
Neural Network Architectures for
Integrated Circuits

by

KHYATI NAGRANI
202111031

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

MASTER OF TECHNOLOGY
in

INFORMATION AND COMMUNICATION TECHNOLOGY
to

DHIRUBHAI AMBANI INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGY

July, 2023

Declaration

I hereby declare that

i) the thesis comprises of my original work towards the degree of Master of
Technology in Information and Communication Technology at Dhirubhai
Ambani Institute of Information and Communication Technology and has
not been submitted elsewhere for a degree,

ii) due acknowledgment has been made in the text to all the reference material
used.

KHYATI NAGRANI

Certificate

This is to certify that the thesis work entitled "Neural Network Architectures for
Integrated Circuits" has been carried out by KHYATI RAJESH NAGRANI for the
degree of Master of Technology in Information and Communication Technology
at Dhirubhai Ambani Institute of Information and Communication Technology under
my supervision.

PROF. TAPAS KUMAR MAITI
Thesis Supervisor

i

Acknowledgments

I would like to express my sincere gratitude and appreciation to the following
individuals who have played a crucial role in the completion of my work:

First and foremost, I would like to extend my heartfelt thanks to Prof. Tapas
Kumar Maiti, my thesis supervisor. His unwavering support, guidance, and ex-
pertise have been instrumental in shaping this research. His insightful feedback
and constructive criticism have helped me navigate through various challenges,
enabling me to reach new heights in my academic journey. I would also like to
extend my deepest appreciation to Prof. Ayan Palchaudhuri, currently faculty of
IIT-Bhubaneswar, for his valuable inputs and insightful discussions throughout
this research endeavor. His vast knowledge and expertise in the field have been
truly inspiring, pushing me to explore new avenues and think critically.

I would also like to extend my thanks to my dear friends and PhD scholar,
Gulafsha Bhatti. Their friendship, and intellectual discussions have been a source
of inspiration and motivation for me.

I am deeply grateful to my parents, Saroj Nagrani and Rajesh Nagrani for their
unwavering love, encouragement, and constant belief in my abilities. Their end-
less support, understanding, and sacrifices have been the foundation of my suc-
cess, and I am forever indebted to you for the opportunities you have provided
me. Furthermore, I would like to express my gratitude to my brother, Hriday
Nagrani. His encouragement, motivation, and belief in me have been invaluable
throughout this journey.

Lastly, I would like to acknowledge the support and encouragement I received
from all my friends and well-wishers who have cheered me on during this aca-
demic pursuit. Their friendship, understanding, and motivation have made this
journey all the more fulfilling.

To all those mentioned above, as well as to anyone else who has contributed to
my work in any way, I offer my heartfelt appreciation. Their guidance, support,
and belief in me have been the driving force behind the successful completion of
my thesis, and I am truly grateful for their presence in my life.

ii

Contents

Abstract v

List of Principal Symbols and Acronyms v

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Neuron and Neural Network . 3
1.2 Artificial Neuron and Artificial Neural Network 4
1.3 Applications of Artificial Neural Network 6
1.4 Chip Design for NNs . 6
1.5 NNs as Co-Processor . 7
1.6 Aims and Objectives . 8

2 Review of Neural Network Architectures 10
2.1 Review of Adder Design . 10

2.1.1 Comparison of Adders on Basis of Area, Power, and Delay . 10
2.2 Review of Multiplier Design . 12

2.2.1 Comparative Analysis of Several Multipliers 12
2.3 Review of Activation Function Design 15

2.3.1 Activation Functions for Neural Networks 15
2.3.2 ReLU, Linear Saturated, and Other Activation Functions:

Comparisons . 16
2.3.3 Conclusion for Activation function design 17
2.3.4 Comparison of ReLU and Sigmoid 18

2.4 Review of Neural Networks Design 20
2.4.1 Artificial Neural Networks 20
2.4.2 Energy-Efficient VLSI Architectures 21
2.4.3 Memory Organization Techniques 21

iii

2.4.4 Algorithmic Innovations . 21
2.4.5 Impact on Real-World Applications 22
2.4.6 Conclusions for Neural Network Design 22

3 Implementation of Neural Network Architectures 23
3.1 Implementation of Adder . 23
3.2 Implementation of Multiplier . 24
3.3 Implementation of SISO NN Architecture 26
3.4 Implementation of MISO NN Architecture 27
3.5 Implementation of MIMO NN Architecture 29

4 Neural Networks Layout 31
4.1 Design Flow . 31
4.2 Design Tools . 32
4.3 Details of Tools Used . 33
4.4 OpenLANE . 42

4.4.1 OpenLANE Configuration Variables 43
4.4.2 Required Configuration Variables 43
4.4.3 Optional Configuration Variables 43
4.4.4 Details of Configuration Variables 44

4.5 Tape-Out Details . 45
4.6 Tape-Out . 46
4.7 Comparison with Published Work 50

5 Conclusion 51

References 53

iv

Abstract

This thesis presents the architecture design and implementation of neural net-
works (NNs) for integrated circuit design. The architecture consists of adders,
multipliers, and rectified linear unit (ReLU) blocks. Three architectures, namely,
Single-In Single-Out (SISO), Multiple-In Single-Out (MISO), and Multiple-In Multiple-
Out (MIMO) are developed. In neural networks, weight values are necessary
and they are supplied from a memory source. The weight values were prepared
by training the NNs model on software. Finally, the SISO, MISO, and MIMO
neural-networks were taped out. These architectures can be used for intelligent
co-processor development.

v

List of Tables

2.1 Performance analysis of various Adders[17] 12

4.1 Optional configuration variables . 44
4.2 Tape-Out details . 45
4.3 Comparison with exisiting works . 50

vi

List of Figures

1.1 A biological neuron [7]. 3
1.2 A biological neural network (NN) [8]. 4
1.3 Architecture of three-layer ANN. 5
1.4 Schematically illustrates the use of a NNs processor as a co-processor.

. 7

2.1 Depicts Sigmoid function and it’s derivative [29]. 19

3.1 Depicted the architecture of a carry increment adder (CIA). 24
3.2 Architecture of Multiplier. 25
3.3 SISO architecture. 26
3.4 Depicted the simulated waveform obtained using SISO architec-

ture. 27
3.5 Architecture of MISO. 28
3.6 Simulated waveform obtained using MISO architecture. 28
3.7 Depicted the developed MIMO Architecture. 29
3.8 Simulated responses of MIMO architecture. 30

4.1 Tools used for implementation. 33
4.2 Workflow of yosys. 35
4.3 Tape-out of SISO. 47
4.4 Tape-out of MISO. 48
4.5 Tape-out of MIMO. 49

vii

CHAPTER 1

Introduction

Neural networks (NNs) were implemented using both the software and hardware
[1], [2]. However, the hardware level implementation of neural network (NN) im-
proves the speed, efficiency, real-time processing, power efficiency, and scalability
in comparison to the software level implementation. The improvement details are
discussed below:

Speed and Efficiency: In comparison to software solutions, NN hardware achieved
considerable speed and efficiency benefits [1], [2], [3]. To speed up neural network
computations, specialised hardware can be proposed, such as application-specific
integrated circuits (ASICs) [3]. Faster inference and training times are achieved by
using specialised hardware like field-programmable gate arrays (FPGAs), graph-
ics processing unit (GPU) that take advantage of parallelism and optimise the
execution of matrix operations. It may also result in less power usage, increasing
its energy efficiency.

Real-time processing: Low-latency (Latency refers to the delay or the time it
takes for a system to respond to a given input or stimulus. It is the time interval
between initiating an action or request and receiving the corresponding response
or output) processing is necessary for several applications, including real-time
decision-making systems, robots, and autonomous vehicles. NN hardware solu-
tions offer the speed and responsiveness required to satisfy real-time needs [4].
The system may analyse data and produce predictions in real-time without de-
pending on the constraints of software-based systems by outsourcing the com-
puting effort to specialised hardware.

Power Efficiency: Neural network calculations are computationally demand-
ing, especially for complicated or large-scale problems. General-purpose proces-
sors (CPUs) or graphics processing units (GPUs) are frequently used in software-
based systems, which may require more power to run the calculations [5]. In
contrast, neural network operations may be extensively optimised for hardware
implementations, which reduces power use. Hardware neural network imple-

1

mentations are ideally suited for use in embedded systems and edge computing
settings (Proximity-based data processing, decentralizing from remote clouds.),
according to research [6]. In these cases, neural networks are used on hardware
with constrained storage and processing power. By implementing neural net-
works on specialized hardware, the primary processor offloads computational
burdens, creating a separation of tasks and freeing up resources for other func-
tions [6].

Scalability: Neural network hardware implementations can be designed to ef-
fectively scale with the increasing demands of neural network processing [2]. Im-
plementation of NN hardware can be improved and optimized to handle larger
models and datasets as the requirements for neural network computations grow.
Scalability can be provided via hardware designs like systolic arrays or specialised
deep learning acceleratorsand support for parallel processing, enabling faster train-
ing and inference on increasingly complex neural networks. Scalability, in the
context of neural network hardware designs, refers to their ability to effectively
handle larger and more intricate models and datasets as the demand for neu-
ral network processing grows. It encompasses the capacity to manage increased
computational loads and accommodate expanding requirements.

One hardware design that supports scalability is the systolic array, commonly
utilized for accelerating matrix operations in neural networks. A systolic array
comprises a synchronized array of processing elements interconnected in a reg-
ular pattern, enabling efficient flow of data through the array. Notably, systolic
arrays excel in parallel processing, making them well-suited for performing ma-
trix multiplications, convolutions, and other vital operations in neural networks.

Systolic arrays offer scalability through the parallel execution of operations
across multiple processing elements. As neural networks become larger and more
complex, systolic arrays can be scaled up by expanding the array’s dimensions or
increasing the number of processing elements. This allows for distributed com-
putation and optimal resource utilization, enabling faster training and inference
on larger neural networks.

2

1.1 Neuron and Neural Network

The fundamental units of an animal’s nervous system, including the human ner-
vous system, are called biological neurons. Their job is to process and send in-
formation via electrical and chemical signals. They are specialised cells which
consist of a cell body, dendrites, and an axon make up each neuron. While the
axon sends electrical signals from the cell body to other neurons or muscles, the
dendrites receive alerts from other neurons or sensory receptors. Figure 1.1 shows
diagram of biological neuron [7]. A neuron produces an electrical impulse known
as an action potential when it receives a signal from another neuron or a sensory
receptor. The neurotransmitters, molecules that send signals to subsequent neu-
rons in a chain are released due to the action potential moving down the axon.
Movement, sensation, perception, learning, and memory are just a few of the nu-
merous brain activities that depend on neurotransmitter-mediated communica-
tion between neurons. Neuronal communication dysfunction has been linked to
a variety of neurological and psychiatric disorders, such as Alzheimer’s disease,
Parkinson’s disease, and depression.

Figure 1.1: A biological neuron [7].

A biological neural network is called the intricate web of neurons and synapses
that makes up the nervous system of living things. Specialised cells called neurons
are in charge of sending electrical and chemical signals throughout the body to
convey information. The processing and integration of sensory data, the creation
of motor orders, and the coordination of body activities are all made possible by
the complex networks of neurons that make up the brain. Neuroplasticity is the
ability of these networks to adapt and change throughout time in response to
experiences and stimuli.

3

Figure 1.2: A biological neural network (NN) [8].

The neural network’s ability to function depends heavily on the synapses or
connections between neurons. The strength and effectiveness of these connec-
tions, which allow for the passage of information between neurons, can be altered
by various variables, including experience and learning [9]. Figure 1.2 shows pic-
ture of a biological neural network. [8] The biological neural network, which un-
derlies the operation of the nervous system as well as the behaviour and cognition
of living animals is an immensely intricate and dynamic system.

1.2 Artificial Neuron and Artificial Neural Network

The basic components of an artificial neuron includes the following:
- An activation function is defined as an eqation that calculates the value of

output of the neuron on the basis of the weighted inputs.
- Inputs are numerical values that reflect the data to be processed.
- Weights are numerical values that indicate the strength of the link between

the inputs and the neuron.
The appropriate weights are multiplied with the inputs, and the resulting val-

ues are summed. The total is then passed through the activation function, which
generates the output of the neuron. This output can either be used as the final
output of the neural network or shared with other neurons for communication
purposes [10]. The activation function has various forms, such as step, sigmoid,
ReLU (Rectified Linear Unit), and others. The choice of activation function can
significantly affect the performance and behavior of the neural network.

Artificial neural networks are created by joining artificial neurons together.
These networks can then be trained using a variety of algorithms to identify pat-

4

terns in the input data and generate predictions based on those patterns [11]. A
machine learning technique called an artificial neural network (ANN) is modelled
on the basis of the biological neural networks that make up the human brain [12].
A large number of neurons, arranged in layers, make up an ANN. Each neuron
takes in one or multiple input signals, computes, and then sends its output to
other neuron in the layer below as mentioned in Figure 1.3.

Figure 1.3: Architecture of three-layer ANN.

An ANN typically has three layered structure of neurons which are an input
layer, a few to many hidden layers, and lastly the output layer [13]. Raw data is
delivered to the input layer, which is processed by the hidden layers. The out-
put layer creates the network’s ultimate output, which may be a classification, a
prediction, or another type of judgement.

The signal strength of the interconnection between two neurons in an ANN de-
fines how much influence one neuron has on the other since the relations between
the neurons in an ANN are often weighted [14]. The backpropagation technique
uses weights that are modified during training to reduce the discrepancy between
the NN’s output and the expected output. Predictive analytics, natural language
processing, image and audio recognition, and other fields all make use of ANNs.

5

1.3 Applications of Artificial Neural Network

Neural networks (NN) find applications across diverse fields such as pattern recog-
nition, natural language processing, medical applications, etc., offering various
uses as powerful tools. Some notable applications include:

1. Pattern Recognition: NNs excel in recognizing patterns in voice, images,
and other media. They are extensively employed in facial recognition technology,
enabling the identification of faces in images or videos.

2. Natural Language Processing (NLP): NNs play a crucial role in NLP appli-
cations such as speech recognition, text-to-speech conversion, language transla-
tion, and sentiment analysis [15]. They enable the understanding and interpreta-
tion of human language.

3. Medical Applications: NNs are utilized in predictive modeling to discover
patterns in data and generate predictions based on those patterns. For instance,
they can leverage a patient’s medical history and symptoms to forecast stock
prices or consumer behavior.

Overall, NNs possess versatile applications and serve as valuable tools across
various industries. Their ability to learn from data and identify trends makes
them highly beneficial in a wide range of domains.

1.4 Chip Design for NNs

The process of generating ICs that are optimised for neural network (NNs) pro-
cessing activities are known as NN chip design. By carrying out numerous com-
putations in parallel, these chips are made to speed up the analysis of neural net-
work algorithms.

The development of NNs chips is a complex process that involves both hard-
ware and software elements. The physical layout of the chip involves placing
transistors, logic gates, and memory cells. On the other hand, developing the al-
gorithms used to program the device falls under the responsibility of the software
components.

Field-programmable gate arrays (FPGAs), which enable testing and architec-
ture modifications before manufacturing, are frequently used to design NN chips.
Once the chip’s design is finalized, it undergoes a manufacturing process known
as photolithography, which involves etching the chip’s intricate pattern onto a
silicon wafer.

Due to the growing need for quicker and more effective neural network pro-

6

cessing, the design of NN chips is a crucial field of research. These chips have
uses in many different industries, including driverless vehicles, natural language
processing, and picture and audio recognition.

1.5 NNs as Co-Processor

In some applications, NNs can be a co-processor (see Figure 1.4) to offload com-
putation from the primary processor. This is especially helpful in applications
where a real-time reaction is essential or where the central processor’s processing
capability is constrained.

Applications for processing images and videos are one instance of using NNs
as a coprocessor. To increase the speed of the processing of this data, NNs can be
trained to recognise patterns in photos and videos. This can help picture recog-
nition, and other computer vision tasks run more quickly and accurately. Appli-
cations for natural language processing (NLP) are yet another illustration. The
processing of vast amounts of text data, such as language translation, sentiment
analysis, and text classification, can be sped up using NNs. This can aid in en-
hancing the efficiency of NLP tasks by increasing their speed and accuracy.

Figure 1.4: Schematically illustrates the use of a NNs processor as a co-processor.

In conclusion, by offloading work off the primary processor, the use of NNs
as coprocessors can aid in enhancing the performance of some applications. This

7

can be especially helpful in applications that demand a quick reaction or a lot of
processing power.

1.6 Aims and Objectives

In recent years, the field of artificial intelligence has witnessed remarkable ad-
vancements, particularly in the realm of NNs [16]. Neural networks, with their
ability to learn and adapt, have revolutionized numerous domains, from com-
puter vision to natural language processing [3] . However, their potential is often
limited by the constraints of traditional processing architectures. By harnessing
the power of neural networks as co-processors, we can unlock unprecedented
opportunities for accelerated computations, enhanced pattern recognition, and
optimized system design.

The integration of neural networks as co-processors in computing systems
presents a paradigm shift in leveraging AI capabilities. By investigating the spe-
cific benefits, we aim to provide a comprehensive understanding of why neural
networks as co-processors are essential for accelerating computations and advanc-
ing system design.

Enhanced Computational Performance: The incorporation of neural networks
as co-processors enables the offloading of computationally intensive tasks from
the primary processor, thereby reducing the overall processing time. Neural net-
works excel at parallel processing, allowing for the efficient execution of complex
algorithms, such as image recognition, speech synthesis, and natural language
understanding. By distributing computational workloads across multiple proces-
sors, system performance is significantly enhanced, leading to faster results and
improved user experience.

Accelerated Pattern Recognition: Neural networks possess an innate ability
to recognize complex patterns and extract meaningful information from large
datasets. By leveraging neural networks as co-processors, we can leverage their
parallel processing capabilities to expedite pattern recognition tasks. Whether it is
identifying objects in images, analyzing financial data, or detecting anomalies in
sensor readings, neural networks can perform these tasks with remarkable speed
and accuracy. The integration of neural networks as co-processors offers unpar-
alleled potential for real-time decision-making in applications that require rapid
and precise pattern recognition.

Optimal System Design: Designing hardware architectures solely based on
traditional processing units can be suboptimal for AI-centric applications. Neu-

8

ral networks have unique architectural requirements and specialized instructions
that are distinct from conventional processors. By incorporating neural networks
as co-processors, we can design specialized hardware that is tailored to the spe-
cific needs of neural network computations. This leads to improved energy effi-
ciency, reduced memory bandwidth requirements, and better utilization of com-
putational resources. Moreover, the flexibility provided by co-processors allows
for seamless integration of evolving neural network models, ensuring compatibil-
ity with future advancements in AI technology.

In summary, the integration of neural networks as co-processors brings forth
a host of advantages that revolutionize computational performance and system
design. From enhanced computational speed to accelerated pattern recognition
and optimized system architectures, neural networks empower us to overcome
the limitations of traditional processing units. By embracing neural networks as
co-processors, we unlock a new era of AI-driven applications with improved ef-
ficiency, accuracy, and the potential for groundbreaking innovations. Chapter 2
presents a literature survey on ML architecture, examining the various modules
employed within these architectures. Chapter 3 focuses on the implementation of
the surveyed ML architecture. We describe the ASIC design flow in Chapter 4.
Thesis work is summarized in Chapter 5.

9

CHAPTER 2

Review of Neural Network Architectures

Over the past few years, the field of VLSI architecture for neural networks has
witnessed significant advancements, fueled by the increasing demand for efficient
and powerful hardware implementations of artificial intelligence algorithms. As
neural networks become a cornerstone of numerous applications, ranging from
image recognition to natural language processing, researchers have focused their
efforts on developing novel architectures to address the challenges of processing
large-scale neural networks with high computational demands.

This chapter presents a comprehensive literature review that explores various
aspects of VLSI architecture for neural networks, including activation functions
and modules related to microarchitecture. Through an extensive survey of re-
search papers, we delve into the state-of-the-art techniques and methodologies
employed by researchers to enhance the efficiency and performance of neural net-
work hardware.

2.1 Review of Adder Design

Numerous VLSI architectures have been proposed over the years to improve the
area efficiency of adders, considering their essential role in modern digital sys-
tems. This section aims to explore and compare the area characteristics of various
adder architectures, shedding light on their strengths and limitations. Following
table shows that CIA is better choice the others

2.1.1 Comparison of Adders on Basis of Area, Power, and Delay

Standard cells and FPGAs (Field Programmable Gate Arrays) are examples of
cell-based design methodologies. These techniques, simultaneously with flexi-
ble hardware synthesis, are vital for high productivity in ASIC (Application Spe-
cific Integrated Circuit) design. With O(n) area and O(n) latency, the RCA (Ripple

10

Carry Adder) is the simplest but slowest adder, where n is the operand size in
bits.
CSA (Carry Select Adder) has an O(log n) latency and an O(n) area. In an n-bit
adder, n/2 multiplexers are chosen using a carry signal.

The document (particularly for this subsection) studied outlines the adder
topology design. The following adder structures are employed in that work: CIA
(Carry Increment Adder), CSkA (Carry Skip Adder), CBA (Carry Bypass Adder),
and CSA are all examples of ripple adders [17]. One drawback of RCA adder
is that its latency increases proportionally with the length of the numbers being
added, which limits its efficiency when handling large bit numbers [18].

The performance of the RCA is constrained as the number of bits, increases
since the ripple carry adder’s latency, is directly proportional to number of bits.
In order to establish an impartial testing environment, the simulations have been
conducted using a comprehensive input signal pattern that covers every proba-
ble transition for all the adders. Its frequencies span from 10 to 500MHz, and its
input and output capacitance are each set to 10pf. Adder topologies are assessed
based on their ability to withstand challenges related to area, latency, and power
consumption. According to the power distribution graph, the carry save adder
experience the most power dissipation. CIA and RCA have the lowest power dis-
sipation. CIA, and CSA both have the same minimum latency [19]. In this work,
thorough investigations of adder topologies with 120 nm CMOS technology have
been done. Area, latency, and power dissipation were used for the comparison.
The transistor-level design has taken parasitic layout effects into account. The in-
vestigations include performance analysis, simulation results, and comparisons.
CLA and CIA, which are apt for high-performance circuits, provide the optimum
balance between area, delay, and power dissipation, according to the findings of
the analysis.

Conclusion for adder design

The RCA, CSkA, and CBA with the fewest gates, and the greatest delay are the
most basic adder topologies appropriate for low-power applications [20]. From
the table given below it can concluded that, Carry Increment Adder achieves
better performance in terms of area and delay compared to that of other adder
topologies [17] .

After a thorough research, it has been determined that the CIA demonstrates
excellent performance in terms of area efficiency. Consequently, the CIA has been
selected as the preferred choice for this particular work.

11

Design Area(LUTs) Area(Slices) Delay(ns)
1 Ripple Carry Adder 8 5 2.191
2 Carry Skip Adder 8 6 2.267
3 Carry Increment Adder 8 5 1.907
4 Carry Look Ahead Adder 10 5 2.266
5 Carry Save Adder 13 9 1.433
6 Carry Select Adder 8 5 2.588
7 Carry Bypass Adder 12 6 3.160

Table 2.1: Performance analysis of various Adders[17] .

2.2 Review of Multiplier Design

Subsequent subsection describes the extensive research conducted on multiplier
architecture. These findings are summarized and analyzed in section below.

2.2.1 Comparative Analysis of Several Multipliers

First document discusses the development of a generic HDL code for a fast Baugh
Wooley multiplier. The conventional Baugh Wooley multiplier architecture is
modified by replacing the ripple carry adder in the final stage with a Linear Carry
Select Adder. The post-synthesis results of the modified architecture are com-
pared with the conventional Baugh Wooley architecture and the default multiplier
architecture generated by a synthesis tool. The comparison is based on various
characteristic parameters such as propagation delay, area, and power consump-
tion. The results demonstrate that the modified Baugh Wooley architecture is
faster than both the conventional architecture and the default synthesis-generated
architecture, particularly for larger operand sizes. This improvement in speed is
significant [21] . The paper provides a detailed explanation of the Baugh Wooley
multiplication algorithm and outlines the steps to create a generic HDL code for
a fast NxN Baugh Wooley multiplier. This approach allows designers to easily
generate Baugh Wooley multipliers of any operand size by simply modifying the
operand size parameter, thereby reducing design efforts. In conclusion, the modi-
fied Baugh Wooley architecture offers superior performance in terms of both delay
and power-delay product compared to the conventional architecture and the de-
fault synthesis-generated architecture. It presents a valuable solution for digital
ASTC designers seeking efficient and fast Baugh Wooley multipliers of different
sizes [21] .

The Modified Baugh-Wooley (MBW) multiplier approach is widely employed
in digital signal processing and hardware design to achieve high-speed multipli-

12

cation tasks. It offers several advantages over conventional multiplication meth-
ods such as the array multiplier. Research in this field has identified multiple
benefits associated with the MBW.
The MBW multiplier approach exhibits lower complexity in implementation com-
pared to alternative methods. It achieves this by reducing the number of partial
product terms and overall complexity in the multiplication process. This is ac-
complished by breaking down incomplete products into smaller sections and em-
ploying advanced algorithms to generate the final result. The reduction in com-
plexity has several implications, including decreased hardware requirements and
reduced power consumption [42].

To elaborate on the previous statement, the reduction in complexity in the
MBW multiplier leads to a decrease in hardware requirements. In traditional
multiplication methods like the array multiplier, the number of partial products
grows exponentially with the bit size of the operands, resulting in a larger hard-
ware footprint. However, the MBW multiplier breaks down these partial prod-
ucts into smaller chunks, reducing the number of required components. This not
only saves physical space but also leads to a more efficient utilization of hard-
ware resources. Furthermore, the decreased complexity in the MBW multiplier
results in reduced power consumption. The simplified circuitry and reduced
number of partial products contribute to lower power requirements during the
multiplication process. This is particularly beneficial in power-constrained appli-
cations, such as mobile devices or embedded systems, where minimizing power
consumption is crucial to enhance battery life and overall energy efficiency.

The MBW multiplier is built to perform multiplication operations at fast speeds.
It takes advantage of effective parallel processing strategies, including carry- looka-
head and carry-save adders, to speed up the calculation of the result. The MBW
multiplier may lower the multiplication delay and enhance system performance
as a whole. Effective use of hardware resources: By lowering the required number
of logic gates for the multiplication operation, the MBW multiplier effectively uses
hardware resources. In order to optimise the design, symmetry and symmetry-
breaking techniques are used. The MBW multiplier provides improved resource
allocation and may be more cost-effective in chip space and power consumption
by effectively using hardware.

Due to the MBW multiplier’s great scalability, expanding it to support multi-
pliers with parallel processing or larger word sizes is simple. It is apt for a wide
range of applications, including image processing,digital signal processing, and
communication systems, due to its scalability.

13

The Baugh-Wooley multiplier, Modified Baugh-Wooley (MBW) multiplier, and
Wallace multiplier are compared in terms of area, depending on the implementa-
tion details and the technology used. Because the MBW multiplier is an advance
over the Baugh-Wooley method but does not significantly increase hardware com-
plexity, the Baugh-Wooley multiplier and the MBW multiplier often have similar
area requirements [22]. Both algorithms follow a similar methodology and can
achieve similar area efficiency. In contrast, the Wallace multiplier often needs
more space than the Baugh-Wooley and MBW multipliers. The Wallace multi-
plier is renowned for its high-speed multiplication, but it does it by employing a
tree-like structure with many partial products and complicated hardware. Less
complicated hardware: The Baugh Wooley multiplier can be modified to lower
the hardware requirements. Lower power consumption may also be achieved
through simplified technology and increased effectiveness. This is crucial for
battery-operated and mobile devices, where power efficiency is a major issue. The
MBW multiplier may be improved such that it is more readily scalable and can
multiply values with wider bit widths effectively. Applications that need high-
precision computations or work with big data sets might benefit from this flexi-
bility. It is possible to create a modified Baugh Wooley multiplier that works with
a variety of number representations, such as signed numbers and floating-point
formats. The multiplier may be utilised in a larger variety of applications thanks
to its adaptability.

When considering area efficiency as the primary concern in multiplier design,
the Modified Baugh Wooley (MBW) multiplier typically outperforms the Wallace
multiplier. The area efficiency of a multiplier refers to how effectively it utilizes
hardware resources to perform the multiplication operation.

The MBW multiplier is designed based on the concept of Modified Booth En-
coding (MBE). It leverages the properties of MBE to reduce the number of partial
product terms generated during multiplication. This reduction in partial prod-
uct terms leads to a decrease in the overall hardware requirements, resulting in
improved area efficiency.

In terms of area efficiency, the MBW multiplier offers advantages over the Wal-
lace multiplier due to its ability to reduce the number of partial product terms
and minimize the associated hardware requirements. This reduction in hardware
translates to a more compact and efficient design. Hence, the MBW multiplier
is often more area-efficient when compared to the Wallace multiplier if area effi-
ciency is the primary consideration.

14

2.3 Review of Activation Function Design

Activation functions play a crucial role in shaping the behavior and expressive
power of neural networks. In this section, we explore a wide range of papers that
investigate different activation functions and their impact on VLSI architectures.
From traditional functions such as sigmoid and tanh to more recent advances like
rectified linear units (ReLU). We analyze their properties, computational complex-
ity, and suitability for hardware implementations [23] .

2.3.1 Activation Functions for Neural Networks

With the emergence of various deep learning (DL) architectures, NNs have proven
to be effective in addressing complex real-world challenges across different sec-
tors. Activation functions (AFs) play a crucial role in these NNs architectures, fa-
cilitating computations between hidden layers and output layers to achieve state-
of-the-art results. This work aims to provide insights into the current usage of
activation functions in deep learning applications and highlights recent advance-
ments in this field. The unique contribution of the work lies in its comprehensive
compilation of the majority of activation functions utilized in NNs, as well as
its analysis of their current utilization trends in real-world deep learning imple-
mentations compared to cutting-edge research findings. This compilation aims to
facilitate the selection of the most suitable activation function for specific applica-
tions that are ready for deployment. It stands out as the first article to compare
the practical trends in activation function usage with the findings from existing
literature in deep learning research. This topicality is significant considering that
most research publications on activation functions primarily focus on similar ef-
forts and outcomes.

This section provides an overview of the activation functions currently em-
ployed in deep learning applications and highlights recent trends in their utiliza-
tion in real-world deep learning deployments, contrasting them with cutting-edge
research findings. This study identified several important activation functions
used in deep learning applications, including variations of the original ReLU (Rec-
tified Linear Unit). Nwankpa and colleagues also provided a concise overview of
deep learning and activation mechanisms [24]. Activation functions play a cru-
cial role in neural networks by computing the weighted sum of inputs and biases
to determine if a neuron should fire. The Softmax function is commonly used in
multi-class models to provide probabilities for each class, with the highest proba-
bility assigned to the target class. To mitigate overfitting in neural networks, the

15

rectified linear unit (ReLU) activation function has been chosen.
The researchers affirm that their findings align with previous research in the

field, emphasizing that activation functions regulate neural network outputs and
can be linear or non-linear, often referred to as transfer functions. They sug-
gest that future studies should explore these cutting-edge functions on successful
architectures using standardized datasets to evaluate potential performance im-
provements [25]. Non-linear modules in deep learning methods transform initial
inputs into more abstract representations, often involving complex learned func-
tions. This study offers a comprehensive overview of activation functions used in
deep learning and highlights current trends based on unpublished cutting-edge
research findings.

Activation functions have the ability to enhance pattern learning in data, en-
abling automated feature detection. This justifies their utilization in hidden lay-
ers of neural networks and their applicability across different domains. Looking
ahead, compounded activation functions hold promise for future research in this
area, as activation functions have evolved over time.

2.3.2 ReLU, Linear Saturated, and Other Activation Functions:

Comparisons

Stursa et.al., compared two types of linear activation functions used in feedfor-
ward neural networks for approximating nonlinear systems: symmetric linear
saturated function and rectifier linear unit (ReLU) function. The authors aim to
evaluate their performance, convergence speed, and computational demands [26].
The experiments are conducted using one hidden layer with varying numbers
of neurons, and strict criteria are applied, including the use of the Levenberg-
Marquardt algorithm for training and the Nguyen-Widrow algorithm for initial-
ization. Three benchmark nonlinear systems are selected for approximation, and
training data is generated by applying a colored input signal, and computing the
corresponding output. The comparison is based on the convergence speed for a
fixed error function value and the performance over a constant number of epochs.
The results show that both the activation functions exhibit similar performance
and convergence speed, with only small differences observed. Although the sym-
metric linear saturated activation function yields a lower median error function
value across different numbers of neurons, the ReLU function proves to be capa-
ble of effectively modeling nonlinear systems as well. They also discussed the
complexity of training neural networks with linear activation functions [26]. It
concludes that the ReLU function, due to its comparable performance and po-

16

tential computational complexity decrease, can be a suitable choice for nonlinear
system modeling in process control and automation applications.

Another study compared the effects of different activation functions (AFs) in
Artificial Neural Networks (ANNs) on regression and classification tasks using
various datasets. A total of 11 AFs, including 10 commonly used in the literature
and a newly proposed Square function, were evaluated. Three different ANN ar-
chitectures were employed for each dataset. The study examined the success rates
in test data and the duration of training for each AF [27]. The results showed that
the choice of AF significantly impacted the performance of ANNs across different
datasets and architectures. ReLU emerged as the most successful AF for general
purposes. In image datasets, the Square function performed better than other
AFs when combined with ReLU in architectures involving convolutional layers.
Furthermore, the study highlighted the importance of batch normalization before
applying AFs. By keeping the inputs to AFs within certain bounds, batch nor-
malization eliminated the limitations of both limited and unlimited AFs. It was
found that batch normalization positively affected the results, especially for un-
limited AFs.

Overall, the findings emphasize the significance of selecting appropriate AFs
in ANNs, as they can greatly influence regression and classification performance,
particularly in different types of datasets. ReLU is generally recommended as
a reliable choice, while the Square function shows promise for image datasets
when used alongside ReLU. The use of batch normalization is also beneficial for
improving results, particularly with unlimited AFs [27].

2.3.3 Conclusion for Activation function design

ReLU has the ability to create sparse activations, which means it can set certain
neuron outputs to zero, making the data representation more effective. ReLU
can also experience a condition known as dying ReLU, in which certain neurons
remain permanently inactive (outputting zero) due to this issue.

The sigmoid function is denoted by the formula f (x) = 1/(1 + e(−x)), where
x represents the function’s input. The input is mapped to the range [0, 1] via a
smooth, S-shaped curve. In binary classification situations, where the objective is
to forecast probabilities between 0 and 1, sigmoid activation is frequently utilised
in the output layer. The input is condensed to a narrow range, making it appro-
priate for modelling probabilities.

However, sigmoid experiences the Vanishing gradient problem, particularly in
deep networks, where the gradients can shrink to extremely tiny values and cause

17

training to converge slowly. When inputs are far from zero, sigmoid activations
can also result in the "gradient saturation" issue, which slows learning by bringing
gradients near to zero. In binary classification situations, where the objective is to
forecast probabilities between 0 and 1, sigmoid activation is frequently utilised
in the output layer. It reduces the input’s range, which makes it appropriate for
modelling probabilities.

2.3.4 Comparison of ReLU and Sigmoid

2.3.4.1 Advantages of ReLU over Sigmoid:

Although Rectified Linear Unit (ReLU) and Sigmoid are both frequently used acti-
vation functions in neural networks, they each offer unique qualities and benefits.
ReLU has the following benefits over sigmoid:

1. ReLU is a simpler function than the sigmoid function since it just requires
a threshold operation and no exponential computations, making it more efficient.
ReLU is more efficient to calculate thanks to its simplicity, especially when work-
ing with large-scale neural networks [24].

2. For inputs that are noticeably positive or negative, the gradient becomes ex-
tremely modest since sigmoid activation saturates at the function’s extreme ends.
The vanishing gradient problem, which results in sluggish convergence and chal-
lenges while training deep neural networks, might be brought on by this satura-
tion. ReLU, on the other hand, is linear for positive inputs and does not experience
saturation. The gradient can flow more freely as a result, hastening convergence.

3. The Rectified Linear Unit (ReLU) activation function exhibits sparsity, where
it selectively activates a subset of neurons while keeping others dormant. This
characteristic enables a more efficient representation of data within a neural net-
work. By reducing unnecessary calculations, sparse activation decreases the over-
all complexity of the network and helps mitigate overfitting by promoting gener-
alization.

4. Avoiding the exploding gradient problem: Because of the sigmoid func-
tion’s constrained range, it is possible for gradients to explode during backprop-
agation, leading to unpredictable results. Since ReLU lacks an upper constraint,
gradients can spread more readily without leading to instability.

5. ReLU has been claimed to be more physiologically realistic as an activation
function, more closely approximating the behaviour of actual neurons. Instead of
a sigmoid-shaped activation, the action potential of biological neurons is simply
a thresholding operation, akin to ReLU.

18

6. Due to its simplicity, computational effectiveness, and capacity to overcome
some of sigmoid activation’s drawbacks, ReLU is a popular option in many ap-
plications. But sigmoid activation still has benefits of its own, including offering
a probabilistic interpretation and being helpful for jobs where outputs must be
constrained between 0 and 1.

2.3.4.2 Vanishing Gradient Problem

When training deep neural networks with specific activation functions, such as
the sigmoid function, an issue known as the vanishing gradient problem may
arise. The definition of the sigmoid function, sometimes referred to as the logistic
function, is: f (x) = 1/(1 + exp(−x)) The sigmoid function’s derivative is tiny at
the function’s extreme regions, which leads to the vanishing gradient issue [28].
The sigmoid function’s derivative may be computed as follows: f ′(x) = f (x) ∗
(1 − f (x))

Figure 2.1: Depicts Sigmoid function and it’s derivative [29].

The sigmoid function approaches either 1 or 0, producing a tiny derivative,
as the input goes away from zero in either the positive or negative direction as
shown in Figure 2.1 [29]. The modest gradients that are back-propagated during
training are doubled at each layer, which might lead to the gradients decreasing
exponentially as they go backward through the network [30]. Hence, the early
layers of the network experience extremely small gradients, which significantly
decelerates convergence or even prevents it altogether.

Deep neural networks with sigmoid activation may find it challenging to learn
long-range relationships and recognise complicated patterns in the input due to
the vanishing gradient problem [31]. Activation functions that do not have the
vanishing gradient problem, such as rectified linear units (ReLU) or its derivatives
such as Leaky ReLU and Parametric ReLU, are preferred in practise as a result of
this restriction. These alternate activation functions enable for more efficient gra-

19

dient propagation during back-propagation since they feature non-zero gradients
for positive inputs. Consequently, sparse activation functions help address the
challenge of vanishing gradients and enable the training of deeper neural net-
works.

2.4 Review of Neural Networks Design

Recent years have seen substantial advancement in Very Large Scale Integration
(VLSI) architecture for Neural Networks (NNs). This section comprehensively
summarises current research on VLSI design for NNs, emphasising significant
advancements and difficulties encountered. The section discusses many facets of
hardware acceleration, energy efficiency, memory organisation, and algorithmic
improvements in VLSI design for NNs. Furthermore, it examines future research
possibilities and emphasises how these breakthroughs have affected practical ap-
plications. Numerous applications, including robotics and autonomous vehicles,
as well as natural language processing and image identification, have been trans-
formed by neural networks [32]. However, there is an increasing need for effective
hardware designs to expedite the execution of NNs as they become more compli-
cated and demanding in terms of computing needs [33]. Multiple components are
integrated on a single chip in VLSI design, which improves performance, energy
efficiency, and scalability.

2.4.1 Artificial Neural Networks

CNNs

Convolutional Neural Networks (CNNs) are commonly employed for image and
video processing tasks. Current research efforts have been dedicated to enhancing
CNN designs by incorporating techniques such as parallel processing, and weight
pruning and hardware architectures like systolic arrays that are used to imple-
ment certain algorithms efficiently [34]. These optimization approaches have led
to significant advancements in terms of accelerated computation and reduced
power consumption in CNN implementations.

RNNs

Recurrent Neural Networks (RNNs) are beneficial for sequential data processing
tasks such as speech recognition and language translation. Recent research has

20

prioritized the development of hardware acceleration techniques, such as fold-
ing, pipelining, and parallel processing, to enable real-time applications while
minimizing power consumption [35]. These advancements aim to enhance the
efficiency and performance of RNN-based systems in various language-related
tasks.

SNNs

Spiking Neural Networks (SNNs) are well-suited for tasks that involve event-
driven processing, as they closely emulate the behavior of biological neurons. To
enhance the processing capabilities and energy efficiency of SNNs, researchers
have introduced innovative VLSI architectures. These include spike-based learn-
ing mechanisms and event-driven hardware designs. These novel approaches aim
to optimize the functionality of SNNs, enabling more effective processing while
conserving energy resources.

2.4.2 Energy-Efficient VLSI Architectures

The battery life of mobile devices and the amount of power used by data cen-
tres are both directly impacted by energy efficiency, making it a crucial factor in
the design of VLSI for NNs [36]. In order to reduce energy consumption while
preserving acceptable accuracy levels, researchers have investigated strategies in-
cluding approximation computing, voltage scaling, clock gating, low-power dig-
ital circuits, and approximate computing.

2.4.3 Memory Organization Techniques

In NN calculations, memory access and data transfer are the main bottlenecks.
Researchers have suggested a variety of memory organisation strategies to over-
come this, including data reuse, sparsity exploitation, and hierarchical memory
architectures [37]. These methods seek to improve data storage efficiency, de-
crease memory access latency, and boost performance as a whole.

2.4.4 Algorithmic Innovations

Along with hardware improvements, algorithmic advancements have also had a
big impact on NN VLSI architecture [38]. To lessen the complexity of NN mod-
els without significantly sacrificing accuracy, researchers have investigated meth-

21

ods including quantization, pruning, and compression. These methods allow for
resource-constrained VLSI chips to be implemented effectively.

2.4.5 Impact on Real-World Applications

Numerous real-world applications have been significantly impacted by the devel-
opments in NN VLSI architecture. They have aided in the development of voice
assistants that can comprehend natural language, real-time object identification in
driverless cars [40], picture analysis for medical diagnosis, and many more fields
[39]. The breadth of ML applications has been broadened, and user experiences
have been improved thanks to the increased efficiency and performance of VLSI-
based NN implementations.

2.4.6 Conclusions for Neural Network Design

The deployment of NNs in a wide variety of applications is now possible because
of impressive breakthroughs in the field of VLSI design for neural networks. Re-
searchers have significantly improved the field through advances in memory or-
ganization, hardware acceleration methods, energy-efficient designs, and algo-
rithmic optimizations. The future of ML will continue to be shaped by more stud-
ies in this field, which will encourage the creation of hardware designs for neural
networks that are smarter, quicker, and more energy-efficient.

22

CHAPTER 3

Implementation of Neural Network Architec-
tures

In this chapter, we discuss the implementation of all the three architectures, in-
cluding aspects of micro-architecture, SISO, MISO and MIMO. Implementations
of adder and multiplier are also illustrated.

3.1 Implementation of Adder

Adders are the fundamental building blocks of complicated digital circuits. The
layout of this entire adder unit determines the circuit’s performance. One of
the key performance factors for many digital circuits is the circuit’s operating
speed, which ultimately depends on the basic adder unit’s delay. The delay of
the adder circuit has been the subject of extensive investigation. This research
study presents an improved version of the carry increment adder (CIA) aimed
at enhancing the circuit’s delay performance [41]. The enhancement is made by
replacing the ripple carry adder (RCA) used in the previous design of the CIA
with a carry look adder (CLA). For comparison analysis, simulation research is
conducted.

The speedier carry look ahead modules are suggested in this study as a sub-
stitute for the significantly slower ripple carry adder in a modified carry incre-
ment adder. Although we only implemented the design for two 8-bit binary ad-
ditions in this study, it might be expanded to a higher-order adder circuit. Fast-
evolving biomedical equipment, common wireless and mobile gadgets, and com-
pact, portable devices use high-performance VLSI systems more frequently. In-
numerable measures have been taken to decrease the ripple carry adder’s latency,
area, power usage, and other drawbacks. Architecture of carry increment adder
is shown in Figure 3.1.

23

Figure 3.1: Depicted the architecture of a carry increment adder (CIA).

3.2 Implementation of Multiplier

The Baugh-Wooley multiplier is a type of parallel multiplier used in digital cir-
cuits, specifically designed for signed binary numbers. It is known for its sim-
plicity and efficient implementation in hardware. The modified Baugh-Wooley
multiplier is a variation of the original algorithm that aims to improve its perfor-
mance and reduce the number of partial products generated during the multipli-
cation process. The modified Baugh-Wooley multiplier is particularly well-suited
for Very Large Scale Integration (VLSI) architecture, as it can be implemented
efficiently in hardware. Architecture of MBW is shown in Figure 3.2. Here’s a
brief explanation of the VLSI architecture implementation of the modified Baugh-
Wooley multiplier:

Input and Data Representation:The modified Baugh-Wooley multiplier takes
two signed binary numbers A and B as inputs. These numbers are typically rep-
resented using two’s complement notation. The size of the inputs will determine
the number of bits in each input and the resulting product. For instance, if the
inputs are n-bit numbers, the product will be a 2n-bit number.

Partitioning the Inputs: The inputs A and B are partitioned into three segments
each: positive, negative, and zero segments. For each input, these segments di-

24

Figure 3.2: Architecture of Multiplier.

vide the bits based on the sign and value of the bit (positive, negative, or zero).
Generation of Partial Products: In the traditional Baugh-Wooley algorithm, the
number of partial products generated is 2n 2 (where n is the number of bits in
each input). The modified Baugh-Wooley algorithm aims to reduce this number
for better efficiency. In the modified Baugh-Wooley multiplier, the partial prod-
ucts are generated only for the non-zero segments of both inputs. This reduces
the number of partial products significantly compared to the traditional method.
Partial Product Reduction: After generating the partial products, the next step is
to sum them up to obtain the final product. The partial products are grouped and
added together in an efficient manner to produce the final result.The reduction
process involves techniques such as carry-save addition, carry-propagate addi-
tion, or Wallace tree-based adders to optimize the addition process and minimize
the critical path delay. Overflow Handling:Care must be taken to handle overflow

25

and ensure the correct representation of the product, especially in cases where the
product requires more bits than the original input size. Output:The output of
the modified Baugh-Wooley multiplier is the product of the two input numbers,
represented in signed binary format.

3.3 Implementation of SISO NN Architecture

The SISO (Single-Input Single-Output) neural network architecture is designed to
take a single-input value and produce a single-output value. Figure 3.3 shows the
architecture of a SISO NN. The input is fed into a multiplier, then multiplied by
weight value which is predefined in memory, and then the resulting output from
the multiplier is then passed to an adder. In the adder, a bias value b is added to
the output of the multiplier. The resulting value from the adder is then forwarded
to the output through a transfer function.

Figure 3.3: SISO architecture.

For details, let’s consider an input value, denoted as x, which is passed through
a multiplier to be multiplied by a weight value, w. The resulting value from the
multiplier is x ∗ w. Next, this value is fed into an adder where a bias, represented

26

as b, is added to it. The output of the adder can be expressed as ((x ∗ w) + b).
Subsequently, the resulting value is passed through a transfer function, and if it
meets a certain threshold condition, it is forwarded to the output. In summary,
the output can be described as ((x ∗ w) + b). Simulated waveform corresponding
to above mentioned SISO architecture is depicted in Figure 3.4. This architecture
is particularly useful when sequential processing of data is needed for 1-D signal
processing such as gesture recognition, speech recognition, etc.

Figure 3.4: Depicted the simulated waveform obtained using SISO architecture.

3.4 Implementation of MISO NN Architecture

In this section, the implementation of a multiple-input, single-output (MISO) neu-
ral network design at the RTL level is demonstrated. The design takes into ac-
count the activation function, f to determine the signal that will advance. Both
serial and parallel architectures can be utilized to construct the MISO architec-
ture. In case of serial architecture, which is comparable to SISO architecture in
1-D data processing, more time is required to process data. However, when pro-
cessing times are short, a parallel architecture is typically employed, allowing for
the simultaneous processing of multiple inputs. The implementation of weights’
memory is realized in the form of a Look-Up Table (LUT). The design is imple-
mented at the RTL level using the Verilog hardware description language. Parallel
Architecture of MISO is shown in Figure 3.5. Here x, w, and b represent the input
vector, weight matrix, and bias vector, respectively. Subscript value represents
input/output number.

27

Figure 3.5: Architecture of MISO.

For more details, let’s consider the input values x1, x2, and x3 which are fed
to multiplier to get multiplied with the weight values say w1, w2, and w3, respec-
tively. Then the outputs of multiplier are (xi ∗ wi), i ranging 1 to n. It goes to
adder where we add a bias b to it so outputs of adder are (xi ∗ wi) + b. It is then
fed to activation function and if it fulfils the threshold condition it moves ahead.
Now the highest value which if greater than zero is sent to the output. So output
is (xj ∗ wj) + b. as depicted with simulated waveform in Figure 3.6.

Figure 3.6: Simulated waveform obtained using MISO architecture.

28

3.5 Implementation of MIMO NN Architecture

MIMO (Multiple-Input Multiple-Output) networks can process many input streams
simultaneously, such as video or picture frames captured from various angles or
sensing modalities. This enables them to increase object identification precision by
considering diverse viewpoints or sensor inputs. It can be also used for Natural
Language Processing (NLP). To improve language comprehension and produc-
tion, MIMO networks can handle a variety of information sources, including text,
audio, and visual data. For instance, a MIMO network may use textual and con-
textual information to improve sentiment categorization in sentiment analysis.

Figure 3.7 depicts the architecture design of a MIMO neural network, which
has two layers and eight outputs (out1, out2) and inputs (x1, x2, ..., x8). Weight
memory is made up of input-corresponding weight values. To choose which
value needs to be transmitted at the output, weight values and inputs are pro-
vided to the ReLU neuron. A value from the data memory will be supplied to the
output in accordance with the ReLU value. As previously mentioned, the signed
adder and signed multiplier make up the neuron. Other elements of the architec-
ture, such as the activation function and neuron (which include signed multipliers
and signed adders as discussed in Chapter 2), are identical to those in the MISO
architecture.

Figure 3.7: Depicted the developed MIMO Architecture.

29

For details, we considered a scenario where we have input values x1, x2, x3, x4,
..., x8. These inputs are passed through a multiplier, where they are multiplied
with corresponding weight values w1, w2, w3, w4, ..., w8. The outputs of the mul-
tiplier can be represented as (x1 ∗ w1), (x2 ∗ w2), (x3 ∗ w3), (x4 ∗ w4), ..., (x8 ∗ w8).
These outputs are then fed into an adder, where a bias value b is added to each of
them. Consequently, the outputs of the adder can be expressed as ((x1 ∗ w1) + b),
((x2 ∗ w2) + b), ((x3 ∗ w3) + b), ((x4 ∗ w4) + b), ..., ((x8 ∗ w8) + b). The next step
involves passing these values through an activation function, where they are checked
against a threshold condition. If the condition is met, the values proceed further
in the process.

Finally, the two largest values, which are greater than zero, are selected and
sent to the output. These values can be denoted as ((xj ∗ wj) + b)and((xk ∗ wk) + b).
In summary, the input values are multiplied with corresponding weights, then
added with a bias, and passed through an activation function. The two largest
values meeting the threshold condition are chosen as the outputs. Figure 3.8 illus-
trates the simulated waveform generated by MIMO architecture.

Figure 3.8: Simulated responses of MIMO architecture.

30

CHAPTER 4

Neural Networks Layout

As mentioned earlier, three neural network architectures have been implemented,
covering the entire process from RTL (Register Transfer Level) to GDSII (Graphic
Data System version II), utilizing open-source tools. The following discussion will
delve into the design flow employed for tape-out generation, the tools utilized in
this process, the tape-outs for each of the three architectures, and the correspond-
ing parameters associated with them. Before delving into these details, let’s first
explore the concept of tape-out and the advantages of employing open-source
technologies.

In the realm of VLSI (Very Large Scale Integration), the term tape-out refers
to the physical design phase of an integrated circuit (IC). It involves the intricate
positioning and routing of various components such as interconnects, capacitors,
resistors, and transistors onto the surface of the chip. The tape-out design phase
plays a critical role in determining the performance, power consumption, and re-
liability of the chip. It represents a crucial stage in the overall design process of in-
tegrated circuits (ICs). The tape-out design process begins with a circuit schematic
or netlist, which specifies the logical connections between the components of the
circuit. This serves as the initial step for the tape-out design.

Following that, the components are placed on the chip’s surface, and the de-
signer routes the interconnects between them to create a physical representation
of the circuit.

4.1 Design Flow

RTL Design: The RTL description of the chip is first created using a hardware de-
scription language (HDL), such as Verilog or VHDL. This description provides a
higher-level definition of the circuit’s behaviour and functioning. The gate-level
netlist is created by synthesising the RTL code. In order to develop a gate-level
representation of the circuit, synthesis entails translating the RTL description to

31

a library of standard cells and optimising the design for area, power, and time.
The location of the chip’s primary components and their relative placements on
the silicon die is determined by the floorplan, which is developed in this step. In
floorplanning, variables including chip size, cell count and type, power distribu-
tion, and I/O positioning are taken into account. Placement: This process estab-
lishes the precise location of each chip cell. The positions are optimised to reduce
wire length, timing errors, and power usage. In order to identify the best answer,
placement algorithms employ strategies like simulated annealing, genetic algo-
rithms, or analytical approaches. Clock Tree Synthesis (CTS): To maintain perfect
synchronisation and slight clock skew, CTS requires creating an optimised clock
distribution network throughout the chip. To balance the clock tree and adhere
to timing specifications, it inserts buffers and buffers. During the routing step,
metal rails are used to link the chip’s components and nets (interconnections).
The wire length is optimised, design rules and limitations are met, and signal
route conflicts are resolved. The general routing structure is decided by global
routing, while the final connectivity is carried out by detailed routing. Physical
Verification: During physical verification, the layout is examined for design rule
violations (DRC) to make sure it complies with the foundry-specified production
restrictions. It comprises inspections for width, overlap, spacing, and other regu-
lations to guard against potential manufacturing problems. Timing Analysis: To
make sure the chip complies with the given timing limitations, timing analysis as-
sesses the timing routes in the design. It takes into account things like the circuit’s
delays, setup and hold times, and clock frequency. To confirm timing at vari-
ous design phases, static timing analysis (STA) is used. Power Analysis: Power
analysis calculates the chip’s power use and indicates potential areas for power
optimisation. Examining the switching activity and power distribution within the
design assists in lowering power consumption and mitigating thermal concerns.
The final GDSII layout file is created once the design has been confirmed to fulfil
all necessary requirements. The placements, forms, and layers of each component
are all included in the geometric representation of the chip that is contained in the
GDSII file.

4.2 Design Tools

Synthesis: RTL synthesis is performed by yosys/ABC. OpenSTA: Creates timing
reports by doing static timing analysis on the generated netlist. Floorplanning:
initfp - Specifies the rows (used for placement) and tracks (used for routing), as

32

well as the core area for the macro.Places the macro input and output ports us-
ing ioplacer. Creates the power distribution network (pdngen). Inserts welltap
and decap cells into the floorplan using tapcell. Placement: RePLace performs
global placement. Resizer: Resizing is an optional design optimization. OpenDP:
Performs detailed placement to legalize the globally placed components. Syn-
thesises the clock distribution network (the clock tree) using TritonCTS. Routing:
FastRoute - Creates a guide file for the detailed router by doing global routing per-
forms thorough routing with TritonRoute Performs SPEF extraction with Open-
RCX

Figure 4.1: Tools used for implementation.

GDSII : The final GDSII layout file is generated by Tapeout Magic based on the
routed definition. As an alternative option, KLayout can also generate the final
GDSII layout file from the routed definition. The Signoff process includes per-
forming Design Rule Checks (DRC) and Antenna Checks, which are done using
Magic and KLayout in conjunction. Netgen is utilized for performing Layout ver-
sus Schematic (LVS) Checks. Additionally, Circuit Validity Checks are conducted
by CVC. Figure 4.1 illustrates the design flow and corresponding tools used for
this work. Detailed discussion on tools will be seen in next sub-section.

4.3 Details of Tools Used

OpenROAD: OpenROAD is an all-encompassing digital design pipeline that in-
cludes placement, optimisation, and routing tools. For phases in floorplanning,
placement, and routing [43].

33

yosys: Yosys functions as a Verilog HDL synthesis tool, taking a high-level be-
havioral design description as its input and producing an output in the form of
RTL, logical gate, or physical gate level descriptions of the design. Its primary
strengths lie in behavioral and RTL synthesis. Yosys offers a wide array of com-
mands, referred to as synthesis passes, enabling a diverse range of synthesis tasks
across behavioral, RTL, and logic synthesis domains. The architecture of Yosys is
designed for extensibility, making it a suitable foundation for creating custom syn-
thesis tools tailored to specific tasks. Yosys employs two distinct internal formats.
The first format is utilized for storing an abstract syntax tree (AST) representation
of a Verilog input file. This format is referred to as AST and is generated by the
Verilog Frontend component. Subsequently, this AST is processed by a module
called the AST Frontend, which transforms it into Yosys’ principal internal format
known as RTLIL (Register-Transfer-Level Intermediate Language) representation.
This conversion involves performing various simplifications within the AST rep-
resentation prior to generating the RTLIL structure from the simplified AST data.
The RTLIL representation serves as the common input and output format for all
Yosys passes, offering several advantages over employing distinct formats for var-
ious stages: Passes can be reorganized or modified by adding/removing them.
Passes can efficiently preserve unchanged design components without format
conversions, as Yosys passes maintain the same data structure and execute modi-
fications directly. A uniform interface is maintained across all passes, streamlining
comprehension of Yosys source code and facilitating feature augmentation. The
RTLIL representation encompasses features beyond a standard netlist: Internal
cell library with predefined functional cells for RTL datapath, registers, and logi-
cal gate-level elements. Accommodation for multi-bit values employing wire bits
and constants for coarse-grained netlist representation. Support for fundamental
behavioral constructs like conditional statements and multi-case switches with
output update sensitivity.Capability for multi-port memories. However, the use
of RTLIL also presents a drawback as it maintains a high-level format across all
passes, even when dealing with gate-level synthesis that doesn’t require advanced
features. For simplicity in passes targeting low-level representations, these passes
inspect RTLIL input for utilized features and halt if unsupported high-level con-
structs are detected. In such cases, a preliminary pass that translates higher-level
constructs into lower-level equivalents must be invoked before synthesis. Yosys,
an open-source, extensible hardware synthesis tool, caters to designers seeking a
universally accessible, vendor-independent synthesis solution. It also appeals to

34

EDA researchers seeking an open synthesis framework to experiment with com-
plex real-world designs and test algorithms. Yosys is capable of synthesizing a
substantial portion of Verilog 2005 and has undergone extensive testing with a
diverse set of practical designs, including the OpenRISC 1200 CPU, openMSP430
CPU, OpenCores I2C master, and k68 CPU. Currently, a VHDL frontend for Yosys
is under development. Yosys is predominantly coded in C++, incorporating cer-
tain elements from the C++11 standard. This section outlines the foundational
data structures in Yosys. For clarity, the C++ type names utilized within the Yosys
codebase are used throughout this section. Nevertheless, the chapter elucidates
the core concepts, serving as a reference for implementing a similar system in any
programming language. Figure 4.2 shows working of yoysys in depth.

Figure 4.2: Workflow of yosys.

OpenSTA:OpenSTA is an open-source tool utilized for Static Timing Analysis
(STA) in the domain of digital chip design and verification. Static Timing Analy-
sis is a pivotal stage in the development and validation of integrated circuits (ICs)
that ensures the designed circuit adheres to its specified timing benchmarks. This
tool examines the timing characteristics of digital circuits under varying condi-
tions to guarantee their proper operation. 1. Timing Analysis: OpenSTA under-
takes an extensive timing analysis by factoring in the delays introduced by diverse
components in the design, including gates, interconnects, and wires. It calculates
the most critical delay paths within the circuit and verifies their alignment with
the predefined timing constraints. 2. Setup and Hold Checks: OpenSTA conducts
assessments to identify any violations of setup and hold time parameters, which
are critical elements in digital circuits. These checks guarantee the stability of
signals within the designated setup and hold time windows of the receiving flip-
flops. 3. Clock Tree Analysis: OpenSTA additionally analyzes the distribution
network of clocks within the chip, thereby detecting issues related to clock skew

35

and the synthesis of the clock tree. This step is essential to ensure synchronized
operation throughout the chip. 4. Constraint Management: The tool supports the
incorporation of various design constraints, encompassing clock frequency, in-
put/output delays, and other specific requirements tailored to the design. 5. Gen-
eration of Reports: OpenSTA produces comprehensive timing reports that outline
instances of timing violations, pinpoint the paths contributing to these violations,
and provide other pertinent details necessary for optimization and debugging.
Functioning of OpenSTA: 1. Input: Design Files: OpenSTA takes in the gate-level
netlist, a representation of the digital circuit’s components and connections. Con-
straint Files: Design constraints are specified in separate files and include details
such as clock frequencies and input/output delays. 2. Pre-processing: The tool
conducts pre-processing on the design files to construct an internal data structure
reflecting the hierarchy and interconnections within the design. 3. Timing Anal-
ysis: OpenSTA simulates the circuit by propagating signal delays through gates,
flip-flops, and interconnects. It identifies critical paths with the longest delays and
assesses their compliance with timing constraints. 4. Verification of Constraints:
The tool compares calculated delays with specified constraints, including setup
and hold times. 5. Report Generation: OpenSTA generates detailed timing re-
ports containing insights into timing violations, critical paths, and pertinent sta-
tistical data. 6. Optimization: Designers employ the analysis outcomes to make
necessary refinements to the design, such as adjusting gate sizes or modifying the
clock distribution network, to ensure adherence to timing requirements.

init_fp: As the name suggests it initialize floorplan by making list of sites to
make rows for die area and core area in micron The die area and core area used
to write ROWs can be specified explicitly with the -die_area and -core_area argu-
ments. It makes tracks place pins around core boundary.
ioplacer: ioplacer arrange pins along the perimeter of the die using the track grid,
with the goal of minimizing the lengths of nets. This pin placement process simul-
taneously generates metal shapes for each pin while adhering to minimum-area
regulations.In cases where cells have not yet been positioned, the calculation of
net wirelength takes into account the center of the die area as the assumed posi-
tion for these unplaced cells.

pdngen :This tool is designed to streamline the integration of a power grid into
a floorplan. The objective is to define a concise collection of power grid guide-
lines for the design, encompassing aspects like preferred layers, stripe width, and
spacing. Subsequently, the tool automates the generation of the physical metal
connections, based on the specified policies.

36

These grid policies are customizable both within the standard cell region and
within regions taken up by macros.

RePLace:RePlAce (Regular Placement Engine) is an open-source software tool
used in the field of chip design for performing placement optimization. Chip
placement is a critical step in the physical design of integrated circuits (ICs) where
the positions of various functional blocks, standard cells, and other components
are determined on the chip’s layout. The goal of RePlAce is to find an optimal ar-
rangement of these components to achieve better performance, power efficiency,
and manufacturability.Key Features and Working of RePlAce: 1. Global Place-
ment: RePlAce primarily focuses on global placement, which involves finding
an initial, coarse-grained arrangement of components on the chip’s layout. This
placement acts as a starting point for subsequent optimization stages. 2. Objective
Function: The primary objective of RePlAce is to minimize the overall wirelength
or interconnect length between components. Minimizing wirelength helps in re-
ducing signal delays and power consumption associated with long interconnects.
3. Force-Directed Approach: RePlAce uses a force-directed approach, inspired
by physics-based simulations, to optimize placement. It models the placement
problem as a system of forces acting on each cell to drive them towards an equi-
librium position. 4. Netlist and Constraints: RePlAce takes a netlist as input,
which includes information about the connectivity and relationships between dif-
ferent cells in the design. It also considers design constraints such as blockages,
pre-placed cells, and user-defined regions. 5. Hierarchical Approach: In mod-
ern chip designs, hierarchy is common due to the use of macros and IP blocks.
RePlAce often works hierarchically, optimizing placement at different levels of
hierarchy to manage complexity and maintain performance. 6. Multi-Objective
Optimization: While wirelength minimization is a primary objective, RePlAce
may also consider other factors like timing, power, and congestion, depending
on user-defined constraints and optimization goals. 7. Iterative Refinement: Re-
PlAce typically performs multiple iterations of the placement refinement process
to gradually improve the quality of the placement. Each iteration aims to reduce
the overall wirelength and meet the specified constraints. 8. Output and Inte-
gration: After the placement optimization, RePlAce produces a new arrangement
of cells and components on the chip layout. This output is then fed into subse-
quent steps of the chip design flow, such as global routing, detailed placement,
and routing stages. 9. Customization and Tuning: RePlAce often provides var-
ious configuration options and parameters that users can customize to achieve

37

the desired optimization trade-offs, such as focusing more on performance versus
power.

Resizer: The commands for Gate Resizer are outlined as follows: The resizing
process halts when the design area reaches a utilization level of -max_utilization
percent of the core area. The variable util lies within the range of 0 to 100. If the
maximum utilization threshold is surpassed, the resizer will terminate and pro-
vide an error report.

Triton CTS: TritonCTS 2.0 is accessible within the OpenROAD application through
the (clock_tree_synthesis) command. The provided TCL snippet outlines the method
to invoke TritonCTS. This version of TritonCTS, namely 2.0, introduces on-the-fly
characterization capabilities, eliminating the need to generate separate characteri-
zation data. Nevertheless, users have the flexibility to manage the on-the-fly char-
acterization feature by specifying parameters through the (configure_cts_characterization)
command. The (set_wire_rc) command facilitates the setup of clock routing lay-
ers. For TritonCTS to operate, it requires five input files, while producing two
output files. The inputs encompass library characterization files, Verilog files with
gate-level netlists, placed DEF files with netlists, and a configuration file. On the
output side, TritonCTS generates placed DEF files featuring clock buffers, as well
as Verilog files integrated with clock buffers. This tool is designed with certain
supported features and assumptions, including catering to a single clock source.

Fastroute: FastRoute is an open-source software tool used in the field of chip
design for global and detailed routing of integrated circuits. It’s designed to ef-
ficiently and effectively route the interconnects (wires) that connect various com-
ponents, such as gates, standard cells, and macros, on an integrated circuit lay-
out. FastRoute is particularly useful for designs where high-performance and fast
turnaround are crucial. Key Features and Working of FastRoute: 1. Global and
Detailed Routing: FastRoute supports both global routing and detailed routing.
Global routing involves determining the approximate path and layer for intercon-
nects, while detailed routing involves placing wires within the specified routing
channels. 2. Multi-Layer Routing: Modern integrated circuits often have multiple
metal layers for routing. FastRoute can handle multi-layer routing, optimizing the
use of different layers for routing paths of varying lengths. 3. Congestion-Driven
Routing: Congestion occurs when there is a high demand for routing resources in
a specific area. FastRoute employs congestion-driven routing algorithms to man-

38

age and avoid congestion, which can help prevent performance bottlenecks. 4.
Maze Routing Algorithms: FastRoute employs maze routing algorithms, which
involve finding paths through a grid-like structure that represents the available
routing resources and obstacles. These algorithms consider obstacles and connec-
tivity requirements. 5. Wirelength Minimization: One of the primary objectives
of FastRoute is to minimize the total wirelength or interconnect length. Shorter
interconnects lead to reduced signal delays and improved overall circuit perfor-
mance. 6. Pin Access Optimization: FastRoute optimizes the positions of the pins
(connection points) of the components to reduce wirelength and improve routing
feasibility. 7. Hierarchical Routing: For larger and more complex designs, Fas-
tRoute supports hierarchical routing. This involves routing sub-blocks or regions
of the design separately before integrating them into the final routing solution. 8.
User-Defined Constraints: Designers can input various constraints, such as min-
imum/maximum wirelength, preferred routing direction, and area constraints,
to guide FastRoute’s routing process. 9. Open-Source and Customizability: Fas-
tRoute is open-source, allowing designers to modify and customize its algorithms
to better suit their specific design requirements. 10. Output Generation: Once the
routing is completed, FastRoute generates a routed netlist or a routed layout that
can be used in subsequent steps of the chip design flow.

TritonRoute: TritonRoute is an open-source software tool used in the field of
chip design for detailed routing of integrated circuits. It’s designed to efficiently
route the metal interconnects (wires) that connect various components, such as
gates, standard cells, and macros, on an integrated circuit layout. TritonRoute fo-
cuses on providing high-quality routing solutions while considering factors like
wirelength, congestion, and design rules.Key Features and Working of Triton-
Route: 1. Detailed Routing: TritonRoute handles the final stages of routing in
the chip design process, where it places wires within the specified routing chan-
nels based on the global routing results. 2. Multi-Layer Routing: Modern inte-
grated circuits use multiple metal layers for routing. TritonRoute supports rout-
ing on multiple metal layers, optimizing the use of different layers for different
routing paths. 3. Congestion Management: TritonRoute employs sophisticated
algorithms to manage congestion, which occurs when routing resources are heav-
ily demanded in certain areas of the layout. By avoiding congestion, TritonRoute
ensures that signal integrity and overall performance are maintained. 4. Design
Rule Checking: TritonRoute adheres to design rules specified by the semiconduc-
tor foundries and technology nodes. It ensures that the generated routing solu-

39

teons comply with manufacturing constraints and guidelines. 5. Layer Assign-
ment: TritonRoute assigns wires to appropriate metal layers based on the design
requirements, routing constraints, and the characteristics of the routing paths. 6.
Maze Routing Algorithms: Similar to other routing tools, TritonRoute uses maze
routing algorithms to navigate through a grid-like structure representing the rout-
ing resources and obstacles. These algorithms optimize for wirelength and other
design goals. 7. Wirelength Minimization: TritonRoute aims to minimize the total
wirelength or interconnect length, which contributes to reduced signal delays and
improved circuit performance. 8. Pin Access Optimization: The tool optimizes the
positions of pins (connection points) on components to further reduce wirelength
and improve routing feasibility. 9. User-Defined Constraints: Designers can in-
put various constraints, such as preferred routing direction, layer-specific rout-
ing preferences, and area restrictions, to guide TritonRoute’s routing decisions.
10. Hierarchical Routing: TritonRoute can handle hierarchical designs, routing
sub-blocks or regions separately before integrating them into a complete routing
solution. 11. Open-Source and Customizability: TritonRoute is open-source, al-
lowing users to modify and customize its algorithms to suit their specific design
needs. 12. Output Generation: After completing the routing process, TritonRoute
generates a detailed routed layout that adheres to the design rules and constraints.

OpneRCX: OpenRCX functions as a Parasitic Extraction (PEX) tool integrated
with OpenDB design APIs. It facilitates the extraction of routed designs using the
LEF/DEF layout model. The tool calculates both Resistance and Capacitance val-
ues for wires, considering factors such as coupling distance to the nearest wire and
track density context over/under the target wire. This process also involves cell
abstracts. The capacitance and resistance computations rely on equations involv-
ing coupling distance, which are interpolated using precise measurements from
a calibration file termed the Extraction Rules file. This Extraction Rules file, also
known as the RC technology file, is produced for each process node and corner.
It is generated through a utility that involves DEF wire pattern generation and
regression modeling. OpenRCX subsequently stores the derived resistance, cou-
pling capacitance, and grounded capacitance onto OpenDB objects. These objects
have direct pointers connecting them to the corresponding wire and via database
elements.

40

Magic: Magic is an open-source software tool used in the field of chip design
for layout and circuit design. It is particularly known for its capabilities in lay-
out design and editing, making it a popular choice for creating and manipulating
integrated circuit layouts.Key Features and Working of Magic: 1. Layout Design:
Magic is primarily used for creating and editing layout designs for integrated cir-
cuits. It allows designers to visually design the physical layout of components
such as gates, standard cells, macros, and other circuit elements. 2. Customiz-
able Design Rules: Magic provides the ability to define and enforce custom de-
sign rules, which are constraints that ensure the layout adheres to manufacturing
and performance specifications. 3. Hierarchical Layout: Magic supports hierar-
chical design, allowing complex circuits to be organized into hierarchical blocks.
This is particularly useful for managing large and intricate designs. 4. Interac-
tive Layout Editing: Magic provides an interactive graphical interface for editing
layout designs. Designers can add, move, and modify components directly on
the layout canvas. 5. Textual and Scripting Interface: While Magic is known for
its graphical interface, it also offers a textual scripting interface that allows users
to automate design tasks and perform batch operations. 6. DRC (Design Rule
Checking): Magic has built-in design rule checking capabilities to ensure that the
layout adheres to specified design rules and constraints. This helps identify and
fix potential manufacturing issues. 7. Extraction and Simulation: Magic can be
used in conjunction with other tools to perform extraction of circuit parameters
from the layout and even basic simulation tasks. 8. File Formats: Magic sup-
ports several industry-standard layout file formats, making it compatible with
various other tools in the chip design flow. 9. Community and Customization:
Magic being open-source, it has a community of users and contributors who pro-
vide support, share tips, and develop extensions or customizations to enhance its
functionality. 10. Education and Research: Magic is widely used in academia for
teaching chip design concepts and for research purposes. Its open-source nature
allows students and researchers to study and modify its source code. 11. Cross-
Platform Compatibility: Magic is designed to run on various operating systems,
making it accessible to users regardless of their preferred platform.

Netgen: Netgen is an open-source software tool used in the field of chip de-
sign for digital integrated circuits. It primarily focuses on performing Logical
and Physical Verification tasks. These tasks are essential to ensure that the de-
signed circuit adheres to design rules, functions correctly, and can be manufac-
tured successfully.Key Features and Working of Netgen: 1. Logical Equivalence

41

Checking: Netgen performs logical equivalence checking between two represen-
tations of a circuit, usually comparing a design’s RTL (Register Transfer Level) de-
scription with its gate-level netlist.It identifies any inconsistencies or mismatches
between the RTL and gate-level representations, which helps catch errors intro-
duced during synthesis or optimization. 2. Logical Synthesis Verification: After
synthesis, Netgen verifies that the gate-level netlist is functionally equivalent to
the RTL description. Any discrepancies between these two levels of representa-
tion are flagged as potential issues. 3. Physical Verification: Netgen also per-
forms various types of physical verification checks, ensuring that the layout of
the circuit adheres to manufacturing rules and constraints.This includes checks
like Design Rule Checking (DRC), which verifies that the layout adheres to the
technology-specific manufacturing rules, and Layout vs. Schematic (LVS) checks,
which ensure that the layout corresponds accurately to the netlist. 4.Gate-Level
Simulation: Netgen can perform gate-level simulations to verify the functional-
ity of a circuit after synthesis and optimization. It compares the simulation re-
sults of the gate-level netlist against expected results to identify any functional
errors. 5. Hierarchical Verification: Netgen supports hierarchical designs, allow-
ing verification of large and complex circuits by breaking them down into smaller
manageable blocks. 6. Netlist and Layout Formats: Netgen supports various
industry-standard netlist and layout formats, making it compatible with other
tools in the chip design flow. 7. Integration with EDA Flows: Netgen is typi-
cally used as part of larger electronic design automation (EDA) flows, working
in conjunction with other tools such as synthesis, place-and-route, and simula-
tion tools. 8. Scripting and Automation: Netgen provides scripting interfaces that
allow users to automate verification tasks and perform batch operations. 9. Open-
Source and Community Support: Being open-source, Netgen has a community of
users and contributors who share information, provide support, and contribute
to its development.

4.4 OpenLANE

There are several EDA tools available to generate GDSII file for a Verilog design.
Most commonly used are paid. But recent trends have encouraged chip design by
introducing open source tools [44]. R Timothy from efabless has compared 3 such
open source tools that facilitate RTL to GDSII flow named Qflow, CloudVSoC and
OpenLANE. M. Shalan Research talks about OpenLANE EDA tool we used to
generate Tape-Outs for this work.

42

The combination of the tools described earlier, along with custom scripts for
design exploration and optimization, forms the automated RTL to GDSII flow
called OpenLANE [45] . OpenLANE provides a range of specialized scripts specif-
ically designed for design exploration and optimization purposes [46]. The flow
encompasses all the steps involved in ASIC implementation, starting from RTL
(Register Transfer Level) and continuing all the way to GDSII (Graphic Data Sys-
tem Version II) [47]. It supports both variants A and B of the sky130PDK and
includes instructions for incorporating support for additional PDKs, including
proprietary ones [48]. It takes the source file and configuration file as input. The
source file is Verilog code, and the configuration file is written in JSON using par-
ticular setting values for particular configuration variables.

4.4.1 OpenLANE Configuration Variables

There are two types of configuration variables for configuration files. The first one
is required configuration variables, and a second and much larger set of config-
uration variables is optional. They are used to optimize design accordingly [49].
All these variables take a particular value or string as input, and further process is
completed accordingly. All the configuration variables are case sensitive and are
to be written as shown.

4.4.2 Required Configuration Variables

These configuration variables are necessary to mention. They are directly used in
design flow.
1. DESIGN_NAME : Here, the name of the .v file is mentioned
2.VERILOG_FILES : The path of the source file is mentioned here without white
spaces.This is required to access the file,
3.CLOCK_PERIOD : Clock period is defined herein nano-seconds.
4.CLOCK_NET : The name of the net input to the root clock buffer is mentioned
for the process of CTS.
5.CLOCK_PORT : The name of the design’s clock port is specified here, and this
information is used during STA.

4.4.3 Optional Configuration Variables

These configuration variables have a particular default values in case we don’t
define one it uses that particular value. In case we need to change the values from

43

default they need to be defined. Some commonly used configuration variables,
their default values and their functionality is listed in following table. Then we
will discuss them in depth later on.

Configuration Variable Default Value Functionality
1 PDK sky130 Specifies the process design kit
2 SYNTH_CLOCK_TRANSITION 0.15 Specifies a value for the clock slew
3 SYNTH_STRATEGY AREA0 Trade-off between area and delay
4 IO_PCT 0.2 % of clock_period used in I/O
5 FP_CORE_UTIL 50% Core utilization %
6 DIE_AREA unset Specifes co-ordinates x0 y0 x1 y1
7 FP_IO_MODE 1 Mode of random I/O placement

Table 4.1: Optional configuration variables.

4.4.4 Details of Configuration Variables

STD_CELL_LIBRARY is a configuration variable that mentions the standard cell
library to be used under the specified PDK. Default value for this variable is
Sky130_fd_sc_hd.
Next is STD_CELL_LIBRARY_OPT which specifies the standard cell library to be
used during resizer optimizations. Default value for same is STD_CELL_LIBRARY
SYNTH_STRATEGY is also an important configuration variable which plays an
important role in optimizing trade-off between area and delay. It strategies for
logic synthesis. It’s possible values are DELAYAREA 0-40-3. AREADELAY men-
tions optimization target of the synthesis strategy and the numbers value 0-4/0-3
is an index. Default value is AREA0.
IO_PCT mentions the percentage of the clock period used in the I/O delay. It
ranges between 0 to 1. Default value for the same is 0.2
STA_REPORT_POWER is variables that enables generation of power report in
STA. It’s default value is 1.
FP_CORE_UTIL mentions core utilization percentage. Core utilization percent-
age defines the area occupied by standard cells, macros, and blockages. Default
value for the same is 50 %.
FP_ASPECT_RATIO mentions core’s aspect ratio. Aspect ratio is calculated by
height/width. Default value of this configuration variable is 1.
DIE_AREA as the name suggests it specifies die area which will be used during
floor planning when another variable known as FP_SIZING is set to absolute.
Specified as a 4-corner rectangle “x0 y0 x1 y1”. These are coordinates for chip
design. Generally (x0,y0) is (0,0). Although this variable comes under optional

44

configuration variable it is necessary to mention this variable as its default value
is not set. Unit used for the measurement is um.
CORE_AREA Die area minus margins gives us core area. As mentioned in core
utilization this area is where standard cells and macros will be placed. This will
also be used in case FP_sizing is absolute.
FP_IO_MODE decides mode of placement that whether I/O placement is random
and equidistant(1) or on matching mode(0).
PL_TARGET_DENSITY mentions desired placement density of cells. It shows
how distant cells are inside core area. The value ranges from 0 to 1 where 0 means
widely spread and 1 means dense. Default value is calculated by:
CORE_UTILL+10+5(5(GP_CELL_PADDING)100).
Sample value: 0.55. CTS_TARGET_SKEW specifies target clock skew. Its defined
in picoseconds and it’s default value is 200ps
RUN_CTS enables CTS in case it’s value is 1, which is also it’s default value.

These and several more configuration variables make a configuration file which
is given to OpenLANE as input with verilog and PDK files to genrate Tape-out.
Note that one major issue with OpenLANE is timing closure. While several flow
tools have timing awareness, the RTL synthesizer(Yoysys) used in OpenLANE
does not support timing-driven synthesis and does not accept standard timing
constraints in SDC format. This makes timing closure a real challenge in Open-
LANE. Moreover, automatic,post-routing timing closure is not a possibility. In
future designs can be optimized based on the placement information but not on
the routing information due to lack of incremental routing support. OpenLANE
has above mentioned constraints but we have used OpenLANE just to verify our
concepts as it’s an opensource tool.

4.5 Tape-Out Details

Table shows Tape-out details for all three architectures generated.

Design Die-Area Target Density Cell count Critical Path delay
1 SISO 829.5 um2 0.75 15 1.06 ns
2 MISO 4003.8 um2 0.55 83 2.4ns
3 MIMO 8693.3 um2 0.65 101 4 ns

Table 4.2: Tape-out details.

45

4.6 Tape-Out

SISO Architecture is the simplest of the three architectures. Figure 4.2 shows the
tape-out generated for SISO architecture. Figure 4.3 shows tape-out generated for
MISO architecture. Figure 4.4 shows tape-out generated for MIMO architecture.

46

Figure 4.3: Tape-out of SISO.

47

Figure 4.4: Tape-out of MISO.

48

Figure 4.5: Tape-out of MIMO.

49

4.7 Comparison with Published Work

Table 4.3 compares a few exsiting work on NN and this work. Aim of this work
was to reduce area. As discussed previously with configuration variables there
is trade-off between delay and area, and there also we have optimized area. Lit-
erature survey also shows that area is also considered. Since OpenLANE offers
PDK(Process design kit) of 130nm technology only, we can’t reduce the technol-
ogy still area of our design is smaller then previous works hence area wise it is
optimized.

Reference Architecture Technology Core-Area Learning
1 [50] Crossbar 45 nm 4.2mm2 On-chip
2 [51] Crossbar 45 nm 4.2mm2 Off- chip
3 [52] Crossbar 35 nm – Off- chip
4 [53] 2- Layer Grid and ring 65 nm 3.1mm2 On-chip
5 [54] 2- Layer Grid and ring 65 nm 1.8mm2 On-chip
6 [55] SIMD,MAC,MEM 40 nm 2.4mm2 –
7 This Work SISO 130 nm 829.5 um2 Off- chip
8 This Work MISO 130 nm 4003.8 um2 Off- chip
9 This Work MIMO 130 nm 8693.3 um2 Off- chip

Table 4.3: Comparison with exisiting works.

50

CHAPTER 5

Conclusion

The architectural design and implementation of neural networks (NNs) for inte-
grated circuit design have been successfully accomplished. The architecture en-
compasses fundamental components such as adders, multipliers, and rectified
linear units (ReLUs).

Three distinct architectures have been developed: Single-In Single-Out (SISO),
Multiple-In Single-Out (MISO), and Multiple-In Multiple-Out (MIMO). Weight
values are an essential requirement in NNs and are acquired from a manually
created memory. These weight values have been generated through software-
based training of the NNs model.

Subsequently, layout of the SISO, MISO, and MIMO neural networks were
taped out using Sky130 open-source process node PDK which is a 180nm-130nm
hybrid technology originally developed internally by Cypress Semiconductor. The
respective layout areas for the SISO, MISO, and MIMO architectures are 829.5
µm2, 4003.8 µm2, and 8693.3 µm2, respectively. As the complexity in functions
of the architecture increases, so does the area. Total physical cells increase ap-
proximately six times for MIMO in comparison to SISO, and total core area is
approximately 10 times more for MIMO in comparison to SISO.

51

Publications From This Thesis

K. Nagrani and T. K. Maiti, "Neural Network Architectures for Integrated
Circuits," in International Symposium on Devices, Circuits and Systems (ISDCS
2023), pp. 1-4, Japan, May 2023, doi: 10.1109/ISDCS58735.2023.10153560.

52

References

[1] G. M. Iodice, TinyML Cookbook: Combine Artificial Intelligence and Ultra-
Low-Power Embedded Devices, Packt Publishing, 1st Edition, 2022.

[2] A. D. Thakare and S. U. Bhandari, Artificial Intelligence Applications and
Reconfigurable Architectures, Scrivener Publishing LLC, 1st Edition, 2023.

[3] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, A. M. Umar, O. U. Linus,
H. Arshad, A. A. Kazaure, U. Gana, and M. U. Kiru, "Comprehensive review
of artificial neural network applications to pattern recognition," IEEE Access,
vol. 7, pp. 158820–158846, 2019.

[4] D. Srinivasan, M. Choy, and R. Cheu, "Neural networks for real-time traffic
signal control," IEEE Transactions on Intelligent Transportation Systems, vol. 7,
no. 3, pp.261–272, 2006.

[5] J. C. Phillips, J. E. Stone, and K. Schulten, "Adapting a message-driven par-
allel application to GPU-accelerated clusters," in Proceedings of the ACM/IEEE
Conference on Supercomputing, pp. 1–9, 2008.

[6] A. Shakarami, M. Ghobaei-Arani, and A. Shahidinejad, "A survey on the
computation offloading approaches in mobile edge computing: A machine
learning-based perspective," Computer Networks, vol. 182, pp. 107496, 2020.

[7] Biological neuron, Ref: https://www.upgrad.com/blog/biological-neural-network/

[8] News medical, Ref: https://www.news-medical.net/news/20230116/Researchers-
develop-an-artificial-neuron-closely-mimicking-the-characteristics-of-a-biological-
neuron.aspx

[9] J.-W. Lin, "Artificial neural network related to biological neuron network: a
review," Advanced Studies in Medical Sciences, vol. 5, no. 1, pp. 55–62, 2017.

[10] K. Wang, Y. Zhu, and C.-Z. Chen, "Perceptron algorithm and its Verilog de-
sign," in China Semiconductor Technology International Conference (CSTIC), pp.
1–3, 2020.

53

[11] A. Manoharan, G. Muralidhar, and B. J. Kailath, "A novel method to im-
plement STDP learning rule in Verilog," In IEEE Region-10 Symposium (TEN-
SYMP), pp. 1779–1782, 2020.

[12] H. Yu, H. Chalamalasetty, and M. Swaminathan, "Modeling of voltage-
controlled oscillators including I/O behavior using augmented neural net-
works," IEEE Access, vol. 7, pp. 38973–38982, 2019.

[13] O. Awodele and O. Jegede, "Neural networks and its application in engineer-
ing," Sci IT, pp. 83–95, 2009.

[14] S. Himavathi, D. Anitha, and A. Muthuramalingam, "Feedforward neural
network implementation in FPGA using layer multiplexing for effective re-
source utilization," IEEE Transactions on Neural Networks, vol. 18, no. 3, pp.
880–888, 2007.

[15] W. Wang and J. Gang, "Application of convolutional neural network in nat-
ural language processing," in International Conference on Information Systems
and Computer Aided Education (ICISCAE), pp. 64–70, 2018.

[16] V. Dunjko and H. J. Briegel, "Machine learning amp; artificial intelligence
in the quantum domain: a review of recent progress," Reports on Progress in
Physics, vol. 81, no. 7, pp. 074001, jun 2018.

[17] B. Harish, K. Sivani, and M. Rukmini, "Design and performance comparison
among various types of adder topologies," in 3rd International Conference on
Computing Methodologies and Communication (ICCMC), pp. 725–730, 2019.

[18] T. Han and D. A. Carlson, "Fast area-efficient VLSI adders," in IEEE 8th Sym-
posium on Computer Arithmetic (ARITH), pp. 49–56, 1987.

[19] K. A. K. Maurya, Y. R. Lakshmanna, K. B. Sindhuri, and N. U. Kumar, "De-
sign and implementation of 32-bit adders using various full-adders," in Inno-
vations in Power and Advanced Computing Technologies (i-PACT), pp. 1–6, 2017.

[20] R. Zimmermann, Binary adder architectures for cell-based VLSI and their
synthesis. Citeseer, 1998.

[21] A. Mukherjee and A. Asati, "Generic modified Baugh Wooley multiplier,"
in International Conference on Circuits, Power and Computing Technologies (IC-
CPCT), pp. 746–751, 2013.

54

[22] C. Y. Lee, L. H. Hiung, S. W. Lee, and N. H. Hamid, "A performance compar-
ison study on multiplier designs," in International Conference on Intelligent and
Advanced Systems, pp. 1–6, 2010.

[23] A. D. Rasamoelina, F. Adjailia, and P. Sinˇcák, "A review of activation func-
tion for artificial neural network," in IEEE 18th World Symposium on Applied
Machine Intelligence and Informatics (SAMI), pp. 281–286, 2020.

[24] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, "Activation func-
tions: Comparison of trends in practice and research for deep learning," arXiv
preprint, arXiv:1811.03378, 2018.

[25] A. Holzinger, B. Malle, A. Saranti, and B. Pfeifer, "Towards multi-modal caus-
ability with graph neural networks enabling information fusion for explain-
able AI," Information Fusion, vol. 71, pp. 28–37, 2021.

[26] D. Stursa and P. Dolezel, "Comparison of ReLu and linear saturated activa-
tion functions in neural network for universal approximation," in 22nd Inter-
national Conference on Process Control (PC19), pp. 146–151, 2019.

[27] C. Bircanoglu and N. Arica, "A comparison of activation functions in artifi-
cial neural networks," in 26th signal processing and communications applications
conference (SIU), pp. 1–4, 2018.

[28] Z. Hu, J. Zhang, and Y. Ge, "Handling vanishing gradient problem using
artificial derivative," IEEE Access, vol. 9, pp. 22371–22377, 2021.

[29] Towards Science, Ref: https://towardsdatascience.com/derivative-of-the-sigmoid-
function-536880cf918e

[30] H. H. Tan and K. H. Lim, "Vanishing gradient mitigation with deep learning
neural network optimization," in 7th International Conference on Smart Com-
puting Communications (ICSCC), pp. 1–4, 2019.

[31] T. Szandała, "Review and comparison of commonly used activation functions
for deep neural networks," Bio-inspired neurocomputing, pp. 203–224, 2021.

[32] J. Patel, H. Advani, S. Paul, and T. K. Maiti, "VLSI implementation of neural
network based emergent behavior model for robot control," in International
Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DIS-
COVER), pp. 197–200, 2022.

55

[33] L. Ranganath, D. J. Kumar, and P. S. N. Reddy, "Design of MAC unit in
artificial neural network architecture using Verilog-HDL," in International
Conference on Signal Processing, Communication, Power and Embedded System
(SCOPES), pp. 607–612, 2016.

[34] L. Ruthotto and E. Haber, "Deep neural networks motivated by partial dif-
ferential equations," Journal of Mathematical Imaging and Vision, vol. 62, pp.
352–364, 2020.

[35] K. M. Tarwani and S. Edem, "Survey on recurrent neural network in natural
language processing," Int. J. Eng. Trends Technol, vol. 48, no. 6, pp. 301–304,
2017.

[36] N. Chhedaiya and V. Moyal, "Implementation of back propagation algorithm
in Verilog," Int. J. Comput. Technol. Appl., vol. 3, no. 1, pp. 340-343, 2012.

[37] M. Kang, S. Lim, S. Gonugondla, and N. R. Shanbhag, "An in-memory VLSI
architecture for convolutional neural networks," IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 8, no. 3, pp. 494–505, 2018.

[38] P. J. A. Evert, R. V. Amudhan, and P. S. S. Paul, "Implementation of neural
network based controller using Verilog," in 2011 International Conference on
Signal Processing, Communication, Computing and Networking Technologies, pp.
353–357, 2011.

[39] P. Treleaven, M. Pacheco, and M. Vellasco, "International exploration de-
scribes how the natural massive parallelism of the brain inspires novel VLSI
designs," IEEE Micro., vol. 9, no. 6, 1989.

[40] I. E. Ebong and P. Mazumder, "CMOS and memristor-based neural network
design for position detection," Proceedings of the IEEE, vol. 100, no. 6, pp.
2050–2060, 2011.

[41] N. Varshney and G. Arya, "Design and execution of enhanced carry in-
crement adder using han-carlson and kogge-stone adder technique : Han-
carlson and kogge-stone adder is used to increase speed of adder circuitry,"
in 3rd International conference on Electronics, Communication and Aerospace Tech-
nology (ICECA), pp. 1163–1170, 2019.

[42] N. Parvatham and S. Gopalakrishnan, "A novel architecture for an efficient
implementation of image compression using 2D-DWT," in 3rd International
Conference on Intelligent Systems Modelling and Simulation, pp. 374–378, 2012.

56

[43] T. Ajayi and D. Blaauw, "Openroad: Toward a self-driving, open-source dig-
ital layout implementation tool chain," in Proceedings of Government Microcir-
cuit Applications and Critical Technology Conference, pp. 1105-1110, 2019.

[44] S. Hesham, M. Shalan, M. W. El-Kharashi, and M. Dessouky, "Digital ASIC
implementation of RISC-V: OpenLANE and commercial approaches in com-
parison," in IEEE International Midwest Symposium on Circuits and Systems
(MWSCAS), pp. 498–502, 2021.

[45] M. Chupilko, A. Kamkin, and S. Smolov, "Survey of open-source flows
for digital hardware design," in Ivannikov Memorial Workshop (IVMEM), pp.
11–16, 2021.

[46] C. Lück, D. Sánchez Lopera, S. Wenzek, and W. Ecker, "Industrial experience
with open-source EDA tools," in Proceedings of the ACM/IEEE Workshop on
Machine Learning for CAD, pp. 143–143, 2022.

[47] D. Zezin, "Modern open source IC design tools for electronics engineer ed-
ucation," in International Conference on Information Technologies in Engineering
Education (Inforino), pp. 1–4, 2022.

[48] A. Ghazy and M. Shalan, "OpenLANE: The open-source digital asic
implementation flow," in Proceeding Workshop on Open-Source EDA Tech-
nol.(WOSET), pp. 1-5, 2020.

[49] M. Shalan and T. Edwards, "Building OpenLANE: a 130nm openroad-based
tapeout-proven flow," in Proceedings of the 39th International Conference on
Computer-Aided Design, pp. 1–6, 2020.

[50] J.-S. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye, B. Rajen-
dran, J. A. Tierno, L. Chang, D. S. Modha, et al., "A 45nm cmos neuromorphic
chip with a scalable architecture for learning in networks of spiking neurons,"
in IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4, 2011.

[51] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha, "A
digital neurosynaptic core using embedded crossbar memory with 45pj per
spike in 45nm," in IEEE custom integrated circuits conference (CICC), pp. 1–4,
2011.

[52] S. Shapero, C. Rozell, and P. Hasler, "Configurable hardware integrate and
fire neurons for sparse approximation," Neural Networks, vol. 45, pp.134–143,
2013.

57

[53] D. Blaauw, D. Sylvester, P. Dutta, Y. Lee, I. Lee, S. Bang, Y. Kim, G. Kim,
P. Pannuto, Y.-S. Kuo, et al., "IoT design space challenges: Circuits and sys-
tems," in 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Tech-
nical Papers, pp. 1–2, 2014.

[54] J. K. Kim, P. Knag, T. Chen, and Z. Zhang, "A 640m pixel/s 3.65 mW sparse
event-driven neuromorphic object recognition processor with on-chip learn-
ing," in Symposium on VLSI Circuits (VLSI Circuits), pp. C50–C51, 2015.

[55] B. Moons and M. Verhelst, "A 0.3–2.6 tops/w precision-scalable processor for
real-time large-scale convnets," in IEEE Symposium on VLSI Circuits (VLSI-
Circuits), pp. 1–2, 2016.

58

Appendix: Verilog Code

1. SISO main

module siso_main(input [3:0] in, output [7:0] out_main);

wire [3:0] weight;
wire [7:0] bias = 8’b00000001;
wire [3:0] mem=4’b0011;
wire [7:0] out_temp;
wire cin=1’b0;
wire cout;

weight_mem w1(mem,weight);// Adds Weight Value to memory
mul4b M1(out_temp,weight,in);// Multiplies input and weight
add8b A1(cout,out,out_temp,bias,cin);//Adds output of multiplier to bias.
relu R1(out_main,out); // Output of adder goes through ReLU.

endmodule

2. MISO main
module miso_M(in1,in2,in3,out_main);

input [3:0] in1,in2,in3;
output [7:0] out_main;

wire [3:0] i1 = 4’b0000;
wire [3:0] i2 = 4’b0001;
wire [3:0] i3 = 4’b0010;
wire [3:0] w_val1,w_val2,w_val3;
wire [7:0] out_n1,out_n2,out_n3;

59

wire [7:0] out_temp;

mem m1(i1,w_val1);
neuron n1(out_n1,in1,w_val1);

mem m2(i2,w_val2);
neuron n2(out_n2,in2,w_val2);

mem m3(i3,w_val3);
neuron n3(out_n3,in3,w_val3);

relu R1(out_temp,out_n1,out_n2,out_n3);

assign out_main = out_temp;

endmodule

3. MIMO main
module mimo_p(clk,in1,in2,in3,in4,in5,in6,in7,in8,out_main1,out_main2);

input clk;
input [3:0] in1,in2,in3,in4,in5,in6,in7,in8;
output [7:0] out_main1,out_main2;

wire [3:0] i1 = 4’b0000;
wire [3:0] i2 = 4’b0001;
wire [3:0] i3 = 4’b0010;
wire [3:0] i4 = 4’b0011;
wire [3:0] i5 = 4’b0100;
wire [3:0] i6 = 4’b0101;
wire [3:0] i7 = 4’b0110;
wire [3:0] i8 = 4’b0111;
wire [3:0] i9 = 4’b1000;
wire [3:0] w_val1, w_val2, w_val3, w_val4, w_val5,w_val6,w_val7,w_val8;
wire [7:0] out_m1,out_m2,out_m3,out_m4,out_m5,out_m6,out_m7,out_m8;
wire [7:0] out_n1,out_n2,out_n3,out_n4,out_n5,out_n6,out_n7,out_n8;

60

wire [7:0] out_1,out_2;
wire [7:0] out_temp1,out_temp2;
wire [7:0] bias= 8’b00000011 ;

mem m1(i1,w_val1);
neuron n1 (clk,in1,w_val1,out_n1);
mem m2(i2,w_val2);
neuron n2 (clk,in2,w_val2,out_n2);

mem m3(i3,w_val3);
neuron n3 (clk,in3,w_val3,out_n3);

mem m4(i4,w_val4);
neuron n4 (clk,in4,w_val4,out_n4);

mem m5(i5,w_val5);
neuron n5 (clk,in5,w_val5,out_n5);

mem m6(i6,w_val6);
neuron n6 (clk,in6,w_val6,out_n6);

mem m7(i7,w_val7);
neuron n7 (clk,in7,w_val7,out_n7);

mem m8(i8,w_val8);
neuron n8 (clk,in8,w_val8,out_n8);

relu R1(out_1,out_2,out_n1,out_n2,out_n3,out_n4,out_n5,out_n6,out_n7,out_n8);

assign out_main1 = out_1; assign out_main2 = out_2;

endmodule

61

	Abstract
	List of Principal Symbols and Acronyms
	List of Tables
	List of Figures
	Introduction
	 Neuron and Neural Network
	 Artificial Neuron and Artificial Neural Network
	Applications of Artificial Neural Network
	Chip Design for NNs
	NNs as Co-Processor
	Aims and Objectives

	Review of Neural Network Architectures
	Review of Adder Design
	Comparison of Adders on Basis of Area, Power, and Delay

	Review of Multiplier Design
	Comparative Analysis of Several Multipliers

	Review of Activation Function Design
	Activation Functions for Neural Networks
	ReLU, Linear Saturated, and Other Activation Functions: Comparisons
	Conclusion for Activation function design
	Comparison of ReLU and Sigmoid

	Review of Neural Networks Design
	Artificial Neural Networks
	Energy-Efficient VLSI Architectures
	Memory Organization Techniques
	Algorithmic Innovations
	Impact on Real-World Applications
	Conclusions for Neural Network Design

	Implementation of Neural Network Architectures
	Implementation of Adder
	Implementation of Multiplier
	Implementation of SISO NN Architecture
	Implementation of MISO NN Architecture
	Implementation of MIMO NN Architecture

	Neural Networks Layout
	Design Flow
	Design Tools
	Details of Tools Used
	OpenLANE
	OpenLANE Configuration Variables
	Required Configuration Variables
	Optional Configuration Variables
	Details of Configuration Variables

	Tape-Out Details
	Tape-Out
	Comparison with Published Work

	Conclusion
	References

