, ...} ∈ H. Then ⟨ f , f ⟩ = {α1α∗1 , α2α∗2 , α3α∗3 , α4α∗4 , ...}

Let U be the orthogonal projection of H onto span{ej}∞
j=3. To show that Uϕ and Uψ are

UK-woven frames for H, first we note that

Uϕ ≡ {U(ϕ1j)}∞
j=1 = {0, 0, 0, 0, 0, e3, 0, e4, 0, e5, 0, ...}

Uψ ≡ {U(ϕ2j)}∞
j=1 = {0, 0, 0, 0, e3, e3, e4, e4, e5, e5, ...}.
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For any subset σ of N and f ∈ H, we have

∑
j∈σ

⟨ f , Uϕ1j⟩⟨Uϕ1j, f ⟩+ ∑
j∈σc

⟨ f , Uϕ2j⟩⟨Uϕ2j, f ⟩ ≤ 2
∞

∑
j=1

⟨ f , ej⟩⟨ej, f ⟩ = 2⟨ f , f ⟩

On the other hand, let f ∈ H and we can represent it as f =
∞

∑
j=1

αjej. Thus, we have

⟨(UK)∗ f , (UK)∗ f ⟩ = ⟨U∗ f , U∗ f ⟩

= ⟨U∗(
∞

∑
j=1

αjej), U∗(
∞

∑
j=1

αjej)⟩

= ⟨
∞

∑
j=1

αjU∗ej,
∞

∑
j=1

αjU∗ej⟩

= ⟨
∞

∑
j=3

αjej,
∞

∑
j=3

αjej⟩

=
∞

∑
j=3

⟨ f , ej⟩⟨ej, f ⟩

≤ ∑
j∈σ

⟨ f , Uϕ1j⟩⟨Uϕ1j, f ⟩+ ∑
j∈σc

⟨ f , Uϕ2j⟩⟨Uϕ2j, f ⟩

Hence, Uϕ and Uψ are UK-woven frames with universal lower and upper frame bounds 1

and 2, respectively.

Now to show that ϕ and ψ are not K-woven, we choose σ = N\{2, 4}. Then the family

{ϕ1j}j∈σ
⋃{ϕ2j}j∈σc = {0, 0, 0, 0, e3, 0, e4, 0, e5, ...} is not a K-frame for H, since for any

A > 0, we have

∑
j∈σ

⟨e2, ϕ1j⟩⟨ϕ1j, e2⟩+ ∑
j∈σc

⟨e2, ϕ2j⟩⟨ϕ2j, e2⟩ = ∑
j≥3

⟨e2, ej⟩⟨ej, e2⟩

= 0

So, there exist no A > 0 such that

∑
j∈σ

⟨e2, ϕ1j⟩⟨ϕ1j, e2⟩+ ∑
j∈σc

⟨e2, ϕ2j⟩⟨ϕ2j, e2⟩ ≥ A⟨K∗e2, K∗e2⟩

holds. Thus, ϕ and ψ are not K-woven.

Theorem 4.5. Let K ∈ L(H) and {{ fij}∞
j=1 : i ∈ I} be K-woven for H. If T ∈ L(H)
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with closed range such that R(TK) is orthogonally complemented and K, T commute with

each other. Then {{T fij}∞
j=1 : i ∈ I} is a K-woven frame for R(T).

Proof. Since T has closed range then T has Moore-Penrose inverse operator T† such

that TT†T = T and T†TT† = T†. So TT†|R(T) = IR(T) and (TT†)∗ = I∗ = I = TT†.

For every f ∈ R(T), we have

⟨K∗ f , K∗ f ⟩ =
〈
(TT†)∗K∗ f , (TT†)∗K∗ f

〉
=

〈
T†∗T∗K∗ f , T†∗T∗K∗ f

〉
≤ ∥(T†)∗∥2〈T∗K∗ f , T∗K∗ f

〉
This implies that

∥(T†)∗∥−2〈K∗ f , K∗ f
〉
≤

〈
T∗K∗ f , T∗K∗ f

〉
. (4.12)

As R(T∗K∗) ⊂ R(K∗T∗), by using Theorem 4.2, there exists some λ
′
> 0 such that

〈
T∗K∗ f , T∗K∗ f

〉
≤ λ

′〈
K∗T∗ f , K∗T∗ f

〉
. (4.13)

Since {{ fij}∞
j=1 : i ∈ I} is K-woven with universal bound A and B, we have

∑
i∈I

∑
j∈σi

⟨ f , T fij⟩⟨T fij, f ⟩ = ∑
i∈I

∑
j∈σi

⟨T∗ f , fij⟩⟨ fij, T∗ f ⟩

≥ A
〈
K∗T∗ f , K∗T∗ f

〉
≥ A

λ
′ ⟨T∗K∗ f , T∗K∗ f ⟩ (Using (4.13))

≥ A
λ

′ ∥(T†)∗∥−2⟨K∗ f , K∗ f ⟩ (Using (4.12))

On the other hand by Lemma 4.3, {{T fij}∞
j=1 : i ∈ I} is a woven Bessel sequence.

Hence, {{T fij}∞
j=1 : i ∈ I} is a K-woven frame for R(T).

We need the following Theorem to prove our next result.

Theorem 4.6. [54] Let E be a Hilbert module, A, B1, B2 ∈ L(E) and R(B1) + R(B2) is

closed. The following statements are equivalent.
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(1) R(A) ⊂ R(B1) + R(B2);

(2) AA∗ ≤ λ(B1B∗
1 + B2B∗

2);

(3) There exist X, Y ∈ L(E) such that A = B1X + B2Y .

Theorem 4.7. Let {{ fij}∞
j=1 : i ∈ I} and {{gij}∞

j=1 : i ∈ I} be two K-woven frame for

H. Let L1 and L2 be defined as L1, L2 : l2(A) → H, L1eij = fij and L2eij = gij and

R(K) ⊆ R(L1), R(K) ⊆ R(L2), where {eij}j∈σi,i∈I is the standard orthonormal basis

for l2(A) and {σi}i∈I be any partition of N. If L1L∗
2 and L2L∗

1 are positive operators and

R(L1) + R(L2) is closed, then {{ fij + gij}∞
j=1 : i ∈ I} is a K-woven for H.

Proof. By the hypothesis we have

L1eij = fij, L2eij = gij, R(K) ⊆ R(L1) and R(K) ⊆ R(L2).

So R(K) ⊆ R(L1) + R(L2), and by Theorem 4.6 we have

KK∗ ≤ λ(L1L∗
1 + L2L∗

2)

for some λ > 0.

Now, let {σi}i∈I be any partition of N.

∑
i∈I

∑
j∈σi

〈
f , fij + gij

〉〈
fij + gij, f

〉
= ∑

i∈I
∑
j∈σi

〈
f , L1eij + L2eij

〉〈
L1eij + L2eij, f

〉
= ∑

i∈I
∑
j∈σi

〈
f , (L1 + L2)eij

〉〈
(L1 + L2)eij, f

〉
= ∑

i∈I
∑
j∈σi

〈
(L1 + L2)

∗ f , eij⟩
〈
eij, (L1 + L2)

∗ f
〉

=
〈
(L1 + L2)

∗ f , (L1 + L2)
∗ f

〉
=

〈
(L1 + L2)(L1 + L2)

∗ f , f
〉

=
〈
(L1 + L2)(L∗

1 + L∗
2) f , f

〉
=

〈
(L1L∗

1 + L1L∗
2 + L2L∗

1 + L2L∗
2) f , f

〉
≥

〈
L1L∗

1 + L2L∗
2 f , f

〉
(As L1L∗

2 and L2L∗
1 are positive operators )

≥ 1
λ

〈
KK∗ f , f

〉
=

1
λ

〈
K∗ f , K∗ f

〉
.
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For the upper bound, let {{ fij}∞
j=1 : i ∈ I} and {{gij}∞

j=1 : i ∈ I} be two woven

Bessel sequences with Bessel bound B1 and B2. Then it is easy to see that {{ fij +

gij}∞
j=1 : i ∈ I} is a woven Bessel sequence with bound B1 + B2. And hence,

{{ fij + gij}∞
j=1 : i ∈ I} is a K-woven for H.

Theorem 4.8. For i ∈ I, let Fi = { fij}∞
j=1 be a family of K-frames for H with bounds

Ai and Bi. For any σ ⊂ N and a fix t ∈ I, let Pσ
i ( f ) = ∑

j∈σ

⟨ f , fij⟩ fij − ∑
j∈σ

⟨ f , ftj⟩ ftj for

i ̸= t. If Pσ
i is a positive linear operator, then the family of K-frames {Fi}i∈I is K-woven.

Proof. Let {σi}i∈I be any partition of N. Then, for every f ∈ H, a fix t ∈ I and

j ∈ σi, we have

∑
j∈σi

⟨ f , ftj⟩⟨ ftj, f ⟩ =
〈

∑
j∈σi

⟨ f , ftj⟩ ftj, f
〉

=
〈

∑
j∈σi

⟨ f , fij⟩ fij − Pσ
i ( f ), f

〉
≤

〈
∑
j∈σi

⟨ f , fij⟩ fij, f
〉

(As Pσ
i is a positive linear operator )

= ∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩. (4.14)

Now,

At⟨K∗ f , K∗ f ⟩

≤ ∑
j∈J

⟨ f , fij⟩⟨ fij, f ⟩

= ∑
j∈σ1

⟨ f , ftj⟩⟨ ftj, f ⟩+ ... + ∑
j∈σi

⟨ f , ftj⟩⟨ ftj, f ⟩+ ... + ∑
j∈σm

⟨ f , ftj⟩⟨ ftj, f ⟩

≤ ∑
j∈σ1

⟨ f , f1j⟩⟨ f1j, f ⟩+ ... + ∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩+ ... + ∑
j∈σm

⟨ f , fmj⟩⟨ fmj, f ⟩ (Using (4.14))

≤ (B1 + ... + Bi + ... + Bm)⟨ f , f ⟩

= ∑
i∈I

Bi⟨ f , f ⟩

which implies

At⟨K∗ f , K∗ f ⟩ ≤ ∑
i∈I

∑
j∈σi

⟨ f , fij⟩⟨ fij, f ⟩ ≤ ∑
i∈I

Bi⟨ f , f ⟩.
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4.3 Conclusions

As K-frames and standard frames differ in many aspects, we introduced the con-

cept of weaving K-frames and an atomic system for weaving K-frames in Hilbert

C∗-module. In this chapter, we studied weaving K-frames from an operator theo-

retic point of view. We gave the equivalent definition for weaving K-frames and

characterized weaving K-frames in terms of bounded linear operators. We also

investigated the invariance of the woven Bessel sequence under an adjointable

operator.
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CHAPTER 5

Controlled K-frames in Hilbert C∗-modules

This chapter introduces the notion of controlled K-frame in Hilbert C∗-modules.

We establish the equivalent condition for a controlled K-frame. We investigate

some operator theoretic characterizations of controlled K-frames and controlled

Bessel sequences. Moreover, we establish the relationship between the K-frames

and controlled K-frames. We also investigate the invariance of a C-controlled

K-frame under a suitable map T. In the end, we prove a perturbation result for

controlled K-frame.

5.1 Introduction and Preliminaries

In 2014, Najati et al. [49] introduced the concepts of an atomic system for operators

and K-frames in Hilbert C∗-modules. Controlled frames have been the subject of

interest because of their ability to improve the numerical efficiency of iterative

algorithms for inverting the frame operator. In 2017, Rashidi and Rahimi [51]

introduced controlled frames in Hilbert C∗-modules.

We recall some basic definitions from the literature.

Definition 5.1. [49] A sequence {ψj}j∈J of elements in a Hilbert A-module H is said to

be a K-frame (K ∈ L(H)) if there exist constants C, D > 0 such that

C⟨K∗ f , K∗ f ⟩ ≤ ∑
j∈J

⟨ f , ψj⟩⟨ψj, f ⟩ ≤ D⟨ f , f ⟩, ∀ f ∈ H. (5.1)

Definition 5.2. [51] Let H be a Hilbert C∗-module and C ∈ GL(H). A frame controlled

by the operator C or C-controlled frame in Hilbert C∗-module H is a family of vectors
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{ψj}j∈J , such that there exist two constants A, B > 0 satisfying

A⟨ f , f ⟩ ≤ ∑
j∈J

⟨ f , ψj⟩⟨Cψj, f ⟩ ≤ B⟨ f , f ⟩, ∀ f ∈ H.

Likewise, {ψj}j∈J is called a C-controlled Bessel sequence with bound B, if there exists

B > 0 such that

∑
j∈J

⟨ f , ψj⟩⟨Cψj, f ⟩ ≤ B⟨ f , f ⟩, ∀ f ∈ H,

where the sum in the above inequalities converges in norm.

If A = B, we call {ψj}j∈J as C-controlled tight frame, and if A = B = 1 it is called a

C-controlled Parseval frame.

5.2 Main Results

We define below the controlled operator frame or C-controlled K-frame on a Hilbert

C∗-module H.

Definition 5.3. Let H be a Hilbert A-module over a unital C∗-algebra, C ∈ GL+(H)

and K ∈ L(H). A sequence {ψj}j∈J in H is said to be a C-controlled K-frame if there exist

two constants 0 < A ≤ B < ∞ such that

A⟨C 1
2 K∗ f , C

1
2 K∗ f ⟩ ≤ ∑

j∈J
⟨ f , ψj⟩⟨Cψj, f ⟩ ≤ B⟨ f , f ⟩, ∀ f ∈ H. (5.2)

If C = I, the C-controlled K-frame {ψj}j∈J is simply K-frame in H which was

discussed in [49]. The sequence {ψj}j∈J is called a C-controlled Bessel sequence

with bound B, if there exists B > 0 such that

∑
j∈J

⟨ f , ψj⟩⟨Cψj, f ⟩ ≤ B⟨ f , f ⟩, ∀ f ∈ H, (5.3)

where the sum in the above inequalities converges in norm.

We now give an example of C-controlled K-frame in Hilbert C∗-module.
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Example 5.1. Let H = C0 be the set of all sequences converging to zero and {ej}∞
j=1 be

the standard orthonormal basis for H.

For any u = {uj}∞
j=1 ∈ H and v = {vj}∞

j=1 ∈ H

⟨u, v⟩ = uv∗ = {ujv∗j }∞
j=1.

We define {ψj}j∈J as follows:

{ψj}j∈J = {0, 0, e3, e4, e5, ...}.

Let K be the orthogonal projection from H onto span{ej}∞
j=3 and C ∈ GL+(H) be such

that

C(ei) =

e1 + e2, i = 1

ei, otherwise

Let f = {α1, α2, α3, α4, α5, ...} ∈ H. Then ⟨ f , f ⟩ = {α1α∗1 , α2α∗2 , α3α∗3 , α4α∗4 , ...}.

Now, for the upper bound, we have

∑
j∈J

⟨ f , ψj⟩⟨Cψj, f ⟩ = ⟨ f , e3⟩⟨C(e3), f ⟩+ ⟨ f , e4⟩⟨C(e4), f ⟩+ ⟨ f , e5⟩⟨C(e5), f ⟩+ ...

= ⟨ f , e3⟩⟨e3, f ⟩+ ⟨ f , e4⟩⟨e4, f ⟩+ ⟨ f , e5⟩⟨e5, f ⟩+ ...

≤ ∑
j∈J

⟨ f , ej⟩⟨ej, f ⟩

= ⟨ f , f ⟩.
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On the other hand, f can be written as f =
∞

∑
j=1

αjej. Thus, we have

⟨C 1
2 K∗ f , C

1
2 K∗ f ⟩ = ⟨CK∗ f , K∗ f ⟩

=
〈
CK∗(

∞

∑
j=1

αjej), K∗(
∞

∑
j=1

αjej)
〉

=
〈
C(

∞

∑
j=3

αjej),
∞

∑
j=3

αjej
〉

=
〈 ∞

∑
j=3

αjej,
∞

∑
j=3

αjej
〉

=
∞

∑
j=3

⟨ f , ej⟩⟨ej, f ⟩

≤ ∑
j∈J

⟨ f , ψj⟩⟨Cψj, f ⟩.

Hence {ψj}j∈J is a C-controlled K-frame with lower and upper frame bound 1.

Let {ψj}j∈J be a C-controlled Bessel sequence for Hilbert module H over A.

The operator T : H → ℓ2(A) defined by

T f = {⟨ f , ψj⟩}j∈J , ∀ f ∈ H (5.4)

is called the analysis operator. The adjoint operator T∗ : ℓ2(A) → H given by

T∗({cj})j∈J = ∑
j∈J

cjCψj (5.5)

is called pre-frame operator or the synthesis operator. By composing T and T∗, we

obtain the C-controlled frame operator SC : H → H as

SC f = T∗T f = ∑
j∈J

⟨ f , ψj⟩Cψj. (5.6)

For the rest of the paper we indicate that SC stands for the controlled frame operator

as we have defined in (5.6), and S stands for the classical frame operator in Hilbert

C∗-module H as defined in (1.9).

Lemma 5.1. Let C ∈ GL+(H), KC = CK and R(C
1
2 ) ⊆ R(K∗C

1
2 ) with R((C

1
2 )∗) is
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orthogonally complemented. Then ∥C
1
2 f ∥2 ≤ λ

′∥K∗C
1
2 f ∥2 for some λ

′
> 0.

Proof. Suppose R(C
1
2 ) ⊆ R(K∗C

1
2 ) with R((C

1
2 )∗) orthogonally complemented.

Then by using Theorem 4.2, there exist some λ
′
> 0 such that

(C
1
2 )(C

1
2 )∗ ≤ λ

′
(K∗C

1
2 )(K∗C

1
2 )∗.

This implies that ⟨(C 1
2 )(C

1
2 )∗ f , f ⟩ ≤ λ

′⟨(K∗C
1
2 )(K∗C

1
2 )∗ f , f ⟩.

Now by taking norm on both sides, we get

∥C
1
2 f ∥2 ≤ λ

′∥K∗C
1
2 f ∥2.

In the following theorem, we establish an equivalence condition for C-controlled

K-frame in a Hilbert C∗-module H.

Theorem 5.1. Let H be a finitely or countably generated Hilbert A -module over a unital

C∗-algebra A, {ψj}j∈J ⊂ H be a sequence, C ∈ GL+(H), K ∈ L(H), KC = CK and

R(C
1
2 ) ⊆ R(K∗C

1
2 ) with R((C

1
2 )∗) be orthogonally complemented. Then {ψj}j∈J is a

C-controlled K-frame in Hilbert C∗-module if and only if there exist constants 0 < A ≤

B < ∞ such that

A∥C
1
2 K∗ f ∥2 ≤ ∥∑

j∈J
⟨ f , ψj⟩⟨Cψj, f ⟩∥ ≤ B∥ f ∥2, ∀ f ∈ H. (5.7)

Proof. ( =⇒ ) Obvious.

Now we assume that there exist constants 0 < A, B < ∞ such that

A∥C
1
2 K∗ f ∥2 ≤ ∥∑

j∈J
⟨ f , ψj⟩⟨Cψj, f ⟩∥ ≤ B∥ f ∥2, ∀ f ∈ H.

We prove that {ψj}j∈J is a C-controlled K-frame for Hilbert C∗-module H. As S
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and C are both positive operator, they are self adjoint. Thus we have

A∥C
1
2 K∗ f ∥2 ≤ ∥∑

j∈J
⟨ f , ψj⟩⟨Cψj, f ⟩∥

= ∥⟨SC f , f ⟩∥ = ∥⟨CS f , f ⟩∥ = ∥
〈
(CS)

1
2 f , (CS)

1
2 f

〉
∥, as SC = CS

= ∥(CS)
1
2 f ∥2. (5.8)

Since R(C
1
2 ) ⊆ R(K∗C

1
2 ) with R((C

1
2 )∗) is orthogonally complemented, then using

Lemma 5.1, there exist some λ
′
> 0 such that

∥C
1
2 f ∥2 ≤ λ

′∥K∗C
1
2 f ∥2.

Multiplying both side by A, we get

A∥C
1
2 f ∥2 ≤ Aλ

′∥K∗C
1
2 f ∥2

≤ λ
′∥(CS)

1
2 f ∥2,

which implies

A
λ

′ ∥C
1
2 f ∥2 ≤ ∥S

1
2 C

1
2 f ∥2

⇒
√

A
λ

′ ∥C
1
2 f ∥ ≤ ∥S

1
2 C

1
2 f ∥. (5.9)

Now by using Lemma 3.1, we have

⟨S 1
2 C

1
2 f , S

1
2 C

1
2 f ⟩ ≥

√
A
λ

′ ⟨C
1
2 f , C

1
2 f ⟩

⇒ ⟨C 1
2 f , C

1
2 f ⟩ ≤

√
λ

′

A
⟨SC f , f ⟩.

Also

⟨C 1
2 K∗ f , C

1
2 K∗ f ⟩ ≤ ∥K∗∥2⟨C 1

2 f , C
1
2 f ⟩

≤ ∥K∗∥2

√
λ

′

A
⟨SC f , f ⟩.
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This implies that

1
∥K∗∥2

√
A
λ

′ ⟨C
1
2 K∗ f , C

1
2 K∗ f ⟩ ≤ ⟨SC f , f ⟩. (5.10)

Since SC is positive, self adjoint and bounded A-linear map, we can write

⟨S
1
2
C f , S

1
2
C f ⟩ = ⟨SC f , f ⟩ = ∑

j∈J
⟨ f , ψj⟩⟨Cψj, f ⟩,

and hence by using Lemma 3.2, there exists some B′ > 0 such that

⟨S
1
2
C f , S

1
2
C f ⟩ ≤ B

′⟨ f , f ⟩

=⇒ ⟨SC f , f ⟩ ≤ B
′⟨ f , f ⟩, ∀ f ∈ H. (5.11)

Therefore from (5.10) and (5.11), we conclude that {ψj}j∈J is a C-controlled K-frame

in Hilbert C∗-module H with frame bounds
1

∥K∗∥2

√
A
λ

′ and B
′
.

Lemma 5.2. Let C ∈ GL+(H), CSC = SCC and R(S
1
2
C) ⊆ R((CSC)

1
2 ) with R((S

1
2
C)

∗)

is orthogonally complemented. Then ∥S
1
2
C f ∥2 ≤ λ∥(CSC)

1
2 f ∥2 for some λ > 0.

Proof. By the assumption that R(S
1
2
C) ⊆ R((CSC)

1
2 ) with R((S

1
2
C)

∗) orthogonally

complemented. Then by using Theorem 4.2, there exists some λ > 0 such that

(S
1
2
C)(S

1
2
C)

∗ ≤ λ((CSC)
1
2 )((CSC)

1
2 )∗.

This implies that

〈
(S

1
2
C)(S

1
2
C)

∗ f , f
〉
≤ λ

〈
((CSC)

1
2 )((CSC)

1
2 )∗ f , f

〉
⇒ ∥S

1
2
C f ∥2 ≤ λ∥(CSC)

1
2 f ∥2, ∀ f ∈ H.

In the following theorem, we prove a characterization of C-controlled Bessel se-

quence.
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Theorem 5.2. Let {ψj}j∈J be a sequence of a finitely or countably generated Hilbert A-

module H over a unital C∗-algebra A. Suppose that C commutes with the controlled frame

operator SC and R(S
1
2
C) ⊆ R((CSC)

1
2 ) with R((S

1
2
C)

∗) is orthogonally complemented.

Then {ψj}j∈J is a C-controlled Bessel sequence with bound B if and only if the operator

U : ℓ2(A) → H defined by

U{aj}j∈J = ∑
j∈J

ajCψj

is a well defined bounded operator from ℓ2(A) into H with ∥U∥ ≤
√

B∥C
1
2∥.

Proof. Suppose that {ψj}j∈J is a C-controlled Bessel sequence with bound B. There-

fore we have

∥∑
j∈J

⟨ f , ψj⟩⟨Cψj, f ⟩∥ = ∥⟨SC f , f ⟩∥ ≤ B∥ f ∥2, ∀ f ∈ H.

We first show that U is a well-defined operator. Let a = {aj}j∈J and for arbitrary
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n > m, we have

∥
n

∑
j=1

ajCψj −
m

∑
j=1

ajCψj∥2 = ∥
n

∑
j=m+1

ajCψj∥2

= sup
∥ f ∥=1

∥∥〈 n

∑
j=m+1

ajCψj, f
〉∥∥2

= sup
∥ f ∥=1

∥∥ n

∑
j=m+1

aj⟨Cψj, f ⟩
∥∥2

≤ sup
∥ f ∥=1

∥∥ n

∑
j=m+1

⟨ f , Cψj⟩⟨Cψj, f ⟩
∥∥∥∥ n

∑
j=m+1

aja∗j
∥∥

= sup
∥ f ∥=1

∥∥〈 n

∑
j=m+1

⟨ f , Cψj⟩Cψj, f
〉∥∥∥∥ n

∑
j=m+1

aja∗j
∥∥

≤ sup
∥ f ∥=1

∥∥⟨CSC f , f ⟩
∥∥∥∥ n

∑
j=m+1

aja∗j
∥∥

= sup
∥ f ∥=1

∥∥⟨(CSC)
1
2 f , (CSC)

1
2 f ⟩

∥∥∥∥ n

∑
j=m+1

aja∗j
∥∥

≤ sup
∥ f ∥=1

∥(CSC)
1
2 f ∥2∥a∥2

≤ sup
∥ f ∥=1

∥C
1
2∥2∥S

1
2
C f ∥2∥a∥2

≤ sup
∥ f ∥=1

B∥ f ∥2∥C
1
2∥2∥a∥2 = B∥C

1
2∥2∥a∥2.

This shows that ∑
j∈J

ajCψj is a Cauchy sequence which is convergent in H. Thus

U({aj}j∈J) is a well defined operator from ℓ2(A) into H.
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For boundedness of U, we consider

∥U{aj}j∈J∥2 = sup
∥ f ∥=1

∥⟨U{aj}, f ⟩∥2

= sup
∥ f ∥=1

∥∥∑
j∈J

aj⟨Cψj, f ⟩
∥∥2

≤ sup
∥ f ∥=1

∥∥∑
j∈J

⟨ f , Cψj⟩⟨Cψj, f ⟩
∥∥∥∥∑

j∈J
aja∗j

∥∥
= sup

∥ f ∥=1

∥∥〈∑
j∈J

⟨ f , Cψj⟩Cψj, f
〉∥∥∥∥∑

j∈J
aja∗j

∥∥
= sup

∥ f ∥=1

∥∥⟨CSC f , f ⟩
∥∥∥∥∑

j∈J
aja∗j

∥∥
= sup

∥ f ∥=1

∥∥〈(CSC)
1
2 f , (CSC)

1
2 f

〉∥∥∥∥∑
j∈J

aja∗j
∥∥

= sup
∥ f ∥=1

∥∥(CSC)
1
2 f

∥∥2∥a∥2

≤ sup
∥ f ∥=1

∥C
1
2∥2∥S

1
2
C f ∥2∥a∥2

≤ B∥C
1
2∥2∥a∥2.

This implies that ∥U∥ ≤
√

B∥C
1
2∥.

Now assume that U is well defined operator from ℓ2(A) into H and ∥U∥ ≤
√

B∥C
1
2∥. We now prove that {ψj}j∈J is a C-controlled Bessel sequence with Bessel

bound B.

For arbitrary f ∈ H and {aj} ∈ ℓ2(A), we have

〈
f , U{aj}

〉
=

〈
f , ∑

j∈J
ajCψj

〉
=

〈
∑
j∈J

a∗j C f , ψj
〉

= ∑
j∈J

⟨C f , ψj⟩a∗j .

Therefore we get

〈
f , U{aj}

〉
=

〈
{⟨C f , ψj⟩}, {aj}

〉
.
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This implies that U has an adjoint, and U∗ f = {⟨C f , ψj⟩}. Also, ∥U∥ = ∥U∗∥.

So we have

∥U∗ f ∥2 = ∥⟨U∗ f , U∗ f ⟩∥ = ∥⟨UU∗ f , f ⟩∥ = ∥⟨CSC f , f ⟩∥

= ∥(CSC)
1
2 f ∥2

≤ B∥C
1
2∥2∥ f ∥2. (5.12)

By using Lemma 5.2, we have ∥S
1
2
C f ∥2 ≤ λ∥(CSC)

1
2 f ∥2 for some λ > 0. Using

(5.12) we get

∥S
1
2
C f ∥2 ≤ λ∥(CSC)

1
2 f ∥2 ≤ λB∥C

1
2∥2∥ f ∥2.

Therefore {ψj}j∈J is a C-controlled Bessel sequence with Bessel bound λB∥C
1
2∥2.

Proposition 5.1. Let {ψj}j∈J be a C-controlled K-frame in H. Then ACKK∗ I ≤ Sc ≤

BI.

Proof. Suppose {ψj}j∈J is a C-controlled K-frame with bounds A and B. Then

A⟨C 1
2 K∗ f , C

1
2 K∗ f ⟩ ≤ ∑

j∈J
⟨ f , ψj⟩⟨Cψj, f ⟩ ≤ B⟨ f , f ⟩, ∀ f ∈ H.

⇒ A⟨CKK∗ f , f ⟩ ≤ ⟨SC f , f ⟩ ≤ B⟨ f , f ⟩.

⇒ ACKK∗ I ≤ SC ≤ BI.

Proposition 5.2. Let {ψj}j∈J be a C-controlled Bessel sequence in H and C ∈ GL+(H).

Then {ψj}j∈J is a C-controlled K-frame for H, if and only if there exists A > 0 such that

CS ≥ ACKK∗.

Proof. The sequence {ψj}j∈J is a controlled K-frame for H with frame bounds A, B
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and frame operator SC, if and only if

A⟨C 1
2 K∗ f , C

1
2 K∗ f ⟩ ≤ ∑

j∈J
⟨ f , ψj⟩⟨Cψj, f ⟩ ≤ B⟨ f , f ⟩, ∀ f ∈ H.

⇔ A⟨CKK∗ f , f ⟩ ≤ ⟨SC f , f ⟩ ≤ B⟨ f , f ⟩.

⇔ A⟨CKK∗ f , f ⟩ ≤ ⟨CS f , f ⟩ ≤ B⟨ f , f ⟩.

⇔ ACKK∗ I ≤ CS.

In the following two propositions we establish the inter-relationship between

K-frame and C-controlled K-frame.

Proposition 5.3. Let C ∈ GL+(H), K ∈ L(H), KC = CK, R(C
1
2 ) ⊆ R(K∗C

1
2 ) with

R((C
1
2 )∗) is orthogonally complemented, and {ψj}j∈J be a C-controlled K-frame for H

with lower and upper frame bounds A and B, respectively. Then {ψj}j∈J is a K-frame for

H with lower and upper frame bounds A∥C
1
2∥−2 and B∥C

−1
2 ∥2, respectively.

Proof. Suppose {ψj}j∈J is a C-controlled K-frame for H with bound A and B. Then

by Theorem 5.1, we have

A∥C
1
2 K∗ f ∥2 ≤ ∥∑

j∈J
⟨ f , ψj⟩⟨Cψj, f ⟩∥ ≤ B∥ f ∥2, ∀ f ∈ H.

Now,

A∥K∗ f ∥2 = A∥C
−1
2 C

1
2 K∗ f ∥2

≤ A∥C
1
2∥2∥C

−1
2 K∗ f ∥2

≤ ∥C
1
2∥2∥∑

j∈J
⟨ f , ψj⟩⟨ψj, f ⟩∥.

This implies that

A∥C
1
2∥−2∥K∗ f ∥2 ≤ ∥∑

j∈J
⟨ f , ψj⟩⟨ψj, f ⟩∥
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On the other hand for every f ∈ H,

∥∑
j∈J

⟨ f , ψj⟩⟨ψj, f ⟩∥ = ∥⟨S f , f ⟩∥

= ∥⟨C−1CS f , f ⟩∥

= ∥⟨(C−1CS)
1
2 f , (C−1CS)

1
2 f ⟩∥

= ∥(C−1CS)
1
2 f ∥2

≤ ∥C
−1
2 ∥2∥(CS)

1
2 f ∥2

= ∥C
−1
2 ∥2∥⟨(CS)

1
2 f , (CS)

1
2 f ⟩∥

= ∥C
−1
2 ∥2∥⟨CS f , f ⟩∥

≤ ∥C
−1
2 ∥2B∥ f ∥2.

Therefore, {ψj}j∈J is a K-frame with lower and upper frame bounds A∥C
1
2∥−2 and

B∥C
−1
2 ∥2, respectively.

Proposition 5.4. Let C ∈ GL+(H), K ∈ L(H), KC = CK, R(C
1
2 ) ⊆ R(K∗C

1
2 ) with

R((C
1
2 )∗) is orthogonally complemented. Let {ψj}j∈J be a K-frame for H with lower and

upper frame bounds A and B, respectively. Then {ψj}j∈J is a C-controlled K-frame for H

with lower and upper frame bounds A and ∥C∥∥S∥, respectively.

Proof. Suppose {ψj}j∈J is a K-frame with frame bounds A and B. Then by equiva-

lence condition [33] of K-frame, we have

A∥K∗ f ∥2 ≤ ∥∑
j∈J

⟨ f , ψj⟩⟨ψj, f ⟩∥ ≤ B∥ f ∥2, ∀ f ∈ H.

For any f ∈ H,

A∥C
1
2 K∗ f ∥2 = A∥K∗C

1
2 f ∥2

≤ ∥∑
j∈J

⟨C 1
2 f , ψj⟩⟨ψj, C

1
2 f ⟩∥

= ∥∑
j∈J

⟨C 1
2 f , ψj⟩ψj, C

1
2 f ⟩∥

= ∥⟨C 1
2 S f , C

1
2 f ⟩∥

= ∥⟨CS f , f ⟩∥. (5.13)
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On the other hand for every f ∈ H,

∥⟨CS f , f ⟩∥ = ∥⟨S f , C∗ f ⟩∥

= ∥⟨S f , C f ⟩∥

≤ ∥S f ∥∥C f ∥

≤ ∥C∥∥S∥∥ f ∥2. (5.14)

Therefore from (5.13), (5.14) and Theorem 5.1, we conclude that {ψj}j∈J is a C-

controlled K-frame with bounds A and ∥C∥∥S∥.

Theorem 5.3. Let C ∈ GL+(H), {ψj}j∈J be a C-controlled K-frame for H with bounds

A and B. Let M, K ∈ L(H) with R(M) ⊂ R(K), R(K∗) orthogonally complemented,

and C commutes with M and K both. Then {ψj}j∈J is a C-controlled M-frame for H.

Proof. Suppose {ψj}j∈J is a C-controlled K-frame for H with bounds A and B. Then

A⟨C 1
2 K∗ f , C

1
2 K∗ f ⟩ ≤ ∑

j∈J
⟨ f , ψj⟩⟨Cψj, f ⟩ ≤ B⟨ f , f ⟩, ∀ f ∈ H. (5.15)

Since R(M) ⊂ R(K), from Theorem 4.2, there exists some λ
′
> 0 such that MM∗ ≤

λ
′
KK∗. So we have

⟨MM∗C
1
2 f , C

1
2 f ⟩ ≤ λ

′⟨KK∗C
1
2 f , C

1
2 f ⟩.

Multiplying the above inequality by A, we get

A
λ

′ ⟨MM∗C
1
2 f , C

1
2 f ⟩ ≤ A⟨KK∗C

1
2 f , C

1
2 f ⟩.

From (5.15), we have

A
λ

′ ⟨MM∗C
1
2 f , C

1
2 f ⟩ ≤ ∑

j∈J
⟨ f , ψj⟩⟨Cψj, f ⟩ ≤ B⟨ f , f ⟩, ∀ f ∈ H.

Therefore, {ψj}j∈J is a C-controlled M-frame with lower and upper frame bounds
A
λ

′ and B, respectively.

In the following result, we investigate the invariance of a C-controlled Bessel

sequence under an adjointable operator.
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Proposition 5.5. Let {ψj}j∈J be a C-controlled Bessel sequence with bound D. Let

T ∈ L(H) and CT = TC. Then {Tψj}j∈J is also C-controlled Bessel sequence with

bound D∥T∗∥2.

Proof. Suppose {ψj}j∈J is a C-controlled Bessel sequence with bound D. Then we

have

∑
j∈J

⟨ f , ψj⟩⟨Cψj, f ⟩ ≤ D⟨ f , f ⟩, ∀ f ∈ H.

For every f ∈ H,

∑
j∈J

⟨ f , Tψj⟩⟨CTψj, f ⟩ = ∑
j∈J

⟨T∗ f , ψj⟩⟨TCψj, f ⟩

= ∑
j∈J

⟨T∗ f , ψj⟩⟨Cψj, T∗ f ⟩

≤ D⟨T∗ f , T∗ f ⟩

≤ D∥T∗∥2⟨ f , f ⟩.

Thus {Tψj}j∈J is also C-controlled Bessel sequence with bound D∥T∗∥2.

Now, we investigate the invariance of a C-controlled K-frame under an adjointable

operator.

Theorem 5.4. Let C ∈ GL+(H), K ∈ L(H) and {ψj}j∈J be a C-controlled K-frame for

H with lower and upper bounds A and B, respectively. If T ∈ L(H) with closed range

such that R(TK) is orthogonally complemented and C, K, T commute with each other.

Then {Tψj}j∈J is a C-controlled K-frame for R(T).

Proof. Suppose {ψj}j∈J is a C-controlled K-frame for H with bound A and B. Then

A⟨C 1
2 K∗ f , C

1
2 K∗ f ⟩ ≤ ∑

j∈J
⟨ f , ψj⟩⟨Cψj, f ⟩ ≤ B⟨ f , f ⟩, ∀ f ∈ H.

We know that if T has closed range then T has Moore-Penrose inverse T† such that

TT†T = T and T†TT† = T†. So TT†|R(T) = IR(T) and (TT†)∗ = I∗ = I = TT†.
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We have

⟨K∗C
1
2 f , K∗C

1
2 f ⟩ =

〈
(TT†)∗K∗C

1
2 f , (TT†)∗K∗C

1
2 f

〉
=

〈
T†∗T∗K∗C

1
2 f , T†∗T∗K∗C

1
2 f

〉
≤ ∥(T†)∗∥2〈T∗K∗C

1
2 f , T∗K∗C

1
2 f

〉
.

This implies that

∥(T†)∗∥−2〈K∗C
1
2 f , K∗C

1
2 f

〉
≤

〈
T∗K∗C

1
2 f , T∗K∗C

1
2 f

〉
. (5.16)

Since R(T∗K∗) ⊂ R(K∗T∗), by using Theorem 4.2, there exists some λ
′
> 0 such

that

〈
T∗K∗C

1
2 f , T∗K∗C

1
2 f

〉
≤ λ

′〈
K∗T∗C

1
2 f , K∗T∗C

1
2 f

〉
. (5.17)

Therefore, using (5.16) and (5.17) we get

∑
j∈J

⟨ f , Tψj⟩⟨CTψj, f ⟩ = ∑
j∈J

⟨T∗ f , ψj⟩⟨TCψj, f ⟩

= ∑
j∈J

⟨T∗ f , ψj⟩⟨Cψj, T∗ f ⟩

≥ A
〈
C

1
2 K∗T∗ f , C

1
2 K∗T∗ f

〉
≥ Aλ

′⟨T∗C
1
2 K∗ f , T∗C

1
2 K∗ f ⟩

≥ Aλ
′∥(T†)∗∥−2⟨C 1

2 K∗ f , C
1
2 K∗ f ⟩.

This gives the lower frame inequality for {Tψj}j∈J . On the other hand by Proposi-

tion 5.5, {Tψj}j∈J is a C-controlled Bessel sequence. So {Tψj}j∈J is a C-controlled

K-frame for R(T).

Theorem 5.5. Let C ∈ GL+(H), K ∈ L(H) and {ψj}j∈J be a C-controlled K-frame for

H with lower and upper bound A, B respectively. If T ∈ L(H) is a isometry such that

R(T∗K∗) ⊂ R(K∗T∗) with R(TK) is orthogonally complemented and C, K, T commute

with each other. Then {Tψj}j∈J is a C-controlled K-frame for H.

Proof. By Theorem 4.2, there exist some λ > 0 such that ∥T∗K∗C
1
2 f ∥2 ≤ λ∥K∗T∗C

1
2 f ∥2.
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Suppose A is a lower bound for the C-controlled K-frame {ψj}j∈J . Since T is an

isometry, then

A
λ
∥C

1
2 K∗ f ∥2 =

A
λ
∥T∗C

1
2 K∗ f ∥2

≤ A∥K∗T∗C
1
2 f ∥2

= A∥C
1
2 K∗T∗ f ∥2

≤ ∑
j∈J

⟨T∗ f , ψj⟩⟨Cψj, T∗ f ⟩

= ∑
j∈J

⟨ f , Tψj⟩⟨TCψj, f ⟩

= ∑
j∈J

⟨ f , Tψj⟩⟨CTψj, f ⟩. (5.18)

Therefore from Proposition 5.5 and inequality (5.18), we conclude that {Tψj}j∈J is

a C-controlled K-frame for H with bounds
A
λ

and B∥T∗∥2.

Now, we prove a perturbation result for C-controlled K-frame.

Theorem 5.6. Let F = { f j}j∈J be a C-controlled K-frame for H , with controlled frame

operator SC. Suppose K ∈ L(H), KC = CK, R(C
1
2 ) ⊆ R(K∗C

1
2 ) with R((C

1
2 )∗) is

orthogonally complemented . If G = {gj}j∈J is a non zero sequence in H, and E =

TF − TG be a compact operator, where TG({cj}j∈J) = ∑
j∈J

cjgj for {cj}j∈J ∈ ℓ2(A), then

G = {gj}j∈J is a C-controlled K-frame for H.

Proof. Let { f j}j∈J be a C-controlled K-frame with bounds A and B, then because of

Theorem 5.1, we have

A∥C
1
2 K∗ f ∥2 ≤ ∥∑

j∈J
⟨ f , f j⟩⟨C f j, f ⟩∥ ≤ B∥ f ∥2, ∀ f ∈ H.

This implies ∥TF∥2 ≤ B∥C
−1
2 ∥2.

Let V = TF − E be an operator from ℓ2(A) into H. Since TF and E are bounded,

then the operator V is bounded. Therefore ∥V∥ = ∥V∗∥.
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For any f ∈ H,

V∗ f = T∗
F f − E∗ f

= {⟨ f , f j⟩}j∈J − {⟨ f , f j − gj⟩}j∈J

= {⟨ f , f j⟩}j∈J − {⟨ f j − gj, f ⟩∗}j∈J

= {⟨ f , f j⟩}j∈J − {⟨ f j, f ⟩∗ − ⟨gj, f ⟩∗}j∈J

= {⟨ f , f j⟩}j∈J − {⟨ f , f j⟩ − ⟨ f , gj⟩}j∈J

= {⟨ f , gj⟩}j∈J .

We have

V({cj}j∈J) = ∑
j∈J

cjgj, and SG = VV∗. (5.19)

Now using (5.19), we have

∥⟨ f , CSG f ⟩∥ = ∥⟨ f , CVV∗ f ⟩∥ = ∥⟨C 1
2 V f , C

1
2 V f ⟩∥

= ∥C
1
2 V f ∥2

≤ ∥C
1
2∥2∥V f ∥2

= ∥C
1
2∥2∥(TF − E) f ∥2

≤ ∥C
1
2∥2∥TF − E∥2∥ f ∥2

≤ (∥TF∥2 + 2∥TF∥∥E∥+ ∥E∥2)∥C
1
2∥2∥ f ∥2

≤
(

B∥C
−1
2 ∥2 + 2

√
B∥C

−1
2 ∥∥E∥+ ∥E∥2)∥C

1
2∥2∥ f ∥2

= B
(
∥C

−1
2 ∥+ ∥E∥√

B

)2
∥C

1
2∥2∥ f ∥2. (5.20)

This inequality shows that {gj}j∈J is a controlled Bessel sequence with bound

B
(
∥C

−1
2 ∥+ ∥E∥√

B

)2
∥C

1
2∥2.
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Again we have

VV∗ = (TF − E)(TF − E)∗

= (TF − E)(T∗
F − E∗)

= TFT∗
F − TFE∗ − ET∗

F + EE∗

= SF − TFE∗ − ET∗
F + EE∗.

Since E, TF and SF are compact operators, then SF − TFE∗− ET∗
F + EE∗ is a compact

operator. Therefore SF − TFE∗ − ET∗
F + EE∗ + I is a bounded operator with closed

range. Thus, VV∗ = SF − TFE∗ − ET∗
F + EE∗ is a bounded operator with closed

range. Clearly, V and its adjoint operator V∗ f = {⟨ f , gj⟩}j∈J are injective. This

implies VV∗ is injective as composition of two injective operator is injective. Hence

VV∗(= SG) is bounded below. So there exists some constant A > 0 such that

A∥C
1
2 f ∥ ≤ ∥SGC

1
2 f ∥. (5.21)

Now

∥C
1
2 K∗ f ∥2 = ∥K∗C

1
2 f ∥2

≤ ∥K∗∥2∥C
1
2 f ∥2

≤ 1
A2∥K∗∥2∥SGC

1
2 f ∥2.

This implies that

A2

∥K∗∥2∥C
1
2 K∗ f ∥2 ≤ ∥SGC

1
2 f ∥2. (5.22)

Therefore from (5.20) and (5.22), we conclude that G = {gj}j∈J is a C-controlled

K-frame for H with frame bounds
A2

∥K∗∥2 and B
(
∥C

−1
2 ∥+ ∥E∥√

B

)2
∥C

1
2∥2.
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5.3 Conclusions

In this chapter, we introduced the concept of controlled K-frame in Hilbert C∗-

modules. We established the equivalent condition for a controlled K-frame as it is

much easier to work. We investigated some operator theoretic characterizations

of controlled K-frames and controlled Bessel sequences. We also established the

relationship between the K-frames and controlled K-frames. We studied the in-

variance of a C-controlled K-frame under a suitable map T. Finally, we proved a

perturbation result for controlled K-frame.
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CHAPTER 6

Conclusions and Future Work

In this thesis, we defined and studied regular k-distance set as well as regular

k-distance frame, in particular, regular k-distance tight frames in Hilbert space. We

introduced the definition of dual frames for a regular k-distance set. We require

the notion of a dual frame to reconstruct a vector from its frame coefficients. We

established Perturbation theorems for various notions of frames in Hilbert space

and in Hilbert C∗-modules as they are essential and valuable tools to construct new

frames close to the given one. We studied and characterized the different frames in

Hilbert C∗-modules from an operator theoretic point of view. We generalized the

notions of frame theory in Hilbert space into Hilbert C∗-modules and showed that

the results share many beneficial properties with their corresponding notions in a

Hilbert space. We established an equivalent definition for the notions introduced

in Hilbert C∗-modules. An equivalent definition is much easier to be applied, as

well as permits us to study the various types of frames from the operator theory

point of view.

From the analysis of the work presented in this thesis, there are several opportuni-

ties for future research, which are mentioned below:

1. The broad area of applications signifies a large prospective of problems for

the investigation.

2. One can study the dynamical properties of the frame.

3. One can study the perturbation result for a regular k-distance frame in Hilbert

space with lesser conditions.

4. Many portions of the area are still not explored by the community.
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Mutual relationship and first numerical properties. International journal of

wavelets, multiresolution and information processing, 8(01):109–132, 2010.

[5] A. Barg, A. Glazyrin, K. A. Okoudjou, and W.-H. Yu. Finite two-distance tight

frames. Linear Algebra and its Applications, 475:163–175, 2015.

[6] T. Bemrose, P. G. Casazza, K. Gröchenig, M. C. Lammers, and R. G. Lynch.

Weaving frames. arXiv preprint arXiv:1503.03947, 2015.

[7] J. J. Benedetto and M. Fickus. Finite normalized tight frames. Advances in

Computational Mathematics, 18(2):357–385, 2003.

[8] B. G. Bodmann, P. G. Casazza, D. Edidin, and R. Balan. Frames for linear

reconstruction without phase. In 2008 42nd Annual Conference on Information

Sciences and Systems, pages 721–726. IEEE, 2008.

[9] I. Bogdanova, P. Vandergheynst, J.-P. Antoine, L. Jacques, and M. Morvi-

done. Stereographic wavelet frames on the sphere. Applied and Computational

Harmonic Analysis, 19(2):223–252, 2005.

97



[10] H. Bolcskei, F. Hlawatsch, and H. G. Feichtinger. Frame-theoretic analysis of

oversampled filter banks. IEEE Transactions on signal processing, 46(12):3256–

3268, 1998.

[11] E. J. Candès and D. L. Donoho. New tight frames of curvelets and optimal

representations of objects with piecewise c2 singularities. Communications

on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of

Mathematical Sciences, 57(2):219–266, 2004.

[12] P. G. Casazza, D. Freeman, and R. G. Lynch. Weaving schauder frames. Journal

of Approximation Theory, 211:42–60, 2016.

[13] P. G. Casazza, D. Han, and D. R. Larson. Frames for banach spaces. Contempo-

rary Mathematics, 247:149–182, 1999.

[14] P. G. Casazza and G. Kutyniok. Frames of subspaces. Contemporary Mathemat-

ics, 345:87–114, 2004.

[15] P. G. Casazza, G. Kutyniok, and S. Li. Fusion frames and distributed process-

ing. Applied and computational harmonic analysis, 25(1):114–132, 2008.

[16] P. G. Casazza and R. G. Lynch. Weaving properties of hilbert space frames.

In 2015 International Conference on Sampling Theory and Applications (SampTA),

pages 110–114. IEEE, 2015.

[17] P. G. Casazza, T. T. Tran, and J. C. Tremain. Regular two-distance sets. Journal

of Fourier Analysis and Applications, 26(3):1–32, 2020.

[18] P. G. Cazassa and O. Christensen. Perturbation of operators and applications

to frame theory. Journal of Fourier Analysis and Applications, 3(5):543–557, 1997.

[19] O. Christensen. Frame perturbations. Proceedings of the American Mathematical

Society, pages 1217–1220, 1995.

[20] O. Christensen. A paley-wiener theorem for frames. Proceedings of the American

Mathematical Society, 123(7):2199–2201, 1995.

98



[21] R. R. Coifman and G. Weiss. Extensions of hardy spaces and their use in

analysis. In Fundamental Papers in Wavelet Theory, pages 295–371. Princeton

University Press, 2009.

[22] I. Daubechies, A. Grossmann, and Y. Meyer. Painless nonorthogonal expan-

sions. In Fundamental Papers in Wavelet Theory, pages 372–384. Princeton

University Press, 2009.

[23] R. J. Duffin and A. C. Schaeffer. A class of nonharmonic fourier series. Trans-

actions of the American Mathematical Society, 72(2):341–366, 1952.

[24] Y. C. Eldar. Sampling with arbitrary sampling and reconstruction spaces

and oblique dual frame vectors. Journal of Fourier Analysis and Applications,

9(1):77–96, 2003.

[25] Y. C. Eldar and T. Werther. General framework for consistent sampling in

hilbert spaces. International Journal of Wavelets, Multiresolution and Information

Processing, 3(04):497–509, 2005.

[26] X. Fang, J. Yu, and H. Yao. Solutions to operator equations on hilbert c-

modules. Linear Algebra and its Applications, 431(11):2142–2153, 2009.

[27] H. G. Feichtinger and K. Gröchenig. A unified approach to atomic decompo-

sitions via integrable group representations. In Function spaces and applications,

pages 52–73. Springer, 1988.

[28] H. G. Feichtinger and K. Gröchenig. Irregular sampling theorems and series

expansions of band-limited functions. Journal of mathematical analysis and

applications, 167(2):530–556, 1992.

[29] H. G. Feichtinger and T. Werther. Atomic systems for subspaces. Proceedings

SampTA, 2001:163–165, 2001.

[30] P. Ferreira. Mathematics for multimedia signal processing ii: Discrete finite

frames and signal reconstruction. NATO ASI SERIES F COMPUTER AND

SYSTEMS SCIENCES, 174:35–54, 1999.

99



[31] M. Frank and D. R. Larson. Frames in hilbert c*-modules and c*-algebras.

Journal of Operator Theory, pages 273–314, 2002.

[32] D. Gabor. Theory of communication. part 1: The analysis of information.

Journal of the Institution of Electrical Engineers-Part III: Radio and Communication

Engineering, 93(26):429–441, 1946.
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