
Schema Design and Evaluation for
Cassandra

by

HAJARE KAVAN VIJAYBHAI
202111007

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

July, 2023

I hereby declare that

Declaration

i) the thesis comprises of my original work towards the degree of Master of
Technology in Information and Communication Technology at Dhirubhai
Ambani Institute of Information and Communication Technology and has

not been submitted elsewhere for a degree,

i) due acknowledgment has been made in the text to all the reference material
used.

Certificate

Hajare Kavan Vijaybhai

This is to certify that the thesis work entitled Schema Design and Evaluation for

Cassandra has been carried out by HAJARE KAVAN VIJAYBHAI for the degree of
Master of Technology in Information and Communication Technology at Dhirub
hoi Ambani Institute of Information and Communication Technology under my/our

St ervision.

.
PM Jat

Thesis Supervisor

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Prof. P M Jat, for
their guidance, expertise, and unwavering support throughout the entire thesis
work. Their insightful feedback and constructive advice have been invaluable in
shaping this thesis.

I extend my sincere appreciation to the faculty members of DAIICT, for their con-
stant encouragement and willingness to share their knowledge. Their lectures,
discussions, and academic resources have significantly contributed to the devel-
opment of interest in this work.

I am grateful to my family for their unconditional love, unwavering support, and
belief in my abilities and God for giving me the mental strength. Their encour-
agement and understanding have been instrumental in providing the emotional
strength necessary to complete this thesis.

Last but not the least, I want to express my gratitude to my friends and colleagues
for their encouragement, insightful discussions, and moral support. Their pres-
ence has made this journey more enjoyable and less daunting.

ii

Contents

Abstract iv

List of Figures v

1 Introduction 1
1.1 Cassandra Features . 1
1.2 Cassandra Applications . 3
1.3 Relational vs Cassandra Schema Design 3
1.4 Thesis Contribution . 4
1.5 Thesis Outline . 5

2 Cassandra Data Model 6
2.1 Cassandra Data Model Components 6
2.2 Cassandra Data Model Structure and Data Types 8

3 Cassandra Schema Design 10
3.1 CHEBOTKO Notation . 10
3.2 The Design Approach . 11
3.3 ER Diagram Representation . 13
3.4 Query Load Representation . 14
3.5 Algorithm . 14
3.6 Enhancement of the Algorithm . 16

4 Schema Evaluation 17
4.1 Cases . 17
4.2 Results and Discussion . 21

5 Conclusion And Future Work 29

References 30

iii

Abstract

Cassandra is one of the widely used distributed database because of some features
like fault tolerance, partition tolerance, seamless replication and scalability. How-
ever, designing the schema for Cassandra is a challenging task. This work focuses
on automating the schema design procedure for Cassandra. Following are the im-
portant reasons for schema design automation. 1) Schema design for Cassandra
requires query load as an input along with the conceptual model which is differ-
ent from relational schema design. 2) Inclusion of a query load as an input adds
more complexity to the schema design process. To automate the schema design
process, we study and formulate some mapping rules and develop an algorithm
capturing these rules. The algorithm takes two inputs namely ER diagram and
application queries. The algorithm produces an output schema which contains
the list of attributes required to answer the query, partition key attributes and
clustering key attributes. Evaluation of the algorithm is done manually. We use
three case studies for this purpose, out of which two are from literature namely
digital library system and hotel management system and remaining one is our
own application which is an E-commerce application. Results which we get on
executing this algorithm on mentioned cases are turned out to be correct.

Index terms— Apache Cassandra, data modeling, Schema Design

iv

List of Figures

1.1 Schema Design Process - Relational vs Cassandra Data Model . . . 4

2.1 Cassandra Data Model Example . 8
2.2 Cassandra Data Model Structure . 9
2.3 Cassandra Data Model For Ecommerce Application 9

3.1 CHEBOTKO Notation Example . 10
3.2 Relational representation of an ER (input) 13
3.3 Relational representation of Query (input) 14

4.1 ER Diagram For E-Commerce Application 18
4.2 ER Diagram For Digital Library Use Case 19
4.3 ER Diagram For Hotel Management System 20
4.4 Case 1 - Query 1 . 21
4.5 Case 1 - Query 2 . 21
4.6 Case 1 - Query 3 . 22
4.7 Case 1 - Query 4 . 22
4.8 Case 1 - Query 5 . 22
4.9 Case 1 - Query 6 . 23
4.10 Case 1 - Query 7 . 23
4.11 Case 1 - Query 8 . 23
4.12 Case 2 - Query 1 . 24
4.13 Case 2 - Query 2 . 24
4.14 Case 2 - Query 3 . 24
4.15 Case 2 - Query 4 . 24
4.16 Case 2 - Query 5 . 25
4.17 Case 2 - Query 6 . 25
4.18 Case 2 - Query 7 . 25
4.19 Case 2 - Query 8 . 26
4.20 Case 2 - Query 9 . 26
4.21 Case 3 - Query 1 . 26

v

4.22 Case 3 - Query 2 . 27
4.23 Case 3 - Query 3 . 27
4.24 Case 3 - Query 4 . 27
4.25 Case 3 - Query 5 . 27

vi

CHAPTER 1

Introduction

Cassandra is leading No SQL database which is capable of storing huge amount of
data which is distributed across multiple nodes, where multiple nodes are spread
across multiple data centers, and builds a Cassandra cluster. Large data can be
well maintained using Cassandra through its partitioning system where data is
stored and retrieved from partition. Cassandra also provides fast writes which
can store the huge amount of data which is generated by modern applications. It
also provides CQL called as “Cassandra Query Language” which is almost sim-
ilar to SQL for Relational databases. Apart from that Cassandra is having wide
acceptance because of various features it provides. [2] [5]

1.1 Cassandra Features

• Open-Source: Cassandra is an open source provided by Apache for every-
one to utilize.

• Scalability: Cassandra offers adaptable scaling because of which both scal-
ing up or down is possible. Cassandra scales horizontally through which
additional nodes can be added to store the extensive amount of data. During
scaling process, it is not required to restart the cluster. Furthermore, there
is no pause or downtime while scaling. As a result, throughput for both
reading and writing increases. A token is given to each new node when it is
joined to the system so that it can relieve a node that is overloaded. As a re-
sult, the new node splits a range that was previously controlled by another
node. [6]

• Fault tolerant: Cassandra’s capacity to replicate data is what makes it fault-
tolerant. This increases its availability and system fault tolerance. As same

1

content can exist on multiple nodes in the cluster, the failure of a single node
or data centre does not bring the system to a complete stop which means
zero downtime can be achieved through avoiding single point of failure.
Users will be instantly transferred to the closest operational node if a certain
node fails. The system will continue to operate as intended which is crucial
for businesses that can never afford to lose any data or have their database
go offline.

• Seamless replication: Because Cassandra is a peer-to-peer system, data can
be swiftly replicated throughout the entire system, regardless of location.
Fault tolerance feature and zero data loss are satisfied by replication done
across data centres. Latency can also be improved by bringing data closer
to end users. Replication of data results in extensive backup and recovery.
Replication used by Cassandra to get great availability and robustness. All
data item is duplicated over N hosts, where N is the replication factor per in-
stance. Each key, k, is paired with a coordinator node that is situated higher
on the ring than the position of the corresponding item. Replication of the
data items is controlled by the coordinator. Keys are copied at the N-1 nodes
in the circle apart from locally storage of each key inside its range. Cas-
sandra has a number of replication policies, including "Datacenter Aware,"
"Rack Unaware," and "Rack Aware". The replication rule is selected by the
application. If a particular application selects the "Rack Unaware" replica-
tion approach, the replicas which are non-coordinator, determined by pick-
ing the coordinator’s N-1 inheritors on the ring. For remaining two, Cassan-
dra selects a leader from among its nodes. The leader makes a concentrated
attempt to preserve the invariant that no node is accountable for more than
N-1 ranges in the ring when a node contacts the leader to inform them for
what ranges they are replicas. [6]

• Column-Family: In Cassandra, a column family is a container that holds
related columns and is similar to a relational database table. Each row in a
column family has a unique key, which is used to access the data in the row.
The columns in a row are stored together as a unit, known as a wide row.
One of the key features of column families in Cassandra is that they allow
for flexible and dynamic data modeling. This means that new columns can
be added to a column family without having to modify the entire schema.
Overall, the column-family feature of Cassandra making it well-suited for

2

handling large-scale, rapidly changing data sets.

1.2 Cassandra Applications

• E-commerce: Due to the wide usage of E-Commerce application by users,
system should be always up and running which is provided by Cassandra’s
fault tolerance feature that allows it to keep running even if some nodes
in cluster are down as data can be fetched from other nodes due to replica-
tion. E-Commerce can take this advantage of Cassandra to avoid downtime.
Cassandra’s scalability feature comes into picture when too many users are
using the application simultaneously, because of which, the company has
to increase the ability of the database to carry and store more data without
causing system to restart.

• IOT: IOT devices in form of various sensors like weather, traffic or mobile
device keeps track of and sends data on weather, traffic, energy usage, soil
conditions, etc, in which data is being created at high frequency that require
system which can store large volume of data and Cassandra can be very use-
ful as it can store a large volume of data where every individual node can
carry out read and write operations and supports analysis of data in real
time.

• Transportation: Real world applications like Uber uses Cassandra to utilize
its scalability and fault tolerance features which helps them in implementing
their services like dispatching of trip, payment and matching of driver-rider.

1.3 Relational vs Cassandra Schema Design

In Relational schema design, only an ER diagram is required as an input, from
which the relational tables can be create using concepts of relationships that exists
between entities of ER diagram. Once tables are created, any queries can be an-
swered using join, aggregation and nested queries of relational among multiple
tables. Whereas in Cassandra, along with ER diagram, list of application queries
that defines an application workflow is also given as an input. [4] Since Cassandra
doesn’t support of join operation which is the major challenge in creating schema
for Cassandra. So based on given two inputs and analysis which is done on query

3

input schema design can be done for Cassandra. Below figure shows the differ-
ence between Relational data modeling and Cassandra data modeling process.

Figure 1.1: Schema Design Process - Relational vs Cassandra Data Model

1.4 Thesis Contribution

This thesis work focuses on devising an algorithm which automates the schema
design process for Cassandra. To implement this algorithm, we study various
Cassandra mapping rules which are found in literature. [4] Based on these rules,
we formulate our own mapping rules and try to develop the algorithm which
captures these rules. Implementation of the algorithm considers two inputs: 1)
ER diagram and 2) List of application queries. These inputs are represented in the
form of relational tables. The algorithm produces an output in form of schema
that can answer the application query. The evaluation of Cassandra schema de-
sign is done manually. Results which we get on executing this algorithm on test
cases are found to be correct. We hope that this algorithm reduces the manual
effort up to a certain extent in Cassandra schema design process.

4

1.5 Thesis Outline

Remaining part of thesis has following structure: Chapter 2 covers the concept
of Cassandra Data Model which includes the detailed description of Cassandra
Data Model components and information on various data types used in Cassan-
dra along with data model structure . Chapter 3 gives the detailed description
about schema design approach for Cassandra, experiment details with input and
output and brief explanation on notation that represents relationship between en-
tities based on common attributes called as CHEBOTKO notation. Chapter 4 cov-
ers schema evaluation part by running the algorithm on 3 different applications
along with results and discussions of it etc. Finally, the thesis work is concluded
along with future work in Chapter 5.

5

CHAPTER 2

Cassandra Data Model

This chapter gives an introduction to the Cassandra Data Model. In first part
components of Cassandra Data Model are covered and after that structure and
data types of Cassandra are discussed. The Cassandra database is spread over
a number of interconnected machines. The Cluster is the name assigned to the
outermost container. Cassandra assigns data to the nodes in a cluster and arranges
them in a ring pattern. Cassandra data model consists of four components namely
keyspace, table (column-family), partition key and clustering key.

2.1 Cassandra Data Model Components

1. Keyspace: A keyspace one of the most core part of Cassandra database rep-
resents schema itself and thus acts as the top-level namespace for other sub
components like tables which comes under the keyspace and are capable of
storing and query the data for an application under consideration. A table
in Cassandra can be considered as a set of partitions which contains rows
having common structure which we called as a column-family. Each row in
partition consists of partition key and optionally a clustering key, combina-
tion of these two is called as primary key.

2. Table: Within the keyspace, tables are defined. In Cassandra, tables are also
known as Column Families where data is stored in rows and is organised
in tables by columns and a primary key. Basically, table is a container for
a collection of rows which are ordered and in each row, in turn is a collec-
tion of columns that are also ordered. In Cassandra, column families can be
split into two categories: standard column families, which are used to store
data with a fixed set of columns, each of which has a name and a value.
Super column families are used to store data with a nested structure, where

6

each column comprises a group of sub-columns, and standard column fam-
ilies are great for storing simple and structured data, such as user profiles or
product details. Super column families are perfect for holding information
that has several different characteristics or qualities, such as user posts on
social networking.

3. Partition key: In Cassandra, a partition key is an element of the primary key
that determines how data is dispersed across the cluster. Cassandra parti-
tions data by the hash value of the partition key, which defines the node
where the data will be kept. The partition key is defined as an initial part of
the primary key and uniquely identifies a row within a table. Choosing the
right partition key is critical for achieving good performance in Cassandra.
For example, if table stores information regarding artifacts published at par-
ticular venue, it is meaningful to partition the data based on venue, where
each partition contains details of artifacts for particular venue.

4. Clustering key: In Cassandra, a clustering key is an element of the primary
key that determines an order in which data is stored within a partition. The
clustering key specifies the order in which data is sorted within a partition,
as opposed to the partition key, which identifies the node where data is
stored. For example, if table stores information regarding artifacts published
at particular venue, it is meaningful to sort the data based on artifact’s id as
one venue can have multiple artifacts getting published. In that case combi-
nation of venue name and id of an artifact can uniquely define the records
of the table. A clustering key is defined as part of the primary key after the
partition key. One or more clustering columns may be included in a table,
and the order of these columns affects how the data in a partition is sorted.

Fig. 2.1. Shows an example of Cassandra data model components for an e-
commerce application.

7

Figure 2.1: Cassandra Data Model Example

2.2 Cassandra Data Model Structure and Data Types

Partition key and clustering key both can either consists of single column or multi-
ple column respectively that is called as simple and composite relatively. Primary
key is a combination of both the key generally but out of these two components,
partition key is mandatory part whereas clustering key is an optional one. Ab-
sence of clustering key suggests that there exists a partition with a single row as
partition key itself sufficient to represent one partition, which is exactly opposite
to other case in which clustering key is present where partition consists of mul-
tiple row partitions and rows are sorted based on given clustering key with as-
signed order like ascending and descending from which ascending is the default
one. Properly chosen partition key can do an even distribution of the data across
the nodes in the given cluster which can minimize the partition access required to
answer the query which makes read operation faster for Cassandra.

There are different kinds of data types exists for attributes of Cassandra schema
like regular and complex. Regular data type contains int, text etc, whereas com-
plex consists of list, set and map. There is one special data type called counter col-
umn which keeps a distributed counter that can be incremented or decremented
using synchronised operations done on cluster. Initial value of counter column is
zero before it is actually updated for the first time.

A column with all the rows having same value for it in the partition is called as
a static column, which is suitable in a table with numerous row separations. For
showing a primary key, if partition key consists of only single column, then there
is no need of an additional parenthesis to separate partition key from clustering

8

key. Moreover, columns that are counter, static or collection type cannot be pri-
mary keys. Fig. 2.2. shows the overall structure of Cassandra Data Model and
Fig. 2.3 shows the Cassandra Data Model components along with the partitions
and few sample records for an E-commerce application.

Figure 2.2: Cassandra Data Model Structure

Figure 2.3: Cassandra Data Model For Ecommerce Application

9

CHAPTER 3

Cassandra Schema Design

This chapter includes chebotko notation, an approach to schema design for Cas-
sandra database along with input and output representation and at last the algo-
rithm for schema generation from the given input which are an ER diagram and
application queries.

3.1 CHEBOTKO Notation

Extended entity-relationship (EER) diagrams, commonly referred to as Chebotko
diagrams, are a type of graphical notation used in data modelling to represent the
relationship between entities based on common attributes between them. A visual
representation of the logical and physical data model of Cassandra is offered via
Chebotko diagrams. It represents a schema design as a combination of unique
tables and the transition of an application queries. It helps with readability and
better expressivity. Below figure shows an example through couple of queries
from Case 1 of Chapter 4.

Figure 3.1: CHEBOTKO Notation Example

10

3.2 The Design Approach

For efficient Cassandra schema design, following steps are important:

1. Understanding the conceptual model: It helps in an identification of enti-
ties, relationships and attributes required to answer the application queries.

2. Knowledge about an application: Understanding the overall flow of an
application under consideration helps in identifying the application queries
for which the schema design is done.

3. Organizing of an entities: Organizing of entities participating in answer-
ing the query is important which is also called as nesting of one entity into
another.

Below mentioned details gives the information on an input and output of the
Cassandra schema design process along with the approach to the algorithm.

• Input: For designing the Cassandra schema using the devised algorithm,
two inputs are taken: 1) ER diagram and 2) Application queries. Both the
input are then represented using tables on which algorithm is applied.

• Output: Cassandra schema is the output of the algorithm when it is applied
to the given two inputs which consists of attributes required to answer the
query along with partition key and clustering key attributes.

• Algorithmic Approach: The algorithm which is devised to output the Cas-
sandra schema by taking inputs in form of an ER diagram and application
query. Inputs are represented in relational table form and mapping rules of
Cassandra are applied on it. Representation of inputs is described in up-
coming section. To apply mapping rules on given input, predicate part of
query is analysed. Analysis done on predicate part of query outputs three
components namely list of attributes required to answer the query, partition
key attributes and clustering key attributes. These three components makes
the overall schema when combined.

As described in Algorithm 1, we need to apply mapping rules to get the final
schema which can answer the particular query which can also be referred as
query oriented conversion of conceptual model to logical data model. For
that, following step by step procedure is applied:

11

1. Identification of queried entities and attributes: As an initial step, we
need to identify the entities and attributes required to answer the query.
Entities required are defined as “get_entity” and “predicate_entity” in
our input representation of an ER diagram as shown in below section.
All the attributes from entity present in“get_entity”column are fetched
which can answer the particular query.

2. Mapping of Partition Key Attributes: Attributes which are restricted
with an equal sign (=) in query are mapped to list of partition key at-
tributes. These attributes can be fetched from “equality_attributes” col-
umn of query table as shown in section 3.4.

3. Mapping of Clustering Key Attributes: Attributes which are restricted
with not equal sign (>,<,>=,<= etc) in query are mapped to list of clus-
tering key attributes. These attributes can be fetched from “range_attributes”
column of query table along with “order” column to represent the sorted
order of those columns as shown in section 3.4.

As an example, we can consider one query like “order details by user” from
an E-Commerce application of Case 1 of Chapter 4. Here we need two en-
tities namely order and user, where order is an entity for which details are
required (called as get_entity) and user is entity which is considered as a
predicate entity. In this, order details are organized with user details which
shows the order details are nested per user. Now from query part, we need
to identify the attributes that are equally restricted and range restricted and
assigned them to partition key and clustering key details respectively. For
this query, it happens to be a “user_id” and “order_id” respectively as order
details are equally restricted by “user_id” and for each partition done based
on “user_id” is sorted based on “order_id”. Combination of both partition
and clustering key attributes defines the primary key of the table. Finally
the table name is given as “order_by_user” based on the naming conven-
tion “get_entity_by_predicate_entity” which is followed by the devised al-
gorithm. All the steps followed in the algorithm are mentioned in Algorithm
1. Which is covered in section 3.5.

12

3.3 ER Diagram Representation

For Cassandra schema design, the algorithm represents inputs in form of tables as
discussed previously. For ER diagram representation, which is the first input of
the algorithm, we need four tables. Structure for all the tables are shown below:

1. Entity(entity_name, primary_key),

2. Entity_Attribute(attribute_no,entity_name,attribute_name, attribute_type, is_pk-
,multivalue)

3. Entity_Composite_Attribute(composite_attribute_no, entity_name, attribute_name,
sub_attribute_name, sub_attribute_type, multivalue)

4. Relationship(relationship_no,first_entity,second_entity, relation_name, car-
dinality)

Figure 3.2: Relational representation of an ER (input)

13

3.4 Query Load Representation

Finally, the second input of the algorithm which is an application query, is also
represented in form of table and structure for the same is as show below:
Query(query_no,get_entity,result_type,predicate_entity,equality_attributes,range_attributes,
order)

Figure 3.3: Relational representation of Query (input)

3.5 Algorithm

Algorithm 1. describes the overall procedure to derive the schema for Cassan-
dra based on the inputs given to it and mapping rules of Cassandra applied.
Apart from mapping rules, some adaptions like fetching an attributes for en-
tity of “get_entity” column, representing the “predicate_entity” column as a join
path [7], try to give table name as meaningful as possible, multivalue attribute
should appear twice in schema, “get_entity_by_predicate_entity” exists then fetch
attributes from in memory structure in place of making the database call. To rep-
resent the final output schema, five variables are used in Algorithm 1. and these
are tablename, attributeSet, partitionKeySet, clusteringKeySet and finalSchema
which represents name of column-family for every query of workload, set of
attributes required to be fetched for schema, partition attributes, clustering at-
tributes and output variable to store overall attributes for schema respectively. [1]

14

Algorithm 1: Cassandra_Schema_Design
input : ER diagram and query from workload
output: Schema required to answer the query

1 Take ER diagram and query as an input.
2 Fetch all attributes for the entity type stored in “get_entity” column of

“Query” table using “Entity_Attribute” table and prime attributes of
entites present in "predicate_entity" column and store it in “attributeSet”
variable.
attributeSet = attributes of (“get_entity”) U attributes present in
(“primary_key” column of entities present in “predicate_entity” column
of query table)

3 if “equality_attributes” column is not empty then
4 partitionKeySet = attributes of (“equality_attributes”)

5 else
6 partitionKeySet = attributes present in (“primary_key” column of

entity/s present in “predicate_entity” column of query table)

7 if attribute A from "equality_attributes" ∈ attributeSet and A is multivalue
then

8 partitionKeySet = partitionKeySet U A
attributeSet = attributeSet U A (complex data type)

9 else
10 partitionKeySet = partitionKeySet U A

attributeSet = attributeSet - A (complex data type)

11 clusteringKeySet = attributes of (“range_attributes”) U primary attributes
of (“get_entity”)

12 if tablename already exists then
13 if leading attribute of (“equality_attributes”) ∈ "get_entity" then
14 tablename = leading attribute of (“equality_attributes”)_by_”

predicate_entity”

15 else
16 tablename = “get_entity”_by_leading attribute of

(“range_attributes”)

17 else
18 tablename = value of (“get_entity”_by_”predicate_entity”)

19 finalSchema = attributeSet U partitionKeySet U clusteringKeySet

15

3.6 Enhancement of the Algorithm

Algorithm 1 defined in previous section is optimised such that if a new query
from an application queries can be answered using existing schema which was de-
rived for particular query, no new schema would be constructed. Instead of new
schema, our algorithm outputs the query no, whose schema can answer the new
query. To implement this, if for current query, “get_entity” and “predicate_entity”
column is same as any previous query, then partitionKeySet and clusteringKeySet
of current query is compared with that respective query and if both of these are
same then current query can be answered using that previous query and thus it’s
query number is returned.
For example, if one query needs all the details of an artifact published at partic-
ular venue which is query number 9 from Case 2 of Chapter 4, and other query
which is query number 10, that comes later needs only artifact_title of artifact
published at particular venue, then both of these query can be answered using
similar schema as “get_entity”and“predicate_entity” column as well as partition-
KeySet and clusteringKeySet are same for both the queries. So our result returns
the query number from which the current query can be answered. In current ex-
ample, query number 10 can be answered using the schema of query number 9.

16

CHAPTER 4

Schema Evaluation

This chapter covers the evaluation of schema design algorithm for which the 3
different types of applications are used for testing of the algorithm along with the
results and its respective discussion.

4.1 Cases

The devised algorithm is executed for below mentioned 3 different types of ap-
plications and evaluated manually. For evaluation of second and third applica-
tion, specific reference is used while first application is evaluated manually. E-
commerce application is for online shopping done by users, Digital library con-
tains information on set of artifacts published at venues along with user’s review
and Hotel management system keeps information of user’s reservations of hotel
rooms with amenities of room. Following context represents the ER diagram and
list of application queries for the respective systems.

1. E-Commerce application

2. Digital Library System

3. Hotel Management System

17

Case 1: E-Commerce Application
i) ER Diagram:

Figure 4.1: ER Diagram For E-Commerce Application

ii) List of Application Queries:

1. Find Order details by user.

2. Find User details by user id.

3. Find Cart details for particular product category and with given minimum
product price and range of size in descending order.

4. Find Order Item details for given user name with order date recent to old.

5. List Order Item for particular order price.

6. Find Supplier details by given supplier name.

7. List product name and product category for given supplier name and prod-
uct stock is more than one.

8. List billing details for given user name and product manufacturer with given
minimum product size.

18

Case 2: Digital Library System [4]
i) ER Diagram:

Figure 4.2: ER Diagram For Digital Library Use Case

ii) List of Application Queries:

1. Find artifacts published in a venue with a given name after a given year.
Order results by year (DESC).

2. Find artifacts published by a given author. Order results by year (DESC).

3. Find users who liked a given artifact.

4. Find users who liked a given artifact and who have expertise in a certain
area.

5. Find an average rating of a given artifact.

6. Find venues that a given user liked.

7. Find artifacts published after a certain year that a given user liked. Order
results by year (DESC).

8. Find reviews posted by a given user with a rating >= x. Order results by
rating (DESC).

19

9. Find information about an artifact with a given id.

Case 3: Hotel Management System [3]
i) ER Diagram:

Figure 4.3: ER Diagram For Hotel Management System

ii) List of Application Queries:

1. Find hotels near a given point of interest.

2. Find information about a given hotel, such as its name and location.

3. Find points of interest near a given hotel.

4. Find an available room in a given date range.

5. Find the rate and amenities for a room.

20

4.2 Results and Discussion

When the algorithm is executed by considering the cases given in above section,
we get an output schema for the application queries of given respective applica-
tions as shown in left part of every result image given below.

1) Results for E-Commerce Application:

Figure 4.4: Case 1 - Query 1

Figure 4.5: Case 1 - Query 2

21

Figure 4.6: Case 1 - Query 3

Figure 4.7: Case 1 - Query 4

Figure 4.8: Case 1 - Query 5

22

Figure 4.9: Case 1 - Query 6

Figure 4.10: Case 1 - Query 7

Figure 4.11: Case 1 - Query 8

23

2) Results for Digital Library System:

Figure 4.12: Case 2 - Query 1

Figure 4.13: Case 2 - Query 2

Figure 4.14: Case 2 - Query 3

Figure 4.15: Case 2 - Query 4

24

Figure 4.16: Case 2 - Query 5

Figure 4.17: Case 2 - Query 6

Figure 4.18: Case 2 - Query 7

25

Figure 4.19: Case 2 - Query 8

Figure 4.20: Case 2 - Query 9

3) Results for Hotel Management System:

Figure 4.21: Case 3 - Query 1

26

Figure 4.22: Case 3 - Query 2

Figure 4.23: Case 3 - Query 3

Figure 4.24: Case 3 - Query 4

Figure 4.25: Case 3 - Query 5

27

When the algorithm is executed for the above mentioned three applications,
we get an output schema as shown in the result part of every application. In
output, left part of every image represents outcome of the algorithm and right
part represents an actual output. There are some differences in the actual output
and algorithm’s output schema for few queries and reason for them are as follows:

• An actual output considers an attribute of relationship and some more at-
tributes of entity/s which come in join path of source and destination entity.
our result considers only prime attributes of it.

• An actual output may consider some attributes based on human intelligence
which algorithm doesn’t consider.

• For actual output, some entities are considered as an weak entity from an
ER diagram, but we have considered it as an independent entity because of
which attributes list may vary.

28

CHAPTER 5

Conclusion And Future Work

Through this work, we devise and implement an algorithm that can be used to
automate the schema design for Cassandra database. The algorithm takes two
inputs ER diagram and application queries. The inputs are represented and stored
in form of relational tables. Devised algorithm is executed and tested for three
different applications. Results which we get on executing this algorithm on test
cases are found to be correct. We hope, this algorithm is able to reduce the human
work required to derive a schema for Cassandra database up to a certain extent by
providing schema in an automated way for the application queries of particular
application. As a part of future work, one can expand the scope of this work to
automate the evaluation process of schema generated for the application queries.
Apart from that, inputs to the algorithm can be captured from GUI where ER can
be read from diagram and query can be read in SQL form.

29

References

[1] Datastax documentation. https://docs.datastax.com/en/home/docs/

index.html. Accessed: 2023-06-02.

[2] What is cassandra? https://www.spiceworks.com/tech/bigdata/articles/

what-is-cassandra/. Accessed: 2023-05-29.

[3] Conceptual data modeling. https://cassandra.apache.org/doc/latest/

cassandra/data_modeling/data_modeling_conceptual.html, 2009. Ac-
cessed: 2023-05-29.

[4] A. Chebotko, A. Kashlev, and S. Lu. A big data modeling methodology for
apache cassandra. In 2015 IEEE International Congress on Big Data, pages 238–
245, New York, NY, USA, 2015.

[5] R. Edwards. Exploring common apache cassandra use cases. https://www.

datastax.com/blog/exploring-common-apache-cassandra-use-cases. Ac-
cessed: 2023-05-29.

[6] A. Lakshman and P. Malik. Cassandra: A decentralized structured storage
system. Operating Sys. Review, 44(2):35–40, 2010.

[7] M. J. Mior, K. Salem, A. Aboulnaga, and R. Liu. Nose: Schema design
for nosql applications. IEEE Transactions on Knowledge and Data Engineering,
29(10):2275–2289, Oct. 2017.

30

https://docs.datastax.com/en/home/docs/index.html
https://docs.datastax.com/en/home/docs/index.html
https://www.spiceworks.com/tech/bigdata/articles/what-is-cassandra/
https://www.spiceworks.com/tech/bigdata/articles/what-is-cassandra/
https://cassandra.apache.org/doc/latest/cassandra/data_modeling/data_modeling_conceptual.html
https://cassandra.apache.org/doc/latest/cassandra/data_modeling/data_modeling_conceptual.html
https://www.datastax.com/blog/exploring-common-apache-cassandra-use-cases
https://www.datastax.com/blog/exploring-common-apache-cassandra-use-cases

	366bd6c72c5f7df82707266e53840f9d540bc14457fd68b496f5974a1c20d350.pdf
	a280b75b8a3e17691fa519351da1b56be83f9d61622c11a948ac38edce076600.pdf
	366bd6c72c5f7df82707266e53840f9d540bc14457fd68b496f5974a1c20d350.pdf
	Abstract
	List of Figures
	Introduction
	Cassandra Features
	Cassandra Applications
	Relational vs Cassandra Schema Design
	Thesis Contribution
	Thesis Outline

	Cassandra Data Model
	Cassandra Data Model Components
	Cassandra Data Model Structure and Data Types

	Cassandra Schema Design
	CHEBOTKO Notation
	The Design Approach
	ER Diagram Representation
	Query Load Representation
	Algorithm
	Enhancement of the Algorithm

	Schema Evaluation
	Cases
	Results and Discussion

	Conclusion And Future Work
	References

