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Abstract

There have been many advancements in the field of terrain classification using
Polarimetric SAR images/data. This Thesis explores different classical methods
as well as deep learning methods for this task. The Covariance matrix of land
sample data is classified into different terrains such as various crops, urban ar-
eas or water, etc. The PolSAR covariance matrix has both amplitude and phase
components. Statistical techniques such as Wishart Classifier and Wishart Mix-
ture Model with Conditional Random Field (WMM-CRF) approach exploit the in-
herent mathematical predispositions of the data while Deep Learning techniques
such as Complex Valued-CNN and Squeeze and Excitation Networks utilize the
brilliance of neural networks to study correlation in spatial data as well as inter-
channel dependencies. There have been studies in order to retrofit deep learning
models with components that can leverage the predetermined data patterns in
any dataset. Gaussian Context Transformer is one such technique that allows the
exploitation of inter-channel dependencies with predetermined mathematical in-
clinations while the rest of the model learns spatial-contextual parameters. In
order to overcome noise, there are no available ground truth images, hence data
augmentation is done with several image processing techniques such as Box-Car
filter, Lee-Sigma filter, and Mean-Shift filters can be used to downsize the effects
of the multiplicative noise as much as possible. The effects of Gaussian Context
Transformers and Data augmentation on one Indian land sample, namely, Mysore
and three European land samples, namely, Flevoland-7, Flevoland-15, and Landes
show promising results.
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CHAPTER 1

Introduction

Remote Sensing has been exceedingly proving its relevance in today’s time with
the burgeoning application that emerges from it in the fields of agriculture, mil-
itary, rescue, weather, etc. Data can be accumulated with various types of data-
capturing techniques ranging from optical data to microwaves. Synthetic Aper-
ture Radar is one such technique through which remote sensing information can
be captured. The advantage of SAR is that the day-night capability and all-weather
capability of its sensors make it more reliable for acquiring information in the face
of adversities or visual obstacles. SAR provides large-scale two-dimensional im-
ages with high spatial resolution. It obtains images from Earth’s surface reflectiv-
ity of its microwave pulses emitted from its active sensors.

These satellites are of two types, namely, space-borne and air-borne. The data
is dependent on the type of signal used by the radar. It is classified into polariza-
tion channels. These polarization channels capture various features on the same
object. Normally, SAR systems function on only one band from C, L, P, and X but
some new projects work on utilizing two bands of frequencies together to capture
more information.

The SAR images are mere signal reflectivities returning back from Earth’s sur-
face with different polarization at both transmitting and receiving ends making it
quad-pol applications with channels being HH, HV, VV, and VH. The first letter
indicates whether the transmitted pulse is Horizontally polarized or vertical and
the same for the latter for receiving end. A major challenge is also encountered at
the time of accumulating SAR reflectivities and resulting in a multiplicative noise
that looks like salt noise but it is not. These speckles are very hard to remove since
there is no ground truth available for a reference of clean SAR images. Prominent
Filters used for the same are Lee filter, Box Filter, etc.
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The covariance matrix of polarimetric SAR images is observed to follow a com-
plex Wishart distribution for a homogeneous region. While for heterogeneous
terrains, the covariance matrix follows a mixture of multiple Wishart distribu-
tions. Chaudhari et al.[7][8] explores the classical methods application of Wishart
Classifier on the homogeneous terrain classification and Wishart Mixture Model
(WMM) Classifier on the heterogeneous terrain classification tasks. Moreover,
Conditional Random Fields are also added to the WMM Classifier to obtain bet-
ter performance by inculcating spatial information all the while preserving edges
and micro-edges.

With the advent of deep learning techniques, several attempts have been made
for using Deep Learning techniques for the SAR terrain classification tasks which
are entailed in the study. Kussul et al.[9] shows the approach of the Multilayer
Perceptron network trained on the SAR data outperforms the classical methods
like SVM and Decision Tree. Yet, the phase information remains to be leveraged.
In order to overcome this challenge, the work of Zhang et al [4] shows that a
Complex Valued CNN can be developed for the purpose of utilizing the phase
information as well as the amplitude information of the covariance matrix. This
improves the performance of the model providing a 6.6% overall error rate while
that of its corresponding RV-CNN was 10.1%.

The local receptive fields’ spatial relationships are primarily the subject of
CNN’s attention. However, the procedure combines spatial information with
channel correlation. In [3], Deep Residual Networks (ResNet) have also been
used for the classification task. The Squeeze and Excitation Network (SENet)
is also investigated for utilizing the covariance matrix’s inter-channel dependen-
cies. The work of Ruan et al.[6] shows that the relationship between channels is
predetermined in some contexts, A channel attention block called Gaussian Con-
text transformer is implemented in order to further improve the channel inter-
dependencies with respect to the Gaussian distribution. The same has been im-
plemented in the SEResNet model in order to enhance distribution learning. The
preliminary results for the same show some improvement in the overall accu-
racy. Moreover, data augmentation is also done using image processing tech-
niques such as Box Car filter, Lee Sigma Filter, and Mean Shift filters using the
software PolSARPro v 6.0 Biomass Edition. This further improves the accuracy of
the models.
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1.1 Objectives

Mathematical or Statistical models can leverage the predisposed mathematical
tendencies in a dataset while Deep Learning techniques learn the parameters with
the help of deep/hidden layers, CNNs, and interchannel dependencies. The main
objectives of the Thesis are as follows:

• Combine the advantages of both mathematical models as well as deep learn-
ing techniques by introducing the Gaussian Context Transformer in the deep
learning models.

• Exploring the effects of Residual blocks in GCT models.

• Deploying various data augmentation techniques in order to get the advan-
tage in classification rates for small datasets.

• Retrofit the models to work in Indian land samples which have small farm
sizes.

1.2 Contribution of Thesis

The following are the salient contributions of this Thesis:

• Explore Gaussian Context Transformer techniques in order to leverage the
mathematical predispositions in the dataset within the deep learning mod-
els.

• Exploring the effect of Residual blocks in the GCT models.

• Speckle filtering techniques are devised in order to reduce speckle noise in
the dataset.

• Dataset Augmentation is done for increasing the size of datasets for better
training the models.

• Retrofitting models for the Indian scenario of small crop fields.

4



1.3 Organization of Thesis

Following is the organization of the Thesis components:

• Chapter 2 discusses various techniques discovered during the Literature
Survey.

• Chapter 3 gives a general overview/background on various technologies
such as SAR, and its covariance matrix.

• Chapter 4 contains information on the Datasets used.

• Chapter 5 discusses the Methodologies implemented in the Thesis and their
respective results.

• Chapter 6 entails a comparative analysis of results obtained across differ-
ent methodologies used. It also contains a section for ablation study and a
section for comparison with state-of-the-art models.

• Chapter 7 concludes the Thesis

• Chapter 8 points toward possible Future Work.
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CHAPTER 2

Literature review

Remote sensing involves emitting signals from airborne or spaceborne radars to-
ward the Earth’s surface. These signals are in the range of microwaves and are
classified into frequency bands of C, L, P, X, K, and Ku, etc. Many Earth Observa-
tion Satellite missions have sent these Synthetic Aperture Radars into space such
as RADARSAT-2, EN-VISAT, ALOS PALSAR, and TerraSAR-X. These radars get
the reflectivities back from Earth’s surface and map the topography and teleme-
try on the basis of the signals obtained. The phase component and amplitude
component gives the idea of polarization of signal and thereby, the surface of
Earth is mapped along with the dielectric properties of the Surface as well. Since
these radars use microwaves, they can be used to get information during bad
weather and both day and night. A coherency matrix or a covariance matrix is
constructed at last which is a 3x3 Complex valued matrix. Each pixel has its co-
variance (C3)/coherency matrix (T3) and based on this, they are classified into
various classes such as urban, various crops, water, forest, etc. Various techniques
have been developed over time for the same but it can be broadly classified into
Statistical methods and Machine Learning or Deep Learning methods.

2.1 Classical Methods

Anfinsen et al. [10] explore the use of Support Vector Machines for classification
tasks on Polarimetric SAR data. It also analyzes the use of different Kernel func-
tions for the same. The three-component scattering model for polarimetric SAR
data is presented in Freeman et al. [11]. The model depicts how electromagnetic
waves interact with several types of scatterers present in the environment, includ-
ing surface, double bounce, and volume scattering. It offers the groundwork for
statistical decomposition methods, making it possible to classify polarimetric SAR
data by extracting useful information from it.
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Lee et al. [2] offers a thorough analysis of the polarimetric radar imaging
method. with the use of the Wishart distribution for polarimetric SAR categoriza-
tion. Polarimetric SAR data’s multivariate statistics are modeled by the Wishart
distribution, whose parameters are calculated from the observed data. It explores
several classification techniques based on the Wishart distribution, including su-
pervised classification algorithms and maximum likelihood estimates. Conradsen
et al. [12] propose statistical clustering-based algorithms. It serves as a foundation
for clustering-based classification techniques, which group comparable scatterers
and categorize various types of land cover using polarimetric SAR data and clus-
tering algorithms. While Van et al. [13] utilizes the Bayesian classification using
apriori information which can be helpful while limited data is available.

In Chaudhary et al. [7], the authors state that the homogeneous terrain’s co-
variance matrix has a unimodal complex Wishart distribution. However, for a
heterogeneous terrain, there are irregularities, such as some parts of it contain-
ing high-density built-ups and other parts containing low-density built-ups. In
agricultural land, there can be different heights of the crops or uneven structures,
which causes heterogeneity. A mixture model is implemented in this paper, in
order to express given data distribution as a weighted summation of multiple
component distributions. This is called Wishart Mixture Model (WMM). The pa-
rameters of WMM are estimated using the Expectation-Maximization algorithm.

The results show that the WMM classifier performs better in the heterogeneous
terrain with an overall accuracy of 99.20% in comparison to the Wishart classifier
with that of 90.10% on the Flevoland dataset. Furthermore, it is shown that in EM
algorithm initialization gives slightly better results than random initialization.

In Chaudhary et al. [8], the author tries to improve classification results by in-
culcating spatial-contextual information along with the preservation of finer de-
tails such as edges and micro-regions. A Conditional Random Field (CRF) based
model is implemented for this purpose along with Wishart and Wishart Mixture
Model (WMM) classifiers. In order to implement this, the author classifies polari-
metric SAR images using pixel-based statistical classifiers, namely Wishart and
WMM, first, and then, computes unary and pairwise potentials. The smaller the
Chebyshev distance, the closer or more similar they are considered. Further, the
energy functions are computed by adding both potentials and classification la-
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bels are updated accordingly. This process is iterated till a threshold is reached.
The overall accuracy of Wishart-CRF on the Flevoland dataset is calculated to be
92.19% while that of Wishart-MRF turns out to be 90.29% and for just Wishart it is
84.56%. This shows promising results for the Wishart-CRF model.

2.2 Deep-Learning Methods

There have been several approaches to classify PolSAR images through Deep
Learning techniques. Zhu et al. [14] state various methods that have so far been
explored in SAR image classification. Autoencoder architecture learns the latent
representation of the input data points through non-linear mapping with the tar-
get. While Deep Belief Network is a stochastic undirected graphical model con-
sisting of a visible layer and a hidden layer and a symmetric connection between
two layers. Also, CNNs have achieved massive popularity with their spatial con-
text utilization for image classification, object detection, etc. Alex Net first impro-
vised LeNet in a drastic way. It first utilized ReLU in order to reduce training time,
introduced dropout layers to avoid overfitting and it was used in GPUs which al-
lowed larger datasets to be trained.

The author further goes on to cite the uses of VGG Net which use filters with
small receptive field of 3x3 rather than 5x5 or 7x7. They have the same feature
map size and number of filters in convolution layers of the same block and the
increased size of deeper layers. Then came ResNet, which, with the use of skip-
connections, avoided the problem of overfitting by performing identity mapping.

While classical methods are based mostly on pixel-wise polarimetric target
decomposition parameters, the deep learning methods using CNN consider the
spatial patterns which convey rich information in high-resolution SAR images.

In Kussul et al.[9], a comparative analysis is done between neural networks,
support vector machines, and decision trees for SAR crop classification. The feed-
forward neural network or Multi-Layer Perceptron (MLP) was computed with lo-
gistic outputs and cross-entropy error function minimized using a quasi-Newton
algorithm. The classification was done on a per-pixel basis. The overall accuracy
of the MLP classifier was 80.4% compared to that of SVM at 78.6% and Decision
Tree at 78.1%. Moreover, adding SAR images to optical images yields better re-
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sults for certain crops that register year-round cultivation. In Cozzolino et al. [15],
authors explore the use of CNN, in order to detect ships as a use-case of maritime
surveillance in the Sentinel-1 dataset. While Wagner et al. [16] provide insight into
combining both Support Vector Machine and Convolutional Neural Networks in
order to leverage both machine learning and deep learning techniques to extract
features of higher dimensions. Chen et al. [17] explore the classification of the
target using CNNs and how sparsely connected layers perform better than fully
connected layers in ConvNets on the M-STAR benchmark dataset for 10 class clas-
sifications. At the same time, Cheng et al. [18] introduces different loss function
in order to discriminate while overcoming within-class diversities and between-
class similarities.

In Zhang et al.[4], the author suggests that since the SAR images have both
amplitude and phase components, both can be taken into account for CNN ap-
plication rather than just the Real-Valued Components. Thus, the author builds
an entire Complex Valued CNN model, including Complex Input-Output lay-
ers, Complex convolution layers, Complex activation function, Complex Pooling
Layer, and a complex backpropagation algorithm based on stochastic gradient de-
scent.

The covariance matrix is a 3x3 symmetric matrix, hence rendering 6 unique
elements, however, the diagonal elements are the sole real elements. Thus, in RV-
CNN, 9 channels were fed in order to make the complex numbers as individual
real-valued channels. While, in CV-CNN, only 6 channels were used since it can
compute complex numbers as a whole, there need not be separate channels for 3
complex elements in the covariance matrix. 12x12 window was taken for feeding
patches into the CV-CNN and RV-CNN. The Overall Accuracy of CV-CNN was
96.2% and that of RV-CNN was 95.3%. Thus, phase information is a crucial char-
acteristic of SAR images.

Furthermore, in order to leverage channel inter-dependencies, Squeeze and
Excitation network has been implemented in [3]. Thus, spatial as well as channel
relationships are utilized together. This, in turn, helps in reducing speckle noise
in the images. The additional computational cost does not occur due to content
aware mechanism that weighs each channel on a global level adaptively.

One SE-Block consists of three operations which are, namely, Squeeze, Excita-
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tion, and Scaling. In the squeeze operation, global pooling is done for each chan-
nel. During excitation, the module attenuates different weights for each channel
using two fully connected layers. Then ReLU and Sigmoid are there at the end
of each Excitation block. In the end, the output of Sigmoid is then scaled by mul-
tiplying it with the input feature map of the convolution layer that was added
before the SEBlock. Furthermore, skip connections are also introduced in order
to tackle the problem of vanishing gradient. The overall accuracy of SENet with
skip connections is 98.18% and that without skip connections is 98.78%.

Various works have taken place in data augmentation of PolSAR data as some
samples can be scarce in quantity and in order to achieve better classification ac-
curacies, more data is required. Zhang et al. [19] propose Generative Adversarial
Networks (GANs) and linear synthesis to generate images from the dataset for
any given azimuth in order to increase the quantity and quality of the dataset.
While Ding et al [20] suggest the use of different image processing techniques to
remove the noise and find different poses for the target classes in order to aug-
ment the datasets.

The recent state-of-the-art models include Wishart Deep Belief Network (W-
DBN)[21], Self-Paced Convolutional Neural Network (SPCNN) [22], Complex-
Valued PDAS (CVPDAS-CNN) [23], and Complex-Valued Multi-Scale CNN (CVMS-
CNN) [24].

In Liu et al. [21], Deep Belief Network is created to make extensive use of
unlabeled POL-SAR pixels in the modeling of POL-SAR pixels. Furthermore, the
coherency matrix is employed directly to represent a POL-SAR pixel. In this re-
search, local spatial information is combined with the confusion matrix to clean
the preliminary classification result achieved by the W-DBN approach. In Jiao et
al. [22], a self-paced learning-based CNN is developed which learns the easier
samples first and then moves on to other samples leading it to converge to better
values. While in Dong et al. [23], the authors develop a Complex Valued Pol-
SAR tailored Differentiable Architecture Search method which identifies the best
possible architecture for the classification model instead of a hand-crafted one. In
Zhang et al. [24], the authors have developed a Complex Valued Multi-Scale CNN
in order to leverage the local and global features of a multiclass image.
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CHAPTER 3

Background

The history of SAR and the mathematical foundations of polarimetric SAR are
discussed in this chapter. Additionally, it sheds some light on Convolution Neu-
ral Networks and the ways that deep learning tackles some of the key roadblocks
in PolSAR image classification.

3.1 Remote Sensing

Remote sensing is a sophisticated technique that allows for the capture of infor-
mation about the Earth’s surface without direct physical contact. It involves gath-
ering information on the electromagnetic radiation reflected or emitted by objects
on the Earth’s surface using sensors mounted on aircraft or satellites. Then, from
this data, important information on the characteristics of the Earth, such as its land
cover, vegetation, water bodies, and atmospheric conditions, is analyzed and pro-
cessed.

Satellite remote sensing technologies acquire images and data across the elec-
tromagnetic spectrum, including visible, infrared, and microwave wavelengths.
Numerous industries, including agriculture, forestry, environmental monitoring,
urban planning, disaster management, and studies of climate change, use remote
sensing. Its capabilities have been further increased by the integration of remote
sensing with geographic information systems (GIS) and other tools for spatial
analysis. Through this integration, remote sensing data can be combined with
other geospatial data, such as topographic maps and land-use information, to pro-
vide a thorough picture of the Earth’s surface and promote defensible decision-
making. Monitoring, comprehending, and managing the Earth’s resources and
ecosystem are all made possible via remote sensing. It offers a practical and af-
fordable method for large-scale data collection.
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Figure 3.1: Different bandwidths for remote sensing[1]

Microwave imaging is widely used for this purpose since its wavelength falls
into a bracket of 1mm-1m which can enable it to bypass atmospheric obstructions
such as clouds, storms, fog, etc. It can also penetrate into the ground to some
extent depending on its wavelength and give accurate information about the to-
pography and ground cover from the way it bounces off from the surface and the
dielectric properties of the surface. Microwave radars also fall into two categories
of active radars and passive radars. Passive radars need natural signals and ob-
servations are carried out based on that as optical radars and active radars need
a source of signal for transmission which is retrieved back and then observations
are carried out.

3.2 Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is an active remote sensing technique that makes
use of radar emissions to gather detailed information about the surface of the
Earth. SAR systems generate microwave pulses and measure the signals that
are reflected back from the objects on the ground as opposed to optical remote
sensing, which relies on sunlight to illuminate the environment. SAR is a use-
ful instrument for earth observation because of this property, which enables it to
function in any weather, day or night.

By mixing the echoes picked up across a sequence of consecutive radar pulses,
a moving radar antenna can create a huge aperture or "virtual antenna" in the con-
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text of SAR. Real aperture antennas’ physical restrictions are addressed by this
method, allowing SAR to attain high-resolution imaging capabilities. SAR con-
stantly sends pulses and records the backscattered signals while the radar plat-
form travels along its flight path or the satellite orbits the Earth. SAR systems
produce a detailed image of the Earth’s surface by examining the phase and am-
plitude data of the received signals.

Figure 3.2: SAR imaging geometry in strip-map mode[2]

As shown in the above figure, SAR is a side-looking radar, so as to avoid the
confusion of retrieval of backscattered signals coinciding from both directions.
This, however, gives rise to slant mapping of the region and hence needs to be cor-
rected later on. It moves in the direction perpendicular to the direction the radar
is pointing towards. It is located at a height H and travels with velocity Vsar. The
direction perpendicular to the one it is moving in is called "Azimuth". The radar is
adjusted with an incidence angle θ. The radial axis or Radar Line of Sight (RLOS)
is considered "slant-range". The area it covers under both axis is called "antenna
footprint" and the slant range it covers is known as "Radar swath"[2].

SAR has a number of benefits for applications using remote sensing. First off,
because of its microwave frequency range, it can see through vegetation, some
building materials, and clouds, giving it significant information about features
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and things that might be hidden from view in optical images. Additionally, SAR
can identify minute variations and changes in the surface by measuring the radar
backscatter intensity, which is sensitive to the physical characteristics and struc-
ture of the objects. The capacity of SAR to produce high-resolution imaging is one
of its primary features. The detection of minute features on the Earth’s surface
is made possible by SAR’s fine spatial resolution, which is made possible by the
synthesized aperture approach. Due to this, SAR is especially useful for tasks like
mapping land cover, monitoring natural disasters, and urban planning.

Various methods of processing and analysis can be used with SAR data to ex-
tract information about the Earth’s surface. By providing more details about the
polarisation and phase of the radar signals, respectively, different techniques like
polarimetry and interferometry improve SAR’s capabilities. Applications such as
topography mapping, forest monitoring, and deformation analysis are made pos-
sible by these techniques. SAR data from numerous satellite projects, including
Sentinel-1 from the European Space Agency, RADARSAT from NASA, and ALOS
from Japan, have recently become openly available. This has fueled an increase
in the number of SAR applications and studies. SAR can be used to combine data
from many remote sensing sources, such as optical images, LiDAR, and others, to
better comprehend complex Earth systems.

3.3 Polarimetric SAR

Polarimetric Synthetic Aperture Radar is a type of radar remote sensing that cap-
tures and analyses radar signal polarization. PolSAR systems transmit and re-
ceive signals in multiple polarisation states (e.g., horizontal, vertical, and cross-
polarizations) to provide a more thorough understanding of the scattering behav-
ior of objects on the Earth’s surface than conventional single-polarization radar
systems, which only measure the intensity of the backscattered signal.
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Figure 3.3: Different polarization states of scattered waves[3]

A scattering matrix or coherency matrix, which contains details about the am-
plitude and phase interactions between the various polarisation channels, is used
to represent PolSAR data. This matrix makes it possible to examine the observed
targets’ polarimetric scattering characteristics. PolSAR data has a number of bene-
fits for applications using remote sensing. It offers improved target-discriminating
abilities that makes it possible to distinguish between different kinds of objects
and materials according to their polarimetric characteristics. Additionally, it makes
it possible to estimate significant structural and physical features of the targets
that have been examined, such as surface roughness, vegetational traits, and geo-
metrical qualities.

Radar signals in Full Polarimetric SAR (F-PolSAR) systems can have any com-
bination of polarisations, including horizontal (H), vertical (V), and both cross-
polarizations (HV and VH). The most thorough polarisation data is provided by
F-PolSAR, which also delivers the maximum amount of detail when examining
target scattering patterns. TerraSAR-X which is a German satellite mission op-
erating in X-band is a Full PolSAR system. Dual Polarimetric SAR (D-PolSAR)
devices typically send and receive signals in only two polarisation states, horizon-
tal (H) and vertical (V) or cross-polarizations (HV and VH). Although D-PolSAR
captures fewer polarisation data than F-PolSAR, it nevertheless allows for accu-
rate target separation and scattering property analysis. ALOS-2 by JAXA is a
D-PolSAR system that operates in L-band and is used for forest monitoring.

Compact Polarimetric SAR (C-PolSAR) devices receive signals in both hori-
zontal and vertical polarisations (HV and VH) and broadcast signals in one po-
larisation state (either H or V). With this setup, a small amount of polarimetric
data can be acquired while still keeping a compact system design. RADARSAT-2
which is a C-band Canadian satellite mission is a C-PolSAR system used for agri-
cultural land classification. Signals are sent and received in all four polarisation
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states—H, V, HV, and VH—by quadric metric SAR (Q-PolSAR) devices. In com-
parison to D-PolSAR systems, this configuration offers more polarisation data,
improving target differentiation and investigation of the scattering mechanisms.
Sentinal-1 by ESA is a C-band Q-PolSAR system used for maritime surveillance.
Polarimetric Interferometric SAR (PolInSAR) combines polarimetric and interfer-
ometric SAR techniques to deliver elevation and polarimetric information. It en-
tails analyzing the phase differences between two or more PolSAR pictures ob-
tained from marginally various places. Elevation estimate and terrain mapping
are two areas where PolInSAR is extremely helpful. TanDEM-X is a private ven-
ture of Airbus that generates digital elevation models.

3.4 Mathematical concepts for PolSAR data

When the radar emits horizontally or vertically polarized waves the retrieved or
backscattered signal can be of either of two polarization which may or may not be
different from the polarization of the transmitted wave signal. These backscatter-
ing properties are contained in the 2x2 Sinclair matrix:

S =

[
SHH SHV

SVH SVV

]
(3.1)

Here SHH is the horizontally transmitted and horizontally received signal while
SVH is the vertically transmitted and horizontally received signal and so on. In the
case of monostatic backscattering, SVH = SHV , thus becoming target vector Ω as
follows:

Ω =

 SHH√
2SHV

SVV

 (3.2)

Now, cross product is done with the conjugate transpose Ω∗T of the above
matrix with itself in order to obtain the covariance matrix as follows:

C3 =
〈

Ω.Ω∗T
〉
=

〈 |Ω1|2 Ω1Ω∗
2 Ω1Ω∗

3

Ω2Ω∗
1 |Ω2|2 Ω2Ω∗

3

Ω3Ω∗
1 Ω3Ω∗

2 |Ω3|2

〉 (3.3)

Now replacing values of equation 3.2 in equation 3.3 and solving gives the C3
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matrix as follows:

C3 =

⟨SHHS∗
HH⟩ ⟨SHHS∗

HV⟩ ⟨SHHS∗
VV⟩

⟨SHVS∗
HH⟩ ⟨SHVS∗

HV⟩ ⟨SHVS∗
VV⟩

⟨SVVS∗
HH⟩ ⟨SVVS∗

HV⟩ ⟨SVVS∗
VV⟩

 (3.4)

3.5 CNNs in PolSAR Image Classification

Convolutional Neural Networks (CNNs) process and analyse picture data by com-
bining a number of essential elements. The principal elements of a typical CNN
are as follows:

1. Convolutional Layers The foundational units of CNNs are convolutional
layers. They employ convolutional operations on the input image while
scanning it with a collection of learnable filters, also referred to as kernels.
By computing dot products between the filter weights and the relevant pic-
ture regions, these procedures are able to capture local characteristics and
patterns, such as edges and textures. In CNNs, feature extraction is carried
out via convolutional layers.

2. Activation Functions Non-linearity is introduced into the CNN model us-
ing activation functions. Rectified Linear Unit (ReLU), which sets negative
values to zero while keeping positive values unaffected, and variants like
as Leaky ReLU and Parametric ReLU (PReLU) are common activation func-
tions used in CNNs. Activation functions assist in the introduction of non-
linear interactions, allowing the model to learn more complicated patterns
and representations.

3. Pooling Layers Pooling layers are used to reduce the spatial dimensional-
ity of feature maps generated by convolutional layers. Pooling operations
that are often utilized are max pooling and average pooling. They minimize
spatial resolution while keeping the most significant properties, lowering
processing needs and offering some translational invariance.

4. Fully Connected Layers Fully connected layers are highly connected layers
in which each neuron is linked to every neuron in the layer before it. These
layers take the previous layers’ flattened output and map it to the required
output classes. The CNN can learn high-level representations and produce
final predictions thanks to fully connected layers.
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5. Regularization techniques Dropout is a regularisation technique used in
CNNs to prevent overfitting. During training, it randomly picks a subset
of neurons in a layer and sets their outputs to zero. This reduces the net-
work’s reliance on specific neurons and pushes it to learn more robust and
generalizable properties.

6. Loss Functions The loss function computes the difference between the CNN’s
predicted and true outputs. Categorical cross-entropy, binary cross-entropy,
and softmax with cross-entropy are all common loss functions used in classi-
fication problems. The loss function to be used is determined by the problem
at hand.

7. Optimization Algorithm During the training process, optimization meth-
ods such as Stochastic Gradient Descent (SGD), Adam, or RMSprop are used
to update the weights and biases of the CNN. These techniques try to mini-
mize the loss function by modifying the parameters based on backpropaga-
tion gradients.

18



CHAPTER 4

Dataset

This section gives information about the 4 datasets that are used to conduct vari-
ous experiments in this Paper. Following is the table which gives an overview of
various datasets:

Name Region Sensor Acquired on Size Number of Classes

Flevoland 15 Flevoland,
Netherlands

AIRSAR
(L-Band)

16th August,
1989

750 x 1024 15

Flevoland 7 Flevoland,
Netherlands

AIRSAR
(L-Band)

16th June,
1991

750 x 700 7

Landes Landes,
France

AIRSAR
(L-Band)

19th June,
1991

1050 x 1000 6

Mysore Mysore,
India

RADARSAT-2
(L-Band)

29th August,
2017

6235 x 3248
(Effective size
3489 x 3352)

11

Table 4.1: Details of Datasets used for experimentation

The first two datasets are of Flevoland, Netherlands which is taken by ESA
during different periods of time and has different numbers of classes. Flevoland
15 has 15 classes namely, Water, Forest, Lucerne, Grasses, Peas, Barley, Bare soil,
Beet, Wheat 2, Wheat 3, Stembeans, Rapeseed, Wheat, Buildings, and Potatoes.
Flevoland 7 has seven classes, namely, Wheat, Rapeseed, Barley, Lucerne, Pota-
toes, Beet, and Peas. Landes dataset is also taken using AIRSAR by ESA and has
6 classes which are aptly named C1, C2, C3, C4, C5, and C6. The first two are
agricultural datasets over Northern Europe while the third is the one in Central
Western Europe with unspecified classes but with available ground truth for the
agricultural fields. Mysore, however, is taken by RADARSAT-2, is provided by
ISRO, and is the newest in the long list of PolSAR datasets studied in this The-
sis. It has 11 classes: Ragi, Ginger, Rice, Urban, Magnesite Mine, Water, Arecanut,
Banana, Sugarcane, Coconut, and Fallow. A peculiar thing about Indian fields is
that they are very small in size and hence need some changes in sample sizes to
substantiate the dataset size for training purposes.
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The datasets are available in the form of C3 matrices as discussed in the Back-
ground chapter, however, there are also other forms of representation which is T3

coherency matrix which has a 3D Pauli feature vector component k instead of Ω
as in C3 matrix. The formula for Pauli feature vector k is as follows:

k =
1√
2

[
SXX + SYY SXX + SYY 2 · SYY

]T
(4.1)

The Pauli RGB image of the Flevoland 7 dataset and its ground truth is shown
in Figure 4.1. The Pauli RGB image of the Flevoland 15 dataset and its ground
truth is shown in Figure 4.2. The Pauli RGB image of the Landes dataset and its
ground truth are shown in Figure 4.3. For the Mysore dataset, the pseudo-color
Freeman-Durden RGB image in the slant range and ground range as well as the
Sentinel-1 optical image of the same region over a nearby time frame is shown in
Figure 4.4.

Figure 4.1: (a) Pauli RGB of Flevoland 7 dataset (b) Ground Truth of Flevoland 7
dataset
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Figure 4.2: (a) Pauli RGB of Flevoland 15 dataset (b) Ground Truth of Flevoland
15 dataset

Figure 4.3: (a) Pauli RGB of Landes dataset (b) Ground Truth of Landes dataset
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Figure 4.4: Mysore data set showing (a) Pseudo-color Freeman-Durden RGB
image in slant-range resolution (b) Pseudo-color Freeman-Durden RGB image
ground-range resolution and (c) Sentinel-2 optical image
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CHAPTER 5

Methodology

The proposed methodology contains several components. Since the given data
contains Complex Values, a Complex-Valued Convolutional Neural Network is
incorporated in order to leverage the Complex valued nature of the data. Also,
the Squeeze and Excitation Network is incorporated in order to utilize the inter-
channel dependency that the C3 matrix values might have. Then, Residual Blocks
are added in order to enhance the training by solving the vanishing gradient is-
sues that might be occurring which can cause the model training to be deemed
futile after some point. That can be avoided with these residual block which in-
cludes the Squeeze and Excitation Blocks. At last, the Gaussian Context Trans-
former is implemented in order to leverage mathematical normalization for chan-
nel attenuation of the data in the squeeze and excitation block by using Gaus-
sian normalization and Gaussian Excitation instead of convolutional components
while the squeeze component remains the same. An over-arching view of the
model can be seen in the figure below:
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Figure 5.1: Overview of the proposed Model

The parameters of the model for the Flevoland 7 dataset is 649,518. Since the
output layer has 7 nodes for the 7 classes in Flevoland 7 dataset, the number of
parameters may slightly vary from one dataset to another. The hyperparameters
of the proposed model include the learning rate being 0.0001. This is tweaked a
little bit from 0.007 to 0.0007 depending on fine-tuning requirements for different
datasets. The number of epochs it takes to converge is around 90 to 120 for differ-
ent scenarios. The batch size is kept to 38 for Flevoland 7 dataset.
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Figure 5.2: Parameters of the proposed Model for Flevoland 7 dataset

25



5.1 Complex-Valued Convolutional Neural Network

(CV-CNN)

In Zhang et al.[4], the author suggests that since the SAR images have both ampli-
tude and phase components, both can be taken into account for CNN application
rather than just the Real-Valued Components. Thus, the author builds an entire
Complex Valued CNN model, including Complex Input-Output layers, Complex
convolution layers, Complex activation function, Complex Pooling Layer, and a
complex backpropagation algorithm based on stochastic gradient descent. The
architecture of CV-CNN is shown in Figure 2.

Figure 5.3: CV-CNN Architecture[4]

The covariance matrix is a 3x3 symmetric matrix, hence rendering 6 unique
elements, however, the diagonal elements are the sole real elements. Thus, in
RV-CNN, 9 channels were fed to make the complex numbers as individual real-
valued channels. While, in CV-CNN, only 6 channels were used since it can
compute complex numbers as a whole, there need not be separate channels for
3 complex elements in the covariance matrix. 12x12 window was taken for feed-
ing patches into the CV-CNN and RV-CNN.

The Overall Accuracy of CV-CNN was 96.2% and that of RV-CNN was 95.3%.
Thus, phase information is a crucial characteristic of SAR images.

We compute the covariance matrix C3 from these patches. The data in C3 ma-
trix is distributed over 6 channels, namely, C11, C12, C13, C22, C23, C33. This is be-
cause the C3 matrix, which is derived in equation 3.3, is a Hermitian semi-definite
positive matrix, hence, the values on only one side of the main diagonal and the
diagonal values are useful since the diagonally opposite values are complex con-
jugates of each other and possess same real and imaginary values. Thus, the afore-
mentioned position elements for each pixel are rendered most useful.
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Thus, for an entire image of 9 matrix element channels, these 6 channels are im-
portant for feature extraction. Now, it can be seen in equation 3.3 that the diagonal
values are real values and the non-diagonal values are imaginary values. The C3

matrices are passed through the proposed architecture that consists of complex-
valued CNN layers, complex batch normalization, complex ReLU, Gaussian Con-
text Transformer comprising of SE-Net/SEResNet, adaptive pooling, fully con-
nected layer, and softmax.

The complex-valued CNN takes care of the complex values of the PolSAR im-
age. The complex-valued feature output of lth layer M(l)

k ∈ CF×F×K×I is con-
volved with complex-valued kernel w(l+1)

ik ∈ CB1×H1×K along with an addition of
bias to produce a feature F(l+1)

i at (l + 1)th layer.

F(l+1)
i =

K

∑
k=1

w(l+1)
ik ∗ M(l)

k + b(l+1)
i

=
K

∑
k=1

(ℜ{w(l+1)
ik } · ℜ{M(l)

k })−ℑ{w(l+1)
ik } · ℑ{M(l)

k }

+ j
K

∑
k=1

(ℜ{w(l+1)
ik } · ℑ{M(l)

k }) +ℑ{w(l+1)
ik } · ℜ{M(l)

k }

+ bl+1
i

(5.1)

The produced feature is passed through batch normalization, followed by non-
linear activation. Here, we use complex-ReLU for activation as

Ml+1
i = ReLU(ℜ{Fl+1

i }) + jReLU(ℑ{Fl+1
i }) (5.2)

Ml+1
i is passed through the squeeze-excitation network to produce a feature that

is enriched with inter-channel correlation.

5.2 Complex-Valued Squeeze and Excitation Network

Squeeze and Excitation Network introduced by [5] involves two basic operations:
squeezing and stimulating. By using global average pooling, the squeezing pro-
cess aggregates the spatial dimensions of the input feature map into a global de-
scriptor. This decreases spatial size while keeping channel-specific information.
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The exciting operation focuses on capturing channel-specific dependencies
and generating channel-specific significance weights. It employs a minimal num-
ber of fully connected layers to simulate channel interdependencies and generates
a channel-wise weighting vector. This vector is then applied to the original fea-
ture map element by element to emphasize or downplay specific channels. The
additional computational cost does not occur due to a content-aware mechanism
that weighs each channel on a global level adaptively.

In the squeeze operation, global pooling is done for each channel. During ex-
citation, the module attenuates different weights for each channel using two fully
connected layers. Then ReLU and Sigmoid are there at the end of each Excita-
tion block. In the end, the output of Sigmoid is then scaled by multiplying it with
the input feature map of the convolution layer that was added before the SEBlock.

The figure below gives an overview of the architecture explained above:

Figure 5.4: Squeeze and Excitation Network Block[5]

Here, H and W are the height and width of the data respectively. C is the num-
ber of channels and r is the ratio using which the channels are calibrated using
fully connected layers.
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5.3 Complex-Valued Squeeze and Excitation Residual

Network

ResNet is a well-known deep learning architecture that overcomes the difficulty
of training very deep neural networks. It introduces residual connections, also
known as skip connections, which allow the network to learn residual mappings
rather than the intended underlying mapping directly. This aids in minimizing
the degradation issue that emerges as network depth increases.

Combining ResNet and SENet approaches is conceivable by incorporating the
squeeze and excitation mechanisms within the residual blocks of a ResNet design.
This integration seeks to improve the ResNet model’s representational capability
by including channel-wise feature recalibration.

The figure below shows the overview of the SEResNet model:

Figure 5.5: Squeeze and Excitation Network Residual Block[5]
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5.4 Complex-Valued Gaussian Context Transformer

Ruan et al.[6] state that the channel attention blocks normally learn the relation-
ship between global contexts and attention activations by fully connected layers
or linear transformation. The authors suggest that the relationship between chan-
nels can be a mathematical distribution. Hence, they arrive at exploiting the Gaus-
sian Distribution of the data in its classification. The method does not introduce
many parameters into the fold unlike its predecessors, rather it has two variants,
one, GCT-B0 which is parameter-free, and the GCT-B1 which has one parameter.
It consists of three stages. One is Global Context Aggregation. Adaptive average
pooling is used for the purpose in this case. Then normalization is done using the
global average values and then at last global context excitation is done. Thus, in
practice, attention learning is changed to attention distribution with a determined
hunch upon the distribution of data. Thus, the main goal of the Gaussian Con-
text Transformer is to remove the learning component of the channel attention
mechanism and introduce a hard set of mathematical learning for channel atten-
tion weights in the squeeze and excitation part of any model. This signifies that
the channel weightage can be set mathematically rather than learned through a
neural network if the inclination of the overall distribution of the data is known.
The architecture of GCT is shown in Figure 5.6.

Figure 5.6: Diagram of Gaussian Context Transformer[6]

Here, c stands for standard deviation. This can be set manually ranging from
c=1 to c=4 for the GCT-B0 model while for GCT-B1, it is a learnable parameter.
The highest top-5 of GCT-Resnet50-B0 is 93.86% on the Imagenet validation set
for c=2 and that of GCT-Resnet50-B1 is 93.81% for the range c=2 to c=4.
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For the current application of SAR images, the covariance matrix of the SAR
images follows Wishart Distribution but just to test the hypothesis whether or not
the relations between the channels are improved by adding mathematical distri-
bution or not in SAR images, the Gaussian Context Transformer has been imple-
mented in the SEResNet and SENet models in order to observe if the accuracies
are comparable to that of those.

First of all, the SE Blocks were modified with the complex-valued normaliza-
tion and customized excitation blocks in order to retrofit into the complex-valued
models. First, the global averages were taken through Adaptive average pooling.
Then complex normalization was done using taking amplitude while calculating
the standard deviation. Mean was calculated entirely in Complex Domain.

The squeeze and excitation blocks of the SENet and the SEResNet models men-
tioned above are changed in order to attenuating channel weights according to
Gaussian distribution rather than learning through neural network as suggested
in the above hypothesis. After the global average pooling, the complex Gaussian
normalization and complex Gaussian excitation are performed instead of the con-
volutional layers learning the entire relations between the existing six channels’
global complex values. The values for a and b are kept in the above equation in
Figure 3 as to be 1 and 0 respectively while the values of c are kept in integer terms
in the range of 1 to 4.

The Complex Gaussian normalization is done as follows:

Z′ =
Z − Z
Zstd

(5.3)

where,

Z = ℜ{Z}+ j · ℑ{Z} (5.4)

Zstd =

√
Σ|Z − Z|2

c
(5.5)

Now, this Z’ is the normalized complex value of the channel attention weights.
Now in order to test if SAR data performs better with the Gaussian distribution
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or not channel channel normalization, the distribution is applied to Z’ as follows:

G(Z′) = e−
(Z′−b)2

2·c (5.6)

The above process is called Gaussian Excitation since the normalized channel
complex weights are fed into Gaussian distribution in order to obtain Complex
Gaussian excited values. The values of the coefficient of G(Z’) term are kept as 1,
while that of b is kept as 0 and that of c kept from 1 to 4.

The model can be seen as follows:

Figure 5.7: Diagram of Gaussian Context Transformer

5.5 Loss Function and Optimization

The loss function used here is the Categorical Cross Entropy function. This is
because the activation function for the output layer is chosen to be softmax and
since there is a multiclass classification problem, the best function here is Cate-
gorical Cross Entropy in measuring the dissimilarity between the predicted prob-
ability distribution and the true probability distribution of the target classes. The
formula for the same is as follows:

CE =
outputsize

∑
i=1

yi · logŷi (5.7)

Optimizer chosen for this model is Adam which stands for Adaptive Momen-
tum Optimizer. Adam’s fundamental idea is to adaptively alter the learning rate
for each parameter in a neural network based on estimates of the gradient’s first
and second momentums. This variable learning rate enables Adam to outperform
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traditional SGD on a wide range of optimization tasks and converges faster.

For each parameter in the network, the method maintains an exponentially de-
caying average of past gradients (first momentum) and an exponentially decaying
average of past squared gradients (second momentum). Weighted moving aver-
ages are used to compute these averages, with higher weights applied to recent
gradients.

During each training cycle, Adam changes the model’s parameters by mixing
current gradient information with historical gradient information. The update
rule has a gradient term as well as a term that accounts for historical gradient
information. Based on the magnitudes of these averaged gradients, the learning
rate is adaptively scaled.

Adam also features bias correction algorithms to help reduce the effects of ini-
tialization bias at the start of training. This bias adjustment aids the optimizer’s
performance during the initial iterations.

Experimental Results

The experimental results with the complete model as shown in Figure 5.6 or in
Figure 5.1 implemented on all the datasets mentioned in Chapter 4 of Dataset.
The best results out of all the variations of c from 1 to 4 are mentioned in the re-
spective tables for both the SENet with GCT as well as SEResNet with GCT model
variants. Please find the findings below:

In Flevoland 15 dataset, it is clearly seen that the accuracy scores of the SENet
model are clearly more than that of the SEResNet model. This is because neither
the depth of the architecture is very large nor the dataset is significantly large and
hence the SEResNet variant leads to simpler weights weighing over the finer fea-
ture learning and leads to reduced accuracy results. Following are the accuracies
found on the Flevoland 15 dataset for the proposed model :
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Class Label
GCT + Without

Skip Connections
(c=2)

GCT + With
Skip Connections

(c=2)
Water 100.00 100.00
Forest 100.00 100.00
Lucerne 100.00 90.00
Grasses 90.00 94.44
Peas 100.00 95.24
Barley 100.00 90.00
BareSoil 100.00 100.00
Beet 95.24 95.24
Wheat2 94.74 91.67
Wheat3 100.00 100.00
Stembeans 100.00 100.00
Rapeseed 100.00 88.89
Wheat 91.67 96.43
Buildings 100.00 100.00
Potatoes 100.00 100.00
OA 98.92 96.37

Table 5.1: Comparison Results on Flevoland 15 across GCT model with the best
accuracy with and without skip connections

The results images of the same are shown below:

Figure 5.8: Resulting image of Flevoland 15 dataset using GCT model (c=2) with
the best performance without skip connections

34



Figure 5.9: Resulting image of Flevoland 15 dataset using GCT model (c=2) with
the best performance with skip connections

As can be seen from the figure, the class of Lucerne is misclassified later in
the top-left corner of the image. There are also other classes such as Grasses and
Wheat which are correctly classified in the latter rather than in the first result.

In Flevoland 7 dataset, it is clearly seen that the accuracy scores of both the
SENet model and the SEResNet model are the same. This is because some classes
such as Wheat which is found in abundance in the dataset are classified better
with the skip connections in the later model while in classes like Beet where the
dataset is scarce and contributed the finer feature involvement due to skip con-
nections causing trouble in order to train better weights for the latter model and
hence the first model performs better in this case. Following are the accuracies
found on the Flevoland 7 dataset for the proposed model :
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Class Label
GCT + Without

Skip Connections
(c=2)

GCT + With
Skip Connections

(c=2)
Wheat 99.09 100.00
Rapeseed 100.00 100.00
Barley 100.00 100.00
Lucerne 100.00 100.00
Potatoes 100.00 100.00
Beet 100.00 96.00
Peas 100.00 100.00
OA 99.69 99.69

Table 5.2: Comparison Results on Flevoland 7 across GCT model with the best
accuracy with and without skip connections

The results images of the same are shown below:

Figure 5.10: Resulting image of Flevoland 7 dataset using GCT model (c=2) with
the best performance without skip connections
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Figure 5.11: Resulting image of Flevoland 7 dataset using GCT model (c=2) with
the best performance with skip connections

As can be seen in the figures above, the Wheat class is misclassified in several
regions in the first model rather than the 2nd and in the Beet class the position is
vice versa. Hence, the accuracy table can be verified with the learning through
these visual proofs and comparing it with the ground truths of the Datasets in
Chapter 4.

In the Landes dataset, the results are similar in nature as in the F15 dataset.
This is partly because the size of both these datasets is larger than the F7 dataset.
It can be said that since the F7 dataset is smaller in comparison to these Datasets,
the effect of Residual blocks is just slightly seen in some exceptional classes. In this
case, as well, it can be seen that the accuracy of classes C2, C4, and C6 decreases in
the latter model since the residual learning weights interfere with proper learning
in scarce classes such as C2 and C6. Following are the accuracies found on the
Landes dataset for the proposed model :
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Class Label
GCT + Without

Skip Connections
(c=1)

GCT + With
Skip Connections

(c=3)
C1 98.91 98.91
C2 100.00 92.31
C3 100.00 100.00
C4 100.00 99.35
C5 100.00 100.00
C6 100.00 93.75
OA 99.08 98.47

Table 5.3: Comparison Results on Landes across GCT model with the best accu-
racy with and without skip connections

The results images of the same are shown below:

Figure 5.12: Resulting image of Landes dataset using GCT model (c=1) with the
best performance without skip connections
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Figure 5.13: Resulting image of Landes dataset using GCT model (c=3) with the
best performance with skip connections

As can be seen from the figure the classes of C2 and C6 are scarcely distributed
and hence the Residual blocks incorporate the simpler learnings producing the
lower degree of polynomial in order to discriminate between the classes and
hence resulting in misclassification.

Here, the experiment has not been able to be conducted with the Mysore
dataset since the Indian dataset has a smaller size of fields and the 8x8 size of
patches have been used to sample the lands rather than the regular 12x12 size
patches due to which as a smaller number of patches have been generated for
some classes with the number of patches in some classes as low as 1. Due to this
reason, the patches cannot be properly distributed in the training and testing sam-
ples without the use of data augmentation. Hence, the use of Data Augmentation
becomes necessary.

5.6 Data Augmentation

Data Augmentation is done in order to see the effects of significantly more data
with the models on different datasets of Flevoland 15, Flevoland 7, Landes, and
Mysore. The data augmentation is performed using the tool of PolSARPro v 6.0
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Biomass edition which is available publicly. The augmentation is done using the
C3 filtering techniques on the original dataset. The techniques of the Box Car filter,
Lee Sigma Filter, and the Mean Shift Filter have been proven to be very effective
in order to achieve excellent results. For this purpose, the software of PolSARPro
v 6.0 Biomass Edition[25] is used in order to augment the C3 matrices with the
aforementioned image processing techniques.

The Boxcar filter[26] and the Lee Sigma filter are two popular image-filtering
algorithms, each with its own set of benefits. Because it requires averaging pixel
values within a given neighborhood, the Boxcar filter is simple and fast to com-
pute. Its simple implementation makes it computationally efficient, particularly
in small neighborhoods. Furthermore, the Boxcar filter is noted for its ability to
preserve edges without excessive blurring, making it ideal for applications re-
quiring precise transitions. Furthermore, by averaging pixel values, it efficiently
eliminates random noise in photos.

The Lee Sigma filter[27], on the other hand, has several notable advantages.
As an adaptive filter, it adjusts the filtering strength based on the image’s local
statistics. Because of this adaptability, it can better maintain image features while
successfully decreasing noise. The Lee Sigma filter excels in reducing speckle
noise in radar and synthetic aperture radar (SAR) images. In contrast to typical
filters, which can blur texture and fine details, the Lee Sigma filter is designed to
preserve texture and fine details while lowering noise.

The Mean Shift filter[7] is an adaptive filter that automatically modifies its spa-
tial and range kernels based on the local image structure. Because of this adapt-
ability, it can effectively handle images with different textures, structures, and
noise levels. The Mean Shift filter, unlike linear filters, conducts non-linear fil-
tering by taking into account the local distribution of pixel values and assigning
weights appropriately. This non-linear filtering property aids in the preservation
of crucial visual features and details while decreasing noise. Another benefit of
the Mean Shift filter is its ability to maintain image borders and bounds. It keeps
sharp transitions between regions by taking into account spatial and range infor-
mation, minimizing excessive blurring, and preserving edge clarity.
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Experimental Results

Due to the above-mentioned advantages of Box Car, Lee Sigma, and Mean Shift
filters, these filters are used in carrying out data augmentation using the Pol-
SARPro v6.0 Biomass Edition [25]. The process to download it is very simple
and it is an open-source software developed by European Space Agency. The
way to download and use can be found on the website in the reference attached.
Due to the data augmentation, a little edge is obtained in classifying the classes in
datasets other than Mysore in which some classes have less sample size.

As can be seen in the table below for the Flevoland 15 dataset, the accuracy of
the SEResNet model is more than that of the SENet. This is because the dataset
size is increased and previously misclassified classes due to less number of sam-
ple sizes are no longer at a disadvantage and leverage the use of residual blocks.
Following are the accuracies found on the Flevoland 15 dataset with the data aug-
mentation for the proposed model :

Class Label

GCT + Data
Augmentation + Without

Skip Connections
(c=1)

GCT + Data
Augmentation + With

Skip Connections
(c=3)

Water 100.00 99.21
Forest 99.36 100.00
Lucerne 100.00 98.78
Grasses 98.59 100.00
Peas 100.00 100.00
Barley 98.39 98.39
BareSoil 100.00 100.00
Beet 100.00 100.00
Wheat2 96.74 95.65
Wheat3 98.97 99.49
Stembeans 100.00 100.00
Rapeseed 100.00 100.00
Wheat 99.35 100.00
Buildings 100.00 100.00
Potatoes 100.00 100.00
OA 99.38 99.45

Table 5.4: Comparison Results on Flevoland 15 with Data Augmentation across
GCT model with the best accuracy with and without skip connections

The results images of the same are shown below:
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Figure 5.14: Resulting image of Flevoland 15 dataset with Data Augmentation
using GCT model (c=1) with the best performance without skip connections

Figure 5.15: Resulting image of Flevoland 15 dataset with Data Augmentation
using GCT model (c=3) with the best performance with skip connections

As can be seen in the images above, the previously misclassified classes of
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Wheat and Grass are now classified correctly in the SEResNet model and are bet-
ter than the first variant.

The same can be seen in the Flevoland 7 dataset, in which the Beet class is clas-
sified better by SEResNet than the SENet with data augmentation as the Residual
block learning is leveraged more if the size of the dataset increases. Following are
the accuracies found on the Flevoland 7 dataset with Data Augmentation for the
proposed model :

Class Label

GCT + Data
Augmentation + Without

Skip Connections
(c=4)

GCT + Data
Augmentation + With

Skip Connections
(c=3)

Wheat 100.00 100.00
Rapeseed 100.00 100.00
Barley 100.00 100.00
Lucerne 100.00 100.00
Potatoes 100.00 100.00
Beet 98.62 99.31
Peas 100.00 100.00
OA 99.87 99.94

Table 5.5: Comparison Results on Flevoland 7 with Data Augmentation across
GCT model with the best accuracy with and without skip connections

The results images of the same are shown below:
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Figure 5.16: Resulting image of Flevoland 7 dataset with Data Augmentation us-
ing GCT model (c=4) with the best performance without skip connections
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Figure 5.17: Resulting image of Flevoland 7 dataset with Data Augmentation us-
ing GCT model (c=3) with the best performance with skip connections

As can be seen in the figures, the accuracy table depicts the closest accuracy to
the ground truth for the SEResNet model for the c=3 variant which is 99.94%, and
gaps in between are filled as these classes are classified as nothing while spatial
learning compels them to classify as features of their nearby positions. Hence, it
looks slightly different than the ground truth. However, the misclassification rate
is very low for the same.

For the Landes dataset, it can be seen that the SEResNet has an edge with
better classification rates in the C2 class which was scarcely scattered without
the data augmentation. However, with the data augmentation, it can leverage
the residual block learning mechanism in order to learn more complex features
as the size of the sample is abundant and yet the vanishing gradient problem is
avoided. Following are the accuracies found on the Landes dataset with Data
Augmentation for the proposed model :
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Class Label

GCT + Data
Augmentation + Without

Skip Connections
(c=3)

GCT + Data
Augmentation + With

Skip Connections
(c=2)

C1 98.81 98.57
C2 95.65 100.00
C3 100.00 100.00
C4 100.00 100.00
C5 100.00 100.00
C6 96.39 96.99
OA 99.10 99.30

Table 5.6: Comparison Results on Landes with Data Augmentation across GCT
model with the best accuracy with and without skip connections

The results images of the same are shown below:

Figure 5.18: Resulting image of Landes dataset with Data Augmentation using
GCT model (c=3) with the best performance without skip connections
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Figure 5.19: Resulting image of Landes dataset with Data Augmentation using
GCT model (c=2) with the best performance with skip connections

As can be seen in the figures above that the C2 class is now better classified in
the SEResNet model rather than in the SENet model while all the other classes are
more or less equally classified and the latter is able to catch up with the former
after the data augmentation.

For the Mysore dataset, the accuracy factor without data augmentation is null,
hence, the only data available is with the data augmentation. Here, it can be
seen that the SEResNet has a better overall accuracy score than the SENet. This
is because it is better able to classify the scarcely sampled Magnesite Mine class
than its counterpart which can be due to the residual block learning advantage or
skip connections. Following are the accuracies found on the Mysore dataset with
Data Augmentation for the proposed model :
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Class Label

GCT + Data
Augmentation + Without

Skip Connections
(c=3)

GCT + Data
Augmentation + With

Skip Connections
(c=2)

Ragi 100.00 100.00
Ginger 100.00 100.00
Rice 100.00 100.00
Urban 100.00 100.00
Water 100.00 98.57
Arecanut 100.00 100.00
Banana 100.00 100.00
Sugarcane 100.00 100.00
Coconut 100.00 100.00
Fallow 100.00 100.00
Magnesite Mine 81.82 100.00
OA 99.20 99.60

Table 5.7: Comparison Results on Mysore with Data Augmentation across GCT
model with the best accuracy with and without skip connections

The results images of the same are shown below:
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Figure 5.20: Resulting image of Mysore dataset with Data Augmentation using
GCT model (c=2) with the best performance without skip connections
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Figure 5.21: Resulting image of Mysore dataset with Data Augmentation using
GCT model (c=3) with the best performance with skip connections

As can be seen in the figure, the fields are very small in size in comparison
to other datasets due to which the patch size was reduced to 8x8 for this dataset
causing the smaller sample size. However, with data augmentation, a satisfactory
accuracy score can be reached with the proposed model.
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CHAPTER 6

Summary and Analysis

In this chapter, the Cumulative Analysis is taken with consideration to other mod-
els such as Wishart Mixture Model and previous deep learning methods without
the Gaussian Context Transformer. However, in order to better understand the
changes in learning, an Ablation study with changes in c in Formula 5.7 is also
carried out. The value of c is kept to be an integer in the range of 1 through 4.

6.1 Cumulative Analysis

In this section, a cumulative analysis is carried out in order to see if the proposed
model is comparable to other models discussed in the Literature Survey and some
components of the proposed model with the entirety of it. The main purpose of
this section is to compare all the variations of components of the model and also
compare it with the Machine Learning method such as WMM Classifier.

Here, in the Flevoland 15 dataset, the overall accuracies show that the vari-
ants with the dataset augmentation perform better than their counterparts with-
out data augmentation. This is intuitive because the more the sample size, the
better the learning. However, in the models without data augmentation, the ones
with the skip connection perform worse than the ones without the skip connec-
tions. While this effect is reversed in the variants with the data augmentation.
Also, the small class such as buildings are accurately classified in all the deep
learning methods except the one without skip connections and without data aug-
mentation however other models, perform better for that class than the WMM
Classifier. Following are the accuracies of different models for the Flevoland 15
dataset:
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Speckled
Filtered Data Unfiltered Data

Class Label
WMM

Classifier
Without Skip
Connections

With Skip
Connections

Global
K-Means

Without Data
Augmentation

With Data
Augmentation

Without Data
Augmentation

With Data
Augmentation

Water 99.21 100.00 99.21 88.14 99.21
Forest 91.95 100.00 100.00 100.00 100.00
Lucerne 96.82 100.00 97.56 90.91 98.78
Grasses 92.50 77.78 98.59 88.24 97.18
Peas 97.61 100.00 100.00 95.45 98.81
Barley 97.18 66.67 100.00 69.57 98.39
BareSoil 96.66 100.00 100.00 57.14 100.00
Beet 94.73 100.00 100.00 97.56 100.00
Wheat2 87.20 100.00 96.74 97.96 96.74
Wheat3 95.45 100.00 99.49 100.00 99.49
Stembeans 97.19 100.00 100.00 95.24 100.00
Rapeseed 87.46 95.83 100.00 97.14 99.09
Wheat 93.58 97.44 99.35 98.18 100.00
Buildings 80.80 0 100.00 100.00 100.00
Potatoes 90.61 100.00 100.00 98.51 100.00
OA 93.72 97.12 99.18 94.39 98.83

Table 6.1: Comparison Results on Flevoland 15 across all models without GCT

Unfiltered Data

Class Label
GCT + Without

Skip Connections
GCT + With Skip

Connections
Without Data

Augmentation (c=2)
With Data

Augmentation (c=2)
Without Data

Augmentation (c=2)
With Data

Augmentation (c=2)
Water 100.00 100.00 100.00 99.21
Forest 100.00 99.36 100.00 100.00
Lucerne 100.00 100.00 90.00 98.78
Grasses 90.00 98.59 94.44 100.00
Peas 100.00 100.00 95.24 100.00
Barley 100.00 98.39 90.00 98.39
BareSoil 100.00 100.00 100.00 100.00
Beet 95.24 100.00 95.24 100.00
Wheat2 94.74 96.74 91.67 95.65
Wheat3 100.00 98.97 100.00 99.49
Stembeans 100.00 100.00 100.00 100.00
Rapeseed 100.00 100.00 88.89 100.00
Wheat 91.67 99.35 96.43 100.00
Buildings 100.00 100.00 100.00 100.00
Potatoes 100.00 100.00 100.00 100.00
OA 98.92 99.38 96.37 99.45

Table 6.2: Comparison Results on Flevoland 15 across all models with GCT

Following are the image results of the same:
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.1: Resulting images of all models for Flevoland 15 dataset: (a) SENet
(b) SEResNet (c) SENet + GCT (c=2) (d) SEResNet + GCT (c=2) (e) SENet + Data
Augmentation (f) SEResNet + Data Augmentation (g) SENet + GCT (c=2) + Data
Augmentation (h) SEResNet + GCT (c=2) + Data Augmentation

As can be seen in the image above, the classes such as Grasses and Wheat are
better classified in the SEResNet models with the data augmentation rather than
the one without. The implementation of the Gaussian Context Transformer can
also be seen to be giving an edge to all the variants than the ones without.

For the Flevoland 7 dataset, the results of overall accuracies show that the
data augmentation and Gaussian Context Transformer both individually have a
better effect on the model rather than the one with their absence. However, the
trend with SENet and SEResNet follows the same path of the Residual network
performing better with the data augmentation. Following are the accuracies of
different models for the Flevoland 7 dataset:

Speckled
Filtered Data Unfiltered Data

Class Label
WMM

Classifier
Without Skip
Connections

With Skip
Connections

Global
K-Means

Without Data
Augmentation

With Data
Augmentation

Without Data
Augmentation

With Data
Augmentation

Wheat 98.98 99.12 100.00 98.51 100.00
Rapeseed 99.91 100.00 100.00 100.00 100.00
Barley 99.39 100.00 100.00 98.31 99.29
Lucerne 94.97 85.71 100.00 100.00 100.00
Potatoes 99.15 98.18 100.00 98.85 100.00
Beet 96.99 93.94 97.93 98.18 96.55
Peas 92.87 100.00 100.00 100.00 100.00
OA 98.88 98.48 99.81 98.78 99.75

Table 6.3: Comparison Results on Flevoland 7 across all models without GCT
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Unfiltered Data

Class Label
GCT + Without

Skip Connections
GCT + With Skip

Connections
Without Data

Augmentation (c=2)
With Data

Augmentation (c=4)
Without Data

Augmentation (c=2)
With Data

Augmentation (c=1,3)
Wheat 99.09 100.00 100.00 100.00
Rapeseed 100.00 100.00 100.00 100.00
Barley 100.00 100.00 100.00 100.00
Lucerne 100.00 100.00 100.00 100.00
Potatoes 100.00 100.00 100.00 100.00
Beet 100.00 98.62 96.00 99.31
Peas 100.00 100.00 100.00 100.00
OA 99.69 99.87 99.69 99.94

Table 6.4: Comparison Results on Flevoland 7 across all models with GCT

Following are the image results of the same:

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.2: Resulting images of all models for Flevoland 7 dataset: (a) SENet (b)
SEResNet (c) SENet + GCT (c=2) (d) SEResNet + GCT (c=2) (e) SENet + Data
Augmentation (f) SEResNet + Data Augmentation (g) SENet + GCT (c=4) + Data
Augmentation (h) SEResNet + GCT (c=3) + Data Augmentation

As can be seen in the figures above, a slightly better change in the classification
is observed throughout the variants of models due to the presence of the Gaussian
Context Transformer rather than their counterparts. However, data augmentation
also seems to help the classes with scarce distribution in the sample.

For the Landes dataset, the trends seem to follow the same path that Gaussian
Context Transformer and data augmentation helps individually and collectively
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to the proposed model and the other trends seem to be true in this dataset as well.
Following are the accuracies of different models for the Landes dataset:

Speckled
Filtered Data Unfiltered Data

Class Label
WMM

Classifier
Without Skip
Connections

With Skip
Connections

Global
K-Means

Without Data
Augmentation

With Data
Augmentation

Without Data
Augmentation

With Data
Augmentation

C1 84.41 96.74 98.33 95.74 99.29
C2 79.98 100.00 94.20 93.33 95.65
C3 97.62 100.00 100.00 100.00 100.00
C4 97.31 100.00 100.00 99.65 100.00
C5 95.41 100.00 100.00 96.77 100.00
C6 78.17 90.63 96.39 91.89 96.39
OA 90.73 98.16 98.85 97.24 99.10

Table 6.5: Comparison Results on Landes dataset across all models without GCT

Unfiltered Data

Class Label
GCT + Without

Skip Connections
GCT + With Skip

Connections
Without Data

Augmentation (c=1)
With Data

Augmentation (c=3)
Without Data

Augmentation (c=3)
With Data

Augmentation (c=2)
C1 98.91 98.81 98.91 98.57
C2 100.00 95.65 92.31 100.00
C3 100.00 100.00 100.00 100.00
C4 100.00 100.00 99.35 100.00
C5 100.00 100.00 100.00 100.00
C6 93.75 96.39 93.75 96.99
OA 99.08 99.10 98.47 99.30

Table 6.6: Comparison Results on Landes dataset across all models with GCT

Following are the image results of the same:
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.3: Resulting images of all models for Landes dataset: (a) SENet (b) SERes-
Net (c) SENet + GCT (c=1) (d) SEResNet + GCT (c=3) (e) SENet + Data Augmen-
tation (f) SEResNet + Data Augmentation (g) SENet + GCT (c=3) + Data Augmen-
tation (h) SEResNet + GCT (c=2) + Data Augmentation

As can be seen above, the classes with scarce sample sizes perform better with
data augmentation but the performance of almost all classes is enhanced with the
Gaussian Context Transformer apart from the slight give or take of accuracies in
the classes that are already perfectly classified.

For the Mysore dataset, the Gaussian Context Transformer is the major con-
tributing factor as all the models have data augmentation. The performance en-
hancement due to Gaussian Context Transformer is also visible in this dataset.
Following are the accuracies of different models for the Mysore dataset:
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Speckled
Filtered Data Unfiltered Data

Class Label
WMM

Classifier
Without Skip
Connections

With Skip
Connections

GCT + Without
Skip Connections

GCT + With Skip
Connections

Global
K-Means

With Data
Augmentation

With Data
Augmentation

With Data
Augmentation (c=2)

With Data
Augmentation (c=2)

Ragi 67.54 100.00 100.00 100.00 100.00
Ginger 93.20 100.00 100.00 100.00 100.00
Rice 95.97 100.00 98.33 100.00 100.00
Urban 99.77 100.00 100.00 100.00 100.00
Water 91.19 98.44 98.44 100.00 98.57
Arecanut 81.42 100.00 100.00 100.00 100.00
Banana 73.13 100.00 100.00 100.00 100.00
Sugarcane 65.83 100.00 100.00 100.00 100.00
Coconut 76.80 100.00 100.00 100.00 100.00
Fallow 78.41 100.00 100.00 100.00 100.00
Magnesite Mine 97.88 72.73 81.82 81.82 100.00
OA 92.72 98.41 98.01 99.20 99.60

Table 6.7: Comparison Results on Mysore dataset across all models

Following are the image results of the same:

(a) (b) (c) (d)

Figure 6.4: Resulting images of all models for Mysore dataset: (a) SENet + Data
Augmentation (b) SEResNet + Data Augmentation (c) SENet + GCT (c=2) + Data
Augmentation (d) SEResNet + GCT (c=2) + Data Augmentation

As can be seen above in the figure, the images have very small patches scat-
tered across a large plain, and hence the reason for reducing the patch size in
the sampling of the data. However, with the data augmentation, the effect of the
Gaussian Context Transformer can be seen and it seems to have brought about a
positive impact on the overall accuracy of both variants.

6.2 Ablation Study

In this section, the effect of changing the standard deviation in the complex nor-
malization part of the Gaussian Context Transformer is observed in different mod-
els. This changes the Gaussian distribution’s expanse and hence the channels are
weighted accordingly in the squeeze and excitation part of the models.
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In the Flevoland 15 dataset, the effect of changing the constant c in the for-
mula 5.7 for the Gaussian Context Transformer seems that almost all of the values
of c perform better than the one without the GCT. However, it is observed that
in c=2 and c=3 the overall accuracies are almost always better than the one with-
out GCT but in the other two variants with c=1 and c=4 the case might become
slightly worse than the one without the GCT. This shows that the perfect values
lie around the range of 2 to 3 with some exceptions.

The following Table shows the effect of changing standard deviation in the
Flevoland 15 dataset for the SENet + GCT model:

Class Label SENet SENet + GCT
c=1 c=2 c=3 c=4

Water 100.00 100.00 100.00 100.00 100.00
Forest 100.00 100.00 100.00 100.00 100.00
Lucerne 100.00 100.00 100.00 95.24 100.00
Grasses 77.78 90.00 90.00 90.00 90.00
Peas 100.00 95.45 100.00 100.00 100.00
Barley 66.67 100.00 100.00 100.00 100.00
BareSoil 100.00 100.00 100.00 100.00 100.00
Beet 100.00 95.24 95.24 95.24 95.24
Wheat2 100.00 89.47 89.47 100.00 94.74
Wheat3 100.00 100.00 100.00 100.00 100.00
Stembeans 100.00 100.00 100.00 100.00 100.00
Rapeseed 95.83 100.00 100.00 100.00 100.00
Wheat 97.44 87.50 95.83 91.67 91.67
Buildings 0.00 100.00 100.00 100.00 100.00
Potatoes 100.00 100.00 100.00 100.00 100.00
OA 97.12 97.12 98.20 98.20 98.20

Table 6.8: Comparison Results on Flevoland 15 across all SENet + GCT variations

Following are the image results for the same:
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(a) (b) (c)

(d) (e)

Figure 6.5: Image results on Flevoland 15 dataset of SENet + GCT with variations
in standard deviation (c) in Gaussian Context Transformer: (a) SENet, (b) SENet +
GCT (c=1), (c) SENet + GCT (c=2), (d) SENet + GCT (c=3), (e) SENet + GCT (c=4)

The following Table shows the effect of changing standard deviation in the
Flevoland 15 dataset for the SEResNet + GCT model:

Class Label SEResNet SEResNet + GCT
c=1 c=2 c=3 c=4

Water 100.00 100.00 100.00 100.00 100.00
Forest 100.00 100.00 100.00 100.00 100.00
Lucerne 100.00 100.00 100.00 100.00 100.00
Grasses 100.00 100.00 100.00 100.00 100.00
Peas 94.12 94.12 94.12 94.12 94.12
Barley 100.00 100.00 100.00 100.00 100.00
BareSoil 100.00 100.00 100.00 100.00 100.00
Beet 94.74 94.74 100.00 100.00 100.00
Wheat2 94.74 100.00 94.74 100.00 94.74
Wheat3 95.12 100.00 100.00 92.68 97.56
Stembeans 100.00 100.00 100.00 100.00 100.00
Rapeseed 95.65 95.65 95.65 95.65 91.30
Wheat 96.88 96.88 96.88 93.75 100.00
Buildings 100.00 100.00 100.00 100.00 100.00
Potatoes 100.00 97.00 100.00 100.00 100.00
OA 97.69 98.35 98.68 97.69 98.35

Table 6.9: Comparison Results on Flevoland 15 across all SEResNet + GCT varia-
tions

Following are the image results for the same:
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(a) (b) (c)

(d) (e)

Figure 6.6: Image results on Flevoland 15 dataset of SEResNet + GCT with vari-
ations in standard deviation (c) in Gaussian Context Transformer: (a) SEResNet,
(b) SEResNet + GCT (c=1), (c) SEResNet + GCT (c=2), (d) SEResNet + GCT (c=3),
(e) SEResNet + GCT (c=4)

The following Table shows the effect of changing standard deviation in the
Flevoland 15 dataset with Data Augmentation for the SENet + GCT model:

Class Label SENet SENet + GCT + Data Augmentation
c=1 c=2 c=3 c=4

Water 99.21 100.00 99.21 99.21 99.21
Forest 100.00 99.36 100.00 100.00 100.00
Lucerne 97.56 100.00 98.78 97.56 97.56
Grasses 98.59 98.59 97.18 98.59 97.18
Peas 100.00 100.00 100.00 100.00 100.00
Barley 100.00 98.39 98.39 98.39 100.00
BareSoil 100.00 100.00 100.00 100.00 100.00
Beet 100.00 100.00 100.00 100.00 100.00
Wheat2 96.74 96.74 96.74 96.74 96.74
Wheat3 99.49 98.97 99.49 99.49 99.49
Stembeans 100.00 100.00 100.00 98.11 100.00
Rapeseed 100.00 100.00 100.00 100.00 97.27
Wheat 99.35 99.35 99.35 99.35 99.35
Buildings 100.00 100.00 100.00 100.00 100.00
Potatoes 100.00 100.00 99.32 100.00 100.00
OA 99.18 99.38 99.24 99.24 99.11

Table 6.10: Comparison Results on Flevoland 15 dataset with Data Augmentation
across all SENet + GCT variations
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Following are the image results for the same:

(a) (b) (c)

(d) (e)

Figure 6.7: Image results on Flevoland 15 dataset with Data Augmentation of
SENet + GCT with variations in standard deviation (c) in Gaussian Context Trans-
former: (a) SENet + Data Augmentation, (b) SENet + GCT (c=1) + Data Augmen-
tation, (c) SENet + GCT (c=2) + Data Augmentation, (d) SENet + GCT (c=3) + Data
Augmentation, (e) SENet + GCT (c=4) + Data Augmentation

The following Table shows the effect of changing standard deviation in the
Flevoland 15 dataset with Data Augmentation for the SEResNet + GCT model:
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Class Label SEResNet SEResNet + GCT + Data Augmentation
c=1 c=2 c=3 c=4

Water 99.21 99.21 99.21 99.21 99.21
Forest 100.00 100.00 100.00 100.00 100.00
Lucerne 98.78 98.78 98.78 98.78 97.56
Grasses 97.18 98.59 97.18 100.00 98.59
Peas 98.81 100.00 100.00 100.00 98.81
Barley 98.39 100.00 98.39 98.39 98.39
BareSoil 100.00 100.00 100.00 100.00 100.00
Beet 100.00 100.00 100.00 100.00 100.00
Wheat2 96.74 96.74 96.74 95.65 97.83
Wheat3 99.49 98.97 99.49 99.49 99.49
Stembeans 100.00 100.00 100.00 100.00 100.00
Rapeseed 99.09 99.09 100.00 100.00 98.18
Wheat 100.00 100.00 100.00 100.00 100.00
Buildings 100.00 100.00 100.00 100.00 100.00
Potatoes 100.00 100.00 100.00 100.00 100.00
OA 98.83 99.38 99.38 99.45 99.24

Table 6.11: Comparison Results on Flevoland 15 dataset with Data Augmentation
across all SEResNet + GCT variations

Following are the image results for the same:

(a) (b) (c)

(d) (e)

Figure 6.8: Image results on Flevoland 15 dataset with Data Augmentation of
SEResNet + GCT with variations in standard deviation (c) in Gaussian Context
Transformer: (a) SEResNet + Data Augmentation, (b) SEResNet + GCT (c=1) +
Data Augmentation, (c) SEResNet + GCT (c=2) + Data Augmentation, (d) SERes-
Net + GCT (c=3) + Data Augmentation, (e) SEResNet + GCT (c=4) + Data Aug-
mentation
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In the Flevoland 7 dataset, the effect of changing the constant c in the for-
mula 5.7 for the Gaussian Context Transformer seems that almost all of the values
of c perform better than the one without the GCT. However, sometimes the val-
ues of some variants of c are the same which goes to show that the change in
the standard deviation stretch of the interchannel dependencies does not change
that much after a point of accuracy, since some accuracy values are already high
enough. Hence, some anomalies can also be seen in the trends.
The following Table shows the effect of changing standard deviation in the Flevoland
7 dataset for the SENet + GCT model:

Class Label SENet SENet + GCT
c=1 c=2 c=3 c=4

Wheat 99.12 98.19 99.09 98.19 99.09
Rapeseed 100.00 100.00 100.00 100.00 100.00
Barley 100.00 100.00 100.00 100.00 100.00
Lucerne 85.71 100.00 100.00 100.00 100.00
Potatoes 98.18 100.00 100.00 100.00 100.00
Beet 93.94 93.55 100.00 100.00 93.55
Peas 100.00 100.00 100.00 100.00 100.00
OA 98.48 98.78 99.69 99.39 99.09

Table 6.12: Comparison Results on Flevoland 7 across all SENet + GCT variations

Following are the image results for the same:
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(a) (b) (c)

(d) (e)

Figure 6.9: Image results on Flevoland 7 dataset of SENet + GCT with variations
in standard deviation (c) in Gaussian Context Transformer: (a) SENet, (b) SENet +
GCT (c=1), (c) SENet + GCT (c=2), (d) SENet + GCT (c=3), (e) SENet + GCT (c=4)

The following Table shows the effect of changing standard deviation in the
Flevoland 7 dataset for the SEResNet + GCT model:

Class Label SEResNet SEResNet + GCT
c=1 c=2 c=3 c=4

Wheat 98.51 100.00 100.00 99.08 100.00
Rapeseed 100.00 100.00 100.00 100.00 100.00
Barley 98.31 89.69 100.00 100.00 98.84
Lucerne 100.00 100.00 100.00 100.00 100.00
Potatoes 98.85 93.94 100.00 100.00 100.00
Beet 98.18 96.00 96.00 96.00 96.77
Peas 100.00 100.00 100.00 100.00 100.00
OA 98.78 96.05 99.69 99.39 99.39

Table 6.13: Comparison Results on Flevoland 7 across all SEResNet + GCT varia-
tions

Following are the image results for the same:
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(a) (b) (c)

(d) (e)

Figure 6.10: Image results on Flevoland 7 dataset of SEResNet + GCT with vari-
ations in standard deviation (c) in Gaussian Context Transformer: (a) SEResNet,
(b) SEResNet + GCT (c=1), (c) SEResNet + GCT (c=2), (d) SEResNet + GCT (c=3),
(e) SEResNet + GCT (c=4)

The following Table shows the effect of changing standard deviation in the
Flevoland 7 dataset with Data Augmentation for the SENet + GCT model:

Class Label SENet SENet + GCT + Data Augmentation
c=1 c=2 c=3 c=4

Wheat 100.00 100.00 100.00 100.00 100.00
Rapeseed 100.00 100.00 100.00 100.00 100.00
Barley 100.00 99.76 100.00 100.00 100.00
Lucerne 100.00 100.00 100.00 100.00 100.00
Potatoes 100.00 100.00 100.00 100.00 100.00
Beet 97.93 95.17 97.24 97.93 98.62
Peas 100.00 100.00 100.00 100.00 100.00
OA 99.81 99.49 99.75 99.81 99.87

Table 6.14: Comparison Results on Flevoland 7 dataset with Data Augmentation
across all SENet + GCT variations

Following are the image results for the same:
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(a) (b) (c)

(d) (e)

Figure 6.11: Image results on Flevoland 7 dataset with Data Augmentation of
SENet + GCT with variations in standard deviation (c) in Gaussian Context Trans-
former: (a) SENet + Data Augmentation, (b) SENet + GCT (c=1) + Data Augmen-
tation, (c) SENet + GCT (c=2) + Data Augmentation, (d) SENet + GCT (c=3) + Data
Augmentation, (e) SENet + GCT (c=4) + Data Augmentation

The following Table shows the effect of changing standard deviation in the
Flevoland 7 dataset with Data Augmentation for the SEResNet + GCT model:

Class Label SEResNet SEResNet + GCT + Data Augmentation
c=1 c=2 c=3 c=4

Wheat 100.00 100.00 99.81 100.00 99.81
Rapeseed 100.00 100.00 100.00 100.00 100.00
Barley 99.29 100.00 100.00 100.00 99.52
Lucerne 100.00 100.00 100.00 100.00 100.00
Potatoes 100.00 100.00 100.00 100.00 100.00
Beet 96.55 99.31 99.31 99.31 97.93
Peas 100.00 100.00 100.00 100.00 100.00
OA 99.75 99.94 99.87 99.94 99.62

Table 6.15: Comparison Results on Flevoland 7 dataset with Data Augmentation
across all SEResNet + GCT variations

Following are the image results for the same:
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(a) (b) (c)

(d) (e)

Figure 6.12: Image results on Flevoland 7 dataset with Data Augmentation of
SEResNet + GCT with variations in standard deviation (c) in Gaussian Context
Transformer: (a) SEResNet + Data Augmentation, (b) SEResNet + GCT (c=1) +
Data Augmentation, (c) SEResNet + GCT (c=2) + Data Augmentation, (d) SERes-
Net + GCT (c=3) + Data Augmentation, (e) SEResNet + GCT (c=4) + Data Aug-
mentation

For the Landes dataset, the same trend follows as that for the Flevoland 15
dataset, however, sometimes the values of accuracies turn out to be the same due
to the possibility of overfitting in some cases since the classes are very large com-
pared to the other two datasets yet the number of classes are less.

The following Table shows the effect of changing standard deviation in the
Landes dataset for the SENet + GCT model:
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Class Label SENet SENet + GCT
c=1 c=2 c=3 c=4

C1 96.74 98.91 98.91 100.00 100.00
C2 100.00 100.00 100.00 76.92 92.31
C3 100.00 100.00 100.00 100.00 100.00
C4 100.00 100.00 99.35 99.35 99.35
C5 100.00 100.00 100.00 100.00 100.00
C6 90.63 93.75 87.50 93.75 96.88
OA 98.16 99.08 98.16 98.16 99.08

Table 6.16: Comparison Results on Landes across all SENet + GCT variations

Following are the image results for the same:

(a) (b) (c)

(d) (e)

Figure 6.13: Image results on Landes dataset of SENet + GCT with variations in
standard deviation (c) in Gaussian Context Transformer: (a) SENet, (b) SENet +
GCT (c=1), (c) SENet + GCT (c=2), (d) SENet + GCT (c=3), (e) SENet + GCT (c=4)

The following Table shows the effect of changing standard deviation in the
Landes dataset for the SEResNet + GCT model:
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Class Label SEResNet SEResNet + GCT
c=1 c=2 c=3 c=4

C1 95.74 95.65 96.74 98.91 98.91
C2 93.33 100.00 84.62 92.31 92.31
C3 100.00 84.21 94.74 100.00 100.00
C4 99.65 97.39 99.35 99.35 99.35
C5 96.77 100.00 100.00 100.00 100.00
C6 91.89 90.63 96.88 93.75 93.75
OA 97.24 95.71 97.55 98.47 98.47

Table 6.17: Comparison Results on Landes across all SEResNet + GCT variations

Following are the image results for the same:

(a) (b) (c)

(d) (e)

Figure 6.14: Image results on Landes dataset of SEResNet + GCT with varia-
tions in standard deviation (c) in Gaussian Context Transformer: (a) SEResNet,
(b) SEResNet + GCT (c=1), (c) SEResNet + GCT (c=2), (d) SEResNet + GCT (c=3),
(e) SEResNet + GCT (c=4)

The following Table shows the effect of changing standard deviation in the
Landes dataset with Data Augmentation for the SENet + GCT model:
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Class Label SENet SENet + GCT + Data Augmentation
c=1 c=2 c=3 c=4

C1 98.33 98.33 97.86 98.81 98.33
C2 94.20 94.20 95.65 95.65 97.10
C3 100.00 100.00 100.00 100.00 100.00
C4 100.00 99.87 99.87 100.00 100.00
C5 100.00 100.00 100.00 100.00 100.00
C6 96.39 97.59 95.78 96.39 92.77
OA 98.85 98.15 98.72 99.10 98.66

Table 6.18: Comparison Results on Landes dataset with Data Augmentation
across all SENet + GCT variations

Following are the image results for the same:

(a) (b) (c)

(d) (e)

Figure 6.15: Image results on Landes dataset with Data Augmentation of SENet +
GCT with variations in standard deviation (c) in Gaussian Context Transformer:
(a) SENet + Data Augmentation, (b) SENet + GCT (c=1) + Data Augmentation, (c)
SENet + GCT (c=2) + Data Augmentation, (d) SENet + GCT (c=3) + Data Aug-
mentation, (e) SENet + GCT (c=4) + Data Augmentation

The following Table shows the effect of changing standard deviation in the
Landes dataset with Data Augmentation for the SEResNet + GCT model:
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Class Label SEResNet SEResNet + GCT + Data Augmentation
c=1 c=2 c=3 c=4

C1 99.29 97.38 98.57 99.05 99.29
C2 95.65 94.20 100.00 95.65 98.55
C3 100.00 100.00 100.00 100.00 100.00
C4 100.00 100.00 100.00 99.87 100.00
C5 100.00 100.00 100.00 100.00 100.00
C6 96.39 98.19 96.99 96.99 94.58
OA 99.10 98.85 99.30 99.17 99.17

Table 6.19: Comparison Results on Landes dataset with Data Augmentation
across all SEResNet + GCT variations

Following are the image results for the same:

(a) (b) (c)

(d) (e)

Figure 6.16: Image results on Landes dataset with Data Augmentation of SERes-
Net + GCT with variations in standard deviation (c) in Gaussian Context Trans-
former: (a) SEResNet + Data Augmentation, (b) SEResNet + GCT (c=1) + Data
Augmentation, (c) SEResNet + GCT (c=2) + Data Augmentation, (d) SEResNet +
GCT (c=3) + Data Augmentation, (e) SEResNet + GCT (c=4) + Data Augmentation

For the Mysore dataset, the case is different since the patch size is smaller.
Here, the accuracies across the variants of c are similar as they reach high enough
values. This may show that once the accuracy of a model reaches high enough
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values the contribution of variation in c decreases.

The following Table shows the effect of changing standard deviation in the
Mysore dataset with Data Augmentation for the SENet + GCT model:

Class Label SENet SENet + GCT + Data Augmentation
c=1 c=2 c=3 c=4

Ragi 100.00 100.00 100.00 100.00 100.00
Ginger 100.00 100.00 100.00 100.00 100.00
Rice 100.00 100.00 100.00 100.00 100.00
Urban 100.00 100.00 100.00 100.00 100.00
Water 98.44 96.88 100.00 96.88 98.44
Arecanut 100.00 100.00 100.00 100.00 100.00
Banana 100.00 100.00 100.00 100.00 100.00
Sugarcane 100.00 100.00 100.00 100.00 100.00
Coconut 100.00 100.00 100.00 100.00 100.00
Fallow 100.00 100.00 100.00 100.00 100.00
Magnesite Mine 72.73 81.82 81.82 81.82 81.82
OA 98.41 98.41 99.20 98.41 98.80

Table 6.20: Comparison Results on Mysore dataset with Data Augmentation
across all SENet + GCT variations

Following are the image results for the same:
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(a) (b) (c)

(d) (e)

Figure 6.17: Image results on Mysore dataset with Data Augmentation of SENet +
GCT with variations in standard deviation (c) in Gaussian Context Transformer:
(a) SENet + Data Augmentation, (b) SENet + GCT (c=1) + Data Augmentation, (c)
SENet + GCT (c=2) + Data Augmentation, (d) SENet + GCT (c=3) + Data Aug-
mentation, (e) SENet + GCT (c=4) + Data Augmentation

The following Table shows the effect of changing standard deviation in the
Mysore dataset with Data Augmentation for the SEResNet + GCT model:

73



Class Label SEResNet SEResNet + GCT + Data Augmentation
c=1 c=2 c=3 c=4

Ragi 100.00 100.00 100.00 100.00 100.00
Ginger 100.00 100.00 100.00 100.00 100.00
Rice 98.33 100.00 100.00 100.00 100.00
Urban 100.00 100.00 100.00 100.00 100.00
Water 98.44 98.57 98.57 98.57 98.57
Arecanut 100.00 100.00 100.00 100.00 100.00
Banana 100.00 100.00 100.00 100.00 100.00
Sugarcane 100.00 100.00 100.00 100.00 100.00
Coconut 100.00 100.00 100.00 100.00 100.00
Fallow 100.00 100.00 100.00 100.00 100.00
Magnesite Mine 81.82 100.00 100.00 100.00 100.00
OA 98.01 99.60 99.60 99.60 99.60

Table 6.21: Comparison Results on Mysore dataset with Data Augmentation
across all SEResNet + GCT variations

Following are the image results for the same:
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(a) (b) (c)

(d) (e)

Figure 6.18: Image results on Mysore dataset with Data Augmentation of SERes-
Net + GCT with variations in standard deviation (c) in Gaussian Context Trans-
former: (a) SEResNet + Data Augmentation, (b) SEResNet + GCT (c=1) + Data
Augmentation, (c) SEResNet + GCT (c=2) + Data Augmentation, (d) SEResNet +
GCT (c=3) + Data Augmentation, (e) SEResNet + GCT (c=4) + Data Augmentation

6.3 Comparison with State of the art Models

Following is the comparison of the current proposed model with the state-of-
the-art models that are published before this work. Following is the table which
shows the comparison of these models in the Flevoland 15 dataset:

State of the Art Models Flevoland 15(OA)

W-DBN 97.57
SPCNN 96.90
CVPDAS-CNN 98.32
CVMS-CNN 97.74
Proposed Model (SEResNet+GCT+Data Augmentation) 99.45

Table 6.22: Comparison Results on Flevoland 15 dataset across the different state
of the art models
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The recent state-of-the-art models include Wishart Deep Belief Network (W-
DBN)[21], Self-Paced Convolutional Neural Network (SPCNN) [22], Complex-
Valued PDAS (CVPDAS-CNN) [23], and Complex-Valued Multi-Scale CNN (CVMS-
CNN) [24]. The table above shows that the Proposed model performs better than
the other state-of-the-art models. In W-DBN, a cleaning algorithm is proposed
based on the confusion matrix and local spatial information. While others use
CNN in order to leverage the spatial information in order to classify the data. The
proposed model, however, beats those accuracies because there is mathematical
normalization of inter-channel dependencies that are leveraged in this case, giv-
ing it an edge in classification.
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CHAPTER 7

Conclusion

The introduction of the Gaussian Context Transformer in the Squeeze and Excita-
tion block does improve the accuracy of all the pre-existing models. This suggests
that the deep learning part itself can learn better if some channel attenuations
are learned with statistical means. However, the Gaussian Context Transformer
does not completely interfere with the learning parameters; it only weighs them
accordingly with the Gaussian distribution of specified standard deviations and
provides channel attention coefficients. This process further enhances the model
training which can be seen in the results across all models with the addition of
GCT. The Data Augmentation part yields better results due to the addition of the
training data, however, the image processing techniques chosen also play a small
role in the quality of training. The speckle reduction techniques used are Box Car
filter, Lee Sigma Filter, and Mean Shift filter.

The SEResNet models across all datasets performed worse than SENet models,
however, with the introduction of Gaussian Context Transformers, the SEResNet
blocks starts to learn better than their SENet counterparts without loss of perfor-
mance in the SENet models. This happens due to the generalization of learning
polynomial weights due to channel attention normalization during the Squeeze
and Excitation block. This removes some hampering factors in the better learning
obtained by the Residual blocks.

Thus, the main goal of the Gaussian Context Transformer is to remove the
learning component of the channel attention mechanism and introduce hard-set
mathematical learning for channel attention weights in the SENet part of any
model. This signifies that the channel weights can be set mathematically rather
than learned through a neural network if the data’s overall distribution’s inclina-
tion is known.
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CHAPTER 8

Future Work

Moreover, this Thesis contributes towards balancing both statistical learning meth-
ods as well as deep learning methods into a single model. However, in the future,
two separate models can be balanced in the classification of PolSAR images.

1. In the future, the standard deviation parameter which is decided manually
can also be left to the neural network by the introduction of a sigmoid acti-
vation layer.

2. Ablation study on various data augmentations can be done to see which
image processing technique contributes more towards better learning for
PolSAR data.

3. Current study is performed only on L-band data. In the future, when dual-
band data is available, these models can be tested on them in order to see
how they fare in those conditions.
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