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Abstract

Image super-resolution (SR) techniques are widely used in various domains to
enhance the resolution of low-resolution images, producing visually appealing
high-resolution versions. However, regarding medical images, SR methods must
produce precise results. Therefore, a thorough evaluation of the performance of
different SR methods on various tissues is essential to determine their suitability.

In particular, evaluating SR methods on region-specific organs, such as the
lung, liver, and kidney in CT scans and brain in MRI scans, is essential. When
these organs are individually enhanced using Bi-cubic interpolation and Modified-
ESPCN methods, along with standard evaluation metrics like Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index (SSIM), it is observed that SR
methods exhibit inferior performance on most individual regions of interest com-
pared to the entire image. This difference in performance can lead to misleadingly
high results when evaluated over the entire image, which includes irrelevant non-
tissue regions.

We propose using a tissue-specific model incorporating a region-based loss
function to overcome this limitation. This approach allows for a more accurate
and informative evaluation of SR methods in the context of tissue-specific perfor-
mance analysis for CT images.

Keywords: image super-resolution, SSIM, ESPCN model, region-of-interest, CT Scan,
MRI, tissue-specific
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CHAPTER 1

Introduction

Super-resolution is a critical process in which low-resolution (LR) images are en-
hanced to obtain high-resolution (HR) versions. The demand for high-resolution
images in various fields, including medical imaging, has spurred extensive re-
search. However, medical images pose unique challenges that require special-
ized approaches. Unlike natural images, medical images lack a canonical orienta-
tion, and pre-trained models based on real-world images may generate unrealistic
patterns that affect clinical interpretation and diagnosis. This chapter introduces
the research topic, aiming to address the limitations of existing super-resolution
methods and improve the quality of super-resolved medical images for accurate
diagnosis. The chapter presents the background of super-resolution, highlights
the importance of high-resolution medical images, and discusses the challenges
specific to the medical imaging domain. Additionally, it outlines the motivation
for the research, emphasizing the need for specialized techniques that preserve
high-frequency information and textural details in the region of interest (ROI)
while excluding irrelevant regions. The organization of the thesis is also outlined,
providing a roadmap for the subsequent chapters.

1.1 Background

Super-resolution is a complex process that aims to predict a high-resolution (HR)
image from its low-resolution (LR) equivalent (SR). Various real-world applica-
tions require high-resolution images, such as medical imaging for clinical duties,
geographic information systems, security video monitoring, and fingerprint im-
age enhancement. However, the quality of the imaging hardware often limits the
resolution of the images. Therefore, super-resolution algorithms and techniques
have garnered much attention within the research community. These methods
allow us to obtain HR images from their LR counterparts without needing hard-
ware upgrades. However, super-resolution is an ill-posed problem, and the re-
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constructed SR image often needs more textural details. Deep Learning and Arti-
ficial Intelligence have significantly improved the performance of SR algorithms
for natural images.

Figure 1.1: Example of SR aiming to obtain HR image when given an LR image

Though, medical images pose unique challenges that require different approaches.
Unlike natural images, medical images do not typically include orientation, and
objects in medical photos have no canonical orientation. For example, tissue
slices in digital pathology photographs are placed on the glass without any pre-
determined alignment. Additionally, background tissues in a medical image can
have an orientation-dependent structure, while the anomalies themselves do not.
Therefore, pre-trained models based on real-world images may generate unreal-
istic patterns that can affect the clinical interpretation and diagnosis. [1]

In medical imaging, obtaining high-resolution (HR) images is paramount as
they provide vital physiological, functional, anatomical, and metabolic informa-
tion about patients. However, as with other imaging domains, hardware limita-
tions also exist in the medical field, resulting in the acquisition of low-resolution
(LR) images. Magnetic Resonance Imaging (MRI), Computed Tomography (CT)
and Ultrasound are the widely used imaging modalities in medical imaging. The
technical quality of the device and the conditions of the scan play an essential role
in acquiring a medical image. For instance, in MRI, higher spatial resolution leads
to longer scan time, less spatial coverage, and a worse signal-to-noise ratio (SNR).
One of the most commonly used imaging technologies for screening, diagnosis,
and image-guided intervention in the medical field is X-Ray computed tomogra-
phy (CT). However, as CT scanners use ionizing radiation, high radiation doses
harm the human body. Therefore, in clinical practice, CT scans are obtained at
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low doses of radiation.
One way to increase the resolution of CT images is by using more advanced

hardware components, which include a narrow focal spot size X-Ray tube, small-
pitch detector elements, and improved mechanical precision for CT scanning.
However, these hardware-based approaches are often expensive and can increase
radiation exposure, leading to genetic damage and potential cancer. Alternatively,
computational approaches can increase image resolution without upgrading the
hardware. Super-resolution techniques have shown promising results in over-
coming hardware limitations and increasing the spatial resolution of medical im-
ages.

Super-resolution (SR) has been a prominent research topic in image process-
ing. While SR can be applied in frequency and spatial domains, most research
has focused on the latter. Spatial domain approaches for converting LR images to
HR images include using interpolation techniques, such as bicubic interpolation.
Two common approaches for SR in the spatial domain are Multiple Image SR and
Single Image SR. While the former uses multiple LR images and a single target
HR image, the latter learns the mapping from a single LR image to the HR image
to construct the SR image. However, multiple image-based SR algorithms tend
to smooth out the images, losing important high-frequency information and tex-
tural details crucial for medical imaging. Deep learning-based approaches have
recently shown significant improvement in Single Image SR due to increased com-
putational power and availability of big data. This is particularly important for
medical imaging, where retaining high-frequency information and textural details
is crucial to avoid misdiagnosis.

1.2 Motivation

Medical images are unique and different from real-world images due to the spe-
cific region of interest (ROI) that they typically have. Other organs/tissues and a
constant pixel background accompany the ROI. Super-resolution techniques ap-
plied to medical images should be evaluated to exclude non-important regions
and backgrounds, as the enhancement effects can vary across different parts of the
image. The inclusion of irrelevant regions in the evaluation of super-resolution
metrics can lead to inaccurate results. These differences in medical images em-
phasize the need for specialized super-resolution techniques that can enhance the
ROI and preserve the high-frequency information and textural details crucial in
medical diagnosis.
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Our current work primarily evaluates the performance of Super Resolution
(SR) methods, including Bicubic interpolation and Modified Efficient Sub-Pixel
Convolution Network (Modified ESPCN), in specific tissue regions. We are us-
ing standard loss functions for our analysis: Mean Squared Error (MSE) Loss
and Structural Similarity Index (SSIM) Loss with the Modified ESPCN model.
In order to assess the efficiency of these techniques, we are utilizing popular met-
rics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM). These metrics rely on a complete reference image for evaluation and are
commonly used for natural images but may not be suitable for medical images.
Medical images often have a constant pixel intensity in the background, which
contains low-frequency information and may be redundant. Therefore, retaining
this information is relatively easy for deep learning (DL) methods. So, calculating
the metric score over the entire image will yield a higher score which is spurious.
Therefore, this will not give an accurate evaluation of SR methods. We compared
the localized results with the complete image results to prove this hypothesis. We
have also proposed a custom loss-based Deep Learning (DL) approach to address
the limitations of the current SR methods and improve the performance in local-
ized regions, aiming to improve the super-resolved image quality and assist in
accurate diagnosis.

1.3 Organization of thesis

The thesis is organized as follows:
Chapter 2 provides an overview of the fundamental aspects of image super-

resolution. It includes a detailed explanation of image super-resolution methods,
types, processes, and metrics used for evaluation.

Chapter 3 presents a literature survey of related works in the field of image
super-resolution, with a specific focus on medical image super-resolution.

Chapter 4 explores the methodology used for conducting experiments. This
includes the description of the datasets used, preprocessing steps, model architec-
ture, and the usage of evaluation metrics.

Chapter 5 discusses the experimental setup and implementation details, ac-
companied by supporting results.

Chapter 6 analyzes the observations derived from the results and provides a
comprehensive discussion of their implications. The chapter concludes the work
undertaken and outlines future directions for research.
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CHAPTER 2

Fundamentals

This chapter provides an overview of image super-resolution, which is the task of
enhancing the spatial resolution of low-resolution images. It explains the goal
of recovering high-frequency components and fine textures lost during image
acquisition or downscaling. The chapter introduces the concept of degradation
functions and discusses the challenges in accurately modeling them. It covers dif-
ferent scenarios, focusing on single-image super-resolution and presents various
techniques including interpolation-based, sparse representation-based, and deep
learning-based methods. The importance of evaluation metrics such as PSNR and
SSIM for assessing the performance of super-resolution algorithms is also empha-
sized.

2.1 Image Super Resolution

Image super-resolution (SR) is a critical task in the field of computer vision that
aims to enhance the spatial resolution of a given low-resolution (LR) image to gen-
erate a high-resolution (HR) image with finer details. The goal is to recover the
high-frequency components and fine textures lost during the image acquisition
or downscaling. Image super-resolution has widespread applications in various
domains, including medical imaging, surveillance systems, remote sensing, and
digital photography. This chapter provides an overview of the fundamental con-
cepts and techniques used in image super-resolution.

Let us consider an LR image denoted as y ∈ Rm×n and its corresponding HR
counterpart denoted as x ∈ RM×N, where M > m and N > n. Image super-
resolution aims to estimate the HR image, x′, from the given LR image, y, using
appropriate algorithms and techniques. The process involves reconstructing the
missing high-frequency details to produce a visually appealing and perceptually
realistic HR image.

The LR image is obtained by a downscaling operation from the HR image.
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To describe the relationship between these images, we can define a degradation
function F, as expressed in Equation 2.1.

y = F(x; θη) (2.1)

The above equation introduces the parameter θη as the degradation parameter.
While, in theory, this parameter can represent various factors such as noise, it is
not practically feasible to accurately model such a degradation function with a
single parameter. We assume that this degradation parameter contributes to the
reduction in quality of the high-resolution image x, resulting in the generation
of a low-resolution image y. However, in reality, we are presented with a low-
resolution image y, and our goal is to develop a Super-Resolution method that
effectively enhances its quality and reconstructs the high-resolution image x.

Single-image super-resolution (SISR) is the most common scenario where only
a single LR image is available for the super-resolution task. SISR aims to estimate
an HR image visually similar to the ground truth HR image. The problem can be
formulated as follows:

x′ = F−1(y; θζ) (2.2)

The parameters θζ in the function F−1 represent the parameters of the super-
resolution method. The resulting image, denoted as x′, approximates the high-
resolution image x. While obtaining the exact image x is an ideal scenario, it
is not a practical approach. The equations presented above outline the overall
concept of the super-resolution task, which aims to develop an approximation
method to obtain a high-resolution image. However, the degradation process is
highly intricate and not fully understood. It involves several parameters, such
as blurring, scaling, noise, and other factors. The mapping function F−1 can be
realized using various techniques, including interpolation-based methods, sparse
representation-based methods, and deep learning-based methods.

Interpolation-based methods aim to increase the resolution of the LR image
by introducing additional pixels between the existing pixels. These techniques
utilize simple mathematical operations to estimate the missing high-frequency
details. Bilinear interpolation, bicubic interpolation, and Lanczos interpolation
are commonly used interpolation methods. However, these methods need more
fine details due to the limited information in the LR image.

Sparse representation-based methods leverage the assumption that a linear
combination of a dictionary of HR patches can sparsely represent HR patches.
These methods seek a sparse representation of LR patches in the HR dictionary
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and use this representation to estimate the HR image. One popular sparse representation-
based method is the sparse coding-based super-resolution algorithm.

Deep learning-based methods have significantly succeeded in various com-
puter vision tasks, including image super-resolution. These methods utilize deep
neural networks to learn the mapping function between LR and HR images di-
rectly from a large set of training pairs. The most popular architecture in deep
learning-based super-resolution is the convolutional neural network (CNN). The
CNN architecture consists of multiple convolutional layers for feature extraction
and reconstruction. One example is the Super-Resolution Convolutional Neural
Network (SRCNN), one of the simplest CNN for SR and consists of three main
layers: the patch extraction layer, the non-linear mapping layer, and the recon-
struction layer. The objective is to learn the optimal parameters of the network
to minimize the reconstruction error between the estimated HR image and the
ground truth HR image.

Several evaluation metrics are commonly used to evaluate the performance
of super-resolution algorithms. These metrics compare the estimated HR image,
ĤR, with the ground truth HR image, HR, and provide objective measures of the
quality of the super-resolved image.

PSNR measures the quality of the estimated HR image by computing the ratio
of the maximum possible pixel intensity to the mean squared error (MSE) between
the ĤR and HR images.

SSIM evaluates the structural similarity between the estimated and ground
truth HR images. It considers luminance, contrast, and structural information.
The SSIM index ranges from 0 to 1, with a value of 1 indicating an exact match.
SSIM consists of three components – luminance, contrast, and structure.

2.2 Efficient Sub-Pixel Convolutional Network

There are certain limitations associated with convolutional neural network (CNN)
approaches, such as SRCNN, FSRCNN, and VDSR. Firstly, these CNN-based meth-
ods require the utilization of interpolation techniques like bicubic interpolation to
upscale the low-resolution (LR) image. Secondly, these approaches perform the
upscaling operation either before or at the initial layer of the network. In essence,
the CNN-based approach directly applies the convolutional neural network to
the upsampled LR image, leading to increased computational complexity and in-
creased memory requirements.

ESPCN tackles these issues by incorporating an efficient sub-pixel convolu-
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tional layer into the CNN network architecture. Unlike previous methods, ESPCN
performs the upscaling operation at the very end of the network. Consequently,
the LR image of smaller dimensions is directly inputted into the network, elimi-
nating the need for interpolation techniques. This approach allows the network to
learn a more accurate LR to HR mapping compared to the conventional method
of upscaling with interpolation filters prior to network input. ESPCN can utilize
smaller filter sizes to extract relevant features by working with the reduced input
image size. As a result, the computational complexity and memory requirements
are significantly reduced, enhancing overall efficiency.

Figure 2.1: ESPCN Model
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Figure 2.1 illustrates the network architecture of ESPCN where B represents
the batch size, C represents the channel size, N represents the image size, and r
represents the upscale factor. The conv2d refers to the convolutional layer with
parameters (cin, cout, kernel size, stride, padding). Additionally, tanh denotes the
tanh activation function, while sigmoid represents the sigmoid activation func-
tion. Finally, PixelShuffle corresponds to the Sub-Pixel Convolution Layer. As-
suming that the network consists of L layers, the initial L-1 layers are convolu-
tional layers responsible for extracting feature maps from the input LR images.
The final layer, known as the efficient sub-pixel convolutional layer, is specifically
designed to restore the output image size based on a predetermined upscale fac-
tor.

The sub-pixel convolution technique can be utilized in super-resolution (SR)
models to generate high-resolution images. Unlike traditional deconvolution meth-
ods that involve padding with zeros, sub-pixel convolution avoids the need for
padding. Instead, it employs pixel shuffle at the final layer of the network to re-
construct the LR image. This process combines each pixel from multiple-channel
feature maps into a square area in the output image, resulting in each pixel on
the feature maps representing a sub-pixel on the final generated output image.
Sub-pixel convolution comprises two key steps: a regular convolution operation
and pixel rearrangement. The network’s last layer must have an output channel
of C × r × r where C is the channel size and r is the upscale factor to ensure the
total number of pixels matches the desired high-resolution image. In the ESPCN
network, the convolutional layers implicitly learn the interpolation process, elim-
inating the need for explicit interpolation methods. Furthermore, since the con-
volution operations are performed on smaller LR images, the network achieves
greater efficiency. The decision to choose ESPCN from all available CNN mod-
els and modify it for our analysis due to advantages like reduced computational
complexity and implicit learning of interpolation.

Chapter Summary

The chapter provided an overview of image super-resolution, which aimed to en-
hance the spatial resolution of low-resolution images. It discussed the primary
objective of recovering high-frequency components and fine textures that may
have been lost during image acquisition or downscaling. The chapter explored
fundamental concepts, including degradation functions and the challenges as-
sociated with accurately modeling them. It presented different scenarios such
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as single-image super-resolution and delved into various techniques, including
interpolation-based, sparse representation-based, and deep learning-based ap-
proaches. The chapter also highlighted the importance of evaluation metrics such
as PSNR and SSIM for assessing the performance of super-resolution algorithms.
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CHAPTER 3

Literature Review

The Literature Review chapter comprehensively overviews conventional and deep
learning-based image super-resolution techniques. Conventional methods, such
as Bayesian frameworks, sparse representation, and multi-frame fusion, have sig-
nificantly contributed to the field. Deep learning approaches, particularly Convo-
lutional Neural Networks (CNNs), have gained prominence in both Single Image
Super-Resolution (SISR) and Multiple Image Super-Resolution (MISR). Pioneer-
ing models like SRCNN, VDSR, RDN, and SRGAN have demonstrated improved
performance in enhancing image resolution. The chapter further focuses on ap-
plying these techniques in medical imaging, particularly in MRI and CT, high-
lighting the challenges and advancements in synthesizing high-resolution medi-
cal images.

3.1 Conventional Image Super Resolution

Various conventional methods have been extensively studied and have signifi-
cantly contributed to the image super-resolution field. One unique approach in-
troduced by Huang et al. [2] employed a Bayesian framework with a statistical
prior based on maximum a posteriori estimation, demonstrating promising re-
sults. Another effective method by Yang et al. [3] utilized sparse representation,
employing an over-complete dictionary to represent low-resolution images and
recovering high-resolution details through sparse coding.

In the domain of image denoising and super-resolution, Buades et al. [4] pro-
posed a non-local means filter, which was further extended by Darbon et al. [5]
to enhance high-frequency details during the upsampling process by leveraging
self-similarity in images. Multi-frame image super-resolution techniques have
also garnered attention, such as the work by Farsiu et al. [6], where multiple low-
resolution images of the same scene were registered and fused to generate a high-
resolution output.
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Example-based learning approaches have demonstrated their effectiveness in
image super-resolution. Freeman et al. [7] introduced a statistical method that
learned a mapping between low-resolution and high-resolution image patches
using an extensive training set, facilitating the reconstruction of high-frequency
details. Additionally, methods based on total variation (TV) regularization has
been proposed, such as the work by Elad et al. [8], which incorporated TV con-
straints to encourage piecewise smoothness in the reconstructed high-resolution
images.

3.2 Deep Learning based Image Super Resolution

Image super-resolution techniques can be categorized into two main classes: Sin-
gle Image Super-Resolution (SISR) and Multiple Image Super-Resolution (MISR).
Chen et al. [9] extensively review real-world SISR, covering essential datasets, as-
sessment metrics, and effective methods in this domain. The authors emphasize
the significance of super-resolution in improving image quality and highlight the
advancements facilitated by deep learning approaches.

In the context of SISR, Convolutional Neural Networks (CNNs) have gained
prominence. Dong et al. [10] introduce the Super-Resolution Convolutional Neu-
ral Network (SRCNN), among the pioneering methods to utilize deep learning for
SISR. The SRCNN successfully enhances single images, leveraging its three-layer
architecture. Building upon this foundation, researchers have proposed more ef-
fective and deeper architectures. Kim et al. [11] extend the network depth with the
Very Deep SR (VDSR) model, which incorporates additional convolutional layers
and residual learning to enhance the performance of SISR further.

Zhang et al. [12] propose the Residual Dense Network (RDN) to extract hierar-
chical features and improve the overall outcome of SISR. By incorporating dense
residual connections after residual learning, the RDN achieves superior results.
Ledig et al. [13] introduce the SRGAN approach, employing Generative Adver-
sarial Networks (GANs) to generate perceptually pleasing super-resolution im-
ages. However, it is worth noting that GAN-based models with excessively deep
architectures may produce artefacts or textures that lack authenticity.

In the case of MISR, Kawulok et al. [14] highlight the benefits of information
fusion, which enables higher reconstruction accuracy. They introduce a novel
method that combines multiple-image fusion with deep network-based learn-
ing, allowing for mapping low-resolution images to high-resolution counterparts.
These techniques have found applications in general image processing and have
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proven helpful in the medical domain for enhancing medical images.

3.2.1 Medical Image Super Resolution

Image super-resolution (SR) in medical imaging is a well-studied specialized field,
particularly in Magnetic Resonance Imaging (MRI) and Computed Tomography
(CT). A technical review by Prince et al. [15] provides comprehensive insights
into medical image super-resolution, covering various techniques and approaches
used in the field. The review discusses the challenges and advancements in syn-
thesizing high-resolution medical images. Yamashita and Markov [16] conducted
a review focusing on medical image enhancement using super-resolution meth-
ods. The study explores different techniques and algorithms used to improve
the resolution of medical images, highlighting their applications and effective-
ness. Isaac and Kulkarni [17] presented a study on super-resolution techniques
for medical image processing. The authors discussed various methods used to
enhance the resolution of medical images, including interpolation-based tech-
niques, patch-based methods, and deep-learning approaches. They provide in-
sights into the strengths and limitations of different approaches and highlight the
challenges specific to medical image super-resolution. Yu et al. [18] proposed a
CNN-based approach for super-resolution of single and multiple slice CT images.
Their method utilizes residual learning, leveraging the power of deep neural net-
works to reconstruct high-resolution CT scans. Rajeshwari and Shyamala [19] fo-
cused on super-resolution of chest CT images using deep-learning network mod-
els. They applied deep learning techniques, specifically convolutional neural net-
works (CNNs), to enhance the resolution of chest CT scans. Umehara et al. [20]
investigated the application of super-resolution convolutional neural networks
for enhancing image resolution in chest CT. Their study focused on developing a
network architecture tailored to chest CT images. Kolarik et al. [21] proposed an
unbalanced 3D Dense-U-Net network for super-resolution of MRI brain images.
Their study focused on developing a specialized network architecture that gen-
erates high-resolution MRI brain images. Recently, convolutional neural network
(CNN)-based approaches have been increasingly used for medical image SR ap-
plications in different imaging modalities, e.g. MRI, CT, X-ray, fundoscopy and
histopathological images and showed impressive performance. [22]

Most of the literature on medical radio imaging has evaluated SR methods by
measuring the similarity metrics over entire images [22], [20] - [23]. In contrast,
in the present work, we aimed to look at tissue or region-specific analysis of the
performance measure, which are PSNR and SSIM for SR approaches like Bicubic
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interpolation and Modified-ESPCN deep learning model.

Chapter Summary

The Literature Review chapter provided an overview of studies on image super-
resolution methods, with a specific focus on their application in medical imaging.
It extensively discussed the advancements in the field using Convolutional Neu-
ral Networks (CNNs) for both Single Image Super-Resolution (SISR) and Multiple
Image Super-Resolution (MISR). The chapter highlighted the significant progress
facilitated by deep learning approaches, including pioneering methods such as
SRCNN, VDSR, RDN, and SRGAN. It emphasized the application of these meth-
ods in medical imaging, addressing the challenges encountered and showcasing
their effectiveness in enhancing resolution in domains such as Magnetic Reso-
nance Imaging (MRI) and Computed Tomography (CT).
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CHAPTER 4

Methodology

In the methodology chapter, we address the challenges related to dataset avail-
ability, variations in imaging protocols, and the scarcity of expert-annotated masks
in medical imaging. We discuss the three publicly available datasets used in our
research: CT-ORG, COVID-19 CT Lung and Infection Segmentation and OSIC
Pulmonary Fibrosis Progression. Preprocessing steps were applied to standardise
the data, including down-sampling, scaling, and normalization. We present the
modified ESPCN model, incorporating additional convolutional layers and skip
connections, as our chosen architecture for image super-resolution. Finally, we de-
scribe the performance metrics used, namely Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM), to evaluate the quality and accuracy of the
reconstructed images.

4.1 Dataset and Pre-processing

During thesis work, we encountered several challenges related to datasets. One of
the primary issues was the scarcity and limited availability of high-quality medi-
cal imaging data. A considerable hurdle was obtaining a diverse and comprehen-
sive dataset for training and evaluation purposes. Due to privacy concerns and
institutional policies, access to large-scale, annotated medical image datasets was
restricted.

Furthermore, the dataset suffered from significant variations in imaging pro-
tocols and acquisition parameters. The medical images were acquired from dif-
ferent scanning devices, resulting in variations in image resolution, noise levels,
and contrast. This heterogeneity posed a challenge regarding data standardiza-
tion and normalization, as the images needed to be processed and appropriately
aligned to ensure consistent and reliable training. In addition, the presence of
noise and artefacts in the dataset, caused by patient motion or equipment limita-
tions, further complicated the training process.
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Another issue was that we needed the datasets with corresponding masks for
the particular organ or tissue for our analysis of tissue-specific regions. Mask
annotations in such medical datasets are usually done by expert radiologists sep-
arately. Such datasets with high-quality mask annotations by expert radiologists
for particular organs of our interest were very scarce.

After a great deal of research, we were able to procure three datasets across the
imaging modalities CT scan, for our purpose of analysis, which were:

• CT-ORG Dataset [24]

• COVID-19 CT Lung and Infection Segmentation Dataset [25]

• OSIC Pulmonary Fibrosis Progression Dataset [26]

These datasets we utilized were publicly available and consisted of three-dimensional
volumes, that is, CT scans of patients. This three-dimensional nature allowed us
to slice the volumes as needed for our analysis. Moreover, these datasets included
tissue masks labelled alongside the images or separately provided by expert radi-
ologists. These tissue masks were crucial for our research as they helped identify
and isolate specific organs or tissues for further analysis.

Most studies evaluated the SR methods for down-sample factors x2, x3 or
x4 [27] [15] [16] [17]. We applied down-sampling to the slices for all the datasets
using scaling factors 2, 3, and 4. This down-sampling process involved reduc-
ing the resolution of high-resolution (HR) slices to obtain corresponding low-
resolution (LR) slices. By down-sampling the HR slices by x2, x3, and x4 factors,
we created LR slices that served as input for various super-resolution methods.
This approach allowed us to simulate different levels of image degradation and
evaluate the super-resolution techniques’ performance in enhancing the image’s
resolution and quality.

We also performed preprocessing on the slices of all the datasets, which usu-
ally involved appropriate scaling and normalization techniques. This step aimed
to standardize the pixel values and ensure consistency across the dataset. Scal-
ing was applied to adjust the pixel intensities to a desired range, typically be-
tween 0 and 1. Normalization refined the data by centring the pixel values around
zero and scaling them to a standard deviation of 1. The slices were also centre-
cropped to maintain uniformity before applying super-resolution methods for all
the datasets. By applying these preprocessing techniques, we aimed to mitigate
variations in pixel intensities that could arise from different acquisition settings
and scanner sensitivities. This helps to enhance the comparability and generaliz-
ability of the data, facilitating more effective analysis and training of deep learn-
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ing models for our super-resolution tasks. More details about each of the datasets
are mentioned below.

4.1.1 CT-ORG

CT-ORG dataset comprises imaging data obtained from publicly available data
and data collected from Stanford Healthcare. The dataset also consists of labelled
masks annotated by experts. The dataset consists of 140 CT scans with each slice
of shape 512x512 pixels in the scans and having annotations for five organs in
three-dimensional space: lung, bones, liver, kidneys, and bladder. While a subset
of the scans also includes brain annotations, we excluded them in our analysis
because of fewer annotations.

Different CTs had different spatial resolutions. Most CTs have a spatial resolu-
tion higher than one mm in an axial plane. Therefore, each CT was resized using
Bicubic interpolation to make one mm spatial resolution in the axial plane. Using
this dataset, we evaluated the SR methods for the down-sample factor of x4. To
evaluate various super-resolution methods, we later down-sample the CT slices
by factors of 2, 3 and 4, followed by preprocessing steps.

4.1.2 COVID-19 CT Lung and Infection Segmentation (CLIS)

COVID-19 CT Lung and Infection Segmentation (CLIS) dataset consist of 20 CT
scans, with each slice having a height and width of 512. They are labelled for lung
segmentation and infection detection. The labelling process involved two radi-
ologists assigning labels to the left lung, right lung, and areas of infection within
the scans, which an experienced radiologist further verified. This dataset does not
present any challenges related to different spatial resolutions. Therefore, the axial
slices can be directly utilized for our work without additional adjustments.

Similar to the CT-ORG dataset, we applied down-sampling to the CT slices for
our analysis. The down-sampling was performed by a factor of 2, 3, and 4 on the
CT slices from the dataset. These down-sampled slices, after preprocessing, were
then utilized as inputs for various super-resolution methods.

4.1.3 OSIC Pulmonary Fibrosis Progression (OSIC)

The Pulmonary Fibrosis Progression Dataset was provided by the Open Source
Imaging Consortium (OSIC) as part of a Kaggle-administered the competition AI
competition aimed at predicting lung function decline in individuals with pul-
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monary fibrosis. This dataset comprises chest CT scans and associated clinical
information for a group of patients. Precisely, the dataset consists of a total of 200
CT scans in DICOM format [28].

Dr. Konya [29] has manually annotated lung masks for 110 scans from the
dataset, which does not originally include organ masks. These annotations were
done separately for slices with a height of 512 and width of 512. This dataset was
also downsampled by a factor of 2, 3 and 4 to evaluate SR approaches followed
by scaling and normalization of the data.

4.2 Model Architecture

Several CNN-based approaches have been proposed for image super-resolution
tasks in the reviewed literature. The most commonly employed deep learning
architectures include Super-Resolution Convolutional Neural Network (SRCNN),
Efficient Sub-Pixel Convolutional Network (ESPCN), Very Deep Super Resolution
Model (VDSR), and Super Resolution Generative Adversarial Network (SRGAN).
Given that our research focuses on analyzing the tissue-specific performance of
super-resolution techniques and aiming to enhance their capabilities, we selected
and modified the ESPCN model for implementation as it is a lightweight and
resource-efficient CNN architecture [30].

To further improve the classical ESPCN model, we modified it by incorporat-
ing two additional convolutional layers and integrated skip connections within
our modified implementation as illustrated by Figure 4.1. The additional convo-
lutional layers can capture more complex and high-level features from the input
data. This deeper representation allows the model to learn and exploit more intri-
cate patterns and details. Adding more convolutional layers allows the modified
model to have a larger receptive field, enabling it to consider a broader context
when making predictions. Including skip connections allow for direct connec-
tions between layers at different depths. This0 facilitates the flow of information
from earlier layers to later layers, enabling the model to access both low-level and
high-level details simultaneously. By preserving and reusing information from
shallower layers, the modified model can retain important image characteristics
and prevent information loss during the up-sampling process.
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Figure 4.1: Modified ESPCN Architecture
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4.3 Performance Metrics

Performance metrics play a crucial role in evaluating the effectiveness of image
super-resolution techniques. These metrics quantify the quality of the generated
high-resolution images by comparing them with the ground truth or reference
images. Two widely used metrics for evaluating super-resolution performance
are Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM).

In the field of super-resolution tasks, it is common practice to utilize both
the PSNR (Peak Signal-to-Noise Ratio) and the SSIM (Structural Similarity In-
dex) metrics in conjunction to evaluate the performance of various algorithms.
These metrics provide complementary insights into different aspects of the recon-
structed images. The combination of PSNR and SSIM allows us to evaluate the
performance of super-resolution methods from multiple perspectives, consider-
ing both quantitative accuracy and perceptual quality.

4.3.1 Peak Signal-to-Noise Ratio (PSNR)

The Peak Signal-to-Noise Ratio or PSNR metric is commonly used to assess the
quality and fidelity of the reconstructed high-resolution images. PSNR quantifies
the level of distortion or error between the reconstructed and the ground truth
image, providing a numerical measure of the reconstruction accuracy.

The calculation of PSNR relies on the Mean Squared Error (MSE), which quan-
tifies the average squared error between the pixel values of the reconstructed im-
age and the corresponding pixel values of the ground truth image. The MSE is
mathematically defined as:

MSE =
1

m · n

m−1

∑
i=0

n−1

∑
j=0

(I(i, j)− T(i, j))2 (4.1)

where I(i, j) and T(i, j) represent the pixel values of the reconstructed image
and the ground truth image at the (i, j) location, respectively, and m and n are the
dimensions of the images.

PSNR is then calculated as follows:

PSNR = 10 · log10

(
max2

MSE

)
(4.2)

where max is the maximum possible pixel value of the images. For example,
for 8-bit images, the maximum pixel value is 255.

The PSNR value is expressed in decibels (dB). A higher PSNR value indicates a

20



smaller distortion between the reconstructed and ground truth images, implying
better reconstruction quality. Conversely, a lower PSNR value indicates a higher
level of distortion or error in the reconstructed image.

It is important to note that PSNR has some limitations. It primarily focuses
on pixel-wise errors and does not capture the perceptual quality of the images.
Therefore, two images with similar PSNR values may appear different to the hu-
man eye. Additionally, PSNR is sensitive to changes in image resolution and scal-
ing. Hence, it is advisable to use PSNR with other metrics, such as Structural
Similarity Index (SSIM), to comprehensively evaluate image super-resolution per-
formance.

4.3.2 Structural Similarity Index (SSIM)

The Structural Similarity Index or SSIM metric is widely used to evaluate the
quality and similarity between the reconstructed high-resolution images and the
ground truth images. SSIM considers structural information and perceptual simi-
larities, offering a more comprehensive assessment of the reconstruction accuracy.

SSIM measures three components of image similarity: luminance (l), contrast
(c) and structure (s).

• Luminance Component: The luminance component evaluates the similarity
in terms of brightness and intensity between the reconstructed and ground
truth images. It is computed using the mean values of the image pixels.

• Contrast Component: The contrast component measures the similarity in
terms of the image contrast or the difference in intensity levels. It is calcu-
lated based on the standard deviations of the pixel values in the images.

• Structure Component: The structure component assesses the similarity of
the image structure or the arrangement of edges and textures. It is deter-
mined using the covariance of the pixel values in the reconstructed and
ground truth images.

The SSIM index is calculated on various windows of an image. The measure
between two windows x and y of common size N × N based on the individual
component functions are:

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
(4.3)
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c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
(4.4)

s(x, y) =
σxy + c3

σxσy + c3
(4.5)

SSIM is a weighted combination of :

SSIM(x, y) = l(x, y)α · c(x, y)β · s(x, y)γ (4.6)

Setting the weights α, β, γ to 1 and c3 = c2
2 the formula can be reduced to:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(4.7)

where:

µx is the pixel sample mean of x;

µy is the pixel sample mean of y;

σ2
x is the variance of x;

σ2
y is the variance of y;

σxy is the covariance of x and y;

c1 = (k1L)2, c2 = (k2L)2 are two variables to stabilize the division;

L is the dynamic range of the pixel-values (typically 2#bits per pixel − 1);

k1 = 0.01 and k2 = 0.03 by default.

Equation 4.7 is the final mathematical formula for calculating the similarity
between two images. The SSIM value ranges between 0 and 1, where 1 indi-
cates a perfect image similarity. A higher SSIM value implies a greater structural
similarity between the reconstructed and ground truth images, indicating better
reconstruction quality. [31]

Unlike the Peak Signal-to-Noise Ratio (PSNR) metric, which focuses primarily
on pixel-wise errors, SSIM considers the structural and perceptual aspects of the
images. This makes SSIM a valuable metric for assessing visual quality and image
similarity.
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4.4 Usage of metrics

To compute the Structural Similarity Index (SSIM), we utilized the SSIM func-
tion provided by the scikit-image Python library. We made customizations to the
function to access the individual components of SSIM, including luminance (l),
contrast (c) and structure (s) values. We employed a window size 11x11 for com-
puting the local pixel-wise SSIM map between the reconstructed super-resolution
(SR) images and the ground truth high-resolution (HR) images.

For our evaluation, we calculated the Peak Signal-to-Noise Ratio (PSNR) and
SSIM scores for the entire CT slice. We also determined the PSNR and SSIM scores
for specific tissues within the CT slices. To compute tissue-specific PSNR and
SSIM scores, we averaged these metrics over the pixels belonging to a particu-
lar tissue. This was achieved by utilizing tissue-specific masks, allowing us to
focus the evaluation on the performance of super-resolution methods for individ-
ual anatomical structures.

By employing these customized calculations and tissue-specific evaluations,
we obtained a comprehensive understanding of the performance of the super-
resolution techniques not only for the entire CT slice but also for specific tissue re-
gions of interest. This approach provided valuable insights into the effectiveness
of the methods in enhancing image quality and details for different anatomical
structures within medical images.

Chapter Summary

In this chapter, we delved into the datasets utilized for our research on super-
resolution analysis. The scarcity and heterogeneity of high-quality datasets posed
obstacles, and expert-annotated masks for tissue-specific regions were limited.
We procured four publicly available datasets, consisting of CT and MRI scans
with corresponding tissue masks. Preprocessing steps were employed, includ-
ing down-sampling, scaling, and normalization, to standardize the data. We se-
lected the modified ESPCN model for implementation, which incorporated addi-
tional convolutional layers and skip connections. Performance evaluation utilized
PSNR and SSIM metrics for the entire slices and tissue-specific regions, providing
insights into the effectiveness of the super-resolution techniques.

23



CHAPTER 5

Experiments and Results

In this chapter, we present the experiments conducted and the corresponding re-
sults obtained. We rescaled the image intensity of the dataset and trained two
models using different loss functions: mean square error (MSE) and structural
similarity index metric (SSIM). Evaluations were performed using four super-
resolution approaches, including bicubic interpolation and three deep learning-
based methods. The results demonstrate that the Modified ESPCN approach
with SSIM loss outperformed other methods, and our custom mean squared error
(Custom MSE) loss function improved resolution for tissue regions. Comprehen-
sive assessments using peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) scores were conducted for all scale factors, revealing the most effec-
tive approach for enhancing image resolution.

5.1 Experiments

Before training and testing, the image intensity of the dataset was re-scaled to a
range between zero and one. The training process involved training the model for
a total of 100 epochs, with each epoch consisting of five steps. Each training step
utilized a batch size of 16 CT slices. Within each step, 16 CT slices were randomly
selected from a CT volume randomly chosen from the training dataset.

Adam optimizer with a learning rate 0.001 was used. The training was per-
formed on a workstation equipped with an Intel(R) Xeon(R) Silver 4214R CPU
operating at 2.40GHz and an NVIDIA GeForce RTX 2080ti GPU featuring 11GB of
RAM. This computational setup provided the necessary resources for the training
process.

Two distinct models were trained, each employing a different loss function.
The first model utilized the mean square error (MSE) loss function, while the sec-
ond model incorporated the structural similarity index metric (SSIM) loss [18]. By
training multiple models with different loss functions, we aimed to explore and

24



compare their respective performances in the context of image super-resolution.
In our experiments, we conducted evaluations using four super-resolution ap-

proaches across all the datasets. As a baseline, we employed the conventional
bicubic interpolation method. Additionally, we utilized three deep learning-based
methods, all trained on a modified ESPCN architecture with varying loss func-
tions. The first deep learning method employed the mean squared error (MSE)
loss function, while the second incorporated the structural similarity index (SSIM)
loss. These two methods served as established approaches commonly used in the
literature.

In addition, we proposed a custom mean squared error (Custom MSE) loss
function to address the limitations observed in existing super-resolution tech-
niques, particularly their poor performance in enhancing tissue regions compared
to complete images. Our custom loss function was explicitly designed to improve
the super-resolution results for tissue regions, often the regions of interest in many
medical imaging applications. By incorporating this custom loss function, we
aimed to achieve better outcomes and enhance the resolution of specific tissue
regions, ultimately improving the overall performance of our proposed method.

For all four methods, including bicubic interpolation, MSE, SSIM, and Custom
MSE, we reported the peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) scores. These metrics were computed for all scale factors, including
2x, 3x, and 4x, providing a comprehensive assessment of each method’s perfor-
mance across different image magnification levels. By utilizing these four distinct
methods and evaluating them using PSNR and SSIM scores, we could compare
their effectiveness and determine the most suitable approach for enhancing the
resolution of the images across various datasets.

5.2 Results

Initially, we present the findings of our experiment conducted on the CTORG
dataset, which substantiate our hypothesis that distinct tissues possess unique
structural information, leading to varied performance of super-resolution meth-
ods.

Table 5.1 shows that the application of the Modified-ESPCN approach with
SSIM loss exhibited a significantly higher PSNR and SSIM score for all regions
compared to MSE loss for both Bicubic interpolation and the Modified-ESPCN
approach. Notably, the PSNR and SSIM scores were significantly higher for the
entire image than for the tissue-only region. Additionally, there were significant
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differences in PSNR and SSIM scores among various tissues, such as the liver,
bladder, lung, kidney, and bone. Specifically, the lung and bone tissues displayed
significantly lower PSNR and SSIM scores than the liver, kidney, and bladder.
Furthermore, the SSIM score for the structural component (S) was significantly
lower than the luminance (L) and contrast (C) components across regions for all
super-resolution methods, as summarized in Table 5.2.

Table 5.1: Region or tissue-specific comparison of performance metrics for CT
images.

Performance PSNR SSIM
Metrics →

Regions ↓ Bicubic Modified ESPCN
(MSE Loss)

Modified ESPCN
(SSIM Loss) Bicubic Modified ESPCN

(MSE Loss)
Modified ESPCN

(SSIM Loss)
Full Image 49.1 46.63 50.8 0.8 0.84 0.88
Tissue only 40.23 40.77 43.2 0.67 0.75 0.79

Liver 48.56 47.21 49.71 0.84 0.86 0.88
Bladder 48.12 46.36 49.51 0.83 0.85 0.87

Lung 39.82 40.3 43.39 0.63 0.72 0.77
Kidney 44.81 45.92 47.32 0.8 0.86 0.88

Bone 34.83 36.65 38.35 0.61 0.72 0.76

Table 5.2: Region or tissue-specific comparison of luminance(L), contrast(C) and
structure(S) of SSIM metric for CT images.

SR Bicubic Modified ESPCN Modified ESPCN
Methods (MSE loss) (SSIM loss)

Performance SSIM SSIM SSIM SSIM SSIM SSIM SSIM SSIM SSIM
Metrics → (L) (C) (S) (L) (C) (S) (L) (C) (S)
Regions ↓
Full Image 0.98 0.96 0.84 0.99 0.97 0.87 0.99 0.97 0.90
Tissue only 0.99 0.96 0.71 1.00 0.96 0.78 1.00 0.96 0.82

Liver 1.00 0.98 0.85 1.00 0.99 0.87 1.00 0.99 0.89
Bladder 1.00 0.99 0.85 1.00 0.99 0.86 1.00 0.99 0.89

Lung 0.98 0.93 0.68 0.99 0.96 0.75 1.00 0.94 0.81
Kidney 1.00 0.98 0.81 1.00 0.99 0.87 1.00 0.98 0.89

Bone 1.00 0.96 0.63 1.00 0.95 0.76 1.00 0.96 0.79

After effectively substantiating our hypothesis through the outcomes presented
in Table 5.1 and Table 5.2, we proceed to demonstrate the outcomes obtained from
our extensive datasets utilizing the newly devised custom loss function based on
local mean squared error (MSE) for various tissue types. The results have been
presented comprehensively, encompassing all relevant parameters. These param-
eters encompass various super-resolution methods at different scale factors. No-
tably, the scores have been computed for the entire image and different tissue
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regions. This methodology has been consistently applied throughout all the re-
ported results.

Based on the analysis of Table 5.3 and Table 5.4 for the CLIS dataset, it can
be observed that the Modified ESPCN model with Local MSE loss consistently
outperforms the Modified ESPCN model with MSE loss in terms of both PSNR
and SSIM metrics. This indicates the superior performance and effectiveness of
the Local MSE loss in improving the model’s results for the CLIS dataset.

Table 5.3: PSNR results for CLIS dataset

SR Methods

Scale Factor Regions Bicubic
Modified
ESCPN

(MSE Loss)

Modified
ESCPN

(Local MSE Loss)

Modified
ESCPN

(SSIM Loss)
2x Full Image 36.82 36.16 34.26 33.53

Lungs Only 31.99 31.99 31.27 26.79
3x Full Image 34.9 32.29 33.87 33.08

Lungs Only 29.86 27.99 28.69 26.37
4x Full Image 32.12 30.31 31.31 25.73

Lungs Only 26.07 25.81 26.33 24.99

Table 5.4: SSIM results for CLIS dataset

SR Methods

Scale Factor Regions Bicubic
Modified
ESCPN

(MSE Loss)

Modified
ESCPN

(Local MSE Loss)

Modified
ESCPN

(SSIM Loss)
2x Full Image 0.935 0.944 0.944 0.937

Lungs Only 0.918 0.922 0.942 0.917
3x Full Image 0.838 0.875 0.873 0.877

Lungs Only 0.777 0.781 0.783 0.791
4x Full Image 0.781 0.831 0.834 0.832

Lungs Only 0.683 0.696 0.698 0.701

Table 5.5 and Table 5.6 derived by experimentation on the OSIC dataset pro-
vide further support for our anticipated results. Specifically, the Modified ES-
PCN with Local MSE loss exhibits slightly superior performance compared to the
model using MSE loss. Notably, we observe significant improvements in the lung
region’s PSNR for the 4x scale factor when employing the Local MSE model, high-
lighting its superiority over the standard MSE model.

Table 5.7 and Table 5.8 derived by experimentation on the CTORG dataset pro-
vide further support for our anticipated results for lung as well as liver region. We
can note that for any of the scale factor of 2x, 3x or 4x for lungs as well as liver the
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Table 5.5: PSNR results for OSIC dataset

SR Methods

Scale Factor Regions Bicubic
Modified
ESCPN

(MSE Loss)

Modified
ESCPN

(Local MSE Loss)

Modified
ESCPN

(SSIM Loss)
2x Full Image 28.82 27.31 26.85 17.81

Lungs Only 28.26 27.36 27.91 20.45
3x Full Image 28.35 22.78 27.22 21.92

Lungs Only 27.26 24.48 25.97 20.88
4x Full Image 25.82 18.34 23.10 24.98

Lungs Only 23.99 19.31 22.82 22.33

Table 5.6: SSIM results for OSIC dataset

SR Methods

Scale Factor Regions Bicubic
Modified
ESCPN

(MSE Loss)

Modified
ESCPN

(Local MSE Loss)

Modified
ESCPN

(SSIM Loss)
2x Full Image 0.788 0.807 0.802 0.783

Lungs Only 0.859 0.867 0.862 0.827
3x Full Image 0.645 0.684 0.702 0.695

Lungs Only 0.712 0.709 0.728 0.732
4x Full Image 0.623 0.628 0.649 0.673

Lungs Only 0.649 0.648 0.654 0.675

Table 5.7: PSNR results for CTORG dataset

SR Methods

Scale Factor Regions Bicubic
Modified
ESCPN

(MSE Loss)

Modified
ESCPN

(Local MSE Loss)

Modified
ESCPN

(SSIM Loss)
2x Full Image 44.24 45.09 45.64 44.28

Lungs Only 40.71 40.39 40.44 41.33
Liver Only 43.83 43.17 43.27 35.62

3x Full Image 41.75 42.96 42.27 41.36
Lungs Only 36.59 36.14 36.91 35.88
Liver Only 40.53 39.95 41.76 39.68

4x Full Image 38.69 40.44 40.56 39.84
Lungs Only 32.17 32.65 32.87 32.01
Liver Only 38.59 39.04 39.15 36.83

Modified ESPCN has performed better in both the metrics, especially more so in
PSNR. These results align with our intended outcomes.

Figure 5.1, 5.2 and 5.3 displays a single original slice image from CLIS dataset,
OSIC dataset and CTORG dataset respectively. The figure contains ground truth
images which are cropped from original slice for better visualization of details
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Table 5.8: SSIM results for CTORG dataset

SR Methods

Scale Factor Regions Bicubic
Modified
ESCPN

(MSE Loss)

Modified
ESCPN

(Local MSE Loss)

Modified
ESCPN

(SSIM Loss)
2x Full Image 0.978 0.980 0.980 0.981

Lungs Only 0.975 0.974 0.976 0.976
Liver Only 0.960 0.958 0.960 0.960

3x Full Image 0.934 0.946 0.945 0.948
Lungs Only 0.902 0.892 0.893 0.905
Liver Only 0.899 0.909 0.910 0.911

4x Full Image 0.886 0.913 0.915 0.922
Lungs Only 0.815 0.809 0.815 0.821
Liver Only 0.872 0.885 0.887 0.889

for various resolution of 2x, 3x and 4x agianst all the super resolution methods
including Bicubic, Modified ESPCN with MSE loss, Modified ESPCN with local
loss and Modified ESPCN with SSIM loss.

29



Figure 5.1: Original full size slice from CLIS Dataset is displayed along with
cropped version and its mask. Below it Bicubic Interpolation, Modified ESPCN
with MSE loss, Modified ESPCN with LocalMSE loss and Modified ESPCN with
SSIM loss across 2x, 3x and 4x scale factors is shown.
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Figure 5.2: Original full size slice from OSIC Dataset is displayed along with
cropped version and its mask. Below it Bicubic Interpolation, Modified ESPCN
with MSE loss, Modified ESPCN with LocalMSE loss and Modified ESPCN with
SSIM loss across 2x, 3x and 4x scale factors is shown.
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Figure 5.3: Original full size slice from CTORG Dataset is displayed along with
cropped version and its mask. Below it Bicubic Interpolation, Modified ESPCN
with MSE loss, Modified ESPCN with LocalMSE loss and Modified ESPCN with
SSIM loss across 2x, 3x and 4x scale factors is shown.
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Chapter Summary

Three models were trained using different loss functions: mean square error (MSE),
structural similarity index (SSIM), and a custom MSE loss function designed to
enhance tissue regions. Evaluations were conducted using four super-resolution
approaches: bicubic interpolation, ESPCN model with MSE loss, SSIM loss, and
the proposed custom MSE loss. Peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) scores were reported for all methods and scale factors (2x,
3x, and 4x), enabling a comprehensive performance assessment. All the results
are reported in this chapter.
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CHAPTER 6

Discussion and Conclusions

Our first objective was to assess the performance of CT image super-resolution
methods on individual tissues. Interestingly, we observed significantly lower
SSIM scores when the metrics were computed locally, focusing on specific tis-
sues or regions, compared to when computed over the entire image (Table 5.1).
This finding suggests that background regions and non-body tissue areas, artifi-
cially inflate the performance ratings. Therefore, excluding the background re-
gion when calculating performance metrics is crucial to accurately represent the
outcomes.

Previous studies on medical radio-imaging super-resolution have primarily
assessed the similarity metrics over entire images without considering the vari-
ations in different body tissues. [22], [20] - [23] However, different tissues in CT
images exhibit distinct image characteristics and patterns. SR methods are sen-
sitive to the information content, such as higher spatial frequencies or variance.
Our study revealed significantly different performances of SR methods for differ-
ent tissues in CT images (Tables 1 and 2), with lung and bone tissues exhibiting
notably lower performance. This finding is particularly important considering
lung tissue is of great interest to radiologists and physicians, especially in cases
involving respiratory symptoms and COVID-19 infection. Therefore, evaluating
SR quality specifically for the region of interest, such as lung tissue, is imperative.
This aligns with a recent study that reported lower SSIM scores for lung tissue
patches in SR CT images produced by various SR methods [22].

Furthermore, our analysis indicates that SR methods tend to incur higher penal-
ties on the structural component (S) of the SSIM measure compared to the contrast
(C) and luminance (L) components (Table 5.2). This outcome is expected since the
structural component represents high spatial frequency or variance information,
which is challenging to approximate accurately. While our analysis focused on
CT scans of different organs, the implications of this study can be generalized to
other medical imaging modalities with diverse tissue types. In conclusion, ex-
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cluding non-tissue regions when computing performance measures for SR meth-
ods is essential. Specifically, it is crucial to present performance measures specific
to the tissue or region of interest for medical image enhancement applications
using super-resolution approaches.

The next objective was to develop a region based custom loss function to im-
prove performance of SR methods on specific area of interest like lungs. Based
on the results presented in Table 5.3 and Table 5.4 for the CLIS dataset and Ta-
ble 5.5 and Table 5.6 for OSIC dataset and table 5.7 and 5.8 , we can state that
the Modified ESPCN model with Local MSE loss generally demonstrates supe-
rior performance compared to the model using MSE loss as we are getting higher
PSNR and SSIM scores for the Local MSE model across various tissue types and
scale factors. These findings suggest that considering the local mean squared er-
ror within specific tissue regions improves super-resolution results for the CLIS
dataset.

Additionally, there are several noteworthy findings that can be inferred from
the obtained results. The LocalMSE loss corresponds to the Mean Squared Er-
ror (MSE) loss specifically applied to a particular region of interest, while the
MSE loss is predicated on Peak Signal-to-Noise Ratio (PSNR). Consequently, the
enhancement in PSNR scores outweighs the improvements in SSIM scores, as
SSIM primarily emphasizes image structure. Another critical observation per-
tains to the perceptual image quality evident in the results. It is readily apparent
that despite achieving comparable performance ratings, the Bicubic interpolation
method yields images with significant noise and lacks meaningful information.
Furthermore, the model employing the SSIM loss exhibits the highest level of per-
ceptual quality compared to all other approaches.

These observations and results highlight the importance of considering tissue-
specific characteristics and local information when evaluating and developing
super-resolution methods for medical imaging. By incorporating custom loss
functions based on local mean squared error, we can achieve improved perfor-
mance and quality in the super-resolution of CT images, particularly for specific
tissue regions of interest. These findings have implications for enhancing the
accuracy and reliability of medical image enhancement techniques using super-
resolution approaches across different modalities and tissue types.
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