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Abstract

Image Dehazing is a famous computer vision application that has been in the re-
search area for the past decade. It involves reducing or removing haze/fog from
an image to extract more information and make it more visually appealing overall.
In this thesis, we first explain the existing methods to solve the ill-posed problem
of image dehazing. We start with the prior-based techniques, which use image
processing to dehaze the image after which we shift to learning-based methods,
which have been recently developed and are considered state-of-the-art. Follow-
ing this, we discuss the method proposed by us and it’s results as compared to
other existing state-of-the-art methods. We have proposed a two stage image de-
hazing model which utilizes two different deep learning models. The first model
is a combination of different convolutional modules like haze detector module,
Dark channel prior module, feature extraction module, spatial attention module,
feature fusion module and restoration module. The other model is a GAN ar-
chitecture, pix2pix GAN to be specific with different generator losses. We have
obtained PSNR score of 18.11 and SSIM score of 0.6 on NH-HAZE dataset, while
we have obtained a PSNR score of 13.79 and a SSIM score of 0.4320 on DenseHaze
dataset. Along with these two datasets, we have also tested our model on RESIDE
dataset which also gives comparable results.

These days cascading of models is quite popular to make a complex model
which can solve the problem with good metrics as compared to a stand-alone
model. We have also explored the validity of this statement by comparing the re-
sults of a cascaded model with ours. We explore when can a cascade model benefit
the result while consuming extra computational power. Along with all these anal-
ysis, we have also experimented with different loss functions and observed that
different datasets require different loss functions for better performance.
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CHAPTER 1

Introduction

A clear and haze-free image is essential for computer vision tasks like object de-
tection, image segmentation, image classification, etc. So, if we want to apply
some advanced computer vision application to the image, we first need to make
it as clear as possible. Simply enough, image dehazing is an image process-
ing/computer vision application which reduces or removes the fog/haze from
an input hazy image.

Figure 1.1: Image Dehazing [4]

As shown in Fig. 1.1, we can use traditional image processing techniques or
deep learning techniques to remove fog from the image. Also, it’s quite clear from
Fig. 1.2 that if an object detection algorithm is given this image to detect chairs,
it won’t be able to detect the chairs which are hidden behind the haze with good
accuracy. So, in order for the algorithm to work, we need to pre-process the image
by removing the haze.

The irradiance received by the camera from the scene point is attenuated along
the line of sight. Furthermore, the incoming light is mixed with the airlight (sur-
rounding light which is reflected into the line of sight by small atmospheric parti-
cles). The resulting image loses contrast and color accuracy, as shown in Fig. 1.3.
Since the amount of light scattering depends on the distances of the scene points
from the camera, the degradation is spatial-variant and usually non-homogeneous.
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Figure 1.2: Foggy Image[4]

Figure 1.3: Atmospheric scattering model [2]

One of the most crucial tasks is formulating a mathematical model that gives a
relationship between hazy and clear image pairs. One such mathematical model
is the atmospheric scattering model or the widely known Koschmieder’s law. In
our scenario, this law can be defined as,

I(x) = J(x)t(x) + A(1 − t(x)) (1.1)

Where I(x) represents the foggy/hazy image, and J(x) represents the clear im-
age. x refers to the position of image pixels. A is the global airlight representing
the surrounding/ambient light in the atmosphere. t(x) is a map that represents
the transmission of the intrinsic luminance in the atmosphere. t(x) can be further
modeled as,

t(x) = e−βd(x) (1.2)

where β is the extinction coefficient, and d(x) is the scene depth. Existing de-
hazing methods can be roughly classified into two categories, i.e., the prior-based
and the learning-based. The prior-based methods rely heavily on the atmospheric
scattering model to compute the dehazed image. But since there are more than
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two unknowns in the atmospheric scattering model (J(x), t(x), A), it is an ill-posed
problem to solve. So the prior-based methods proposes various priors as extra
constraints to find the dehazed image. On the other hand, learning-based meth-
ods learn to approximate A and t(x). Combining A, t(x), and I(x) using the atmo-
spheric scattering model, they compute the dehazed image. Some learning-based
methods directly compute the dehazed image from the hazy image using super-
vised learning.

1.1 Problem Statement

A homogeneous haze is a haze or fog present in uniform amounts throughout
the image. i.e., it is of the same intensity everywhere in the image. While on the
other side, non-homogeneous haze is a haze that is present in different amounts
at different patches/regions in the image. It is needless to say that it is easier to
dehaze a homogeneous hazy image than to dehaze a non-homogeneous hazy im-
age since, in the homogeneous hazy image, we have to find that common haze
intensity in the image.

Natural haze is non-homogeneous in nature, so a method which can not only
remove haze from the hazy region but also doesn’t alter the pixel values of the
non-hazy region while maintaining the colour, texture, and luminance of the whole
image is desired.

3



CHAPTER 2

Related Work

This chapter explores most of the current as well as previous methods which were
used to dehaze an image. Some of the mentioned methods use advanced image
processing, while others use deep neural networks to dehaze an image.

2.1 Dark Channel Prior

Dark channel prior [8] is perhaps one of the most known and earlier methods
in image dehazing application. It revolves around the dark channel prior to re-
move haze from the image. The dark channel prior is based on the observation
that most local patches in haze-free non-sky outdoor images contain some pixels
which have very low intensity in at least one color channel. So considering the
prior, the dark channel for an image I(x) is obtained by the below formula:

Idark(x) = min
c∈{r,g,b}

( min
y∈ω(x)

(Ic(y))) (2.1)

Where Ic is a color channel of I and ω(x) is a local patch centered at x. The
observation says that except for the sky region, the intensity of Idark is low and
tends to be zero if I is a haze-free outdoor image. Idark is the dark channel of I. The
transmission map can then be estimated by the below formula:

t̃(x) = 1 − min
c

( min
y∈ω(x)

(
Ic(y)

Ac )) (2.2)

The dark channel of the image can be used to estimate atmospheric light. We
first pick the top 0.1% brightest pixels in the dark channel. Among these pixels,
the pixels with the highest intensity in the input image I(x) are selected as the
atmospheric light. The final dehaze image can be obtained by rearranging Eq. 1.1
as below,

4



J(x) =
I(x)− A

max{t(x), t0}
+ A (2.3)

We restrict the transmission t(x) to a lower bound t0, meaning that a small
amount of haze is preserved in dense haze regions. This is done to prevent the
denominator from becoming zero. Along with the dehazed image, a high-quality
depth map can also be obtained as a by-product of this method. Please refer to
appendix A for full DCP proof.

Figure 2.1: (a) Input haze image. (b) Image after haze removal using DCP. (c)
Recovered depth map. [8]

2.2 Other Image Processing Techniques

In [11], the authors proposed an adaptive single-image dehazing method. The
method first classifies various regions of the hazy input image as less affected,
moderately affected, and most affected and subsequently dehazes according to
the haze-affected regions. The hazy image, which is separated into three promi-
nent hazy regions, is passed to three dehazing blocks. Each block decomposes
the processed hazy image into base and detail layers by choosing different scale
factors w.r.t different modules. Then in these modules, the image dehazing and
detail enhancement are performed for base and detail layers. Finally, after image
dehazing and detail enhancement, the recovered images of three blocks are fused
based on the respective regions to obtain the final dehazed output. In [10], the
authors proposed a new method which merges bright channel prior along with
dark channel prior to boost the performance of dark channel prior and overcome
it’s disadvantages.

5



2.3 Deep Neural Network Techniques

In [5], the authors proposed a deep neural network model which comprises of
three sub neural network models. A deep pre-dehazer, feature extractor and an
image restoring neural network. The hazy image first goes into the pre-dehazer
network which is pre-trained on the dataset. The output of the pre-dehazer is a
less hazy image. The output of the pre-dehazer and the input hazy image then
goes into the feature extractor network in a parallel fashion. The feature extractor
extract the image features which then gets fused by a custom progressive feature
fusion technique. At last the fused features are then passed into the image restor-
ing model which produces the final output dehaze image. The model architecture
is given in fig. 2.2.

Figure 2.2: Image dehazing using Feature fusion technique

Pre-dehazer and Image restoration modules are modified U-NET Architec-
tures. Feature extraction module is based on convolution layers. Progressive fea-
ture fusion module is also based on convolution layers, but the same module is
used multiple times in order to progressively fuse the features.

The loss function is summation of three losses. First one is standard L1 loss be-
tween the ground truth and the output of the end model as well as the output of
deep pre-dehazer. Second loss term is there to preserve the edges of the output de-
haze image. This is done by minimizing the L1 distance between the ground truth
gradients and the output gradients. Third loss term is to remove possible artifacts
from the output image and this is done by minimizing the gradients of the modi-
fied transmission map. The authors tested the model on RESIDE and NTRIE2018
dehazing challenge datasets, both of which are homogeneous in nature. They also
resized the NTRIE2018 dataset images to 512x512 to reduce computations. Hence

6



the model is not made to handel non-homogeneous images.

In [17], the authors combined dark channel prior method with deep neural
networks. In this method, the hazy image is first dehazed using dark channel
prior method. After that it is fed into the deep neural network which is U-NET
based. This neural network then outputs a refined dehazed image as well as a
refined transmission map. A second refined dehaze image is obtained by using
the refined transmission map. Both refined dehaze images are than fused to ob-
tain best of both worlds and finally a much better dehaze image is obtained in
the output. The U-NET models are trained with the help of a GAN which tries to
generate the distribution of haze-free images by distinguishing haze-free images
from hazy images. The discriminator is fed unpaired haze-free images half of the
time and the output of the U-NET the other half of the time. Since the discrimi-
nator is trained to identify which image came from which dataset, the output of
the U-NET shifts towards haze-free image and progressively the haze is reduced
from the image as the model is trained. The model architecture is given in fig. 2.3.

Figure 2.3: Image dehazing using RefineDNet technique

The loss function is a combination of three different losses. First term is the
standard GAN loss. Second term is the reconstruction loss which is the L1 dif-
ference of hazy image and reconstructed hazy image, while the third loss is the
identity loss which helps reduce image artifacts.

The model was trained on RESIDE dataset and tested on SOTS. The model
was also trained on D-HAZY dataset. Both of the datasets are homogeneous in
nature, hence the model is primarily made to handle homogeneous data. The
authors didn’t test the model on any non-homogeneous data, which is common
occurrence in real-life scenarios.

7



In [13], the authors proposed a neural network architecture with encoder and
decoder pairs for each atmosphere map, transmission map and a reconstructed
image. They also included a weight map which learns the best weights to com-
bine the transmission map and atmosphere map to produce a dehazed image.

In [16], the authors proposed an ensemble method for image dehazing. In total
there are three models. The first two models are quite same as in [13], while the
third model is a combination of encoder-decoder model and a UNET architecture.
The final dehaze image is the one which is best obtained from all the three models.

In [14], the authors used one of the state-of-the-art model i.e., VisionTrans-
former for dehazing purpose. They used UNET architecture as a backbone and
implemented vision transformer blocks instead of normal CNN layers. They also
modified the normalization layers, activation functions and spatial information
aggregation scheme in order to make it compatible for non-homogeneous data.
Mostly the authors used homogeneous datasets, but they also used a remote sens-
ing dataset which is non-homogeneous in nature to test their model. The model
architecture is given in fig. 2.4.

Figure 2.4: Image dehazing using DehazeFormer technique
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CHAPTER 3

Proposed Method

After getting through so many methods, be it related with image processing or
deep learning, it’s clear that image dehazing task is highly complex since it re-
quires the model to predict objects or scenes using nothing but the objects or
scenes which are not fully covered with haze and are near the region to dehaze.
To tackle this problem, we have built many different models, comprising of many
different modules, combined differently. As for a base model, we have used the
model which was proposed in [5].

Although the authors in [5] proposed the model for dealing with homoge-
neous haze, we will be modifying it to deal with non-homogeneous haze as well.
Also during the process we will compare our modified author’s model with the
author’s original model. This is done to test one of the author’s claims that the
use of pre-dehazer in the network boosts the network’s performance immensely.

This will also test the idea of cascade deep neural networks which are popular
these days. We will find out how much does the first network contribute to the
performance of the latter network. We will also find out how does the first and
second network perform when they are stand-alone. The full architecture of our
model in given in Fig. 3.1.

Figure 3.1: Full Architecture of proposed model
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Although the full architecture is given in Fig. 3.1, we have experimented with
different architectures by removing certain modules from the full architecture.
Hence we have obtained many architectures by the combination of whether one
module is present or not in the architecture. We then evaluate the model perfor-
mance on different datasets to obtain the optimum architecture for a particular
dataset.

The full architecture consists of many modules like, DCP module, haze detec-
tor module, feature extractor module, convolution block attention module, pro-
gressive feature fusion module and image restoration module. All of the above
modules are explained in detail below.

3.1 DCP

The DCP module is responsible to produce the dark channel prior image of the
input image. It utilizes the dark channel prior algorithm which was proposed in
[8]. The obtained RGB image is then normalized to have values between -1 and 1.

3.2 Haze Detector

The haze detector module is a standard U-NET architecture which is trained on
image-mask pairs for segmentation task. This module is only functional for non-
homogeneous haze images since in non-homogeneous haze images we generally
have a patch of image where the haze is the most dense. Hence if we can some-
how detect which region has more haze and which region has less haze, we can
remove the haze more effectively by only working on the hazy region and leaving
the haze free region as it is.

This helps in preventing the haze free region pixels from getting mapped to
some other pixels which have different colour or intensity. Hence only the hazy
region gets affected after the introduction of haze mask. This haze mask is not
applicable in homogeneous images, be it dense haze or light haze, since all of the
image is filled with haze and there is no particular region of image containing the
haze. As for the haze-mask pairs, we manually marked each of the 45 images of
the NH-HAZE training dataset for regions having highest haze.

This manual marking of mask is kind of subjective from person to person,
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Figure 3.2: Standard U-NET Architecture

but little uncertainty is acceptable since there is no so called boundary between
hazy region and non-hazy region, it is a gradient. The masks are binary masks
containing a value of 1 if the haze is present and a value of -1 if the haze is not
present at that pixel. We know that allowing only two values in our mask, i.e.,
whether the pixel contains haze or it doesn’t is a bit restrictive and we can actually
improve the bit resolution by increasing the number of values that the mask can
take which can indicate not only if the pixel contains haze but also how much.
This is one of our future tasks.

3.3 Attention Module

To further leverage the attention mechanism, we have included an attention mod-
ule. The module is based on convolution block attention module (CBAM) pro-
posed in [15]. CBAM improves the network’s ability to focus on informative fea-
tures while suppressing irrelevant or noisy signals. The CBAM module consists
of two main components: the Channel Attention Module (CAM) and the Spatial
Attention Module (SAM).

The Channel Attention Module (CAM) operates on the channel dimension of
feature maps. It employs a global average pooling operation to aggregate global
information from each channel and then uses a two-layer fully connected net-
work to model the interdependencies among channels. The output of the fully
connected network is used to compute channel-wise attention weights. These
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weights are then multiplied element-wise with the input feature maps to high-
light important channels and suppress less relevant ones.

The Spatial Attention Module (SAM), on the other hand, focuses on captur-
ing spatial dependencies within feature maps. It utilizes both the max pooling
and average pooling operations to capture the maximum and average activations
along spatial dimensions. These pooled representations are then fed into a con-
volutional layer followed by a sigmoid activation function. The resulting atten-
tion map is then multiplied element-wise with the input feature maps to empha-
size relevant spatial locations while suppressing others. The brief architecture of
CBAM is given in Fig. 3.3

Figure 3.3: Convolution Block Attention Module Architecture

3.4 Feature Extractor Module

The feature extractor module consists of a convolution layer with relu activation
and a residual block containing two convolution layers with relu activation. The
primary task of this module is to convert the 3 channel input into a 32 channel
feature tensor.

This feature extractor module is applied in parallel to all the three inputs,
(if full architecture is used) i.e., hazy input image, output of DCP module and
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haze detector mask. These extracted features are then further refined by passing
through the convolution block attention module in parallel which we had dis-
cussed earlier.

3.5 Feature Fusion Module

The feature fusion module takes the features from CBAM module and fuses them
using convolutional layers. We can have multiple stages of fusion which is a
hyper-parameter to be chosen by the user. In our case we have taken it as 2.

3.6 Image Restoration Module

Figure 3.4: Image Restoration Architecture

It is an encoder-decoder architecture where each encoder and decoder contains
a convolutional layer or a convolution transpose layer, and a ResBlock Group.
Also, the output of each encoder is added to the input of the corresponding de-
coder as a skip connection. Each convolutional layer and convolution transpose
layer, it is followed by a ReLU activation function except the last convolutional
layer which is followed by a Sigmoid function to output the transmission map.
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Each ResBlock Group consists of three residual blocks (ResBlock), and each Res-
Block contains two convolutional layers with a ReLU function in the middle, and
its inputs are added to the outputs as the residual connections.

3.7 Loss Functions

We have used the same loss functions which were used in [5]. Only difference
is that we didn’t use the smooth loss which was used in [5]. This is because we
found that our models worked better without the inclusion of smooth loss. Other
than that, we have used the below losses:

The Standard L1 loss, which is given as,

n

∑
i=1

|yi − ŷi| (3.1)

The Gradient loss, which is given as,

n

∑
i=1

|∇yi −∇ŷi| (3.2)

where yi is the ground truth clear image, ŷi is the model predicted image, and
∇ is the gradient operation on an image.

Along with combining these two losses and training the model, we also ex-
plored the possibilities of improving the model by changing the loss function en-
tirely. To scout this, we trained all of the models on SSIM loss. This is a loss which
emphasises the model to output an image which has better SSIM score. We found
that this loss is beneficial and better as compared to the previous L1 + Gradient
loss because it not only enhances the SSIM score of the model, but also enhances
the PSNR score of the model. So in a way our finding is that the SSIM loss does
not penalize the PSNR score to elevate the SSIM score.

The SSIM loss, which is given as,

n

∑
i=1

|1 − SSIM(yi, ŷi)| (3.3)

Where SSIM(yi, ŷi) computes the SSIM value between yi and ŷi.
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3.8 Pix2pix GAN

Although most of the models derived from the architecture shown in the Fig 3.1
quantitatively beats the model proposed in [5], it still has an issue which many of
the deep learning models face for dehazing. The problem is, although the haze
is highly removed from the image, but the output image gets a little blue shifted.
i.e., the output is not able to maintain it’s colour information for both the hazy
regions and for the regions with less haze.

To prevent this from happening and to obtain an image which not only con-
tains less haze but also has preserved it’s original colour information, we trained
a pix2pix GAN to the output images from the first model. Again, we have exper-
imented with many combinations of inputs with pix2pix GAN to obtain the best
input which can produce the highest PSNR and SSIM scores. The architectural
concept of Pix2pix GAN is shown in Fig. 3.5

Figure 3.5: Pix2pix GAN Architecture

The pix2pix GAN consists of a generator and a discriminator. The generator
is a U-NET inspired architecture which takes in hazy input images and tries to
output a clear image. There are three losses dedicated to train the generator, the
L1 loss, the generator adversarial loss and the perceptual loss.

The discriminator is a CNN architecture but the catch here is instead of having
an output layer of one neuron to predict whether the image came from gener-
ated distribution or from clear distribution, the discriminator produces an image
of a certain dimensions based on the resolution of input image. Each value in
the output of discriminator image corresponds to whether that particular patch
came from generated distribution or clear distribution. Hence the discriminator
in pix2pix GAN discriminated patch-wise instead of a whole image. There is only
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one loss to train the discriminator which is the discriminator adversarial loss. The
discriminator takes a concatenated input of two images, either hazy image with
clear image or hazy image with generated image.

3.9 Loss Functions for Pix2pix GAN

We have used primarily used three loss functions to train the GAN network.
These have been listed below with their mathematical equations:

The generator adversarial loss is given as,

n

∑
i=1

− log(D(G(xi))) (3.4)

The discriminator adversarial loss is given as,

n

∑
i=1

− log(D(xi))− log(1 − D(G(xi))) (3.5)

The perceptual loss is given as,

n

∑
i=1

(ϕ(yi)− ϕ(ŷi))
2 (3.6)

where xi is input hazy image, yi is the ground truth clear image, ŷi is the model
predicted image, and ϕ is the output feature tensor of a certain convolutional
block of VGG16 network.

Along with these two equations, we have also incorporated the L1 loss in the
generator network, given in Eq. 3.1. This helps the network to preserve the colour
and intensity when combined with the adversarial loss. It is to be noted that just
like in our first model, we tried to replace the L1 loss and the perceptual loss with
SSIM loss in hope for better SSIM and PSNR score, but it seems like SSIM score is
too unstable with GAN and hence our generator kept on diverging and we were
not able to generate a good quality haze free image using only SSIM loss and
Adversarial loss.
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3.10 Proposed Architecture

The proposed architecture is a cascaded deep neural network of two architectures
shown in Fig. 3.1 (CNN network) and in Fig. 3.5 (GAN network). i.e., first the
model in Fig. 3.1 (CNN network) is trained on the training set and then it is eval-
uated on both training and testing set. Now in order to train the model in Fig.
3.5 (GAN network), we use the outputs that we generated from the architecture
in Fig. 3.1 (CNN network) for training images and train the model. Finally, af-
ter the model in Fig. 3.5 (GAN network) is trained, we feed the outputs that we
generated from the architecture in Fig. 3.1 (CNN network) for testing images and
obtain the dehazed image for testing data.

So it’s a two step process for any new image to dehaze. First it goes into the
model in Fig. 3.1 (CNN network) and then the result goes into the model in Fig.
3.5 (GAN network) which is our final result of dehazing.

We have proposed this cascaded architecture because both of the models serve
different purposes, and hence gives us the best of both worlds. The CNN model
helps in dehazing while the GAN network restores the colour and luminosity
information back into the image.
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CHAPTER 4

Datasets

We have used recent datasets in the dehazing space to evaluate our model per-
formance. We have picked one dataset which is having non-homogeneous haze
images, one dataset which contains dense homogeneous haze images with vari-
able haze intensity, and lastly one dataset which contains homogeneous haze im-
ages with uniform light haze intensity. All the datasets and their meta-data is
explained in the below sections.

4.1 NH-HAZE 2020

NH-HAZE 2020 [4] was released during IEEE CVPR NTRIE workshop, 2020.
NTRIE stands for "New Trends in Image Restoration and Enhancement", which is
an annual workshop related to image restoration and enhancement methods. The
dataset contains high-resolution non-homogeneous haze-clear image pairs. The
meta-data of the dataset is given below:

• Place where images were shot: Outdoor

• Haze construction: Using industrial haze machine

• Image resolution: 1200x1600 pixels

• Number of pair of haze-clear images: 55

• Official train-validation-test split for evaluation: Images numbered 1 to 45
are for training, images numbered 46 to 50 are for validation, and images
numbered 51 to 55 are for testing

Some of the images from NH-HAZE dataset is given below in Fig. 4.1, Fig. 4.2,
and Fig. 4.3.
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4.2 DenseHaze 2019

DenseHaze 2019 [3] was released during IEEE International Conference on Image
Processing, 2019. The dataset contains high-resolution variable intensity haze ho-
mogeneous haze-clear image pairs. The meta-data of the dataset is given below:

• Place where images were shot: Outdoor + indoor

• Haze construction: Using industrial haze machine

• Image resolution: 1200x1600 pixels

• Number of pair of haze-clear images: 55

• Official train-validation-test split for evaluation: Images numbered 1 to 45
are for training, images numbered 46 to 50 are for validation, and images
numbered 51 to 55 are for testing

Some of the images from DenseHaze dataset is given below in Fig. 4.4, Fig. 4.5,
and Fig. 4.6.

4.3 RESIDE INDOOR Test

RESIDE [12] stands for "REalistic Single Image Dehazing" which was released
in IEEE Transactions on Image Processing, 2019. The dataset contains standard-
resolution uniform intensity homogeneous haze-clear image pairs. The RESIDE
dataset consists of two sub-divisions, RESIDE Outdoor containing outdoor im-
ages and RESIDE Indoor containing indoor images. Further, both Outdoor and
Indoor datasets contains training and testing images.

RESIDE Indoor dataset contains 13990 training images and 500 testing images.
It is to be worth noting that each image is repeated 10 times in both training and
testing directories. That is, each image is mapped to ten images with slightly
different haze intensity in each image. RESIDE Outdoor dataset contains 313950
training images and 500 testing images. SOTS(Synthetic objective testing set) is
the combination of testing images of both RESIDE Indoor and RESIDE Outdoor.

Since number of training examples in both RESIDE Indoor and Outdoor is huge,
and we need to compute DCP of each image in our model, we used RESIDE
Indoor Test (Same as SOTS Indoor) as a whole dataset and made a 405:45:50
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train:validation:test split to evaluate our model. The meta-data of the dataset
which we used is given below:

• Place where images were shot: Indoor

• Haze construction: Using software

• Image resolution: 460x620 pixels

• Number of pair of haze-clear images: 500

• Train-test split for evaluation: We randomly split the dataset in the ratio
405:45:50 train:validation:test.

Some of the images from RESIDE Indoor Test dataset is given below in Fig. 4.7,
and Fig. 4.8.

20



(a) Image number 7 (b) Image number 17 (c) Image number 21

Figure 4.1: Some of the training images in NH-HAZE dataset

(a) Image number 46 (b) Image number 47 (c) Image number 48

Figure 4.2: Some of the validation images in NH-HAZE dataset

(a) Image number 51 (b) Image number 52 (c) Image number 53

Figure 4.3: Some of the testing images in NH-HAZE dataset

(a) Image number 7 (b) Image number 17 (c) Image number 21

Figure 4.4: Some of the training images in DenseHaze dataset
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(a) Image number 46 (b) Image number 47 (c) Image number 48

Figure 4.5: Some of the validation images in DenseHaze dataset

(a) Image number 51 (b) Image number 52 (c) Image number 53

Figure 4.6: Some of the testing images in DenseHaze dataset

(a) Image number 10 (b) Image number 120 (c) Image number 360

Figure 4.7: Some of the training images in SOTS Indoor dataset

(a) Image number 20 (b) Image number 170 (c) Image number 260

Figure 4.8: Some of the testing images in SOTS Indoor dataset
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CHAPTER 5

Experiments

Here we have first discussed the acronyms which we have used to represent the
experiments after which we have given all the hyper-parameter settings for each
dataset.

Table 5.1: Acronym explaination for experiments

Short Forms Full Form with explaination

PDH Pre-Dehazer network which was used by authors in [5]
AU PFF network which was proposed by authors in [5]
SA CBAM network

MAS Haze Detector network
DCP Dark Channel Prior method

If for example in the experiment table it’s mentioned "AU", then it means that
the model used is the same as proposed by authors in [5]. If for example it’s
"AU+SA", then it means that it’s model proposed by authors in [5] with inte-
grated CBAM network. Similarly "AU-PDH" means it’s the network proposed
in [5] without the pre-dehazer network which was used in [5]. Hence it’s clear
that our proposed model which is in Fig. 3.1, is given by the acronym "AU-
PDH+DCP+SA+MAS".

5.1 Hyper-parameters for NH-HAZE and DenseHaze

• Training image size: Randomly cropped 600x800 pixel images for CNN net-
work and randomly cropped 1024x1024 pixel images for GAN models

• Testing image size: Full resolution 1200x1600 pixel images

• Learning rate: 1e-4 for CNN models and 2e-4 for GAN models

• batch size: 2 for CNN models and 3 for GAN models
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• Number of epochs: 100 for CNN models and 1000 for GAN models

• CNN model loss coefficients:

– L1 loss coefficient: 1

– Gradient loss coefficient: 1

• GAN model loss coefficients:

– L1 loss coefficient: 100

– perceptual loss coefficient: 10

– adversarial loss coefficient: 1

5.2 Hyper-parameters for RESIDE Indoor Test

• Training image size: 460x620 pixel images

• Testing image size: 460x620 pixel images

• Learning rate: 1e-4 for CNN models and 2e-4 for GAN models

• batch size: 2 for CNN models and 12 for GAN models

• Number of epochs: 25 for CNN models and 1000 for GAN models
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CHAPTER 6

Results

The results obtained from all of the different experiments that we conducted is
available in this chapter. In order to quantitatively evaluate output image, we
have used two metrices, first one is PSNR (Peak Signal to Noise Ratio) and the
other one is SSIM (Structure Similarity Index Metric).

6.1 On NH-HAZE Dataset

6.1.1 CNN Network (First Network)

Table 6.1: Results of different first stage models for NH-HAZE dataset

L1 + Gradient Loss SSIM Loss

Experiments: PSNR SSIM PSNR SSIM
Hazy Image 11.31 0.418 11.31 0.418

Only DCP (no NN) 12.81 0.438 12.81 0.438
PDH 15.52 0.6039 15.64 0.62
AU 15.26 0.5919 16.01 0.624

AU-PDH 15.59 0.6039 15.79 0.622
AU+SA 15.36 0.604 15.94 0.62

AU-PDH+SA 15.47 0.6020 15.70 0.618
AU-PDH+DCP 15.53 0.6060 16.20 0.624
AU-PDH+MAS 15.11 0.5879 15.70 0.614

AU-PDH+DCP+SA 15.34 0.592 15.93 0.62
AU-PDH+SA+MAS 15.36 0.592 15.48 0.6060

AU-PDH+DCP+MAS 15.80 0.6 16.22 0.62
AU-PDH+DCP+SA+MAS 15.63 0.59 15.89 0.62

"Hazy Image" in the Table 6.1 contains the PSNR and SSIM score of unpro-
cessed raw hazy image inputs as compared with ground truths. We can see
from Table 6.1 that for L1 + Gradient Loss, best PSNR score is obtained by "AU-
PDH+DCP+MAS" model, while best SSIM score is obtained by "AU-PDH+DCP"
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model.

It is also apparent that both "PDH" and "AU-PDH" has better PSNR and SSIM
scores as compared to "AU", which means we can obtain better results without
cascading two networks as done in "AU" and also save on computation time. This
proves that the pre-dehazer used in [5] actually works better or at par with the
complete end-2-end model proposed by the authors.

For SSIM Loss, the best PSNR score is again obtained by "AU-PDH+DCP+MAS",
while the best SSIM score is obtained by "AU" and "AU-PDH+DCP" with "AU-
PDH+DCP+MAS" and other similar models just slightly behind. This proves that
the addition of DCP, haze detector and attention is actually better as compare to
the pre-dehazer used in [5]. Also it can be noticed that whatever be the model,
both PSNR and SSIM has improved when SSIM loss is used. Hence selection of
suitable loss also impacts the performance metrics.

6.1.2 Pix2pix GAN Network (Second Network)

Table 6.2: Results of different second stage models for NH-HAZE dataset

L1 + VGG + GAN Loss

Experiments: PSNR SSIM
DCP ->pix2pix 17.82 0.6100
PDH ->pix2pix 17.86 0.6039
AU ->pix2pix 17.72 0.6

AU-PDH+DCP ->pix2pix 18.19 0.6040
AU-PDH+DCP+SA ->pix2pix 17.97 0.6040

AU-PDH+DCP+SA+MAS ->pix2pix 18.11 0.5980
CONCAT(DCP, PDH) ->pix2pix 17.91 0.618
CONCAT(DCP, AU) ->pix2pix 18.45 0.608

CONCAT(DCP, AU-PDH+DCP) ->pix2pix 18.0 0.596
CONCAT(DCP, AU-PDH+DCP+SA) ->pix2pix 18.28 0.6

CONCAT(DCP, AU-PDH+DCP+SA+MAS) ->pix2pix 18.11 0.6

Here "->" means that the output obtained from the model present on left of
"->" is given as input to pix2pix GAN for training. For example, "PDH -> pix2pix"
means that after training pre-dehazer model, whatever the outputs were obtained
were given as an input to train the pix2pix GAN. Similarly for others. Also, "CON-
CAT" denotes concatenation. For example, "CONCAT(DCP, AU) -> pix2pix" means
after training "AU" model whatever the outputs were obtained were first concati-
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nated with their corresponding DCP outputs and then were given as an input to
train the pix2pix GAN.

In this case, the best SSIM is obtained by "CONCAT(DCP, AU) -> pix2pix"
with "CONCAT(DCP, AU-PDH+DCP+SA) ->pix2pix" just slightly behind, while
the best PSNR is obtained by "CONCAT(DCP, PDH) ->pix2pix". Here also it is
obvious that "PDH" alone beats "AU" in both PSNR and SSIM scores. Hence there
is no need of additional computation and model cascading as proposed in [5].

Also, note that the SSIM scores remain the same even after the GAN model,
but the PSNR scores have improved a lot. This is related with the GAN making
sure that the colours and intensity of pixels don’t deviate much from the clear im-
age.

Qualitative results of various models with L1+Gradient loss is shown in Fig.
6.1 and Fig. 6.2. Qualitative results of various models with ssim loss is shown
in Fig. 6.3 and Fig. 6.4. Qualitative results of various models with pix2pix as a
second cascade network is shown in Fig. 6.5 and Fig. 6.6.
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(a) Hazy (b) DCP (c) PDH

(d) AU (e) AU-PDH (f) AU-PDH+SA

(g) AU-PDH+DCP (h) AU-PDH+DCP+SA (i) AU-PDH+SA+MAS

(j) AU-PDH+DCP+MAS (k) (l) Ground Truth

Figure 6.1: Visual results of various models on image number 52 of NH-HAZE
dataset for L1 + Gradient loss. (k): AU-PDH+DCP+SA+MAS.
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(a) Hazy (b) DCP (c) PDH

(d) AU (e) AU-PDH (f) AU-PDH+SA

(g) AU-PDH+DCP (h) AU-PDH+DCP+SA (i) AU-PDH+SA+MAS

(j) AU-PDH+DCP+MAS (k) (l) Ground Truth

Figure 6.2: Visual results of various models on image number 53 of NH-HAZE
dataset for L1 + Gradient loss. (k): AU-PDH+DCP+SA+MAS.
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(a) Hazy (b) DCP (c) PDH

(d) AU (e) AU-PDH (f) AU-PDH+SA

(g) AU-PDH+DCP (h) AU-PDH+DCP+SA (i) AU-PDH+SA+MAS

(j) AU-PDH+DCP+MAS (k) (l) Ground Truth

Figure 6.3: Visual results of various models on image number 52 of NH-HAZE
dataset for SSIM loss. (k): AU-PDH+DCP+SA+MAS.
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(a) Hazy (b) DCP (c) PDH

(d) AU (e) AU-PDH (f) AU-PDH+SA

(g) AU-PDH+DCP (h) AU-PDH+DCP+SA (i) AU-PDH+SA+MAS

(j) AU-PDH+DCP+MAS (k) (l) Ground Truth

Figure 6.4: Visual results of various models on image number 53 of NH-HAZE
dataset for SSIM loss. (k): AU-PDH+DCP+SA+MAS.
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(a) Haze (b) DCP (c) PDH

(d) AU (e) AU-PDH+DCP (f) AU-PDH+DCP+SA

(g) (h) CONCAT(DCP, AU) (i)

(j) (k) (l) Ground Truth

Figure 6.5: Visual results of various models with pix2pix as a second cascade net-
work on image number 52 of NH-HAZE dataset. (g): AU-PDH+DCP+SA+MAS,
(i): CONCAT(DCP, AU-PDH+DCP), (j): CONCAT(DCP, AU-PDH+DCP+SA), (k):
CONCAT(DCP, AU-PDH+DCP+SA+MAS).

32



(a) Haze (b) DCP (c) PDH

(d) AU (e) AU-PDH+DCP (f) AU-PDH+DCP+SA

(g) (h) CONCAT(DCP, AU) (i)

(j) (k) (l) Ground Truth

Figure 6.6: Visual results of various models with pix2pix as a second cascade net-
work on image number 53 of NH-HAZE dataset. (g): AU-PDH+DCP+SA+MAS,
(i): CONCAT(DCP, AU-PDH+DCP), (j): CONCAT(DCP, AU-PDH+DCP+SA), (k):
CONCAT(DCP, AU-PDH+DCP+SA+MAS).
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6.2 On DenseHaze Dataset

6.2.1 CNN Network (First Network)

Table 6.3: Results of different first stage models for DenseHaze dataset

L1 + Gradient Loss SSIM Loss

Experiments: PSNR SSIM PSNR SSIM
Hazy Image 8.49 0.4439 8.49 0.4439

Only DCP (no NN) 10.99 0.4360 10.99 0.4360
PDH 12.50 0.506 12.56 0.508
AU 12.24 0.532 12.22 0.518

AU-PDH 12.67 0.534 12.51 0.506
AU+SA 12.73 0.53 12.61 0.516

AU-PDH+SA 12.12 0.496 12.19 0.512
AU-PDH+DCP 13.33 0.5459 12.47 0.5359

AU-PDH+DCP+SA 13.27 0.522 12.38 0.53

"Hazy Image" in the Table 6.3 contains the PSNR and SSIM score of unpro-
cessed raw hazy image inputs as compared with ground truths. We can see
from Table 6.3 that for L1 + Gradient Loss, best PSNR score is obtained by "AU-
PDH+DCP" model, while best SSIM score is also obtained by "AU-PDH+DCP"
model.

It’s also worth noting that both "PDH" and "AU-PDH" have PSNR greater than
"AU", while "AU-PDH" has SSIM greater than "AU".

For SSIM loss, best PSNR is obtained by "AU+SA" and best SSIM is obtained
by "AU-PDH+DCP". Note that there is no model containing haze detector module
because there is no point of creating a haze mask for DenseHaze dataset since haze
is present everywhere.

6.2.2 Pix2pix GAN Network (Second Network)

From Table 6.4 it’s clear that pix2pix GAN has helped in improving the over-
all PSNR scores of all the models, but it’s interesting that the SSIM scores have
been reduced. The best PSNR is obtained from our proposed model, i.e., "AU-
PDH+DCP+SA ->pix2pix". Also "CONCAT(DCP, AU-PDH+DCP+SA) ->pix2pix"
has the second best SSIM score.
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Table 6.4: Results of different second stage models for DenseHaze dataset

L1 + VGG + GAN Loss

Experiments: PSNR SSIM
DCP ->pix2pix 13.77 0.406
PDH ->pix2pix 14.29 0.43
AU ->pix2pix 14.15 0.36

AU-PDH+DCP+SA ->pix2pix 14.68 0.364
CONCAT(DCP, PDH) ->pix2pix 13.61 0.446
CONCAT(DCP, AU) ->pix2pix 13.10 0.394

CONCAT(DCP, AU-PDH+DCP+SA) ->pix2pix 13.79 0.4320

Qualitative results of various models with L1+Gradient loss is shown in Fig.
6.7 and Fig. 6.8. Qualitative results of various models with ssim loss is shown
in Fig. 6.9 and Fig. 6.10. Qualitative results of various models with pix2pix as a
second cascade network is shown in Fig. 6.11 and Fig. 6.12.
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(a) Hazy (b) DCP (c) PDH

(d) AU (e) AU-PDH (f) AU-PDH+DCP

(g) AU-PDH+SA (h) AU-PDH+DCP+SA (i) Ground Truth

Figure 6.7: Visual results of various models on image number 51 of DenseHaze
dataset for L1 + Gradient loss.
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(a) Hazy (b) DCP (c) PDH

(d) AU (e) AU-PDH (f) AU-PDH+DCP

(g) AU-PDH+SA (h) AU-PDH+DCP+SA (i) Ground Truth

Figure 6.8: Visual results of various models on image number 53 of DenseHaze
dataset for L1 + Gradient loss.
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(a) Hazy (b) DCP (c) PDH

(d) AU (e) AU-PDH (f) AU-PDH+DCP

(g) AU-PDH+SA (h) AU-PDH+DCP+SA (i) Ground Truth

Figure 6.9: Visual results of various models on image number 51 of DenseHaze
dataset for SSIM loss.
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(a) Hazy (b) DCP (c) PDH

(d) AU (e) AU-PDH (f) AU-PDH+DCP

(g) AU-PDH+SA (h) AU-PDH+DCP+SA (i) Ground Truth

Figure 6.10: Visual results of various models on image number 53 of DenseHaze
dataset for SSIM loss.
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(a) Hazy (b) DCP (c) PDH

(d) AU (e) AU-PDH+DCP+SA (f) CONCAT(DCP, PDH)

(g) CONCAT(DCP, AU) (h) (i) Ground Truth

Figure 6.11: Visual results of various models with pix2pix as a second cascade
network on image number 51 of DenseHaze dataset. (h): CONCAT(DCP, AU-
PDH+DCP+SA).
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(a) Hazy (b) DCP (c) PDH

(d) AU (e) AU-PDH+DCP+SA (f) CONCAT(DCP, PDH)

(g) CONCAT(DCP, AU) (h) (i) Ground Truth

Figure 6.12: Visual results of various models with pix2pix as a second cascade
network on image number 53 of DenseHaze dataset. (h): CONCAT(DCP, AU-
PDH+DCP+SA).
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6.3 On RESIDE Indoor Test (SOTS Indoor) Dataset

6.3.1 CNN Network (First Network)

Table 6.5: Results of different first stage models for SOTS Indoor dataset

L1 + Gradient Loss SSIM Loss

Experiments: PSNR SSIM PSNR SSIM
Hazy Image 12.50 0.7184 12.50 0.7184

Only DCP (no NN) 19.80 0.8586 19.80 0.8586
PDH 28.88 0.9521 26.05 0.9514
AU 35.99 0.9749 27.52 0.9633

AU-PDH+SA 32.24 0.9595 26.26 0.9494
AU-PDH+DCP 32.96 0.9627 26.94 0.9558

AU-PDH+DCP+SA 31.70 0.9587 27.03 0.9520

"Hazy Image" in the Table 6.5 contains the PSNR and SSIM score of unpro-
cessed raw hazy image inputs as compared with ground truths. From Table 6.5
it’s clear that both the best SSIM and PSNR is obtained by "AU" model which was
proposed by the authors in [5] and was designed specifically for RESIDE dataset,
hence it’s performing really good. Also we can see that our proposed model, "AU-
PDH+DCP" performs nearly same as compared to "AU" in both SSIM and PSNR.
We can also see that all the SSIM and PSNR scores for models with SSIM loss is
less as compared to L1+Gradient loss. This might be because RESIDE dataset is
not that complex, hence a complex loss function like SSIM loss having structure,
luminance and contrast components performs poorly.

6.3.2 Pix2pix GAN Network (Second Network)

As shown in Table 6.6, both PSNR and SSIM scores of all the models have im-
proved significantly after images are trained on pix2pix GAN. It’s clear that with-
out DCP concatination, Our proposed model, "AU-PDH+DCP -> pix2pix" per-
formed better as compared to "AU" model in terms of both SSIM and PSNR scores.
While with DCP concatination, "AU" performed better.

Qualitative results of various models with L1+Gradient loss is shown in Fig.
6.13 and Fig. 6.14. Qualitative results of various models with ssim loss is shown
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Table 6.6: Results of different second stage models for SOTS Indoor dataset

L1 + VGG + GAN Loss

Experiments: PSNR SSIM
PDH ->pix2pix 42.76 0.9896
AU ->pix2pix 43.83 0.9906

AU-PDH+DCP ->pix2pix 43.88 0.9908
AU-PDH+DCP+SA ->pix2pix 42.75 0.9892
CONCAT(DCP, AU) ->pix2pix 44.24 0.9906

CONCAT(DCP, AU-PDH+DCP) ->pix2pix 43.19 0.9896
CONCAT(DCP, AU-PDH+DCP+SA) ->pix2pix 43.28 0.9898

in Fig. 6.15 and Fig. 6.16. Qualitative results of various models with pix2pix as a
second cascade network is shown in Fig. 6.17 and Fig. 6.18.
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(a) Hazy (b) DCP (c) PDH

(d) AU (e) AU-PDH+DCP (f) AU-PDH+SA

(g) AU-PDH+DCP+SA (h) Ground Truth

Figure 6.13: Visual results of various models on image number 170 of SOTS Indoor
dataset for L1 + Gradient loss.
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(a) Hazy (b) DCP (c) PDH

(d) AU (e) AU-PDH+DCP (f) AU-PDH+SA

(g) AU-PDH+DCP+SA (h) Ground Truth

Figure 6.14: Visual results of various models on image number 240 of SOTS Indoor
dataset for L1 + Gradient loss.
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(a) Hazy (b) DCP (c) PDH

(d) AU (e) AU-PDH+DCP (f) AU-PDH+SA

(g) AU-PDH+DCP+SA (h) Ground Truth

Figure 6.15: Visual results of various models on image number 170 of SOTS Indoor
dataset for SSIM loss.
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(a) Hazy (b) DCP (c) PDH

(d) AU (e) AU-PDH+DCP (f) AU-PDH+SA

(g) AU-PDH+DCP+SA (h) Ground Truth

Figure 6.16: Visual results of various models on image number 240 of SOTS Indoor
dataset for SSIM loss.
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(a) Hazy (b) PDH (c) AU

(d) AU-PDH+DCP (e) AU-PDH+DCP+SA (f) CONCAT(DCP, AU)

(g) (h) (i) Ground Truth

Figure 6.17: Visual results of various models with pix2pix as a second cascade
network on image number 170 of SOTS Indoor dataset. (g): CONCAT(DCP, AU-
PDH+DCP), (h): CONCAT(DCP, AU-PDH+DCP+SA).
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(a) Hazy (b) PDH (c) AU

(d) AU-PDH+DCP (e) AU-PDH+DCP+SA (f) CONCAT(DCP, AU)

(g) (h) (i) Ground Truth

Figure 6.18: Visual results of various models with pix2pix as a second cascade
network on image number 240 of SOTS Indoor dataset. (g): CONCAT(DCP, AU-
PDH+DCP), (h): CONCAT(DCP, AU-PDH+DCP+SA).
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6.4 On a real-life hazy image

We have also evaluated our models on a real life image [1] to find how generaliz-
able our models are and how they perform on an image which is of a completely
different distribution than of our training data. The image is shown in Fig. 6.19

Figure 6.19: Real-life hazy image [1]

Figure 6.20: Output of AU-PDH+DCP+SA+MAS model trained on NH-HAZE
dataset

Figure 6.21: Output of CONCAT(DCP, AU-PDH+DCP+SA+MAS) -> pix2pix
model trained on NH-HAZE dataset
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Figure 6.22: Output of AU-PDH+DCP+SA model trained on DenseHaze dataset

Figure 6.23: Output of CONCAT(DCP, AU-PDH+DCP+SA) -> pix2pix model
trained on DenseHaze dataset

Figure 6.24: Output of AU-PDH+DCP model trained on SOTS Indoor dataset

Figure 6.25: Output of AU-PDH+DCP -> pix2pix model trained on SOTS Indoor
dataset
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CHAPTER 7

Conclusion and Future work

We have proposed a cascaded model for image dehazing which performs really
well on non-homogeneous data as well as on homogoneous data. We have also
verified that cascaded networks are not always a good choice by comparing pro-
gressive feature fusion model and modifying it to work on stand alone mode with-
out cascading. Hence it’s really important to make sure that the individual models
are getting an improvement overall after cascading. Since that’s the only way to
make their additional computational cost worth it.

We also saw that loss functions are incredibly important for a problem state-
ment since they affect the result a lot. Changing the loss function can change
the outcome by a huge factor, as we saw when we change the loss function from
L1+Gradient to SSIM. We also saw that SSIM loss performed better on NH-HAZE
dataset while L1+Gradient loss performed better on SOTS Indoor dataset.

Hence, as part of future work, to boost optimizing loss function, we can try
to produce a mathematical method which can give us better loss coefficients for
better convergence rather than blindly experimenting. we can try incorporating
current state-of-the-art models like vision transformers to fit complex data.

We also would like to incorporate some reference less loss functions like the
ones proposed in [7]. Reference less models don’t require ground truths and hence
are more generalizable and operable on wide distribution of images.

Also it’s quite apparent that SSIM and PSNR alone don’t really give a good
view of qualitative metric. Hence we can try different metrics which are more
inclined towards human visual perception.
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CHAPTER A

DCP Proof

In this section we have given the proof for Dark Channel Prior method. We know
from Eq. 1.1,

I(x) = J(x)t(x) + A(1 − t(x)) (A.1)

Now let’s divide both sides by atmospheric light,

I(x)
A

= t(x)
J(x)

A
+ (1 − t(x)) (A.2)

If we compute patch wise minimum values on each side of the equation we
will get,

min
y∈ω(x)

(
Ic(x)

Ac ) = t̃(x) min
y∈ω(x)

(
Jc(x)

Ac ) + (1 − t̃(x)) (A.3)

Now if we compute the dark channel on each side of the equation we will get,

min
y∈ω(x)

(min
c

Ic(x)
Ac ) = t̃(x) min

y∈ω(x)
(min

c

Jc(x)
Ac ) + (1 − t̃(x)) (A.4)

But as per our prior, the dark channel of non hazy image is completely black
and hence the dark channel of RHS will become zero. So our equation becomes,

t̃(x) = 1 − min
c

( min
y∈ω(x)

(
Ic(y)

Ac )) (A.5)

Note that the transmission map we obtain is not t(x) but t̃(x). This is because
this transmission map is an approximation of the real transmission map since we
used a prior for the computation.
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