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Abstract

Architecture plays a key role in overall success of the network protocol stack. It is

essential to have robust architecture for the complex system having multiple cross protocol

interactions. In the literature more emphasis is given to the cross layer protocol design

than the cross layer architecture. Cross Layer Architectures [1, 2, 3, 4] available in

literature are not addressing the problems of cross layer interaction at their depth.

Our work focuses on cross layer architecture design that supports multiple cross layer

protocols and cross layer interactions. It addresses the problem of lack of support for

multiple cross layer interactions, feedback loops, a longer development time and smooth

rollover from cross layer interaction. Our proposed Cross Layer Architecture for Protocol

Design in A Wireless Network (CLAPDAWN) addresses these problems faced by many

of the previously proposed architectures.

We have worked on two critical problems of IEEE 802.15.4 based event driven wireless

sensor networks: topology control problem and prioritized event handling problem. The

IEEE 802.15.4 standard configures network nodes as Reduced Function Devices (RFD)

and Full Function Devices (FFD). In randomly deployed wireless sensor networks, the

problem of configuring the network nodes as RFD or FFD, maintaining the network

functionality is a topology control problem. To solve this, we have proposed a multipoint

relay based Connected Dominating Set (CDS) construction algorithm.

In literature the topology control problem has been solved by centralized [5, 6, 6]

and distributed [7, 8, 9] approaches. Dynamic nature of wireless sensor network makes

centralized approaches less applicable and distributed approaches have the problem of

overlapping and redundant nodes in the generated CDS. In our work we have proposed

ROOT-Initiative (ROOT-I) and ROOT-Ik topology control algorithms to construct one-

connected and k-connected networks respectively.

Proposed algorithms control the overlapping and redundant nodes in the network.

They reduce the number of active nodes in the network that helps in extending the

network lifetime. Further, the tradeoff between energy consumption and fault tolerability

is analyzed for k-connectedness. Our results show that in randomly deployed dense

networks, the algorithm has better approximation ratio with acceptable time and message

complexity.
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The solution for the prioritized event handling is based on IEEE 802.15.4 MAC

scheduling and channel access mechanism. IEEE 802.15.4 has Guaranteed Time Slot(GTS)

mechanism for guaranteed data delivery. The GTS mechanism is not sufficient to provide

solutions for the critical event handling problem. It has problems of reservation delay and

limited number of GTS slots. To handle critical events in IEEE 802.15.4 based networks,

we have proposed Explicit Prioritized Channel Access Protocol(EPCAP) and Implicit

Prioritized Channel Access Protocol(IPCAP) mechanisms. The proposed mechanisms

achieve higher delivery ratio for important events with smaller delay. The IPCAP and

EPCAP are modeled using Markov chain and M/G/c queuing model respectively and

tested through simulation.

In ROOT-I and ROOT-Ik, network layer and MAC layer communicate to decide the

node type (RFD or FFD) and in EPCAP and IPCAP prioritized events are handled by

MAC based on information provided by application layer. As mentioned above CLAP-

DAWN is designed to support cross layer interactions in the system. To provide proof of

concept for the CLAPDAWN we have modeled ROOT-I, ROOT-Ik, EPCAP and IPCAP

as cross layer interactions in CLAPDAWN and we discuss how various components of

CLAPDAWN communicate to implement these protocols.

Furthermore to provide comparative analysis we have implemented ECLAIR [3] cross

layer architecture with the CLAPDAWN. We have implemented the complex video stream-

ing cross layer protocol [10] on both the architectures and derived the performance re-

sults. To make more rigorous comparison of both the architectures we have implemented

conflicting cross layer interactions in the system. Our results show that CLAPDAWN

has relatively better performance results than the ECLAIR. That shows CLAPDAWN

provides better and stable platform for cross layer protocol development.
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Chapter 1

Motivation and Related Work

1.1 Introduction

A wireless network provides mobility and cable free connectivity, which became a bot-

tleneck in wired networks. In various scenarios, wireless network is the only choice for

network connectivity. For example, installing wired connection across the river bank or

free way or tactical areas is more difficult than installing wireless infrastructure. Some-

times government polices may not allow cabling across the required locations. This may

create problem in providing network connectivity across the given region. Further, main-

taining wired infrastructure is costly and time consuming than wireless networks. Any

damage or fault in cable causes higher downtime in a wired network.

Mobility enables network users to move physically while using an appliance, such as

handheld personal computers or data collectors. Many network based applications require

mobility for end devices. These include applications like warehouse inventory, surveillance

applications, healthcare applications, applications that deal with natural calamity, retail

shopping and high speed vehicular networks. These applications became possible due to

the seamless mobility provided by the wireless networks.

Using wired networks, it is difficult to collect information from places like hostile en-

vironment, enemy field, highly populated urban areas or far distant rural areas, moving

vehicles, elderly care systems or volcanic areas. Wireless networks overcome the prob-

1
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lem of fixed wired connectivity and provide mobility and flexibility to network devices.

Wireless network has many benefits for having last hop as well as multi-hop wireless

connectivity.

This has opened new areas and applications like Wireless Sensor Networks, Body

Sensor Networks, Wireless Ad-Hoc Network, Mobile Ad Hoc Networks and Vehicular

Networks etc. Closely deployed wireless sensors help in understanding the behavior of

volcanic eruption, environment of tropical forests and behavior of endangered species. A

widely deployed surveillance system makes safer surroundings. Vehicular network helps

in solving problem of busy highway and free way. It also navigates to reach unknown

destinations. A continuous health monitoring system provides crucial information about

patient’s health that helps doctors to arrive at proper diagnosis. These emerging applica-

tions have increased the comfort level of human life and made our life more comfortable

and healthier. By breaking barrier of wired connectivity, wireless network has impacted

our day to day life to a greater extent.

Besides all its benefits, a wireless network has its own problems like low throughput,

higher security risks, higher link error rate, broadcast nature of communication, higher

energy utilization, licensing problems, problem of multiple operating standards etc. Nor-

mally wireless networks are built using Open Systems Interconnect(OSI) standard. These

problems are further classified based on OSI layers. At physical layer, wireless network

has challenges like RF spectrum issues, wireless channel characteristics, fading, power

control, co-channel interference, multiple operating standards etc. At Medium Access

Layer, problems like collision and inefficient use of channel are of concern. Other major

problems that wireless MAC faces are energy efficiency, fairness and quality of service. A

wireless network frequently faces topological changes which affects the functioning of net-

work layer. Multicasting, scalability, security, aggregation and node cooperation are some

of the problems faced by the routing layer of wireless networks. Behavior of transport

layer is highly dynamic in wireless networks. Transport layer problems like maintaining

end-to-end semantics, handling of handoff and distinguishing losses between congestion

and link error become more critical in wireless networks.
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Normally wireless networks are built around the OSI layered architecture. This highly

successful layered architecture, does not help much in overcoming many of the wireless

network problems discussed above. At the time during which OSI architecture was de-

signed, majority of the networks were deployed as wired networks and communication

standards were yet to be defined. Considering this, OSI layered architecture is primarily

designed focusing on modularity as its key design principle. Here, layers are communicat-

ing with each other through standard interfaces. Any changes made to one layer does not

affect other layers as long as their interface remains unchaged. OSI layered architecture is

highly successful architecture in wired networks where inter-dependency between layers

is less compared to wireless networks.

Wireless network gives low performance in terms of throughput compared to wired

network, when built as per OSI layered architecture. One of the best examples that

highlights the problem of OSI layered architecture is Transmission Control Protocol(TCP)

working on wireless networks. TCP protocol changes its congestion window size when it

encounters packet loss. It considers packet loss as outcome of congestion, so it considers

each packet loss as indicator of possible congestion. That is valid for wired networks

where majority of packet loss is due to congestion rather than link errors. TCP considers

channel error as indicator of congestion and reduces its window size that reduces the

actual throughput of the network.

TCP over wireless network is only one of the examples that highlight the limitation of

OSI layered architecture. The list of such limitations is long, but the root cause of many

of the problems is lack of information at the decision making point. For an example TCP

congestion window controller does not have clear information about the packet loss and

that lack of information ends up in wrong decision and low network throughput. To some

extent, this lack of information can be solved by bringing necessary information at the

decision making point. But the fundamental design philosophy of OSI layer architecture

does not allow one to do so. One can achieve this by violating the OSI layered architecture

through introducing cross layer interactions.
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1.2 Cross Layer Interactions

Cross layer design has emerged as a fascinating new area of research in wireless networks.

Protocol designed by violating referenced layered architecture is called cross-layered de-

sign [11]. With these added details, it is now possible to make informed decisions about

protocol functioning and optimization.

It has been shown that traditional legacy protocols, with disjoint layers, provide a

measure of security. However, they are not suitable for the wireless networks as they

do not sufficiently capture it’s dynamic nature. By exploiting cross-layer interactions,

one can solve some of the difficulties inherent in wireless networks. This section covers

the factors that motivate the cross-layer design [12] and current practices [13, 14] and

problems with cross layer interactions [15] in wireless networks.

1.2.1 Current practice

Cross layer interactions are designed to achieve certain performance objectives. These

performance objectives of wireless network can be categorized as follows:

• To satisfy QoS requirements.

• To improve resource efficiency.

• To optimize system connectivity to improve system scalability.

Efficient power utilization is highly required in wireless networks, as it has a direct and

profound impact on the lifetime of the network [16, 17]. The key objective is to institute

a power aware protocol that takes into consideration the Residual Energy Information

(REI) of the node. Designing routing and data link protocols considering the Channel

State Information(CSI) between nodes is one of the example of it. Another example is

adjusting transmission range in response to changing network topology.

With directional antenna, the normal layered architecture gives suboptimal results

and does not completely utilize the capability of directional antenna [18]. Target track-

ing is a known wireless sensor network application. Liang et. al. in [19] used cross layer
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approach in which they had excluded the transport and network layer. Their proposed

cross layer approach between application and MAC layer has built efficient target track-

ing application which considers QoS. Here application layer directly talks to MAC and

Physical layer.

Gentian et. al. in [20] shows how cross layer design helps in improving performance of

virtual MISO (Multiple Input Single Output)model. Their result shows up to 60 percent

improvement compared to SISO (Single Input Single Output)channel. B Hamdaoui et.

al in [21] has proposed cross layer approach for admission control and flow level control

for multi antenna system. Using MAC and PHY layer, author has increased end-to-end

flow acceptance rate and network throughput utilization. Javier et. al in [22] have solved

key distribution problem using cross layer framework. Yingqun Yu et. al in [23] have

solved the problem of transport layer rate control with MAC layer channel access.

Excessive retransmission and hidden terminal problems are hard to solve in IEEE

802.11. References in literature highlight this problem. In [24] the author has addressed

the excessive retransmission problem and showed that it is NP hard to solve and gave

heuristic solution for it. Cross layer design helps in improving this scenario. Controlling

physical layer transmission power based on constellation size, packet arrival rate, QoS

requirements, power limitations and channel condition are few other well known examples

of cross layer interactions.

Above discussed were few of the available cross layer protocols in the literature. Fur-

ther details on cross layer protocols can be found in [13, 14]. These protocols fall in one

of the cross layer interaction categories discussed in following section. These categories

are designed considering the way information flows among the layers. That is how the

required information is provided to the required layer.

1.2.2 Classification

Cross-layer design for wireless networks can be broadly classified based on it’s treatment

to layered architecture. Some of the proposed protocols preserve underlying layered

structure while others compromise with layered structure. Those protocols which preserve
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(a) Backward (b) Forward (c) Forward-
Backward

Figure 1.1: Information flow in Information Sharing Cross Layer Interactions

the layered structure are called information sharing cross layer interactions. Protocols

which compromise with layered structure are called design coupling. Following subsection

further refines this classification based on adopted techniques [11].

Information Sharing

Information sharing class of cross-layer protocols preserve the underlying layered archi-

tecture. Layers in layered architecture are only allowed to communicate with layer below

it or layer above it. Information sharing violates this constraint. It provides interfaces

to the layers other than the neighboring layers. Here, the given layer opens interfaces

for any layer of the layered architecture. Based on the type of information flow in the

interface, information sharing can be divided in to three categories: forward interface,

backward interface and forward-backward interface as shown in figure 1.1.

If information flows only in one direction then based on its flow direction it is either

considered as backward interface 1.1(a) or forward interface 1.1(b). Information flowing

from upper layer to lower layer is referred as forward information flow and information

flowing from lower layer to upper layer is referred as backward information flow. Interface

is called forward-backward interface 1.1(c) if a layer opens information flow for a layer

below and a layer above it in the layered structure. These layers may be non-neighboring

layers. Information flows in both the directions from upper layer to lower layer and from
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lower layer to upper layer.

These architectures are client server architectures, here server provides the informa-

tion and client has cache in which it stores the information for decision making. Server

only provides information to the client and does not track what information it has pro-

vided to the client. In the forward interface and backward interface protocols, flows are

independent with cache placed at information receiving side. But in forward-backward

interface, layers are not independent as cache is at both the sides. Content of this cache

depends on the decision made by the layer. Decision of layer may change the content of

its cache. Implementation details of both the layers are transparent to each other. That

makes forward-backward architecture hard to handle.

Design Coupling

Information sharing protocols compromise the architecture only in terms of additional in-

terfaces. By means of additional interfaces, it shares the information with non-neighboring

layers. These interfaces are query type interfaces without having any side effect on re-

ferred layers. Design coupling is step forward in this direction. Here the communicating

layers not only share their information but they also modify parameters of other layers.

Design coupling interfaces can be divided into following categories as shown in figure 1.2:

coupling without interface 1.2(a), merging of layers 1.2(b), shared database 1.2(c) and

direct communication 1.2(d).

In coupling without interface, targeted layers are strictly designed to work in collab-

oration. At the design time, layers presume certain properties of the targeted layers and

make design decisions based on those assumptions. Though their communicating inter-

faces remain untouched, any design modification on one layer affects the working of other

layers.

To optimize the performance, layer designers have merged the working of layers and

have come up with the compromised layered architecture. Merged layers provide same

interface to other layers as they were providing previously. But the interface between

the merged layers vanishes. Layers above or below the merged layer work with the same
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(a) Without Inter-
face

(b) Merged Layer

(c) Shared Database (d) Direct Commu-
nication

Figure 1.2: Information flow in Design Coupling Cross Layer Interaction
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interface. Mainly merging of layers occurs for performance tuning and optimization.

Merging of layers occurs between the neighboring layers.

In shared database, database works as common cache between the layers. Each layer

that participates in this sharing can update the common cache or consume the information

provided by the common cache. In direct communication a given layer can access any

other layer without requiring any flow. It can treat variables of other layers as local

variables for optimizing the performance of certain parameters.

1.2.3 Problems in cross layer interactions

As we saw previously that cross layer interactions are practiced mainly between PHY

and MAC, PHY and NET, PHY and TRAN, APP and TRAN or between PHY, MAC

and NET layers. Designing cross layer interaction is a non-trivial task. The system gets

more complicated when multiple cross layer interactions take place simultaneously. Here

with some care, one gets improved performance from cross layer implementation. But

multiple cross layer implementations create a system which is complicated and hard to

manage and track. Further uncontrolled cross layer interaction creates the problem of

instability and puts additional overhead on system functioning. It suggests that cross

layer interaction is not sufficient for an efficient and stable system.

Cross layer interaction on its own is not sufficient, it requires mechanism or frame-

work which makes the stable and manageable cross layer interactions [15]. Cross Layer

Architecture talks about overall system view or mechanism that makes the system adapt-

able. With Cross layer architecture it becomes possible to work with different cross layer

implementations simultaneously.

1.3 Cross Layer Architecture

Development of a complex system is a difficult task. Here difficulty comes from the size of

the system and the complex interaction that take place within the system. Certain design

patterns are useful to overcome such system complexity. An architecture breaks down
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Figure 1.3: An abstract architecture of a network protocol stack with cross layer interac-
tions

the complexity of the system by applying abstractions and encapsulations. Cross Layer

Architecture is one of such design patterns created to manage cross layer interactions

taking place in the system.

1.3.1 Abstract view of network protocol stack

A protocol belonging to the network protocol stack can be viewed as a combination of

two parts: communication part and control part. Communication part moves information

from one end to another end while control part governs this information flow.

For example, routing protocol at network layer has two main functions. First it

generates the routing table. Second, based on the generated routing table it forwards the

packets. Here, the communication part forwards the data packets and the control part

generates the routing table. Same is the case with the other layers and protocols. In

general the entire network protocol stack can be viewed as combination of control and

communication parts. We call this primary control and communication part.

In layered architecture, communication parts and control parts are confined to one

layer or one protocol. With Cross Layer Interaction (CLI) the scenario changes slightly.

CLI creates additional information or control flow in the architecture. Here, one layer

shares its information with other layers or control part of one layer works with control

part of other layers. We refer to this as secondary control part. Objective is to increase
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the performance of network protocol stack by introducing secondary controls (CLIs) in

the stack. Figure 1.3 shows an abstract architecture of a network protocol stack having

multiple CLIs.

With cross layer interactions the network protocol stack is divided into three parts.

One is primary communication part and other two are primary and secondary control

parts. Here, secondary control part contains cross layer mechanism implemented in the

layered architecture. With introduction of secondary control part it raises two questions.

One is about the placement of secondary control part and the other is about how to bring

the required information to secondary control part.

Primary control part resides at one place and all its required information is bounded

to one layer or one protocol. But as secondary control part deals with more than one

protocol or layer, question arises regarding its placement. Either to put this additional

control as part of one layer or in between two layer or as separate component interacting

with layers. Secondly, primary control part gets its information from the layer itself. But

in the case of cross layer interaction the secondary control part may require information

which is not available at the current layer or one place. Here the key problem is how to

bring the required information to secondary part.

Any architecture that is designed to deal with the cross layer interaction must address

following two questions. A). Where to put the secondary control part? and B.) How to

bring required information to secondary control part? In this light we will analyze the

available cross layer architectures.

1.3.2 Literature

The objective of cross layer architecture is to accurately model, incorporate and leverage

the secondary controls in the system. In literature, a majority of work done focuses

on exploring the possibility of different secondary controls which enhance the system

performance. Very few address the problem of incorporating secondary control in the

system. Those which are available can be classified as revolutionary or evolutionary cross

layer architectures.
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Revolutionary architectures are specifically designed targeting Cross Layer Interac-

tions (CLI) and completely ignore the layered design. TinyCubus[25] is a well known ex-

ample of a revolutionary architecture. An architecture which extends the layered design

for CLI is called evolutionary architecture. MobileMAN[1], CrossTalk[2], ECLAIR[3, 26]

and RCL[4] are well known examples of evolutionary architectures.

Shakkottai et. al [27] have talked about some early efforts regarding standardized

cross layer implementation. Here they are mainly concerned with cross layer direction

for the 3G network. This point was raised in early development of wireless networks but

still no adequate solution is present in the literature for this.

Chang et al. [28] proposed an architecture for multiple cross layer interaction to

support QoS requirements. A piggybacked signaling is used with XML for internal mes-

saging. The paper highlights important issues that one has to deal with when working

with multiple cross layer interactions. Faulty assumption, shared database, dependency

loops and overhead are the key issues focused by them. Their proposed solution is cen-

tralized solution implemented between network and MAC layer as control middleware.

Information is collected by piggybacking with the packet. Higher layer puts the cross

layer information at the end of the packet which the centralized horizontal layer receives

to implement optimized algorithm. Here protocols have only considered the top down

information flow in the network. The architecture does not support the implementation

of cross layer protocols that work with bottom up information flow. Further, the ar-

chitecture does not guarantee for providing information to middleware. Due to buffer

overflow at network layer if packet gets dropped then the centralized middleware misses

the required information.

TinyCubus[25] is a revolutionary architecture specifically designed targeting the Tiny

OS[29, 30] operating system. This architecture consists of three components: Cross

Layer Framework (CLF), Data Management Framework (DMF) and Configuration En-

gine (CE). DMF maps a) applications requirements with b) system parameters con-

sidering c) optimization parameters. Configuration of these three kinds of parameters

generates cubus in TinyCubus. In TinyCubus, it is difficult to perform synchronized
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reconfiguration of these components. Further, TinyOS does not have rich support for

interfaces and callbacks. Maintaining callbacks and interfaces between TinyOS based

components generates additional overhead and increases the overall system complexity

in TinyCubus.

MobileMAN[1] is an evolutionary architecture. For cross layer communication it man-

ages one vertical layer called Network Status. Layers share their information for other

layers through Network Status layer. MobileMAN changes layers to implement cross

layer interaction. Modified layer gets its required information from Network Status. Any

update in design of Network Status triggers the changes in all the dependent layers. Here,

Cross layer interactions are implemented by modifying layer itself that increases the de-

velopment time and makes it difficult to introduce multiple cross layer interactions in the

system. Further it is hard to recover from existing cross layer interactions.

Choi et. al [31] proposes taxonomy for cross layer architecture design and based on

that they have proposed cross layer framework. Their taxonomy defines how information

flows, the adaptation methods and the delivery methods. Taxonomy defines the working

of cross layer implementations. It provides abstract ways to implement cross layer in-

teraction without going into specific case. But the taxonomy and taxonomy based cross

layer modules do not define how the various cross layer interactions take place with each

other. It provides abstract view of cross layer interaction but it does not provide sufficient

information for cross layer architecture.

CrossTalk follows the same design principles as MobileMAN[1]. CrossTalk [2] archi-

tecture maintains the local as well as global view for cross layer interaction. To maintain

global view, CrossTalk adds global view information to the packet using piggybacking.

Piggybacking modifies the messaging structure used in the network. RCL[4] uses a con-

figuration table for cross layer interaction. Both the CrossTalk[2] and RCL[4] have same

the limitations as MobileMAN[1].

Zhijiang et. al [28] proposed the cross layer architecture using the concept of middle-

ware. To manage cross layer interactions, their architecture adds one layer between the

MAC layer and network layer. Here the added middleware layer gets its required informa-



1.3 Cross Layer Architecture 14

tion in the form of command and data piggybacked to packets passing across the network

protocol stack. The added layer manages the interaction occurring between the different

cross layers using suppress and resume signals. Their proposed architecture considers the

bottom up information flow only and ignores the top down information flow. Piggyback-

ing of cross layer information to the packet modifies the protocol message structure and

creates problem of decoding and encoding of messages. Here, middleware only provides

the cross layer information while the cross layer interaction is implemented in the layer

itself that creates the additional overhead to the protocol stack.

Another proposed framework [32] is agent based framework. Here cross layer opti-

mization is achieved by optimized agents (OA). In their work they have classified the

interaction between layers as inter-layer interaction and intra-layer interaction. Inter-

layer interaction happens between non-adjacent layers and intra-layer interaction happens

between adjacent layers. Using information gathered by interactions each layer imple-

ments the optimization steps using bottom-up or top-down optimization agents. Their

framework preserves the layered architecture and implements optimization agents by ex-

tending layers with interaction information. The main drawback of this framework is that

bottom-up agents and top-down agents work independently. This may cause stability and

correctness problem in proposed solution.

ECLAIR[3] is another cross layer architecture. Features of ECLAIR[3] makes it an

attractive choice for cross layer implementation. It has small foot print on layered archi-

tecture. ECLAIR is flexible and modular architecture in which each cross layer interac-

tion is implemented using separate optimizer. Separate optimizer increases the messaging

overhead in the system. Further multiple optimizers in ECLAIR create the problem of

feedback loop and increase the possibility of conflict. Few other architectures available

in literature are [33, 34, 35, 36].

TinyCubus has difficulty in managing CLIs with changing modules. MobileMAN and

CrossTalk have problems of longer development time and difficulty in recovering from

CLI. ECLAIR struggles with the feedback loop in cross layer implementation. To the

best of our knowledge, available cross layer architectures in the literature do not provide
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efficient solution for the following CLI problems: accidental occurrence of feedback loops

in the system, longer development time, recovery from cross layer interactions, small

footprint on referred architecture and multiple cross layer interactions.

1.3.3 Design goal of cross layer architecture

Architecture plays key role in implementation of cross layer interactions. A well organized

architecture should provide stable platform to experiment various cross layer interactions.

Current state of the art shows that very few attempts have been made on the design of

cross layer architectures. And the available architectures do not address the key issues of

cross layer interactions.

In TinyCubus, MobileMAN and CrossTalk, communication and control parts are

tightly coupled together. This tight binding makes the system complex and hard to

track when multiple CLIs take place in the system. Once the CLI is implemented in the

system any modification made to it regenerates the entire implementation cycle. This

problem is there in many of the previously proposed architectures. TinyCubus, Mobile-

MAN, CrossTalk and ECLAIR have distributed secondary control flow for different CLIs.

This distributed control creates the problem of instability and feedback loop in the sys-

tem. CrossTalk architecture modifies existing messaging structure by adding piggyback

information. That decreases the stability of the architecture and the protocol. Restoring

system to its previous state is difficult with current cross layer architectures.

Study of cross layer interaction and cross layer architecture shows that an architecture

designed to handle cross layer interactions should provide the following features:

• It should provide smooth process for creating, updating and extending a cross layer

interaction.

• It should handle multiple cross layer interactions.

• Easy to recover from implemented cross layer interactions with minimum effort.

• It should create small footprint on existing architecture.
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• It should take care of the possible conflict in the system.

• It should take care of the accidental feedback loops in the system.

In thesis, we propose cross layer architecture CLAPDAWN which addresses the above

discussed CLA problems. CLAPDAWN is an evolutionary architecture. As mentioned

earlier, the evolutionary CLAs existing in literature are designed targeting layered archi-

tectures. Our modular architecture is not restricted to layered architecture and can be

used to extend existing network protocol architectures. Further details about proposed

architecture is given in chapter 2.

1.4 Summary

Wireless network provides a technical platform for the emerging applications. Besides its

benefits, it comes with the new problems. We have highlighted benefits and problems

experienced by the wireless networks in this chapter. Root cause of many of these prob-

lems is lack of information at the decision making points. Cross layer interactions helps

in that. The chapter discussed importance of the cross layer interactions and problems

encountered in dealing with them. Here, we discussed the needs of the cross layer ar-

chitecture, limitations of existing architectures and desired features from the cross layer

architecture. Based on these constructive arguments we have proposed our cross layer

architecture in next chapter.



Chapter 2

CLAPDAWN: Cross Layer

Architecture for Protocol Design in

A Wireless Network

2.1 Introduction

In Chapter 1 we presented a survey of existing cross layer architectures and discussed their

limitations. We have also identified the design objective for a cross layer architecture,

namely: feedback loops free system, smaller development time, easy to recover from cross

layer interactions, small footprint on referred architecture and support for multiple cross

layer interactions. In this chapter we present our cross layer architecture CLAPDAWN,

which is designed based on the above design goals.

2.2 CLAPDAWN Overview

As we saw in previous chapter that it is hard to manage multiple cross layer interactions

in the system. Unmanageable cross layer interactions trigger the stability problem in

the system. Literature covered in section 1.3.2 shows that available architectures are

not addressing these problems at their depth. To overcome the limitation of existing
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Figure 2.1: CLAPDAWN Architecture

cross layer architectures and to provide rapid implementation of cross layer interactions,

we have proposed the cross layer architecture CLAPDAWN: Cross Layer Architecture for

Protocol Design in A Wireless Network. CLAPDAWN is designed to provide manageable

and extendable cross layer interaction in the system.

In the section 1.3.1 we have discussed the three components of network protocol archi-

tecture namely primary communication part, primary control part and secondary control

part. CLAPDAWN manages these three parts using two planes, Functional Plane (FP)

and Control Plane (CP) as shown in figure 9.4. In CLAPDAWN, primary communication

part and primary control part create the functional body of the cross layer architecture

and we grouped them as Functional Plane (FP). Control Plane works over functional

plane and governs the functionality of it to implement the cross layer interactions. In

CLAPDAWN Control Plane (CP) manages all cross layer interactions taking place in the

system.
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2.3 Functional Plane (FP)

Functional Plane contains all the functionalities required to develop network protocol

stack. As we discussed in our previous chapter that with cross layer interaction network

protocol stack can be viewed as combination of three parts, primary control and com-

munication parts and secondary control part. From these three parts, FP consists of two

parts: primary communication part and primary control part. FP is network protocol

stack without having any cross layer interactions in it.

FP communicates with the control plane through interfaces provided by control plane

discussed in next subsection. Figure 9.4 shows the FP having four layers physical layer,

data link layer, network layer and application layer. Normally only one active protocol

resides at network, MAC and physical layer. But there are cases in which more than

one protocols run actively at the given layer. For example, there may be more than

one application existing at the application layer. To take care of it, FP contains the

application interface that manages different applications running at application layer.

Same can be designed for other layers having multiple protocols.

In literature, existing Cross Layer Architectures(CLAs) either only focus on layered

architecture or completely forget the highly successful layered architecture. Revolution-

ary architecture completely ignores the layered architecture and evolutionary architecture

tries to maintain the layered structure. In both the cases, the architecture looses valuable

quality of single solution or layered structure. CLAPDAWN separates primary control

and primary communication from secondary control. That provides additional flexibility

and portability to the CLAPDAWN and expands the scope of it. Because of this separa-

tion any existing architecture can be used as reference architecture in CLAPDAWN.

To make the representation simple, we have shown the FP with four layers. In general,

FP may represent TCP/IP protocol stack, or Open System Interconnect (OSI) seven layer

stack or any other existing architecture. We call this architecture as reference or referred

architecture. In general CLAPDAWN adopts existing architecture as FP and facilitates

it for cross layer implementation.
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2.4 Control Plane (CP)

Control plane supports the functional plane and governs the functionality of functional

plane to implement Cross Layer Interactions(CLIs). Control plane manages all the cross

layer interactions or secondary controls that take place in the system. Control plane di-

vides complex functioning of cross layer interaction into following subcomponents: Con-

trol Network Interface (CNI), Layer Notification Interface (LNI) , Cross Layer Engine

(CLE) and Cross Layer Knowledge Base (CLKB). Figure 9.4 shows the organization

of control plane in the CLAPDAWN. Cross layer engine and cross layer knowledge base

implement the secondary control in control plane. Control plane gets its required infor-

mation from functional plane using control network interface and provides the necessary

updates to functional plane using layer notification interface. Control network interface

and layer notification interface work as bridge between functional plane and control plane.

For simplicity here onwards we refer CLKB as knowledge base, CLE as execution

engine, CNI as control interface and LNI as layer interface.

2.4.1 Cross layer knowledge base

Knowledge base stores all the secondary controls that take place in the system. CLAP-

DAWN separates logic of any given secondary control from its execution and stores it in

the form of Event Control Action (ECA) rules in knowledge base. Different cross layer

interactions may have different design objectives, but they all are modeled using standard

ECA rule format.

ECA rules are triggered by an event. An event might be change in routing table,

packet loss or buffer overflow. For a given event, ECA rule contains the control part.

This control part checks the set of conditions before performing defined actions. Once

all the conditions are satisfied it executes the action part associated with the event.

Knowledge base stores different secondary controls using common ECA format as shown

in figure 2.2.

Figure 2.2 shows two cross layer interactions. First interaction shows an event of
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Figure 2.2: Cross Layer Knowledge Base (CLKB) with Cross Layer Interactions (CLI)
stored in the form of Event Control Action (ECA) rules

network layer routing table updates. On routing table update event, it checks the control

statement that whether the number of neighbors is greater than the defined maximum

threshold. If number of neighbors is greater than the defined threshold then it performs

the action part and decreases the physical layer transmission power. In second ECA

rule, on an event of Link Quality Indicator(LQI) update, it checks whether LQI is below

the allowable threshold. If LQI falls below the allowable threshold then it increases the

transmission power to improve LQI.

With uniform representation of different cross layer interactions it becomes an easy

task to check conflicting condition and feedback loops occurring between multiple cross

layer interactions. Each event has input parameter and each action shows the affected

parameters. Using group of ECA rules, CLAPDAWN generates the dependency graph.

Dependency graph models the relation between different parameters and cross layer in-

teractions.

A graph node in the dependency graph represents network parameter. The directed

edge between two graph nodes represent the cross layer interaction. For the directed edge,

starting graph node is an input parameter and destination node is the parameter affected

by that cross layer interaction. Dependency graph makes it easy for CLAPDAWN to

identify conflicting conditions and feedback loops in the system.

Multiple incoming edges from different nodes show multiple cross layer interactions

affecting the same output parameter. That identifies the possible conflicts among CLIs.
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Figure 2.3: Dependency Graph of Cross Layer Interactions(CLIs) stored in Cross Layer
Knowledge Base(CLKB)

Further, any loop in the graph highlights the feedback loop in the system. CLAPDAWN

equipped with ECA rules in knowledge base provides a way to identify conflicting sce-

narios and feedback loops in the system in advance.

Figure 2.3 shows an example of a dependency graph of multiple cross layer interactions.

In the given example we have nine parameters and five cross layer interactions. Each cross

layer interaction may have more than one rule to execute. Here CLI 1 has three rules

associated with it CLI1-R1, CLI1-R2 and CLI1-R3. CLI1-R1 is triggered by update in

parameter 1 and it affects or modifies the value of parameter 2. Here a rule may update

more than one parameters as shown in case of CLI3-R1. This rule updates more than

one parameters, e.g. parameter 3 and parameter 7 in this example.

As mention above, in a dependency graph conflicting scenario takes place when there

are multiple input edges for the given parameter. Same way feedback loops can be

identified by finding loops in the dependency graph. In given example CLI 2, 3 and 4

create the feedback loop in the system and CLI 1 and 3 generate the conflict at parameter

3.

Populating ECA rules is easy compared to implementing cross layer interaction using

some programming language. We have developed an editor that helps in writing ECA

rules. The editor converts the rules into intermediate representation. This intermediate
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representation is knowledge base programming language representation. Knowledge base

programming language is easy to work with and complex interaction can directly be

implemented using simple programming. Further details of ECA editor is provided in

appendix A.

Here, cross layer interaction designer selects the event parameters, condition param-

eters and action associated with that event from the available list. The editor helps in

defining the condition statements and action statements. Currently it is a menu driven

editor. Editor is in its primary stage and able to craft simple cross layer interaction.

Future objective is to provide graphical drag and drop editor to form complex ECA

rules.

For given functional plane CLAPDAWN manages the token repository. Currently

the token repository is generated manually considering the referenced FP. Based on this

token repository rule, the editor provides the selection options to the CLI designer. If

any change takes place in referred architecture in FP then knowledge base has to make

some configuration chances for new FP. Knowledge base requires to update its repository

for new FP. New cross layer interaction can be designed using new token repository.

Old cross layer interaction can work with the new FP. Here, it is the responsibility

of knowledge base to maintain smooth functioning of secondary control. To use existing

rules with changing FP, knowledge base requires to migrate current parameter set to new

parameter set. That can be done my providing the XML mapping files. Knowledge base

imports this mapping file and updates the parameter configuration accordingly.

Because of the standard ECA representation these updates are easy to perform. With

ECA representation it is now easy to introduce new secondary control in the system.

Uniform representation of different cross layer interactions makes execution simple. On

occurrence of an event it is the responsibility of execution engine to execute the relevant

ECA rules from knowledge base.
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Figure 2.4: Cross Layer Engine(CLE) in CLAPDAWN with Policy configurations

2.4.2 Cross layer engine

CLAPDAWN separates cross layer interaction logic from its execution. It maintains the

logic of cross layer interaction in knowledge base in the form of ECA rules. Based on

event received from control interface, its the responsibility of execution engine to execute

the relevant rules from knowledge base. Cross Layer Engine executes the required rules

from the knowledge base and produces the updates from the FP which it conveys to layer

interface.

Execution engine is the central entity in CP. It communicates with control interface

by receiving events from control interface, with knowledge base for rules and with layer

interface by sending messages. Execution engine performs the critical job of finding

the rules, mapping them with parameters and executing them. Figure 2.4 shows the

organization of execution engine.

Execution engine consists of the following components: event receiver, parameter

mapper, rule fetcher, rule cache, policy configuration and parameter dispatcher. Event

receiver receives events from control interface and passes the input parameter to the

parameter mapper. Parameter mapper gets the relevant rules from rule cache. Rule

fetcher gets required rules from knowledge base. By itself rules do not have any value

associated with them. It is the responsibility of parameter mapper to attach appropriate
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value to them. It stores the rule with mapped parameter values in the rule cache. Section

2.5.1 covers the detail example of it.

Execution engine executes the rules mapped with parameter and produces the results.

These results are further processed by Output parameter checker using policy configura-

tion. Following paragraph explains the policy configuration. Finally Output parameter

dispatcher forwards the generated output parameters to layer interface.

Fetching rules from knowledge base and mapping it with the parameter requires con-

figuration time. Repeating these steps for every event creates an overhead on the system.

To reduce this overhead execution engine uses rule cache in which it stores the rules with

the parameter mapping.

To fetch the rules from knowledge base, execution engine uses hashing on input pa-

rameters. Once execution engine gets its required rules. It checks the control statement.

If it satisfies the condition then execution engine executes the action part of ECA rule.

Execution of action part generates the output parameter which goes through policing.

Knowledge base identifies the possible conflicts in the system. It identifies the param-

eters and rules which generates conflicts and feedback loops in the system. To handle

them CLAPDAWN provides policy mechanism. At the time of populating the knowledge

base with ECA rules, knowledge base highlights possible conflicts and loops with CLIs

with affected parameters. Further to resolve them, CP offers the option of policy config-

uration. Using which one can restrict the execution of the rules or change the way the

final output parameter is updated. Policy configuration stores these policy options for

affected parameters.

To mitigate the effect of conflict it provides the option of a) running average of output

parameters, b) averaging output of all the conflicting rules, c) prioritize the conflicting

rules or d) lock some of the conflicting rules. To remove the feedback loops in the system

it provides option of locking. By locking one of the CLI in the loop it removes that

CLI from the system which breaks the loop. Policy configuration reduces the effect of

conflict and removes the feedback loops from the system. Uniform representation of rules

and separating execution from logic provides conflict resistant and loop free features to
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CLAPDAWN.

2.4.3 Interfaces

In its modular design CLAPDAWN separates the secondary control logic from primary

communication and control part. CP manages the secondary control part and FP man-

ages the primary control and communication part. Interfaces are part of CP and they

provides the bridge between FP and CP. CP provides two interfaces control interface and

layer interface using which it communicates with the FP.

Control interface and layer interface both have their own importance. Through control

interface, FP propagates the events in the form of messages to the CP. Control interface

receives these input messages and converts them into events and propagates them to the

execution engine. Each component or layer sends its input message to their defined points

in CP. Using layer interface, FP receives response of its input parameter from CP. Layer

interface receives the result of ECA rule execution and updates the FP using output

messages. Here, control interface sends information to the CP and layer interface sends

information from the CP.

Referenced architecture in FP modifies itself to make it adjustable to control interface

and layer interface. These modifications are minute compared to changes required to

implement cross layer interaction within the layer. CLAPDAWN embeds the layer or

components of FP to expose information to the CP and creates the catch in FP that

accepts information from CP.

Mainly these interfaces are designed considering following two design aspects. First,

these interfaces hide the details of cross layer implementation from the FP. Second, it also

hides the changing functional plane from the CP. Both are necessary, for stable protocol

stack and changing CLI requires the first abstraction. In case of evolving protocol stack

like Wireless Sensor Network we require the second type of abstraction.
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2.5 Working of CLAPDAWN

In CLAPDAWN FP contains the referred architecture and CP provides controlled com-

munication between modules or layers or components of FP. CP and FP communicates

using asynchronous message passing through control interface and layer interface. On up-

date of interested parameters, FP forwards them to CP using messages through standard

interface provided in control interface. Control interface gets these messages and con-

verts them into events. With changing FP the message content may change but control

interface converts these messages into events which maintains the uniformity in CP.

On event, execution engine fetches rule from knowledge base. Event in execution en-

gine provides input parameter, based on which execution engine gets affected rules from

knowledge base. For each rule, execution engine checks the control statement and if it

satisfies the condition then execution engine executes the action part and generates the

output parameters. These output parameters are further processed by policy configu-

ration. Finally the output parameters are forwarded to layer interface. Layer interface

updates the FP by means of output messages.

CLAPDAWN maintains the two unidirectional information flows between CP and FP.

One is inflow from FP to CP using control interface and second is outflow from CP to

FP using layer interface. The well organized information flow controls the problem of

continuous loops in the system. In other words, currently generated information will not

trigger next sequence of event until they reached the FP. Once they update the FP then

only they are allowed to re-enter the CP.

In CLAPDAWN, FP sends updates to CP using messages. Control interface receives

these messages and converts them into events. These events are then propagated to

execution engine. This information flow from FP to CP is either synchronous or asyn-

chronous. In asynchronous information flow, FP sends message to CP and continues its

task. With synchronous message FP sends the message and waits for the reply from

CP in the from of layer interface updates. In section 1.2.2 we discussed different types

of information flows in the cross layer interaction. Some are information sharing typed



2.5 Working of CLAPDAWN 28

while others are more profound and modify layer parameters. CLAPDAWN manages

them using synchronous and asynchronous information flows.

CLAPDAWN manages information updates using asynchronous messages. FP sends

updates to CP using asynchronous information flow which takes care of all the information

sharing type cross layer interactions. Mainly the synchronous information flow is used

for packets. Each packet which requires processing from cross layer interaction will use

synchronous information flow. The patch provided to referred architecture handles this.

CP has rule base, using which it sends configuration request to FP. FP has standard

interface which receives them and provides the required asynchronous and synchronous

updates. Section 2.5.2 provides example of asynchronous and synchronous updates.

2.5.1 Cross layer interaction example

To explain design and working of CLAPDAWN with an example we have implemented

a cross layer interaction involving application layer and data link layer. Application

layer runs the video streaming application and data link layer (MAC) uses the IEEE

802.11e[10]. Objective of CLI is to increase the quality of video streaming by dynamically

managing the prioritized queues at MAC layer.

Performance of IEEE 802.11e can be fine tuned by various mechanisms like Con-

tention Window Size, TXOPlimit or data transmission rate. Different configurations of

these parameters vary the performance of IEEE 802.11e. Required performance for the

applications running at application layer can be achieved by configuring these parame-

ters. In video streaming, different parts of encoded video data have different significance.

Required performance for video streaming application can be achieved by configuring the

IEEE 802.11e parameter based on significance of encoded video data.

Video streaming which uses MPEG-4 standard divides the video data into 3 frames I-

Frame, P-Frame and B-Frame. Each frame has different significance. I-Frames are most

critical frames for video decoding than P-Frames and B-Frames. B-Frame has lowest

significance among the three frame types. IEEE 802.11e has different access queues

(AC0-AC3) having separate buffer. These queues work independently from each other.
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Figure 2.5: Working of CLAPDAWN with Cross Layer Interaction occurring between ap-
plication layer running video streaming application and Link layer running IEEE 802.11e

Different access queues have different priority. AC0 is highest priority queue while AC3

is least priority queue among AC0-AC3. In Cross layer approach [10], MPEG-4 video

packets are dynamically mapped to appropriate AC based on both the significance of the

video data and the network traffic load.

2.5.2 CLAPDAWN implementation

CLAPDAWN implementation of above CLI is shown in figure 2.5. Two layers are involved

in this cross layer interaction, application layer and data link layer (MAC). Figure 2.5

shows them with data flow and secondary control flow. Solid line shows the dataflow in

the system. Secondary flows are of two types synchronous and asynchronous. Secondary

data flow that deals with data packet are synchronous while one which updates parameter

in CP are asynchronous.

Using asynchronous update events, application layer provides the significance of each

frame (Probtype) and MAC layer provides queue length to the CP, shown as step 1, 2

and 3 in figure 2.5. CP gets these events and updates its parameter, shown as step 4.

If execution engine finds rules related to these parameters then it executes them. These

asynchronous messages take care of the communication occurring across the layers.
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Secondary control which handles per packet communication works synchronously. On

arrival of packet it generates the event in CP and waits for the decision, shown as step

5 and 6. Event carries the frame type information with the packet identity. Execution

engine obtains related rules from the knowledge base and executes them by applying

policy configuration, step 7 and 8 in figure 2.5. Execution of these rules decide the

queue number for the current frame and sends that queue number to FP using output

messages. FP receives that message containing packet identity and queue number and

puts the packet in the selected queue, as shown in step 9. Following are the cross layer

interaction steps:

# CLI-1 Rule-1

Prnew = Prtype∗(QL0−Thresholdlow)

(Thresholdhigh−Thresholdnew)

rnd = random number between (0, 1)

# CLI-1 Rule-2

If(QL0 < Thresholdlow) {

Quequnumber = 0

}

# CLI-1 Rule-3,4

else if(QL0 < Thresholdhigh) {

if (rnd > Prnew) Quequnumber = 0

else Quequnumber = 1

}

# CLI-1 Rule-5,6

elseif(QL0 > Thresholdhigh){

if(rnd > Prnew) Quequnumber = 1

else Quequnumber = 2

}
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Above shown set of rules are executed on occurrence of events. These rules are encoded

into ECA rules and stored in knowledge base. The following code snippet shows one of

the ECA rule present in knowledge base.

CLI 1 - RULE 2 PARA LL frametype 2 1

CLI 1 - RULE 2 CONDITION 1 LL frametype CO 1 e

CLI 1 - RULE 2 CONDITION 2 LL QL0 LL thresholdlow l

CLI 1 - RULE 2 ACTION 1 LL Queuenumber CO 0 CO 0 d E

The above is ECA representation of rule 2 of cross layer interaction 1. It shows that

the rule has two conditions to check and one action to perform. It checks for the frame

type (Link Layer) and queue length (QL0) for queue zero. If frame type and queue length

of queue zero satisfies the condition then it assigns the priority queue zero to the given

frame. ECA rules are generated with ECA rule editor.

2.6 Summary

We have discussed our proposed architecture in this chapter and shown structure and

working of it. For better handling of cross layer interaction, architecture is divided into

two parts a) functional plane and b) control plane. Control plane manages all the cross

layer interactions of the system through its subcomponents. Structure and working of

our architecture highlights various feature of our architecture. We have compared them

with the other architectures in the next chapter.



Chapter 3

CLAPDAWN: Comparative Study

In chapter 1 we had discussed available cross layer architectures in the literature and

their limitations. After going through the details of CLAPDAWN in chapter 2, in this

chapter we are comparing CLAPDAWN with the available cross layer architectures. Us-

ing available literature, we have identified a set of parameters based on which we have

performed comparative study of cross layer architectures. Section 3.1 shows the set of

evaluation parameters and section 3.2.1 covers the comparative study. Based on study

did in 3.2.1 we have highlighted limitations of CLAPDAWN in section 3.3.

3.1 Evaluation Metrics

By going through work done in literature we have identified a few metrics to evaluate the

performance of cross layer architectures. This section briefly explains each of the metrics.

Each architecture is evaluated considering following performance measures.

3.1.1 Multiple cross layer interaction, any layer to any layer

communication (A)

We check whether the architecture supports multiple cross layer interactions or not. In our

study, we have considered only those architectures which are designed to support multiple

cross layer interactions. In a cross layer interaction, a layer shares its information for

32
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other layers or accesses the control mechanism of the other layers. In the case of multiple

cross layer interactions, next important point is whether all the layers can access the

information from all the other layers. In other words, whether the architectures supports

any layer to any layer communication.

3.1.2 Rapid development time (B)

Cross layer interaction introduces the secondary controls in the system. Cross layer archi-

tecture implements this additional control as a part of layer, adding horizontal or vertical

layer, or as separate component. Here, time required to implement cross layer interac-

tion depends on the support provided by the architecture. Based on adopted method,

different architecture takes different time to introduce cross layer interaction in the sys-

tem. By analyzing the process of how architecture introduces cross layer interactions in

the system, we have evaluated different architecture for their development time. Rapid

development time study highlights the complexity involved in the architecture.

3.1.3 Rollover from cross layer interaction (C)

During design time, protocol designer experiments with different cross layer interactions

for better performance. In networks like, wireless sensor networks and ad hoc networks,

the working environment and network protocol experience frequent changes. For such

dynamic networks, it requires that architecture must provide necessary support to such

experimentation. It is required that architecture provides support for smooth addition

and removal of cross layer interaction in the system. Rollover analysis is a study of how

easy it is to remove the existing cross layer interaction for the system.

3.1.4 Footprint on reference architecture (D)

Cross layer interactions are introduced to the system to improve the performance of the

system. In that process, how much modification is required to the referenced protocol or

layer is measured by the footprint of cross layer interaction on the reference architecture.
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3.1.5 Feedback loop prevention (E)

Applications like video conferencing on vehicular ad hoc network requires multiple cross

layer interactions for the smooth functioning of the application. With the multiple cross

layer interactions it is likely that changes made by one layer triggers a sequence of changes,

that endup having a loop. Loop formed by such cross layer interactions is called a feedback

loop in the system. Feedback loops are critical measures of the cross layer architecture.

With the multiple cross layer interactions it is very likely that the system may face

feedback loops. It is the responsibility of the architecture to take care of such feedback

loops. Architectures are measured on the basis of their support provided to prevent

feedback loops from the system.

3.1.6 Conflicting cross layer interactions (F)

With the multiple cross layer interaction, it may happen that more than one cross layer

interaction is creating side effect on a common parameter. Cross layer interactions which

updates the same parameter are considered as conflicting cross layer interactions. If that

is the case then system experiences instability in its working. Here, we have analyzed

different architectures to see how they are handling possible conflicts occurring between

multiple cross layer interactions.

3.1.7 Time Overhead, space overhead and message overhead

(G-I)

Cross layer interactions are the secondary control added to the system. They require

information from other layer and they process this information for decision making. This

requires computation time, memory to store cross layer interaction and messages to bring

required information. Time overhead measures the additional time required to perform

the cross layer interaction that includes delay in bringing necessary information to the

cross layer interaction and processing time. Space overhead measures the additional

memory required to store the cross layer interaction code and parameters. Message
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overhead is a measure of the number of additional message exchange that take place

between various components of cross layer architecture.

3.1.8 Flexibility measure (J)

Cross layer interactions are dynamic in nature. With changing environment they require

some modification. Flexibility measure evaluates this process. It checks how easy it is

for the cross layer architecture to make necessary correction to adapt according to the

changing conditions like underlying protocol changes, change in cross layer interaction

itself or change of host operating system.

3.2 Comparative Study

In our study we have compared architectures covered in chapter 1 with CLAPDAWN.

For each performance measure the architecture is given points on the scale of 1 to 5.

Here point 5 shows high performance and point 1 shows the low performance for that

parameter. Performance parameters are as follows:

3.2.1 Multiple cross layer interaction, any layer to any layer

communication (A)

This section looks at the comparative study of different architectures considering whether

they provide support for multiple cross layer interactions or not. Mainly we have selected

only those architectures which provide support for multiple cross layer interactions. With

multiple cross layer interactions, our second objective is to check that is it possible to

have any layer to any layer communication in the architecture. This study sees that some

of the cross layer architectures like [28] which provide support for multiple cross layer

interactions do not provide possibility of any to any layer communication.
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Table 3.1: Multiple Cross Layer Interaction Support
Architecture Support for Multiple Cross Layer Interaction Points(A)
TinyCubus Various cross layer interactions are managed by Tiny

Cross Layer Framework. Cross Layer Framwork state
repository to implement multiple cross layer interactions
and any to any module communication.

5

MobileMAN Multiple cross layer interactions are implemented with
the help of additional layer referred as Network Status
Layer.

5

CL interaction Middleware is provided to support multiple cross layer
interactions. Main focus is on bottom up communication
only.

3

CrossTalk Provides local and global view to implement multiple
cross layer interactions.

5

ECLAIR Using Tuning layer and Optimizer agent it provides the
support for multiple cross layer interactions and any to
any layer communication.

5

CLAPDAWN Through separate control plane it provides the support
for multiple cross layer interactions and any layer to any
layer communication.

5

3.2.2 Rapid development time (B)

Table 3.2 provides the comparative analysis of rapid development time. They are ranked

on the basis of effort required to be put to make cross layer interaction part of the system.

Point 1 difficult to implement new cross layer interaction showing complex process and

Point 5 shows easy process of adding cross layer interaction in the system. It shows that

majority of the architectures implement the cross layer interaction in the layer itself.

That increases the development and debugging time of the cross layer interaction. Here

ECLAIR and CLAPDAWN implements the cross layer interaction outside the reference

architecture. That helps in reducing the development time. Further, CLAPDAWN uses

ECA rules in knowledge base that makes development process simpler than the ECLAIR.

3.2.3 Rollover from cross layer interaction(C)

Many experimental studies or protocol development require experimentation. In that

process they frequently go for rollover and restore the system in the previous state.

Table 3.3 shows the comparative study of rollover in different architectures. Because of
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Table 3.2: Rapid Development Time
Architecture Rapid Development Time Points(B)
TinyCubus Tiny Configuration Engine adds new cross layer inter-

action in the system. Cross Layer Interaction are im-
plemented using TinyOS callback mechanism. With
TinyOS callback it is difficult to wire new components
in the system

2

MobileMAN It consumes data provided by Network Status Layer and
cross layer code is implemented inside the layer itself.

3

CL interaction Cross layer interactions are implemented inside the layer
by modifying layer code.

3

CrossTalk Cross layer interactions are implemented inside the layer
and required information is provided by global and local
database

3

ECLAIR Cross layer interactions are implemented as separate op-
timizer agents independent of network protocol stack

5

CLAPDAWN Cross layer interaction are implemented inside the sepa-
rate control plane independent from the network protocol
stack

5

separation of cross layer interaction from the network protocol stack it becomes easy for

ECLAIR and CLAPDAWN to perform rollover in the system.

Table 3.3: Rollover from Cross Layer Interaction
Architecture Rollover from Cross Layer Interaction Points(C)
TinyCubus TinyCubus maintains wiring between the components

and uses data stored in the repository to implement cross
layer interaction. It is hard to recover from this wiring
between components.

3

MobileMAN Cross Layer Interaction code is implemented inside the
layer itself. Requires changes in the layer code itself.

1

CL interaction Cross Layer Interaction code is implemented inside the
layer itself. Requires changes in the layer code itself.

1

CrossTalk Cross Layer interactions are implemented inside the layer
itself. Requires changes in the layer code itself.

1

ECLAIR Cross Layer interactions are implemented as separate
agents configured with tuning layer. Removing them
from the system still triggers the development cycle.

4

CLAPDAWN Cross Layer interaction are implemented inside the sep-
arate control plane with the use of cross layer knowledge
base. Removal of rules from the knowledge base removes
the cross layer interaction from the system.

5
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3.2.4 Footprint on reference architecture(D)

To maintain stability in the system it is highly desirable that cross layer interaction

creates small footprint on the referenced architecture. Table 3.4 shows the comparative

study of cross layer architecture highlighting footprints on the layers. Those architectures,

which implement cross layer interactions inside the layer itself, have large footprint on

the layer compared to those, which implements cross layer interaction outside the layer.

In that regards ECLAIR and CLAPDAWN have small footprint compared to other ar-

chitectures. Here CLAPDAWN provides the standard interface that makes this process

smooth compared to other architectures.

Table 3.4: Footprint on Referenced Architecture
Architecture Footprint on referenced architecture Points(D)
TinyCubus Each cubus in TinyCubus is combination of applica-

tion parameter, Operating system parameter and opti-
mization parameter. Cross layer interactions modeled as
cubes and maintained by framework.

3

MobileMAN Changes Layer itself for cross layer implementation. Per-
sistent footprint on the layers.

2

CL Interaction Changes Layer itself for cross layer implementation. Per-
sistent footprint on the layers

2

CrossTalk Changes Layer itself for cross layer implementation. Per-
sistent footprint on the layers. Modifies the inter node
messaging structure to get the global view.

1

ECLAIR Cross layer interactions are implemented outside the
layer and only interfaces are created inside the layer to
get required information. Each information comes with
separate interface .

4

CLAPDAWN Cross layer interactions are implemented outside the
layer and only two interfaces are created inside the layer
for the input and output communication. Standard in-
terface makes footprint small and easy to manage.

5

3.2.5 Feedback loop prevention (E)

Table 3.5 shows the comparative study of possibility of feedback loop in the different cross

layer architectures. It shows that no cross layer architecture provides complete solution

to the feedback loop problem. Those architectures, which implement cross layer interac-
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tion inside the layer, they do not have the knowledge of other cross layer interactions in

the system. Here chances of feedback loops are high. In other cases architectures which

manage the information about the cross layer interaction like CL interaction and CLAP-

DAWN reduce the chances of feedback loops with the help of additional knowledge. But

still there are chances that parameters which are transparent to the cross layer interaction

may create feedback loops in the system.

Table 3.5: Prevention from feedback loop
Architecture Feedback loop prevention Points(E)
TinyCubus Configuration Engine using resource repository main-

tains information about the cross layer implementation
but with dynamic components it is hard to keep track of
feedback loop in the system

2

MobileMAN Cross Layer Interactions are implemented in the layer
itself and they use information provided by the network
status layers and the current layer. Network status layer
does not keep track of the information flow among the
layers.

1

CL Interaction Middleware layer is provided between the Network layer
and MAC layer that manages the different cross layer
interactions. That reduces the chance of feedback loop
in the system.

4

CrossTalk Cross Layer interaction implemented inside the layer
communicates using information provided by local and
global view layer. This distributed control flow increases
the chance of feedback loop in the system.

1

ECLAIR Cross layer interactions are implemented independent
from each other outside the layer as optimizing agent.
Distributed control increases the chance of feedback loop

2

CLAPDAWN Cross layer interactions are implemented inside the con-
trol plane with the help of cross layer knowledgebase and
cross layer engine. Available information of cross layer
interaction reduces the chance of feedback loop.

4

3.2.6 Conflicting cross layer interactions(F)

Conflicts are easy to locate in the system compared to feedback loops. Table 3.6 shows the

comparative study of different architectures considering whether they provide safeguards

against the possible conflicts among cross layer interactions. It shows that the archi-

tecture which manages the cross layer interaction information provides better protection
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against the conflict. Architectures which use central repository for cross layer interaction

information have not discussed conflicting scenario among cross layer interactions. These

architectures can be upgraded to provide conflict free cross layer interaction by using race

condition avoidance mechanisms. CLAPDAWN uses dependancy graph which helps it to

identify all possible conflicts occurring between different cross layer interactions.

Table 3.6: Preventions from conflicting cross layer interactions
Architecture Conflicting Cross Layer Interactions prevention

mechanism
Points(F)

TinyCubus TinyCubus uses Callback mechanism of TinyOS and it
has limitation with reconfiguration and that limitation
makes it Conflict free.

5

MobileMAN Cross Layer Interactions are implemented in the layer it-
self and they consume the information provided by layers.
Network status layer does not have information about
different Cross layer interactions.

2

CL Interaction Middleware layer is provided between the Network layer
and MAC layer that manages the different cross layer
interaction. That reduces the chance of conflict among
the cross layer interactions.

5

CrossTalk Local and global view have no control over information
consumed and produced by the layers that increase the
chances of conflict in the system.

1

ECLAIR Separate tuning layer provides the required information
to each optimizer which updates them independently.
This distributed update process increases the chance of
conflict in the system

2

CLAPDAWN Cross layer knowledgebase maintains all the cross layer
interaction with the required input and output parame-
ter. Using dependency graph it manages all the possible
conflict in the system.

5

3.2.7 Time overhead

Table 3.7 shows the time overhead involved in different cross layer architectures. It

shows that architecture, which implements the cross layer interaction inside the layer, has

less time overhead compared to architecture which implements it outside. Architectures

like CL interaction implements cross layer interaction inside the layer but the required

information comes piggybacked inside the packet that adds additional delay to the overall
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processing.

Table 3.7: Time overhead in cross layer architecture
Architecture Time Overhead Points(G)
TinyCubus With dynamic modules, it requires additional time to

find the correct component associated with the repository
data.

3

MobileMAN Cross layer interaction implemented inside the layer,
takes information from network status layer.

4

CL Interaction It uses piggybacked mechanism to bring required infor-
mation to cross layer interaction from the middleware
that adds additional delay. Network layer queue may
increase this delay.

2

CrossTalk Cross layer interactions are implemented in layer itself
using information provided by local view layer and global
information. Local view is updated by direct interfaces
while global view is updated by information provided by
piggybacking, that adds additional delay.

3

ECLAIR Information is provided by tuning layer and each opti-
mizer works independently. It is implemented outside
the layer that increases delay.

3

CLAPDAWN Information provided by interfaces and processed by
cross layer engine. To increase the efficiency output pa-
rameters are mapped to specific engine. Processing is
done outside the layer and in sequence adds delay to the
system.

2

3.2.8 Space overhead

One of the important parameter is the space required to implement different cross layer

interactions. In networks like sensor networks, available memory space is less compared to

other networks. The table 3.8 shows the space required by different cross layer architec-

tures. It shows that all the architectures require additional space to maintain parameters

involved in cross layer interactions. For example, in ECLAIR, information exchange code

and local parameters are replicated in different optimizers. In the case of CLAPDAWN,

execution engine only keeps control over such replication.
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Table 3.8: Space overhead in cross layer architecture architecture
Architecture Space Overhead Points(H)
TinyCubus Configuration Engine, Topology Control Frame-

work and Data Management Framework requires
additional memory for each of the TinyCubus.

2

MobileMAN Network Status Layer maintains the required in-
formation.

4

CL Interaction Middleware layer manages information about all
the cross layer interaction and parameters, with
cross layer interaction implemented inside the
layer.

2

CrossTalk Cross Layer information is managed by local view
and global view. Cross layer interaction are im-
plemented inside the layer.

3

ECLAIR Cross layer information is provided by tuning
layer and interactions are implemented outside
the layer, which requires additional memory.

2

CLAPDAWN Cross layer information is provided by separate
layer and each cross layer interaction is stored as
ECA rule in knowledge base which requires mem-
ory.

3

3.2.9 Message overhead

Table 3.9 shows the comparative study of message overhead involved in cross layer in-

teraction. Those architectures, which use common database to store the cross layer

interaction and implement it inside the layer itself, do not have any messaging overhead.

The architecture which use the piggybacked mechanism to convey required information

to the cross layer interaction is free from the messaging overhead. The architecture,

which implements the cross layer interaction outside the layer, have messages overhead

proportional to the event frequency and the number of parameters involved in it.

3.2.10 Flexibility measure(J)

Flexibility measure is one of the important parameters involved in cross layer architecture

design. It is the responsibility of cross layer architecture to provide required mechanism

to adapt to changing environment as well as changing cross layer interactions.
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Table 3.9: Message overhead in cross layer architecture
Architecture Message Overhead Points(I)
TinyCubus Dynamic wiring between the components do not require

any messaging.
4

MobileMAN Messages required to get and put information to Network
Status layer.

3

CL Interaction Through piggybacking information forwarded to middle-
ware.

4

CrossTalk Using piggybacking information is provided to global
view and local view.

4

ECLAIR Cross layer interaction are implemented outside the net-
work stack . Additional messages required for each piece
of information exchanged between a) network protocol
stack and tuning layer, and b) tuning layer and optimiz-
ers.

2

CLAPDAWN Cross layer interactions are implemented outside the net-
work stack . Additional messages required for each piece
of information exchanged between Functional Plane and
Control Plane.

3

Table 3.10: Flexibility with Cross Layer Interactions
Architecture Flexibility Measure Points(J)
TinyCubus Due to underlying dependency of TinyOS, the architec-

ture does not have the flexibility of adjusting different
demands. Further, callback mechanism of TinyOS re-
stricts the scope of TinyCubus.

3

MobileMAN Each cross layer interaction implemented inside the layer,
takes information from network status layer. Any mod-
ification made to network status layer affects the all the
cross layer interactions.

1

CL Interaction Middleware layer manages all the cross layer interactions
implemented inside the layers.

4

CrossTalk Cross layer interaction are implemented inside the layer.
Modification made to the global view and local view trig-
gers update in the system.

2

ECLAIR Cross layer interactions are implemented as separate op-
timizer using tuning layer. System is flexible and adapt-
able to different changes in underlying protocol. Modifi-
cation to cross layer interaction is also transparent to the
rest of the system.

4

CLAPDAWN Cross layer interactions are implemented as separate con-
trol plane. System is flexible and adaptable to different
changes in the underlying protocol. Modification to cross
layer interaction is also transparent to the rest of the sys-
tem.

5
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3.2.11 Relative ranking

We have summarized the comparative study of cross layer architectures by defining the

rank for the cross layer architectures. Overall performance is calculated as average of

individual performance achieved by cross layer architectures for different parameters. To

decide the relative rank we have short listed our architectures based on their average value.

Following table shows the average performance with the rank. It shows the CLAPDAWN

has higher rank compared to other architectures.

Table 3.11: Comparative Study of different Architectures
Architecture A B C D E F G H I J Average Rank
CLAPDAWN 5 5 5 5 4 5 2 3 3 5 4.2 1
ECLAIR 5 5 4 4 2 2 3 2 2 4 3.3 2
TinyCubus 5 2 3 3 2 5 3 2 4 3 3.2 3
CL Interaction 3 3 1 2 4 5 2 2 4 4 3 4
MobileMAN 5 3 1 2 1 2 4 4 3 1 2.6 6
CrossTalk 5 3 1 1 1 1 3 3 4 2 2.4 5

3.3 CLAPDAWN Limitations

Above sections show the comparative study of different architectures with their relative

ranking information. Ranking is calculated based on the average performance achieved by

all the parameters. It shows that CLAPDAWN has higher rank than other architectures.

Though it has higher rank, architecture performs relatively low in some of the aspects

like memory overhead and running time overhead.

As all the cross layer interactions are implemented as ECA rules, it requires additional

memory to store those cross layer interactions. Further architecture also has to maintain

its parameters list that also requires additional memory. Here memory requirement is

proportional to the number of parameters involved in cross layer interaction and number

of rules affected by the give parameter. Further CLAPDAWN maps incoming and outgo-

ing parameters with the parameters involved in ECA rules that adds initial configuration

time.
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CLAPDAWN uses single execution engine to execute the given rules that creates delay

in overall processing. This delay can be overcome by introducing more than one execution

engines. As ECA rules are independent from each other, set of rules can be mapped to

different execution engines to make execution faster.

3.4 Summary

In this chapter we have highlighted evaluation metrics for the cross layer architectures.

Based on identified metrics we have evaluated some of the well known cross layer ar-

chitectures available in literature. Their comparison shows that CLAPDWAN provides

better support for the cross layer interaction implementation than the others. Further

we have ranked these architectures based on their cumulative performance. Based on

these ranking we have selected ECLAIR with the CLAPDWAN and implemented it on

simulator to derive experimental results for better clarity and criticism.



Chapter 4

CLAPDAWN Simulation Study

Chapter 3 shows study of different architectures and their comparative analysis. It shows

that CLAPDAWN outperforms various architectures in many design features. The com-

parative analysis based ranking shows that CLAPDAWN has higher rank than rest of the

considered architectures. Next architecture in rank is ECLAIR. To validate CLAPDAWN

architecture, we have implemented first two higher ranking architecture CLAPDAWN and

ECLAIR on network simulator 2. This chapter covers the implementation details of both

the architectures.

Performance of both the architectures are evaluated by performing two simulation

studies, discussed in section 4.2.1 and 4.2.2. We have implemented our architecture mod-

ifying Network Simulator 2 using POSIX sockets and threads. Network simulator pro-

vides the reference network protocol stack to which we embed functional plane and control

plane. Combination of these two generates the CLAPDAWN. Using CLAPDAWN, the

extended Network Simulator 2, we have performed two simulation studies. In our first

simulation study (section 4.2.1), we implemented the CLI discussed in section 2.5. We

compared it with other cross layer architecture, ECLAIR, using two performance mea-

sures: packet delivery ratio and frame loss ratio. In second simulation study (section

4.2.2) we created a complex scenario of having conflicting CLIs. First study shows the

applicability of the architecture while second study shows how CLAPDAWN outperforms

the other architecture in complex scenarios.

46
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Figure 4.1: IEEE 802.11e dynamic queue management using application layer video
streaming data.

4.1 Architecture Implementation

Details of CLAPDAWN architecture is given in chapter 2. As discussed there, architecture

has two parts functional plane and control plane. For implementation, we have selected

TCP/IP layered architecture as reference architecture. Reference architecture consist of

five layers: application layer, transport layer, network layer, data link layer and physical

layer. Network simulator 2 provides implementations of these layers and generates the

functional plane of the CLAPDAWN.

On defined functional plane, we have implemented the cross layer interaction discussed

in section 2.5.1. Two layers are involved in this cross layer interaction, application layer

running H.264 video streaming application and data link layer running IEEE 802.11e

protocol. Figure 4.1 shows the cross layer interaction. In cross layer interaction video

packets are dynamically mapped to appropriate IEEE 802.11e queue based on the signif-

icance of the video data and the network traffic load. Cross layer interaction replaces the

static queue management by dynamic queue management.
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Figure 4.2: Cross layer protocol implementation

Cross layer interaction takes parameter from application layer and data link layer and

can be implemented inside the layer or outside the layer as shown in figure 4.2. In our

study we have implemented the cross layer interaction in three different ways a) inside

the layer, and outside the layers using b) CLPADAWN architecture and c) ECLAIR

architecture. Following section explains the implementation details.

4.1.1 Inside layer implementation

First implementation of our cross layer interaction is inside the data link layer. Here

we have modified the IEEE 802.11e priority queue management to handle cross layer

interactions as shown in figure 4.3. Figure shows the organization of cross layer interaction

inside the data link layer. Left side shows the cross layer interactions and right side shows

the cross layer interaction placement. It shows that MAC802 11e contains the queue

management part in PriQ, which maintains the drop tail queues DTail. MAC802 11e

receives frame from above layer. PriQ manages the frame using DTail queues. PriQ

receives this frame and applies dynamic queue management policy discussed in section
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Figure 4.3: In layer cross layer protocol implementations.

2.5.1.

4.1.2 ECLAIR implementation

Figure 4.4 shows the ECLAIR implementation of cross layer protocol. As discussed in

chapter 1, ECLAIR implements the cross layer interaction outside the layer architecture

using tuning layer and optimizer subsystem. As shown in figure 4.4, layer interacts with

its corresponding tuning layer. Cross layer interactions are implemented as optimizer

in optimize subsystem. Implemented optimizer interacts with tuning layers to get the

required information. Each layer provides interface using which tuning layer interacts

with the layer.

We have modified the protocols in network simulator 2 by adding interfaces to get the

required information. Layers are modified to provide set of interfaces for each piece of

information. Tuning layers are implemented outside the regular layer structure. Tuning

layer makes connection with layers and sends the data requests. Connection handler at

layer receives connection request and data request. Based on data request it calls the
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Figure 4.4: ECLAIR implementation of cross layer protocol

interface provided by layer.

Figure 4.5 shows the implementation details of ECLAIR. Each layer involved in cross

layer implementation receives the connection request from its corresponding tuning layer.

Example shows the application layer provides connection interface. Using that interface

tuning layer makes connection with application layer at the time of initialization. Ap-

plication layer provides interface like reqpriority(). Tuning layer uses provided interfaces

to get the required information. Tuning layer forwards the collected interface to the

optimizer. Optimizer calls the tuning layer interface for the information and provides

the results back to the tuning layer interface. As discussed in previous chapter, any

modification to the optimizer, tuning layer or protocol triggers the development cycle.

4.1.3 CLAPDAWN implementation

Figure 4.6 shows the CLAPDAWN implementations of cross layer interaction. As dis-

cussed in chapter 2, and shown in figure, cross layer protocol is implemented into cross

layer knowledge base of CLAPDAWN. Cross layer engine executes this cross layer proto-
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Figure 4.5: ECLAIR implementation in Network Simulator 2 with Interfaces

col using information provided by control interface and updates the referenced functional

plane using layer interface.

Functional plane is implemented by modifying layers of Network Simulator 2. Pro-

tocols involved in the cross layer interaction are patched with the interface. Using this

interface Control Network Interface(CNI) makes connection with the protocol. Imple-

mentation of control interface is outside the network layers. Control interface using a

socket makes connection with layers of Network Simulator. Using this connection it ex-

changes messages with functional plane. Same way control plane forwards its information

to functional plane using patched interface within functional plane.

Layer in NS2 implements two patches one for control interface and second for layer in-

terface. Figure 4.7 shows the main components of CLAPDAWN implemented in Network

Simulator 2. Layers which implement two interfaces also maintain the data structure by

mapping variable name with their address. Execution engine implements the knowledge

base, control interface and layer interface in it.

Here we have briefly discussed the implementation of cross layer interaction involved
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Figure 4.6: CLAPDAWN implementation of cross layer protocol
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Figure 4.7: CLAPDAWN implementation of cross layer protocol
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in first simulation study. Our second simulation study involves two cross layer interac-

tions. First cross layer interaction takes place between network layer and data link layer.

Second cross layer interaction takes place between network layer and physical layer. Im-

plementation details of the second simulation study is similar to the first one. Only

change is here we are dealing with two cross layer interactions simultaneously.

4.2 Simulation Study

This section discusses the simulation results of the above discussed cross layer interactions.

In the section 4.2.1 we discuss the results of the first cross layer interaction and section

4.2.2 discusses the results of the second cross layer interaction.

4.2.1 Simulation study 1: complex video streaming example

Section 4 discusses the working of cross layer interaction, which dynamically adjusts the

IEEE 802.11e access queues based on traffic condition and application’s requirement.

Dynamic queue management is improvement over static queue management. In static

mechanism traffic classes are mapped to specific queues without considering the traffic

load in that class.

Figure 4.8 shows behavior of four AC queues (AC0-AC3) in static mapping, having

high video and audio traffic. Normally video and audio traffics are mapped to AC0.

Figure 4.8 shows the utilization of queues. Here, due to high audio and video traffic, AC0

is highly utilized and reaches its maximum limit. After crossing the maximum queue

limit it starts packet dropping, even though the AC1-AC3 have space to handle these

additional packets.

Figure 4.9 shows that how cross layer interaction discussed in section 2.5 improves

over it. Result shows how dynamic mapping changes the queue utilization scenario. Here,

the load is distributed among the other queues if AC0 crosses its minimum threshold.

In simulation minimum threshold is set to very low value (5 pkts). In all the cases the

maximum queue limit is 50 packets.
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Figure 4.8: Average Queue length experienced with static method

In our simulation study, we have implemented dynamic scenario in three different

ways: a) in layer implementation, b) ECLAIR and c) CLAPDAWN. On these implemen-

tations we have measured the performance of the system by varying the traffic conditions.

We have compared them using packet delivery ratio and packets lost (audio and video).

Figure 4.10 compares above mentioned implementations of cross layer interaction with

the static approach. It shows that dynamic approach has better delivery ratio than the

static approach. Here, as the traffic increases, this gap decreases. The reason is that

configured traffic is more than the capacity of underlying wireless networks. Result also

shows that all the implementations of dynamic approach are almost same. In other

words, separating the cross layer interaction from layered approach does not degrade the

performance of the system.

Next result shown in figure 4.11, highlights effect of dynamic approach on prioritized

data. Here, I-Frame information and audio information are critical information. Result

shows that all dynamic approaches have similar behavior in all the cases.
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Figure 4.9: Average Queue length experienced in dynamic method with CLAPDAWN
architecture
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Figure 4.10: Packet delivery ratio experienced by static method and dynamic method
implemented in different architectures

In summary, the first simulation study highlights the feasibility of CLAPDAWN. It

shows cross layer knowledge base of CLAPDAWN can efficiently implement complex
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Figure 4.11: I-Frame and Audio packet loss experienced by static method and dynamic
method implemented in different architectures

cross layer interaction scenarios. Next result shows the benefit of CLAPDAWN over

other architectures, specifically over highly cited ECLAIR.

4.2.2 Simulation study 2 : conflicting cross layer interactions

In the next simulation study we have increased the complexity of the system by introduc-

ing multiple conflicting cross layer interactions in the system. This study highlights the

importance of uniform representation of cross layer interaction in the cross layer knowl-

edge base (ECA rules) and significance of policy configurations. Result of the study shows

how these features improve the stability of the system compared to the other cross layer

architecture, ECLAIR.

Our experiment introduces two conflicting cross layer interactions in the system a)

network layer interacting with physical layer, in which transmission power is a function

of number of neighbors and b) data link layer interacting with physical layer here, trans-

mission power is a function of link quality. In the first cross layer interaction, if a node

has higher number of neighbors then it decreases its transmission power, to decrease its

interference to other nodes. If it has low number of neighbors it increases its transmission
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power so that synchronized effect increases its number of neighbors. In the second case,

if the node has low link quality it increases the transmission power to improve the link

quality and in the case of high link quality it tries to achieve required performance using

low power by reducing the transmission power.

We have performed a set of experiments with the above cross layer interaction rules

configured in knowledge base. Performance of the system is analyzed by measuring how

many times the monitoring parameter gets a value beyond defined threshold window.

Here monitoring parameters are number of neighbor and link quality indicator.

Here, both cross layer interactions calculate value of transmission power based on

current parameter values, one using number of neighbor and other using link quality

indicator. CLAPDAWN provides various policy configuration to decide transmission

power like, a) running average of previous results to configure current transmission power,

b) the average transmission power calculated by all the cross layer interactions, c) it

gives higher priority to one calculated transmission over the other. We did simulation

considering these three policies.
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window in ECLAIR and CLAPDAWN with policy configuration

Figure 4.12 and 4.13 show the comparison between the ECLAIR and CLAPDAWN.
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It shows that in both the cases ECLAIR reports the higher number of readings beyond

the threshold boundary. In the case of CLAPDAWN different policy configurations gives

different results. In that, prioritized policy configuration has better results compared to

other policy configurations.
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In cross layer interaction, secondary control requires information from other layer. It

is the responsibility of cross layer architecture to bring required information to required

place efficiently. Additional information flow generates the overhead in the system, nor-

mally measured in number of messages. Next result shows the messaging overhead expe-

rienced by ECLAIR and CLAPDAWN in the above scenario. Secondary control flow has

two options asynchronous and synchronous. Considering that we have divided the over-

head messages into two parts, one is inflow messages and the other is outflow messages,

as shown in figure 4.14 and 4.15 respectively.

Result shows that CLAPDAWN generates lesser overhead in terms of messages com-

pared to ECLAIR. In the ECLAIR each optimizer is implemented separately and gen-

erates separate information flow. That increases the number of in and out messages in

the ECLAIR and in a way generates higher overhead. CLAPDAWN has single informa-
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Figure 4.15: Number of output messages required by ECLAIR and CLAPDAWN with
policy configuration

tion flow that reduces the number of messages in the network. CLAPDAWN has lesser

message overhead compared to ECLAIR. It achieves this lesser overhead at the cost of

processing time. Here, on event cross layer engine has to processes all the ECA rules.
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That increases the overall response time experienced by the event. Next result shows

study of response time in both the architectures, ECLAIR and CLAPDAWN.
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Figure 4.16: Result showing response time experienced by events in ECLAIR and CLAP-
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Figure 4.16 shows response time experienced by an individual event. In CLAPDAWN

initial configuration takes some time. After initial configuration, additional delay is added

by waiting time. At stable condition, after 1000 events result shows that ECLAIR has

smaller response time compared to CLAPDAWN. Same can be seen in the average re-

sponse time result shown in figure 4.17.

In CLAPDAWN, limitation of having high response time can be overcome by in-

creasing the number of execution engines. Our architecture separates CLI logic from its

implementation. That allows freedom of increasing number of execution engine in the

CLAPDAWN and can reduce the response time.

4.3 Summary

Structure and working of CLAPDAWN highlights many advantages over existing CLA.

In TinyCubus, MobileMan and CrossTalk CLAs communication and control parts are
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and CLAPDAWN with policy configuration

tightly coupled together. This tight coupling makes the system complex and hard to

track when multiple CLIs take place in the system. CLAPDAWN separates control from

communication that gives additional flexibility to the architecture. Due to this commu-

nication part remains less affected while introducing or removing cross layer interactions

in the control part. That helps in working with multiple cross layer interaction in the

system.

Once the CLI is implemented in the system any modification made to it regenerates

the entire implementation cycle. This problem is there in many of the previously proposed

architectures. Our architecture tackles this problem and achieves reduced development

time by separating CLI execution (execution engine) from its logic (knowledge base).

Any modification that takes place in cross layer interaction logic remains transparent to

the implementation of that interaction.

CLIs are implemented as ECA rules in knowledge base. Because of that, different

cross layer interactions have uniform format that standardizes the process of addition,

updating or removal of different CLI in knowledge base. Modularized architecture and

standardized structure of CLAPDAWN reduce the development time for many of the
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commercial off the shelf component based wireless networks like wireless sensor networks.

TinyCubus, MobileMan, CrossTalk and ECLAIR have distributed control flow for dif-

ferent CLI. This distributed control creates the problem of instability and feedback loop

in the system. Knowledge base has information about all the cross layer interactions,

which are there in the system. It helps in identifying the possible conflicts and feedback

loops which may take place due to multiple cross layer interactions. CLAPDAWN identi-

fies possible conflicts in the system and applies configurable policy mechanism over them

to reduce their effect on overall system.

The architecture uses standard interfaces for CP and FP interaction and does not

modify any existing messaging structure by adding piggyback information as done in

some previous work, CrossTalk. That increases the stability of the architecture and the

protocol. Restoring system to its previous state is much easier than the earlier work.

Removal of ECA rule from knowledge base restores the system to its previous state and

removes the unwanted cross layer interaction from the system.

With all these benefits, CLAPDAWN has higher initial processing time. At first

occurrence of the event, execution engine takes some time for rule fetching and config-

uration. This creates high initial response time. Secondly CLAPDAWN requires more

memory compared to other proposed architectures. Execution engine uses configurable

policies and local set of parameters for each CLI that increases memory footprint of

CLAPDAWN. These problems can be overcome by introducing more execution engines

in the system with compact CLI representations.



Chapter 5

IEEE 802.15.4

5.1 Introduction

Wireless Sensor Network(WSN) is resource constrained network developed specially tar-

geting applications having unattended network for long time. Such a network requires

energy efficient and energy aware MAC and Physical layer. The previously proposed

standards like IEEE 802.11 [37], IEEE 802.16 [38] or IEEE 802.15.1 [39] do not consider

the node energy in their design. That makes them inappropriate for WSN and need for

new protocol standard.

IEEE 802.15.4 is one of such standards specially developed for low rate, low power

networks like WSN. IEEE 802.15.4 [40] is designed considering the energy concerns of

sensor nodes. For efficient energy utilization, standard uses various improved techniques

like, low-power transmission, small frame size, energy-efficient carrier sense multiple ac-

cess with collision avoidance (CSMA-CA) algorithm and mechanism to support inactive

period. As per the specification IEEE 802.15.4 comes with following features:

• 868 - 868.6 MHz (e.g., Europe)

• 902 - 928 MHz (e.g., North America)

• 2400 - 2483.5 MHz (worldwide)

• 3100 - 10 600 MHz (UWB varies by region)

63
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• Over the air data rates of 851 kb/s, 250 kb/s, 110 kb/s, 100 kb/s, 40 kb/s, and 20

kb/s

• Star or peer-to-peer operation

• Allocated 16-bit short or 64-bit extended addresses

• Optional allocation of guaranteed time slots (GTSs)

• Carrier sense multiple access with collision avoidance (CSMA-CA) channel access

• Fully acknowledged protocol for transfer reliability

• Low power consumption and Energy detection (ED)

• Link quality indication (LQI)

• 16 channels in the 2450 MHz band, 30 channels in the 915 MHz band, and 3 channels

in the 868 MHz band , 14 overlapping chirp spread spectrum (CSS) channels in the

2450 MHz band, and 16 channels in three UWB bands (500 MHz and 3.1 GHz)

As mentioned above IEEE 802.15.4 is designed for network devices with low power

consumption and data low rate applications. The standard specifies bottom two layers

of network protocol stack, MAC layer and physical layer. It divides network nodes into

three groups, personal area coordinator (PAN coordinator), coordinator nodes and device

nodes.

PAN coordinator is responsible for creating and managing the network. Network

coordinators are responsible for node synchronization using beacons and providing the

routing functionality to device nodes. Lastly, device nodes are responsible for collect-

ing the information in the network and forwarding it to network coordinators or PAN

coordinator .

As per the standard PAN coordinator and coordinator nodes are categorized as Full

Function Device (FFD) nodes while the device nodes may be categorized as Reduced

Function Device (RFD) nodes or FFD. Here FFD spends more time in active state and
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consumes more energy while RFD spends more time in sleep state and consumes less

energy compared to FFD.

5.2 Beacon Enabled Mode
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Figure 5.1: SISD Organization

IEEE 802.15.4 comes with two working modes beacon enabled mode and non-beacon

mode. In beacon enabled mode of IEEE 802.15.4, Full Function Devices (FFD, PAN coor-

dinator and coordinator nodes) periodically transmit beacons in the network. A network

node uses these beacons for network synchronization and to convey the superframe struc-

ture to other nodes in the network. Beacon contains the superframe structure through

which full function device informs the neighboring nodes about the active and inactive

part. The time period in which, the node sends it’s beacon is called Beacon Interval(BI).

Standard divides the BI into two parts active part and inactive parts as shown in figure

5.1. During inactive part nodes configures themselves to be in sleep state and save their

energy. During active part nodes wake up from sleep state and communicate with the

coordinator node.

As per the standard, active part consists of three components, 1) beacon 2) Contention-

Access Period (CAP) and 3) Contention-Free Period (CFP) . A device using beacon

tracking gets active-sleep durations from coordinator, when it receives beacon for the

first time. Then it synchronizes its own schedule with the coordinator’s and receives
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the next beacon periodically by turning on the receiver just before the expected beacon

transmission time. The active part is divided into 16 slots from which maximum of 7

slots can be allocated to the CFP while other are allocated to CAP.

In CAP, those nodes which want to communicate with coordinator contend for the

media using CSMA-CA algorithm explained in the next section. On successful completion

of CSMA-CA algorithm the contending node communicates with the coordinator or vice

versa. Beacon carries the information about assignment of guaranteed time slot and

the direction of the communication in the CFP. That makes the assigned node to start

communication without using CSMA-CA in CFP duration. Following are the timing

specifications for the superframe in beacon enabled mode :

BI = aBaseSuperframeDuration × 2BCO (5.1)

SD = aBaseSuperframeDuration × 2SFO (5.2)

0 ≤ SFO ≤ BCO ≤ 14 (5.3)

aBaseSuperframeDuration = 960 symbols = 15.36 ms (5.4)

backoff slot = 20 symbols = 320 µs = 10 Bytes (5.5)

As mentioned above, in beacon enabled mode coordinator node periodically sends

the beacon. The period between two consecutive beacons is configured by the Beacon

Interval (BI) parameter and the active and inactive parts are configured using Superframe

Duration (SD) , defined in equation 5.1 and 5.2 respectively. Further the relation between

the Superframe Order (SFO) and Beacon Order(BCO) is defined by equation 5.3. These

values are based on 2.45GHz specification.

In beacon enabled mode coordinator node periodically sends the beacon and syn-
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chronizes the neighboring network nodes. Beacon also contains the information about

Guaranteed Time Slot(GTS) , which contains the node address list for each allocated

slot with the packet flow direction. Nodes in previous beacon interval reserve the slot for

next Contention Free Period (CFP). That adds additional delay in packet transmission

with CFP as reservation is done using CSMA-CA algorithm. Another draw back that

CFP faces is of limited number of slots. In a particular beacon, maximum 7 slots can be

allocated to GTS. With this a maximum of 7 nodes can send their packets in CFP. It

provides a sense of priority in packet transmission, considering that in CFP the allocated

slot is reserved for the allocated nodes. But it adds additional delay of slot reservation

and has limited number of slots for the contending nodes.

In CAP, network nodes contend for the channel using CSMA-CA algorithm and in

CFP, selected nodes goes for packet transmission without using CSMA-CA algorithm.

Standard specifies that CFP is designed for applications requiring guaranteed data de-

livery or having specific bandwidth demand. But as GTS has its own drawback it is not

serving its purpose fully.

5.3 CSMA-CA

CSMA-CA stands for the Carrier Sense Multiple Access-Collision Avoidance. IEEE

802.15.4 uses slotted CSMA-CA algorithm for channel access before sending command

or data packets in CAP of beacon mode. This section covers CSMA-CA algorithm used

by IEEE 802.15.4 for channel access in beacon enabled mode [41]. CSMA-CA algorithm

for non-beacon mode is slightly different than the beacon enabled mode. Here we limit

our scope to beacon enabled mode only and do not go into details of non-beacon mode

of the standard.

On arrival of packet from higher layer or command from MAC layer, node triggers

the CSMA-CA algorithm for channel access. The backoff boundaries of every device in

network are aligned with superframe slot boundaries of the PAN coordinator. Each time

device wishes to access the channel, it must locate the boundary for the next slot period.
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Figure 5.2: Carrier Sense Multiple Access-Collision Avoidance(CSMA-CA) algorithm for
IEEE 802.15.4
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Before accessing the channel, a random number of backoff slots should be waited. During

this time, the device remains in idle state and does not scan the channel that helps in

saving energy. After the random delay, a two slot clear channel assessment is carried out.

Algorithm steps for CSMA-CA are shown in figure 5.2 and explained below.

Mainly there are three variables that every node in the network maintains for the

CSMA-CA algorithm, Number of Backoffs(NB), Contention Window (CW) and Backoff

exponent (BE) . NB is the number of backoff attempts that a node is allowed to get

the channel for the packet transmission. CW represents the number of clear channel

assessments(CCAs) node performs before going for channel access. BE is used to calculate

the maximum number of slot periods a device must wait before attempting to access the

channel. With slotted CSMA-CA, the MAC sublayer shall first initialize NB, CW, and

BE and then locate the boundary of the next backoff period. The MAC sublayer shall

delay for a random number of complete backoff periods in the range 0 to 2BE − 1 and

then request PHY to perform CCA. In a slotted CSMA-CA system, the CCA shall start

at backoff period boundary.

In a slotted CSMA-CA system with the BLE (Battery Life Extension) subfield set to

zero, the MAC sublayer shall ensure that, after the random backoff, the remaining CSMA-

CA operations can be undertaken and the entire transaction must be transmitted before

the end of the CAP. If the number of backoff periods is greater than the remaining number

of backoff periods in the CAP, the MAC sublayer shall pause the backoff countdown at

the end of the CAP and resume it at the start of the CAP in the next superframe. If

the number of backoff periods is less than or equal to the remaining number of backoff

periods in the CAP, the MAC sublayer shall apply it’s backoff delay and then evaluate

whether it can proceed. The MAC sublayer shall proceed if the remaining CSMA-CA

algorithm steps (i.e., two CCA), the frame transmission, and any acknowledgment can be

completed before the end of the CAP. If the MAC sublayer can proceed, it shall request

that the PHY perform the CCA in the current superframe. If the MAC sublayer cannot

proceed, it shall wait until the start of the CAP in the next superframe and apply a

further random backoff delay before evaluating whether it can proceed again.
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In a slotted CSMA-CA system with the BLE(Battery Life Extension) subfield set

to one, the MAC sublayer shall ensure that, after the random backoff, the remaining

CSMA-CA operations can be undertaken and the entire transaction can be transmitted

before the end of the CAP. The backoff countdown shall only occur during the first

macBattLifeExtPeriods(backoff periods during which the receiver is enabled) full backoff

period after the end of the IFS period following the beacon. The MAC sublayer shall

proceed if the remaining CSMA-CA algorithm steps (two CCA analyses), the frame

transmission, and any acknowledgment can be completed before the end of the CAP, and

the frame transmission will start in one of the first macBattLifeExtPeriods full backoff

periods after the IFS period following the beacon.

If the MAC sublayer can proceed, it shall request that the PHY perform the CCA

in the current superframe. If the MAC sublayer cannot proceed, it shall wait until the

start of the CAP in the next superframe and apply a further random backoff delay before

evaluating whether it can proceed again. If the channel is assessed to be busy, the MAC

sublayer shall increment both NB and BE by one, ensuring that BE shall be no more

than macMaxBE(the maximum value of the backoff exponent,BE). The MAC sublayer

in a slotted CSMA-CA system shall also reset CW to two. If the value of NB is less than

or equal to macMaxCSMABackoffs(the maximum number of backoff attempts before

declaring access failure), the CSMA-CA algorithm shall return to random backoff step.

If the value of NB is greater than macMaxCSMABackoffs, the CSMA-CA algorithm shall

terminate with a channel access failure status.

If the channel is assessed to be idle, the MAC sublayer in a slotted CSMA-CA system

shall ensure that the contention window has expired before commencing transmission. To

do this, the MAC sublayer shall first decrement CW by one and then determine whether

it is equal to zero. If it is not equal to zero, the CSMA-CA algorithm shall return channel

scan step. If it is equal to zero, the MAC sublayer shall begin transmission of the frame

on the boundary of the next backoff period.
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5.4 Issues with IEEE 802.15.4

IEEE 802.15.4 standard provides MAC and Physical layer specifications for energy effi-

cient low power, low rate wireless networks, but there are points which remain untouched

in the specification or specification does not give clear guidelines on them. In this section,

we will go through those issues which are still seeking solution and not attained properly

in literature and standard specification.

5.4.1 Beacon collision

IEEE 802.15.4 standard suggests two network topologies: star topology and peer-to-

peer topology. As nodes are equipped with low range radio modules, network needs to

run in multi-hop mode. Here, as per the standard, network should be organized as a

hierarchical structure. In this hierarchical structure, PAN coordinator works as root and

at each level the coordinator node collects the information and forward it towards the

PAN coordinator.

With beacon enabled mode, coordinator nodes periodically broadcast their beacons.

As per the IEEE 802.15.4 specification to make the network synchronized these beacons

are broadcasted without using CSMA-CA algorithm. Due to this it may happen that

these beacons collide with other packets in the network and get dropped. If this beacon

loss occurs due to other non beacon packet then network can recover from that. But it

may happen that two coordinators are within each others communication range and they

broadcast the beacon which collide then it is hard to recover from such beacon loss.

As the IEEE 802.15.4 is mainly designed for the general-purpose low power networks.

The designed mechanism works well where all the devices are within one hop range (star

network), but by itself it is not sufficient for the multi-hop case (peer to peer network)

used in low power networks. In such cases beacon loss creates serious synchronization

problem in the network.
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5.4.2 Boundary effect

As per the standard, in beacon enabled mode, node uses random backoff time followed by

the two CCA before getting access to the channel. If it finds channel to be free in two CCA

it will go to next step of packet transmission. Here node first calculates the time required

to turnaround its radio, data packet transmission and time to get acknowledgement. If

this time exceeds the current CAP boundary then node postpones the packet transmission

to next super frame. In the next superframe at the beginning of first active slot after the

beacon it goes for the packet transmission.

In such cases it may happen that more than one node goes through the same steps and

ends up into the packet collision. This effect is called boundary effect in IEEE 802.15.4

protocol. A similar problem may occur when the coordinator has pending packets for two

or more of the nodes. Nodes that recognize their address in the beacon frame and have

no pending uplink data transmission in progress will immediately start the CSMA/CA

algorithm. As the initial back off is small (0 to 7), it may happen that two or more nodes

choose the same backoff and fall into collision.

5.4.3 Priority in IEEE 802.15.4

Normally protocols are designed considering that they need to maintain fairness among

the network nodes. IEEE 802.15.4 is also designed based on same guidelines. But there

are many cases in which the deployed sensor network needs to send critical information

urgently and overrule the fairness constraint. IEEE 802.15.4 comes with GTS in beacon

enabled mode which can be used to send prioritized data in the network. As GTS has its

own limitations in terms of number of slots and reservation delay, GTS is not appropriate

for priority implementation. Use of IEEE 802.15.4 in critical information forwarding

requires additional support.
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5.4.4 Turnaround time and CCA time

IEEE 802.15.4 works with slotted CSMA-CA and unslotted CSMA-CA mode. In both

cases, backoff counter is decremented to zero regardless of the channel status. When the

backoff counter reaches zero, a device performs CCA once for the unslotted CSMA-CA

and twice for the slotted CSMA-CA in order to check whether the channel is busy or not.

If it finds the channel idle during CCA time, the device transmits its data packet. When

it finds channel busy during the period, it increments BE by one and repeats the random

backoff procedure.

Particularly in unslotted case with acknowledgement where node only performs one

CCA check, if CCA time is not set properly it creates problem with the acknowledgement

packet. Normally, on receiving data packet node sends the acknowledgement packet in

case the received data packet requires the acknowledgement. To do so it turns around its

radio from receiving mode to transmitting mode and sends the acknowledgement packet.

Meanwhile if any device is performing CCA it finds the channel idle and goes for packet

transmission. If the CCA time is less than the turnaround time, then while the receiving

node is turning around its radio to transmit state the sensing node sees the channel free

and transmits its packet. As the ACK packet is not sent using CSMA-CA, it collides

with the node transmitting the packet. To avoid this the CCA time should be configured

properly so that it should be greater than the turnaround time. Another case is when

the CCA start time of two nodes is less than the turn around time. In this case both the

nodes see the channel idle and go for transmission.

5.4.5 Non-Beacon mode idle listening

The ideal approach to maximize battery life is to turn the transceiver on only when it

transmits and receives a frame. Not knowing the exact times for frame transmission and

reception, a certain amount of overhead is inevitable in a sensor network environment.

The major overhead of a receiving scheme is periodic idle listening for possible frame

reception. Here, wakeup interval and active duration determine consumption energy in
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non-beacon mode. The former is how often and the latter is for how long the device

wakes up. The overhead for a transmitting scheme is mainly due to waiting time for a

receiver’s wakeup schedule. The IEEE 802.15.4 does not give clear guidance on managing

the resources in non-beacon mode and it is open for the final network design.

5.4.6 Use of limited GTS and use of BI, SD

As per the specification, maximum 7 Guaranteed Time Slots(GTS) can be accommodated

in a given superframe. To make it more precise at most seven nodes with one slot per

node can communicate with coordinator with certain guarantee. In the bursty dense

network with multiple flows, it might be the case that there may be more than seven

nodes contending for the guaranteed slots. Scheduling of these limited resources depends

on network design. Further to make space for GTS, designer selects the BI and SD

with smaller CAP time. This comes with the unfairness to the other nodes who are

contending for the slot in CAP time, making CAP small makes these nodes to wait

longer and increases the data delivery latency.

5.4.7 Blocking problem

With beacon enabled mode, when coordinator has packet for node it announces it in

beacon with pending address. On receiving the beacon, node knows that it has pending

data and it sends the data request to coordinator. On receiving data request from node,

the coordinator node performs the CSMA-CA algorithm before sending the packet. Dur-

ing the backoff time of CSMA-CA coordinator does not receive any packet and puts the

network into block state. Due to this blocking, the pending data transfers are delayed

and builds up the queue at network nodes. In heavy traffic condition, this blocking may

end-up in packet overflow and packet loss.



5.5 Summary 75

5.4.8 Topology Control Problem

Normally, IEEE 802.15.4 based wireless sensor networks are deployed randomly having

homogeneous sensor nodes. At the run time as per the network’s requirement these sensor

nodes are configured as FFD(PAN Coordinator and Coordinator Nodes) or RFD (Device

Nodes). The IEEE 802.15.4 classifies the network nodes and their functionality, but the

configuration of node depends on network deployment and requirement. Configuring

wireless sensor network nodes as FFD or RFD nodes based on network requirement is a

topology control problem in wireless sensor networks.

5.5 Summary

In this chapter we have gone through the important features of IEEE 802.15.4 communi-

cation standards. The chapter highlights problems encountered by IEEE 802.15.4. From

this set of problems we have worked on two wireless sensor network problems a) priority

in IEEE 802.15.4 and b) topology control problem and modeled it into CLAPDAWN

as proof of concept. Next part of the thesis discusses these problems in depth with

our proposed solutions and their modeling in CLAPDAWN. Chapters 6 and 7 cover the

prioritized channel access problem based on IEEE 802.15.4 event driven wireless sensor

networks and chapter 8 and 9 covers the topology control problem.



Chapter 6

Event Driven Wireless Sensor

Networks

6.1 Introduction

Wireless Sensor Networks are application specific, data centric networks having appli-

cation span ranging from household applications to mission critical applications. Event

driven application form an important class of applications of wireless sensor networks.

Intrusion detection and fire detection are examples of event driven wireless sensor net-

work applications. Here, one of the desired goals is that on occurrence of critical events,

the network should notify the base station about those events with minimum delay. Sec-

ondly, wireless sensor networks are specifically designed targeting applications having

unattended nodes for long time. Such a network requires energy efficient and energy

aware MAC and Physical layer. It creates the tradeoff between energy consumption and

delay. With this tradeoff it is hard to achieve the desired goal of event driven applications.

IEEE 802.15.4 is a communication standard specifically designed, targeting such re-

source constrained networks. IEEE 802.15.4 provides MAC and Physical layer specifica-

tions for low power personal area networks like wireless sensor networks. Chapter 5 covers

IEEE 802.15.4 and its problems, details about IEEE 802.15.4 can be found in [42, 41]. A

brief survey of well known MAC protocols designed for WSNs is available in [43].
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Generally such MAC specifications are designed considering fairness as one of their

design considerations. But cases like event driven applications require some biasing to

handle critical events with higher consideration. To handle this, IEEE 802.15.4 provides

the Guaranteed Time Slot (GTS) mechanism. Here, nodes reserve one or more GTS in

the next superframe to achieve guaranteed data delivery with coordinator nodes. The

GTS mechanism has its own disadvantages. First, it creates an additional delay for slot

reservation. Second, the number of GTS per superfame is limited. Lastly changing the

number of GTS increases active time of devices and decreases the network lifetime. Use

of GTS in event driven applications will not solve the problem at its depth.

As explained in the above paragraph, GTS will not help much in handling critical

events in event driven applications. Contention Access Period (CAP), the other part of

a superframe also does not have any mechanism to handle critical events. Further, CAP

uses the CSMA-CA algorithm which is known to be unfair in certain scenarios [44, 45].

Considering these limitations, we have worked on IEEE 802.15.4 to provide support for

a prioritized channel access mechanism for wireless sensor networks.

In our work we have focused on introducing the application level priority in the IEEE

802.15.4 MAC layer so that in CAP with beacon enabled mode, nodes have higher chances

of delivering urgent information to the base station. To achieve this, we have proposed

explicit priority and implicit priority based channel access mechanisms for beacon enabled

mode of IEEE 802.15.4.

6.2 Related Work

Several approaches based on simulation and experiments have been proposed in the lit-

erature for performance evaluation of IEEE 802.15.4. On those lines [46, 47, 48] have

provided simulation based experimental studies of IEEE 802.15.4 to analyze association,

delay performance and collision in the network. Lu et al. [49] performed simulation based

study of throughput and energy efficiency of IEEE 802.15.4. However, instead of relying

on simulation results and lengthy experiments, it is of great interest to determine the
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analytical model that can help in designing the network.

In his pioneering work, Binachi [50] has proposed an accurate two dimensional Markov

chain based model for the binary exponential backoff protocol of IEEE 802.11. He has

analyzed and computed the IEEE 802.11 DCF saturated throughput. In modeling of

IEEE 802.15.4, [51, 52, 53, 54, 55, 56] have got their initial inspiration from Binachi [50].

A very detailed analysis of beacon enabled clustered IEEE 802.15.4 is given in [54, 53].

Here, Misic et al. have modeled the working of IEEE 802.15.4 with great detail which

has made the model cumbersome and difficult to follow. They have modeled the packet

queues in the device data buffer and request buffer as an M/G/1 queuing system. Here

each state is modeled based on the counter value as done in [50]. With this they have

modeled the MAC sublayer for both downlink and uplink traffic in beacon enabled mode

of IEEE 802.15.4.

Ramachandran et al. [57] presented the analysis of IEEE 802.15.4 beacon-enabled

mode under non-saturation traffic. They simplified their model by using geometric dis-

tribution instead of uniform distribution for the random backoff stage. Their result shows

that with no acknowledgement, initializing the contention window (CW) length to 1 helps

in improving the throughput and reduces the energy consumption. Park T.R et al. [52]

have analyzed IEEE 802.15.4 using Markov chains for throughput and energy consump-

tion in saturated traffic condition. Their proposed model utilizes the probability of a

device in the channel sensing state instead of the channel accessing state.

Xinhua Ling et al. [58] have proposed an accurate analytical model for the IEEE

802.15.4 MAC protocol. In their work instead of modeling the channel they have modeled

behavior of an individual node based on a three-level renewal process. Chiara et. al.

[56] has modeled star topology based non-beacon enabled mode of IEEE 802.15.4 and

derived success probability for the transmission of a packet in a round and the mean

energy consumed by a node during a round. To make the protocol simple they have

assumed that all the nodes can hear each other. Kim et al. [52] have proposed simple

mathematical model for non-beacon enabled mode of IEEE 802.15.4. With their model

they have derived the appropriate number of nodes for required QoS constraints like
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average packet delay, packet loss probability and battery life.

As discussed above several approaches based on simulations and experiments have

been proposed in the literature for performance evaluation of IEEE 802.15.4. Along

those lines [46, 47, 59, 49] undertake the simulation based experimental study of IEEE

802.15.4 and [51, 52, 53, 54, 55, 57] provide modeling of IEEE 802.15.4 inspired by Binachi

[50]. The literature mainly discusses IEEE 802.15.4 in a normal working environment.

Very few papers [60, 61, 62, 63, 64] discuss the prioritized working of IEEE 802.15.4.

And those which talk about prioritized IEEE 802.15.4, only give simulation based study.

In their analytical study Kima et. al. [64] assume that the priority of clear channel

assessment is same in both the scans which is not a valid assumption. In ideal conditions

the second scan depends on the cumulative effect of first scan perform by all the nodes

in the network. To the best of our knowledge proper analytical study of prioritized IEEE

802.15.4 has not been conducted extensively.

We address the problem of critical event handling in IEEE 802.15.4 based wireless

sensor networks. For this we propose two protocols; the first protocol is Explicit Priori-

tized Channel Access Protocol (EPCAP) and the second is Implicit Prioritized Channel

Access Protocol (IPCAP). Many of the previous works like [56], assume that all the nodes

are in each others communication range which makes them impractical in real world sce-

narios. IPCAP and EPCAP do not assume such strict conditions. Further, rather than

giving the prioritized protocol and comparing it with previous work, our objective is to

provide correct analytical model for prioritized event handling protocol working on IEEE

802.15.4. In our work we model the working of IPCAP as a two dimensional Markov

chain and EPCAP as M/G/c queuing model.

To achieve the desired goal, we have exploited disadvantages of CSMA-CA in handling

critical events in event driven applications, by designing Implicit Prioritized Channel

Access Protocol (IPCAP) for beacon enabled mode of IEEE 802.15.4. IPCAP helps

devices to deliver critical events prior to normal events. IPCAP works with the CSMA-

CA algorithm. We have modeled the working of tampered CSMA-CA as a bidimensional

Markov chain and derived equations for various network properties.
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The second protocol that we propose is Explicit Prioritized Channel Access Protocol

(EPCAP) for beacon enabled mode of IEEE 802.15.4. EPCAP also helps devices deliver

critical events prior to normal events. EPCAP achieves this by using secondary beacon.

We have modeled the working of EPCAP as M/G/c queuing model and derived equations

for various network properties. Here, IPCAP and EPCAP assume rational behavior of

all the nodes and do not consider the case of having malicious nodes in the network.

6.3 Implicit Prioritized Channel Access Protocol (IP-

CAP)

Consider a scenario having a set of coordinator nodes and a set of device nodes. Detailed

working of coordinator nodes and device nodes can be found in [42, 41]. Device nodes

need to convey their information to coordinator nodes. Among these, some device nodes

are transmitting periodic routine information while some device nodes have urgent infor-

mation that requires immediate attention from a coordinator node. It is the responsibility

of IPCAP to deliver urgent events prior to normal events. In IPCAP nodes locally con-

figure their CSMA-CA parameters such that the high priority nodes have higher chances

of getting channel access compared to low priority nodes.

Table 6.1: Configuration Parameters for Priority Class
minBE maxBE ρ maxNB

Class1 2 5 1.5 9
Class2 2 5 1.8 7
Class3 3 5 2 5
Class4 3 5 2.3 4
Class5 4 5 2.5 4

Table 6.2: CSMA/CA Default parameter values
Parameter Default Value
minBE 2
maxBE 5
maxNB 5

Increment Factor ρ 2
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Figure 6.1: Priority Classes

In CAP period of beacon-enabled mode, whenever a node has a packet to send for co-

ordinator it triggers the slotted CSMA-CA algorithm for channel access. In the standard

CSMA-CA algorithm, the node first sets the NB to zero and BE to minBE value then it

chooses a random backoff interval using the current BE value. After finishing the backoff

interval, the node checks whether the channel is idle or not. If it finds the channel idle

two times it will go ahead with the communication. In case it finds the channel busy it

will increment the value of BE and NB and perform the same steps again until the NB

reaches to its allowed limit which is by default set to five.

In normal scenarios all the nodes follow the above algorithm. To implement priority

scheme, IPCAP modifies the algorithm so that a node goes for the channel access based

on its priority level. High priority nodes will get more chances of channel access with

configured values of BE and maxBE. Figure 6.1 shows its backoff boundary and relation

between various priority classes. Figure 6.1 has five classes and maximum 9 retries for

channel access for certain priority class, value for each class is given in table 6.1. Figure

6.1, shows the backoff interval of various priority classes with respect to their attempt.

Here, a high priority class quickly goes for more attempts while a low priority class

delays its attempts of channel access. Based on this configuration, there are higher

chances of getting channel access by high priority classes compared to low priority classes.

That enables higher priority class to deliver its information more quickly than the low

priority classes. And in event driven applications critical event gets delivered faster than

normal events.
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6.3.1 Markov model for IPCAP

Table 6.2 shows default values for some of the key parameters of IEEE 802.15.4 standard.

The standard has constant BE-increasing factor, having value 2. Each time it doubles the

backoff exponent. With available floating point arithmetic unit and rate at which IEEE

802.15.4 operates, use of non integer BE-increasing factor does not constitute a major

hurdle. Considering this, IPCAP uses the non-integer value to fine tune the BE-increasing

factor ρ.

Based on their importance, events are divided into different priority classes. Here,

each priority class has a different configuration for CSMA-CA parameters. The class

with higher priority has lower number and has higher chances of getting the channel.

There are N(0, 1, .., N − 1) priority classes in the system. These priority classes are

differentiated from each other by minBEi, maxBEi, maxNBi and BE-increasing factor

ρi. Two classes i and j are said to be i < j, classi has higher priority than classj, if one

of the following inequalities hold: minBEi < minBEj, maxBEi > maxBEj or ρi < ρj.

The example shown in figure 6.1 has five priority classes indexed from 1 to 5. Here,

class 1 has the highest priority and class 5 has the lowest. Table 6.1 shows a sample

configuration for these priority classes and table 6.2 shows the default values for their

variables.

For class i, let W i
j be the backoff window size in the jth backoff attempt, W i

max be the

maximum backoff window size and let W i
0 = ρminBE

i = W i
min. The relation between W i

j ,

maxNBi, W i
min, W i

max and ρi is as below, where bi = logρi
(W i

max/W
i
min),

W i
j = (ρi)

jW i
0

= (ρi)
jW i

min (6.1)

for j = 0, 1, .., bi − 1 if maxNBi > bi − 1.
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W i
j = (ρi)

biW i
0 = (ρi)

biW i
min

= W i
max (6.2)

for j = bi, .., maxNBi if maxNBi > bi − 1.

W i
j = (ρi)

jW i
0

= (ρi)
jW i

min (6.3)

for j = 0, 1, .., bi − 1 if maxNBi ≤ bi − 1.

In this notation the subscript represents the priority class. In cases where subscript

and superscript are both present, the superscript represents the priority class.

IPCAP models the tampered CSMA-CA algorithm as a bidimensional Markov chain

as shown in figure 6.2 inspired from Binachi’s [50] work. For a given station in the priority

class i ∈ {0, 1, .., N − 1}, let b(i, t) be a random process representing the backoff counter

value at time t, and let s(i, t) be a random process representing the backoff stage at time

t. The value of the backoff counter b(i, t) is uniformly chosen in the range 0, 1, ..,W i
j − 1,

where W i
j = (ρi)

jW i
0. The bidimensional random process {s(j, t), b(i, t)} is a discrete-

time Markov chain. The state of each device in priority class i is described by the triple

(i, j, k), where j stands for the backoff stage taking values from j = 0, 1, ...,maxNBi and

k stands for the backoff delay taking values from 0, 1, ..., W i
j − 1 in timeslots. Equations

6.4 to 6.15 give the state transition probabilities for the Markov chain shown in figure

6.2.
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Figure 6.2: Two Dimensional Markov Model for Implicit Priority Scheme

P{i, j, k/i, j, k + 1} = 1 (6.4)

Equation 6.4 gives the state transition probability from the (k + 1)th backoff stage to

the kth backoff stage at the jth retry for classi. On each timer tick the device moves from

backoff stage k + 1 to backoff state k with probability one.
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In CSMA-CA algorithm after completing the backoff count, the node goes for the first

CCA. Let, α is the probability of getting channel busy in the first CCA slot. Hence, with

1 − α probability the node finds the channel free in the first CCA slot and goes for the

second CCA. Here, the node goes from stage (i, j, 0) to (i, j,−1) with probability 1 − α

as shown in equation 6.5.

P{i, j,−1/i, j, 0} = 1 − α (6.5)

P{i, j, k/i, j − 1, 0} = α/W i
j (6.6)

Here, W i
j is the maximum backoff window size at jth retry for priority class i. The

node finds the channel busy in the first CCA slot of the (j − 1)th retry and goes for next

retry with probability α/W i
j as given in equation 6.6. Here with probability 1/W i

j , the

node selects the next backoff value.

P{i, j, k/i, j − 1,−1} = β/W i
j (6.7)

Equation 6.7, β/W i
j gives the state transition probability to move from the (j − 1)th

retry state to one of the backoff states in the jth retry after finding the channel busy in

the second CCA attempt. Here β is the probability of getting the channel busy in the

second CCA attempt.

P{i, 0, k/i, j,−1} = (1 − β)(1 − q1)/W
i
0 (6.8)

Equation 6.8 is the probability of restarting the transmission process again after get-

ting a successful transmission or getting a failure at jth attempt. W i
0 is backoff window

size for priority classi at the first attempt. Here, (1− β) is the probability of getting the

channel free in the second CCA attempt and (1 − q1) is the probability of not going to

ideal state. Probability of going to the idle state after the jth retry is given in equation

6.9.
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P{i,−1, 0/i, j,−1} = (1 − β)q1 (6.9)

P{i, 0, k/i, Ri, 0} = α(1 − q1)/W
i
0 (6.10)

Equation 6.10, is the state transition probability of going to the first transmission

attempt after getting failure at Ri retry attempt for priority class i. Here Ri = maxNBi

is the maximum retry attempts allowed to class i.

P{i,−1, 0/i, Ri,−1} = q1 (6.11)

P{i, 0, k/i, Ri,−1} = (1 − q1)/W
i
0 (6.12)

Equation 6.11 is the state transition probability of finding the channel busy at the Ri

retry attempt and going to the idle state from here. Equation 6.12 gives the probability of

moving to the first backoff stage from finding channel busy at Ri attempt in the second

CCA attempt. Equation 6.13 gives the probability of moving to the idle state after

reaching the allowed maximum retry attempts.

P{i,−1, 0/i, Ri,−1} = q1 (6.13)

P{i, 0, k/i,−1, 0} = (1 − q2)/W
i
0 (6.14)

Equation 6.14 gives the state transition probability of moving from the idle state

to the first backoff stage before accessing the channel. Here q2 is the state transition

probability to keep the node in the idle state as given in equation 6.15.

P{i,−1, 0/i,−1, 0} = q2 (6.15)

Let b(i,j,k) be the study state probability for the Markov chain in backoff state k at
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the jth attempt in class i.

b(i,0,−1) = b(i,−1,0)q2 +
Ri−1∑
j=0

b(i,j,−1)(1 − β)q1

+b(i,Ri,−1)q1 + b(i,Ri,0)αq1 (6.16)

b(i,j,−1) = b(i,j,0)(1 − α) (6.17)

b(i,0,k) = b(i,−1,0)
(1 − q1)

(W i
0)

+

(Ri−1)∑
j=0

b(i,j,−1)(1 − β)
(1 − q1)

(W i
0)

+b(i,Ri,−1)

(1 − q1)

(W i
0)

+ b(i,Ri,0)α
(1 − q1)

(W i
0)

(6.18)

b(i,j,Wj−1) = b(i,j−1,−1)
β

W i
j−1

+ b(i,j−1,0)
α

W i
j−1

(6.19)

b(i,j,k) = b(i,j−1,−1)
β

W i
j−1

+ b(i,j−1,0)
α

W i
j−1

+ b(i,j,k−1) (6.20)

Here, 0 ≤ k ≤ W i
0 − 2 , and 1 ≤ j ≤ Ri = maxNBi

By the Markov chains property the probability sum over all the states is one. Using

that,

1 = b(i,−1,0) +
Ri−1∑
j=0

W i
j−1∑

k=0

b(i,j,k) (6.21)

Let δ = (1 − α)β + α, δ1 = 1 − δ and δ2 = (1 − 2δ) and putting values of each state

in equation 6.18 with k = 0,
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Next, one has to relate an individual node to the entire network. Let Φ be the

probability with which a node goes for channel access. We know that α is the probability

of getting the channel busy at the first attempt of channel sensing. In other words, let α

be the probability that one of the remaining N − 1 nodes senses the channel successfully

and starts the transmission independent of current node. Here L be the payload size,

α = L[1 − (1 − Φ)N−1](1 − α)(1 − β) (6.22)

Φ = 1 −
[
1 − α

L(1 − α)(1 − β)

] 1
N

(6.23)

Another equation for Φ can be derived using β. β is the probability that a node

finds the channel busy in the second CCA. This probability is not the same as α. Here,

α is independent of previous knowledge whereas β is not independent. Probability of

getting channel busy in the second CCA can not be considered an independent event,

as it depends on the collective knowledge the nodes have acquired in the first CCA.

In unacknowledged case the device will get the channel busy only if another node in

the network senses for the second time during the device’s first sense and starts a new

transmission in the second slot.

β =
1 − (1 − Φ)N

2 − (1 − Φ)N
(6.24)

Φ = 1 −
[
1 − 2β

1 − β

] 1
N−1

(6.25)

Another way to define Φ is,

Φ =
Ri−1∑
j−0

b(i,j,0) =
1 − δRi

1 − δ
b(i,0,0) (6.26)

Finally the probability that a node will go to transmission stage is,



6.3 Implicit Prioritized Channel Access Protocol (IPCAP) 89

τi = Φ(1 − α)(1 − β)

=
1 − δRi

1 − δ
(1 − δ)(1 − β)b(i,0,0) (6.27)

By assuming that q1 = q2 with equation 6.23, 6.25 and 6.26 the system can be solved

to get transmission probability τi. Let Pb be the probability that channel is busy. It

happens only when at least one station transmits during a slot time.

Pb = 1 −
N−1∏
i=0

(1 − τi)
ni (6.28)

6.3.2 Throughput equation

This section derives throughput equation for priority classi. Throughput calculation for

priority classi requires equations for, successful transmission probability in a slot time,

probability of getting the channel busy and ideal channel probability. Let, P i
s (0 ≤ i ≤ N)

be the probability for successful transmission in a slot time for the priority classi and let

Ps be the probability that successful transmission occurs in a slot time.

P i
s = niτi(1 − τi)

ni−1

N−1∏
j=0,i̸=j

(1 − τj)
njP{i, j, k/i, j, k + 1}

(6.29)

Ps =
N−1∑
i=0

P i
s = (1 − Pb)

N−1∑
i=0

niτi

1 − τi

(6.30)

The probability that channel is ideal for a slot time is (1 − Pb) and channel collision

probability is (1−Pb −Ps), i.e channel is neither busy nor successful. Using Binachi [50],

throughput for class i,
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Si =
E[Payload transmission time in slot time]

E[length of slot time]
(6.31)

Si =
P i

sTE(L)

(1 − Pb)θ + PsTs + (Pb − Ps)Tc

(6.32)

Here θ, Ts, Tc and TE(L) are the empty slot time, busy channel time successful trans-

mission, average collision time for channel and time to transmit pay load respectively.

Ts = TH + TE(L) + SIFS + TACK + DIFS (6.33)

Tc = TH + TE(L∗) + SIFS + TACK + DIFS (6.34)

6.3.3 Packet dropping probability

Let Pktidrop(0 ≤ i ≤ N) denotes the packet dropping probability for the classi. Packets

get dropped when they reach their maximum retry limit Ri. So probability of packet

drop is calculated as,

Pktidrop = PRi+1
b (6.35)

Let Pktisuccess(0 ≤ i ≤ N) denotes the packet success probability for the classi.

Pktisuccess =
Ri∑
j=0

P j
b (1 − Pb)

= 1 − PRi+1
b (6.36)

6.3.4 Delay for priority class i

Delay for priority classi, is the average delay that includes medium access delay, trans-

mission delay and the inter-frame space. The average delay depends on stations backoff

attempt and number of backoff slots experienced. Let Xi(0 ≤ i ≤ N) denote the random
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variable representing the total number of backoff slots station encounters. The proba-

bility that a frame is successfully transmitted after jth retry is given by
P j

b (1−Pb)

1−P
(Ri+1)
b

. The

average number of backoff slots that a station requires to transmit a frame successfully

at the jth retry is
∑j

k=0[(W
i
k − 1)/2].

E(Xi) =
Ri∑
j=0

P j
b (1 − Pb)

(1 − PRi+1)

j∑
k=0

W i
k − 1

2
(6.37)

Let E(N retry
i ) denote the average number of retries for the priority classi.

E(N retry
i ) =

Ri∑
j=0

jP j
b (1 − Pb)

1 − PRi+1
(6.38)

Let, (0 ≤ Di ≤ N) denote the random variable representing the frame delay for the

priority classi.

E(Di) = E(Xi)θ + E(N retry
i )(Tc + To) + Ts (6.39)

To = SIFS + TACKtimeout
(6.40)

Ts, Tc and To are success time, collision time and wait time defined in equation 6.33,

6.34 and 6.40 respectively.

6.3.5 Energy equation

Eavg =
E[energy per time slot]

E[successful data tranmission per time slot]
(6.41)

Eavg =
(1 − Pb)EI + PsET + (Pb − Ps)Ec

P i
sEE(L)

(6.42)

Here EI , ET , Ec and EE(L) are the energy values involved in idle listening, trans-

mission energy , energy involved in collision and energy involved in data transmission,

respectively. These energy values are calculated based on the time involved in each state.
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6.4 Explicit Prioritized Channel Access Protocol (EP-

CAP)

Explicit priority scheme is desinged to work with beacon enabled mode of IEEE 802.15.4.

In beacon enabled mode coordinator nodes periodically send the beacon in the network.

Nodes belonging to that coordinator node synchronize with the beacon to locate the

slot boundary. Nodes having packets for the coordinator contend in CAP part of the

superframe using CSMA-CA algorithm. Nodes which get success in getting clear channel

will transmit their packets to the coordinator.

By default all the nodes attached with a coordinator and having packets for that

coordinator will go for clear channel assessment after random backoff in CAP part. Nodes

having critical information will also contend with nodes having normal information for

the coordinator. That delays critical information and causes problems.

First task of the problem solving is to distinguish the critical information nodes from

the routine or normal information nodes. After differentiating critical information nodes

from the normal information nodes, the coordinator allows only critical information nodes

to contend for the channel and restricts the normal information nodes from contending

for the channel.

The first part, that is, of distinguishing critical nodes from normal nodes, requires

informing the coordinator that some of the nodes have critical information to send to the

base station. The second part requires that the coordinator should inform the normal

nodes not to contend for the channel, as the network has critical nodes, which want

to convey their information to the coordinator. Here onwards we will consider critical

information nodes as higher priority nodes and normal information nodes as low priority

nodes. We restrict ourselves to two priority levels, but our scheme can be extended to

more than two priority levels.

In the literature it is commonly assumed that network nodes are within each others’

communication range. But in normal network scenarios due to limited communication

range, it is not valid to assume that all the nodes are in each others communication range.
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In our scheme we do not assume that all the nodes are within each others communication

range and are able to hear messages transmitted by other nodes.

To solve the first part of the problem, that is of informing the coordinator node about

the priority packet with minimum delay, we have used the secondary beacon mechanism.

Nodes with the high priority information send a secondary beacon to the coordinator

node. On getting the secondary beacon, the coordinator node comes to know that some

node in the network has high priority information pending for the coordinator.

The second part of the problem is restricting low priority nodes in the network from

contending for the channel with the high priority nodes. As all nodes are not in each

other’s communication range, low priority nodes may not be able to hear the secondary

beacon. The node which is sure to be in the communication range of the low priority

nodes as well as the high priority nodes is the coordinator node. In our scheme it is the

responsibility of coordinator to make the low priority nodes aware that the network has

high priority nodes pending with a message.

The coordinator node informs about the need for transmission by a higher priority

nodes. This it achieves by sending a primary beacon which is same as the default beacon

with the additional information about the priority. On getting this information from the

coordinator, low priority devices do not contend for the channel in the current beacon

interval. Detailed algorithms are given in following paragraphs for the coordinator node,

higher priority and low priority nodes.

Algorithm 8.1 gives the steps for the device node registered with corresponding co-

ordinator node. At the time of initialization the device node configures a set of timers

one for each priority level. The node configures these timers just before the next primary

beacon and in the order of their priority level. The first timer to expire is the highest pri-

ority level timer, next is second highest and so on and last timer to expire is the primary

beacon timer. Time duration between consecutive timers depends on the time required

for a node to send secondary beacon and the time required at the coordinator node.

To get synchronized with the coordinator, the secondary beacons are transmitted

without using CSMA-CA algorithm. In this case it may happen that more than one
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Algorithm 6.1: Algorithm at Device Nodes

1: Configure Priority timers
2: Start priority timers
3: OnTimer(Priority i)
4: if node is registered with coordinator then
5: Check network layer for data packet
6: if Pending packet of priority i then
7: Send secondary beacon
8: end if
9: end if

10:
11: OnBeacon(Primary)
12: Get the priority value
13: if any packet for same priority then
14: Contend for channel
15: else
16: Go to sleep state
17: end if

node sends the secondary beacon at a particular priority level and this leads to packet

collision. As the coordinator is not interested in the content of the secondary beacon and

just measures the energy level at the time of the corresponding priority level, secondary

beacon collisions do not have serious consequences. A higher energy level indicates to

the coordinator that some of the nodes have packets for that particular priority level.

Pre-configuration step helps in finding the number of beacons colliding at a particular

level.

The most important point that previous works have not highlighted is the effect of

external noise and other node’s constructive and destructive interference. To detect that,

a pre-configuration step is required. Based on that, the coordinator maps the detected

energy level with the number of contending nodes. This result is not accurate but it will

provide number of contending nodes with certain probability for the next BI. Based on

this information, the coordinator node configures its active and passive time for next BI.

This helps in saving energy at all the nodes. If the number of nodes is small in a

given priority level then the coordinator node may decrease BI’s active time and save the

nodes energy. Second, if some other priority level has waiting nodes then the coordinator

configures a smaller BI interval and soon sends the next beacon. But since changing



6.4 Explicit Prioritized Channel Access Protocol (EPCAP) 95

BI requires more adjustments at coordinator node and device nodes, here we have not

changed the BI. In the present work we have used the detected energy level to identify

the priority level and the effect of it on BI is not included.

Algorithm 6.2: Algorithm at Coordinator Nodes

1: Configure Priority timers
2: Start priority timers
3: OnTimer(Priority i)
4: Go for energy detection
5: Store the received energy and
6: SNR for the given priority level
7: OnTimer(Primary Beacon)
8: Get the first slot with signal energy and SNR
9: Assign above slot level to priority level of primary beacon

10: Set primary beacon priority to priority level
11: Send primary beacon

Algorithm 6.2 is for the coordinator node. In beacon enabled mode, the coordinator

node is responsible for receiving secondary beacons from registered nodes and sending of

primary beacon to registered nodes. At the time of device initialization, the coordinator

configures the priority timers, one for each priority level and starts them. These timers

are configured according to time required to detect energy at the physical layer by calling

the energy detection utility provided by IEEE 802.15.4 physical layer.

The coordinator node goes for the energy detection for each configured priority level.

The coordinator node detects the energy for a configured period of time and records

the reading (signal to noise ratio and energy) provided by the physical layer. Based on

the detected energy at each level, the coordinator node decides the priority level for the

primary beacon and superframe CAP period. It sets that priority level in the primary

beacon and broadcasts it at the time of primary beacon expiry.

Both the algorithms together implement the explicit priority mechanism in beacon

enabled mode of IEEE 802.15.4. The following example explains the working of explicit

priority scheme in beacon enabled IEEE 802.15.4.

To explain our scheme more clearly we have crafted an example with a coordinator

node and 3 device nodes. Figure 6.3 shows our example. Here, the horizontal line
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Figure 6.3: Example showing working of Explicit Priority Scheme

represents the time line for the network. The example talks about the network with two

priority levels, high priority level and low priority level. The big solid rectangle shown

in the figure represents the primary beacon packet, the small rectangle represents the

secondary beacon packet and the small solid rectangle represents the data packets.

On the coordinator line the dotted empty rectangles are the time slots during which

the coordinator node goes for the energy detection at physical layer. The coordinator node

goes for the energy detection before sending the primary beacon. On the coordinator line,

the first empty dotted rectangle is for the high priority secondary beacon energy scan. The

second is for the low priority secondary beacon energy scan. The coordinator periodically

follows this pattern of energy detection for priority levels, followed by sending of primary

beacon.

In figure 6.3 node one has high priority packets for coordinator. At the timeout of

high priority timer, node one having pending higher priority packet goes for the secondary

beacon transmission to the coordinator. The coordinator detects this in the higher pri-

ority energy scan. On the second scan which is for low priority packets, node 2 and node

3 send their secondary beacon to the coordinator node. Based on detected energy at low

level slot, coordinator comes to know that some nodes have low level packets pending

for the coordinator. Based on energy reading of both the high level priority slot and low
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level priority slot, the coordinator can infer that network has high level priority packets

pending in the network.

The coordinator sets the priority level to high priority and sends the primary beacon

to the network nodes. On getting this primary beacon, registered nodes 2 and 3 come to

know that the current beacon CAP is for the high priority packets and only high priority

nodes will contend for the channel. In our case only node 1 will contend for the channel.

Here as shown in figure 6.3, only node 1 is sending data packets which is marked with

dotted small rectangle.

In next beacon interval node 2 has higher priority packet so node 2 is sending its

packet in the CAP period of the current superframe. In the last case, no node in the

network has high priority packets for the coordinator. Here coordinator node detects very

low energy, only noise in energy scan performed at high priority slot. Further, there are

nodes having low priority packets which send the secondary beacon at the low priority

energy scan. Getting both the energy levels, the coordinator sets the priority to low

priority in the primary beacon. As shown in figure 6.3 all the three nodes contend for

the channel and gradually node 1, node 3 and node 2 get the channel and forward their

packets to the coordinator. It may happen that more than one node will contend with

high priority packets. In such cases the number of contending nodes are far less than the

normal scenario in which all the nodes contend for the channel.

6.4.1 M/G/c queuing model for EPCAP

M/G/c is multi-server queueing system model. Explicit priority scheme is modeled as

M/G/c queueing system with finite number of distinct classes C = 1, ..., I. To derive

waiting time equation we have adopted the same methodology used in [65].

In EPCAP, each priority class has some nodes which contend for the channel. As-

suming each priority class has same number of nodes c, we can consider these c nodes

as c servers. Each server processes packet requests and goes for channel access. At the

end the server will transmit the data with success probability defined in section 6.3. This

success probability is a special case of IPCAP with all the parameters set to their default
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values. Figure 6.4 shows the M/G/c modeling of EPCAP.

Here, the packet arrives at the system according to independent Poisson processes;

λi denotes the arrival rate of class i, i ∈ C. The service time of a given class i ∈ C

is assumed to be independent and identically distributed random variable Vi with finite

second moment.
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Figure 6.4: Explicit Priority Scheme M/G/c model

Following are the strong work conserving rules that EPCAP follows: a) no FFD in

the current priority class is free when a packet is in the queue, b) the discipline does not

affect the amount of service time given to the packet or the arrival time of any packet, c)

Priories are assigned on the basis of the history of the FFD and the time elapsed since

the last epoch at which the system became empty.

Assumption A: if c > 1, assume all customers have the same service time distribu-

tion.

Let ρi = λiE[Vi], i ∈ C and Wni = delay of the nth customer of class i (i ∈ C; n ≥ 1).

Considering following work conservation law,
∑I

i=1 = ρi/c < 1 and condition (A).

With fixed priority updates , there are numbers W ∗
j , j ∈ E such that,

lim
N→∞

1

N

N∑
n=1

Wni = W ∗
i (w.p.1), i = 1, ..., I. (6.43)
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More specifically, in a delay dependent priority rule, positive weights αi (i ∈ C) are

specified such that a packet in class i, who arrives at time τ is given a dynamic priority

value of αi(t − τ) at time t > τ . Further dynamic priority can be extended to mixed

dynamic priority.

A mixed dynamic priority rule is characterized by a partition C1, ..., CJ of C. The

subsets Cl : l = 1, ..., J are referred to as leagues. A customer in Ck has absolute priority

over a customer in Cl if and only if k > l. Relative priorities within a league l (l=1,...,L)

are determined according to a dynamic priority rule with weight vector α(l) = (αi), i ∈ Cl.

Customer classes are numbered in ascending order of their attributed priority. Here we

are assuming that I = L. That says each league has only one class in it.

As in Kleinrock [66] consider a packet in class p ∈ C. Define, Nip = number of packet

from class i who are in the queue when the tagged customer (in class p) arrives and who

receive service before it does (i ∈ C).

Mip = number of customers from class i who arrive at the system while the tagged

customer (in class p) is in queue and who receive service before it does (i ∈ C).

Assume condition (A) holds. Let V0 be, the initial delay an arbitrary packet experi-

ences (if any) until the first epoch at which a server becomes available for service. The

distribution of V0 is independent of priority update rules, and E[V0] < ∞.

E[V0] =
1

2

I∑
i=1

λiE[V 2
i ] (6.44)

Since Poisson arrivals see time averages,

Wp = E[V0] +
1

c

J∑
i=1

E[Nip + Mip]E[Vi], p ∈ E. (6.45)

let Sl =
∪I

k=l Ck, l = 1, ...., I. Following the analysis in Kleinrock [65] we obtain:
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E[Nip] = 0 for i ∈ A′ = E \ Sl, (6.46)

E[Nip] = λiWjαi/αp for i ∈ Cl, i < p, (6.47)

E[Nip] = λiWi for i ∈ Sl, i ≥ p, (6.48)

E[Mip] = 0 for i ≤ p (6.49)

E[Mip] = λiWp(1 − αp

αi

) for i ∈ Cl, i < p, (6.50)

E[Mip] = λiWp for i ∈ Sl+1. (6.51)

for p ∈ Cl (l = 1, ..., I), using the above equation we have,

Wp = E(V0) +
1

c

∑
i∈El,i<p

ρiWi
αi

αp

(6.52)

+
1

c

∑
i∈Sl,i≥p

ρiWi

+
1

c

∑
i∈Elp,i<p

ρiWp(1 − αp

αi

)

+
1

c

∑
i∈Sl+1

ρiWp

Values of Wp, p ∈ Cl (l = 1, ..., I), can be obtained by solving liner system of equations

6.53.

Assumption (B): Assuming that arrival rates and service rates are the same for all

the classes, λi = λ, E[Vi] = E[V ] = µ, and ρi = ρ = λE[V ], i ∈ C.
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Wp = E(V0) +
1

c

∑
i∈Cl,i<p

ρWi
αi

αp

(6.53)

+
1

c

∑
i∈Sl,i≥p

ρWi

+
1

c

∑
i∈El,i<p

ρWp(1 − αp

αi

)

+
1

c

∑
i∈Sl+1

ρWp

Solving the above system of linear equations gives the average waiting for EPCAP

model. The above analysis is based on the synthesis algorithm presented in [65].

6.5 Summary

To handle critical events in event driven wireless sensor network, we have proposed two

prioritized channel access protocols IPCAP and EPCAP. Both the protocols are designed

to work with networks built upon IEEE 802.15.4 communication standard. To handle

critical events IPCAP modifies CSMA-CA algorithm and EPCAP uses the concept of

secondary beacon. This chapter covered working and modeling of IPCAP and EPCAP.

IPCAP is modeled as two dimensional Markov chain and EPCAP is modeled as M/G/c

queuing model.



Chapter 7

Implementation of Prioritized MAC

7.1 Introduction

Chapter 6 covers the details of proposed IPCAP and EPCAP protocols. Both the pro-

tocols configure the MAC layer parameters based on information they receive from the

application layer. To verify the working of IPCAP and EPCAP, we have implemented

both the protocols in Qualnet Network simulator. This chapter covers the implementa-

tion details of our protocols. It shows the conceptual representation of both the protocols

in CLAPDAWN architecture. Further, major results that we have found in the course of

simulation of both the protocols are shown in this chapter.

7.2 Implementation

Figure 7.1 shows framework for our implementation. Application layer provides priority

information to control interface. MAC layer provides the channel and beacon details to

control interface. On arrival of events application layer generates the message and puts

priority information in control interface. This will trigger the event in control interface

and it propagates them to execution engine. On getting events, execution engine fetches

rules from rule base and executes them. Here rule base contains rules for implicit priority

mechanism and explicit priority mechanism.

102
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Figure 7.1: CLAPDAWN Framework

7.2.1 IPCAP implementation

Implicit priority rules contain the information about the parameters of CSMA-CA al-

gorithm. Using this information execution engine generates the messages to set the

parameter at MAC layer. It puts these messages into notification layer. Notification

layer sends these messages to MAC layer, which at the end updates its parameters.

7.2.2 EPCAP implementation

Explicit priority rules contain the information about the secondary beacon. Execution

engine gets this information and generates the messages to send secondary beacon. It

puts these messages into notification layer. Notification layer sends these messages to

MAC layer, which at the end sends the secondary beacon.

At the coordinator node priority rule generates the messages for energy scan. Execu-

tion engine puts these messages on notification layer, that triggers the MAC layer to go

for energy scan for each priority slot. After energy scan the detected energy readings are

updated on CNI, based on which the execution engine decides the priority level for the
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next BI.

In IPCAP and EPCAP, MAC layer is itself not deciding about CSMA-CA parameter

or secondary beacon. In IPCAP it configures the CSMA-CA parameter and in EPCAP it

transmits the secondary beacon based on the notification messages received from notifica-

tion layer. The knowledge base and the inference engine control the overall working. That

makes the conventional layer mechanism untouched from the cross layer implementations.

7.3 Simulation Results

7.3.1 IPCAP

QualNet is a network simulator from scalable network technology. We have implemented

IPCAP protocol in QualNet and compared it with the standard IEEE 802.15.4 MAC

protocol. Both the protocols are evaluated considering different network conditions. In

our simulation we have changed network traffic and one hop neighbor density. With these

network conditions we have compared IPCAP and standard protocol for packet delivery,

prioritized packet delivery, throughput and energy consumption. In all the cases we have

considered network as star topology with percentage of nodes rounded to the nearest

integer value. Following subsections highlight our major findings.

Packet delivery ratio

The proposed prioritized protocol works with application specific prioritized classes. A

network node defines its class based on application data. Nodes belonging to high priority

class should get higher chances of getting channel than nodes with lower priority classes.

In our simulation we have considered five priority classes. Each priority class comes with

the set of CSMA-CA parameters defined in chapter 6. Node selects its priority class

based on application layer specification.

To analyze the packet delivery ratio of different priority classes, we have tested our

network by varying the number of one hop neighboring nodes and network traffic. Each

priority class generates the same amount of packets in the network. Figure 7.2 shows
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simulation results for one hop contending nodes ranging from 5 nodes to 25 nodes. In

the result, X-axis represents the network traffic and Y-axis represents the packet delivery

ratio. In our simulation we have increased network traffic from 0.4 Kbps to 51.2 Kbps.

Here each packet consists of 50 bytes.

Figure 7.2(a) shows the simulation result for the network having 5 nodes as one hop

neighbor nodes. Simulation result shows that set 1 which represents the priority class 1

has higher packet delivery ratio than the other priority classes. Priority class 1 is getting

more chances of sending packets. So it has higher packet delivery than the other priority

classes. Next we have priority class 2, which has packet delivery less than the priority

class 1 and greater than the priority class 3, 4 and 5. As priority class 2 gets more chances

of packet access than the priority class 3,4 and 5 it has higher packet delivery than the

priority class 3, 4 and 5. But, it has lower chances of channel access than the priority

class 1 so its packet delivery count is less than the priority class 1. Priority class 3, 4 and

5 follow the same pattern.

Figure 7.2(a) shows that as the network traffic increases the number of packets deliv-

ered increases for each priority class. As the traffic increases, soon the network reaches its

limit (transition point) and gets congested. After that the network nodes start dropping

packets. This decreases the packet delivery in the network. This particular pattern can

be seen in all the simulation results from figure 7.2(a) to 7.2(e). As number of nodes

increases this transition point shifts from high traffic to low traffic.

Prioritized packet delivery

Figure 7.3 and 7.4 show the next set of simulation results. It covers the result for priori-

tized packet delivery in given priority class. The previous set of results shows how nodes

falling in same priority class compete for the channel. There, the high priority class

has more success in channel access compared to low priority class and all the priority

classes have same number of nodes. Here, we analyze the packet delivery ratio of nodes

for network having two priority classes. Lower priority nodes are considered as normal

nodes and higher priority nodes are considered as prioritized nodes. In simulation we
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(b) 10 One Hop Neighbor Nodes
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(c) 15 One Hop Neighbor Nodes
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Figure 7.2: Packet Delivery Ratio for Different Priority Classes
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have analyzed the effect of prioritized nodes on the normal nodes. We also analyzed the

effect of increasing the number of nodes in the given priority class.

To analyze the prioritized packet delivery of different priority classes, we have tested

our network with varying one hop neighboring nodes and network traffic. Each node

in given priority class delivers the same number of packets in the network. We have

tested our network for 10 and 15 one hop neighbor nodes. With increasing traffic we have

measured the packet delivery ratio on Y-axis.

Figure 7.3 and 7.4 show the simulation results for the prioritized packet delivery for

10 and 15 one hop neighbor nodes respectively. We have increased the number of nodes

in higher priority class from 10% to 50% and measured the effect of it on packet delivery

ratio. Simulation result 7.3(a) shows that as the number of nodes increases in the given

priority class, the packets delivered in that priority class decreases. Result shows that

from given set of nodes when 10% nodes are falling in priority class, it has higher packet

delivery than the case in which network has 30% priority nodes. As the number of nodes

increases in given priority class the more nodes will contend for priority slot and that

decreases the packet delivery of the given priority class. But these priority class nodes

get more chances of packet delivery than the normal nodes. This increases overall packet

delivery ratio.

For better clarity we have compared the prioritized delivery results with normal nodes.

Figure 7.3(b), 7.3(c) and 7.3(d) cover the simulation results with different number of

prioritized and normal nodes in 10 one hop contending nodes. As seen in the result as

the number of nodes in given priority class increases, the number of packets delivered in

that priority class decreases but it still remains more than the normal nodes. Further

the difference between the packets delivered in prioritized class and all network nodes

decreases. And this pattern repeats for 30% and 50% prioritized nodes.

The result 7.3(b) shows the packet delivery of 10% prioritized nodes with the normal

node. With 10% priority nodes, the difference between higher priority nodes and lower

priority nodes is less. Here majority of the nodes work as normal nodes and the effect

of it is visible in the results. Packet delivery ratio of network having no priority nodes
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Figure 7.3: Prioritized Packet Delivery Ratio for 10 one Hop Nodes
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Figure 7.4: Prioritized Packet Delivery Ratio for 15 one Hop Nodes
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and packet delivery ratio of normal nodes for the network having 10% priority nodes are

close to each other. Further less number of nodes are in higher class so it has higher

packet delivery ratio. But as the number of priority nodes increases in the network, this

difference increases as shown in figure 7.3(c) to 7.3(d) and 7.4(b) to 7.4(d).

Energy in priority class

Next set of results given in 7.5 shows the per bit energy consumption in given priority

class. In this set of results we have compared per bit energy consumption by a node

in a given priority class. We have tested our network with 10 and 15 one hop neighbor

nodes. In results, X-axis represents the network traffic and Y-axis represents per bit

energy consumption in milli Joules. In our simulation, we have increased network traffic

from 400 bps to 51.2 Kbps. With this increasing traffic we have measured the per bit

energy consumption on Y-axis.

Figure 7.5 and 7.6 show the simulation results for the per bit energy consumption

in given priority class for one hop neighbor density of 10 nodes. We have increased the

number of nodes in given priority class from 10% to 50% and measured the effect of it on

per bit energy consumption. Simulation result 7.5(a) shows that as the number of nodes

increases in the given priority class the packet delivered in that priority class decreases.

That increases the wait time and number of packet transmission attempts for the nodes,

which leads to higher energy consumption for the nodes. Result shows that from given

set of nodes when 10% of the nodes are higher priority nodes, network has higher packet

delivery and with 30% nodes it has less packet delivery ratio. Because of it 10% nodes

have lesser per bit energy consumption than the case in which network has 30% priority

nodes.

Further figures 7.5(b) 7.5(c) and 7.5(d) show the simulation results comparing en-

ergy consumption between prioritized nodes and normal nodes. Result shows that the

prioritized nodes consume less energy compared to normal nodes. It also shows that

normal nodes or low priority nodes have higher energy consumption than the overall en-

ergy consumption. This difference decreases as the number of priority nodes increases in



7.3 Simulation Results 111

 

0

5

10

15

20

25

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 (
1

0
*

 m
J/

s 
)

Traffic per Node ( Kbps)

10% Prioritized Nodes

30% Prioritized Nodes

50% Prioritized Nodes

(a) Prioritized Nodes

 

0

5

10

15

20

25

30

35

40

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

E
n
e
rg

y
 C

o
n

su
m

p
ti

o
n

 (
1

0
*
 m

J/
s 

)

Traffic per Node ( Kbps)

Normal Nodes

Prioritized Nodes

All The Nodes

(b) 10% Prioritized Nodes in Network

 

0

5

10

15

20

25

30

35

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

E
n
e
rg

y
 C

o
n

su
m

p
ti

o
n

 (
1

0
*
 m

J/
s 

)

Traffic per Node ( Kbps)

All The Nodes

Prioritized Nodes

Normal Nodes

(c) 30% Prioritized Nodes in Network

 

0

5

10

15

20

25

30

35

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 (
1

0
*

 m
J/

s 
)

Traffic per Node ( Kbps)

All The Nodes

Prioritized Nodes

Normal Nodes

(d) 50% Prioritized Nodes in Network

Figure 7.5: Per bit Energy Consumption by Nodes with 10 Nodes
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Figure 7.6: Per bit Energy Consumption by Nodes with 15 Nodes
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the network because of low energy consumption of the higher priority nodes, the overall

average energy consumption decreases.

Result shows that with the increase in traffic, the overall energy consumption also

increases. Overall energy consumption and prioritized energy consumption follow the

same trend. As the traffic increases the energy consumption increases. As we will see

in the throughput result that network throughput increases as the traffic increases. For

10 one hop nodes, throughput increases upto 12.8Kbps and then it starts decreasing.

This effect is also visible in energy results. Here, network has capacity upto 12.8Kbps,

and it uses it to transmit prioritized data. That increases the energy consumption of

prioritized nodes and decreases the energy consumption of normal nodes. After the

12.8Kbps transition point the network has traffic more than its capacity and that increases

the energy consumption for all the nodes.

Throughput

Next set of simulation results are of throughput. Figure 7.7 shows the througput results

for the priority class 1 to 5. To analyze the throughput of packet delivery of a given

priority class, we have tested our network with varying one hop neighboring nodes and

network traffic. Each node in given priority class delivers the same number of packets in

the network. We have tested our network with one hop neighbors ranging from 5 nodes

to 25 nodes. In each simulation result, X-axis represents the network traffic and Y-axis

represents the throughput in bytes. In our simulation, we have increased network traffic

from 400 bps to 51.2 Kbps. With this increasing traffic we have measured the throughput

in bits/second on Y-axis.

Figure 7.7 shows the simulation results for the throughput in bits/second for 5 to 20

one hop neighbor nodes. Result shows that class one achieves the highest throughput

among all the priority classes. As result shows the throughput increases up to traffic

12.8Kbps and then it starts decreasing. Energy result also reflects the same results.

In chapter 6 we have gone through the modeling of IPCAP. We have modeled IPCAP

as two dimensional Markov chain and derived equation for various parameters. In Table
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Figure 7.7: Throughput for Different Priority Classes
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7.1 we have compared the throughput results derived analytically with the simulation

results. Table shows our simulation result varies by approximately 10% with the numerical

results.

Nodes Analytical Simulation diff
5 7797 7778 8.2%
10 7358 7380 9.4%
15 7049 7028 9.1%
20 3822 3799 10.0%

(a) Class 1

Nodes Analytical Simulation diff
5 7405 7380 11.0%
10 7246 7225 9.1%
15 6625 6647 9.7%
20 3629 3605 10.3%

(b) Class 2

Traffic Analytical Simulation diff
5 6994 6980 6.0%
10 6963 6980 7.4%
15 5812 5789 10.2%
20 2994 2969 10.7%

(c) Class 3

Traffic Analytical Simulation diff
5 6543 6526 7.3%
10 6101 6078 9.8%
15 5342 5326 6.8%
20 2873 2895 9.5%

(d) Class 4

Traffic Analytical Simulation diff
5 6242 6225 7.3%
10 5349 5326 9.8%
15 4896 4881 6.8%
20 2576 2598 9.5%

(e) Class 5

Table 7.1: Throughput Results Analytical and Simulation for Class-1

In this section we have gone through simulation results of IPCAP. Our study shows

that IPCAP derives higher delivery ratio for the prioritized nodes that increases the

delivery ratio of critical events. Other supporting results are also shown with the packet

delivery ratio results. We have also compared the simulation results with the analytical

results. Comparison shows that simulation results varies by approximate 10% with the

analytical results.
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7.3.2 EPCAP

Packet delivery

Figures 7.8 shows the simulation results for packet delivery ratio. In the result, X-axis

shows the traffic intensity, and Y-axis shows the packet delivery ratio. We have tested

our scheme from very low traffic to high traffic conditions. Here packet delivery ratio

gives the fraction of packets delivered to coordinator nodes. Result shows that standard

has low packet delivery ratio than the prioritized approach.
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Figure 7.8: Packet Delivery Ratio

We have tested this simulation result for the networks having 10, 15, 20 and 25 one

hop neighboring nodes. For each configuration we have tested the network by increasing

the number of prioritized nodes in the network. Because prioritized scheme controls the

number of nodes contending for the channel. It reduces the number of contenders for

each slot which increases the packet delivery in prioritized mechanism.
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Result shows that as the traffic increases, the delivery ratio decreases for the nodes.

The delivery ratio depends on number of nodes. As the number of nodes increases in the

prioritized case the delivery ratio decreases. In all the cases simulation result shows that

prioritized scheme has high packet delivery count.

Prioritized packet delivery

For EPCAP, second set of results are of prioritized packet delivery in given priority class.

Previous result shows the comparison between average common delivery and prioritized

delivery. There, comparison was between the network having all nodes of same priority

level with network having some nodes as higher priority nodes. With priority scheme,

we have two types of nodes in the network one with the higher priority and the other

with the normal priority or low priority. Previous result shows that the network with

higher priority nodes have higher delivery ratio as the contending nodes are less in given

slot. But increased delivery comes at the cost of low packet delivery of normal nodes.

Following set of result shows the comparison between average delivery of prioritized nodes

and average delivery of normal nodes.
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Figure 7.9: Packet Delivery Ratio for 10 one Hop Nodes with 30% and 50% nodes are
prioritized nodes

Figure 7.9 shows the result for prioritized packet delivery in given priority class. These

results show the comparison between average delivery of prioritized nodes and average

delivery of normal nodes. Simulation result 7.9(a) shows that priority scheme (Prioritized
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case, All nodes) has higher packet delivery ratio than the network having all the nodes of

same priority level, same is discussed in previous subsection 7.3.2. Here, network has 30%

prioritized nodes and rest of the nodes are normal nodes. As result shows that increase in

delivery ratio of prioritized nodes comes at the cost of normal nodes. Same pattern is there

in result 7.9(b) showing 50% prioritized nodes, here the difference between the prioritized

and normal nodes is smaller compared to 30% nodes. Increase in average packet delivery

of prioritized nodes helps in improving the results of overall packet delivery.

Queue length and delay

Next simulation results show the average queue length and delay experienced by the

network. Figure 7.10 shows the average queue length result for the 10 one hop neighboring

nodes. Figure 7.10(a) shows the queue length result with 30% prioritized nodes and figure

7.10(b) shows the queue length result for 50% prioritized nodes. The result shows that

the prioritized nodes have smaller queue length compared to other scenarios. Here, the

prioritized nodes are getting higher chances for their packet delivery that helps in reducing

the queue length of prioritized nodes. Prioritized nodes get their chances at the cost of

normal nodes. That increases the queue length of the normal nodes and the over all

average queue length.
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Figure 7.10: Average Queue Length at Node with 10 one Hop Nodes

Figure 7.11 shows the average waiting time result for the network having 10 one hop

neighbor nodes. Figure 7.11(a) shows the waiting time result for 30% prioritized nodes
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and figure 7.11(b) shows the waiting time results for the 50% prioritized nodes. The

result shows that prioritized nodes have smaller waiting time in the queue than the other

cases. Here network achieves the smaller waiting time for the prioritized nodes on the

cost of higher waiting time for the normal nodes, that increases the overall waiting time of

the network. With prioritized nodes the average waiting time that the network achieves

is higher than the waiting time without any prioritized nodes.
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Figure 7.11: Average Waiting Time at Node with 10 one Hop Nodes

In this section we have gone through the simulation results achieved for EPCAP. Next

we have compared simulation results with the analytical results. In chapter 6 we have

modeled EPCAP as M/G/c model. Model gives system of linear equations. Using IPCAP

results and system of linear equation we have derived value of queue length for priority

classes. This section shows comparisons between analytical results and the numerical

results. It shows that both the results are varying upto 12%. Following table shows our

comparison.
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Traffic Simulation Analytical Difference

Normal Prioritized Normal Prioritized Normal Prioritized

0.4 33 27 37 24 10.1% 10.2%

0.8 40 26 42 25 5.1% 4.2%

1.6 52 24 58 27 10.3% 10.2%

3.2 154 26 169 28 9.2% 8.7%

6.4 257 29 280 31 9.1% 9.6%

(a) 15 Nodes

Table 7.2: Queue Length Results Analytical and Simulation for EPCPA with 50% priva-

tized nodes

7.4 Summary

We have simulated IPCAP and EPCAP in Qualnet network simulator provided by Scal-

able network technology. The chapter covers our major simulation results. Here main

emphasis is on critical event delivery. Results show that both the protocols deliver more

number of prioritized packets to the base station than the standard. That indicates that

IPCAP and EPCAP increase the delivery chances of critical events in event driven wire-

less sensor networks. Furthermore key performance parameters are discussed both for

analytical and numerical results.



Chapter 8

Topology Control for Wireless

Sensor Networks

8.1 Introduction

The underlying design philosophy of WSN is to create networks that consist of large

number of small and low-end devices called sensor nodes. These sensor nodes are made of

computing, storage, sensing, communication and power units. Computation and storage

units are characterized by their computation speed and storage capacity respectively.

Sensing unit is characterized by its sensing accuracy while communication unit is mainly

characterized by its communication range and communication rate. Lastly, power unit is

characterized by its power capacity.

In sensor networks, these device-level characteristics are of low ends. They are neither

capable enough to handle long distance, high rate communication nor able to process high

volume of data at high speed. We can call such units as resource stressed units and devices

resource stressed devices. While networks that consist of such devices can be called as

resource stressed networks. Resource stressed sensor network requires efficient utilization

of these scarce resources, which is always the driving factor for many of the solutions

designed for wireless sensor networks (WSN).

One of the ways through which sensor networks have overcome its limited resource
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problem is by large number of nodes and their cooperation and coordination. Large

number of nodes makes the network deployment dense. This dense deployment makes

some nodes to overlap in communication and sensing range. Because of that, nodes make

redundant sensing and create unnecessary data communication.

Further WSN is application specific, data centric network and it requires data aggre-

gation or data fusion for efficient use of available resources. Dense deployment makes that

task hard to achieve efficiently. Large number of nodes create problem of redundancy and

resource under utilization, which reduces network’s effective throughput. WSN solution

providers try to optimize this tradeoff at every level of network design. Topology control

is one of the ways through which researchers are trying to optimize this tradeoff in WSNs.

In large number of applications, the network is required to be randomly deployed,

self-configured and battery powered. Due to limited communication capability and en-

ergy resources, the network frequently faces link failure that changes network’s topology.

Frequently changing network topology makes it hard to maintain topological information

at one place. Hence, centralized solutions have limited scope in such a working scenario.

Further nodes in wireless network communicate with each other through direct com-

munication or through multi-hop wireless communication. Here, transmitted packet can

be heard by all the neighboring nodes in the network. Due to application’s requirement

or to maintain network functionality, many times it is required to flood the information

in the network. Query and event flooding, data collection, data dissemination and net-

work monitoring are few cases in which network is required to perform broadcasting and

flooding.

Redundant data, contention, collision, longer on-time and energy wastage are some

of the problems caused by flooding [67, 8]. This problem becomes severe as number of

nodes increase in the network. As the number of nodes increases more nodes participate

in data forwarding task. Normally they are referred to as active nodes. Objective of topol-

ogy control mechanism is to reduce the number of active devices without compromising

network functionality.

In the literature, topology control problem has been solved by probabilistic counter
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based, location based, cluster based and dominating set based methods. Assumptions

made in some of these techniques may not be valid for wireless networks. Like IEEE

802.15.4 does not provide full support to change transmission power. Or other schemes

may require information about the entire network. So, many of these techniques may not

be applicable to IEEE 802.15.4 based networks.

Considering limitations of wireless networks, we have proposed a distributed algo-

rithm to construct a Connected Dominating Set(CDS) for the randomly deployed network

nodes. CDS restricts the number of nodes involved in packet forwarding and flooding.

Controlled packet transmission improves the overall networks energy utilization and ex-

tends the network life. For better explanation of the algorithm, we have discussed it

using IEEE 802.15.4 terminology but the algorithm is applicable to general class of wire-

less networks having single sink.

In IEEE 802.15.4 based networks, as the number of FFD nodes increase more nodes

will participate in packet forwarding or flooding. A brief overview of IEEE 802.15.4

standard is given in chapter 5. Objective of topology control mechanism is to reduce the

number of FFD nodes without compromising network functionality.

8.2 Related Work

To reduce unwanted traffic and energy usage, various topology control techniques have

been proposed in literature. Mainly these methods are classified as hierarchical, cluster

based methods or dominating set based methods. In cluster based method, the network

consists of cluster heads and cluster members. In the case of dominating set based

method, the network creates a Connected Dominating Set (CDS) that is a subset of

network nodes. CDS are helpful in various ways like reducing the routing overhead [68],

for energy efficiency [69] and for better approximation of area coverage [70]. Results show

that dominating set provides better fault tolerance and routing flexibility.

We use the concept of backbone structure. One can find its root in power distribution

networks. Gradually, packet cellular network started using that concept and has become
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one of the successful technological revolutions. It was in late eighties that the Ephremides

et al. first noticed the use of backbone structure in wireless routing and introduced the

concept of virtual backbone [71]. Later on, various approaches to construct CDS have

been proposed in literature. Some of them are based on Dynamic Programming [5], Linear

Programming [6], Linear Programming Relaxation [6], Maximum Independent Set(MIS),

or Multi-Point Relay (MPR).

Linear Programming and Dynamic Programming are centralized approaches which

require information about the entire network at one place which is not feasible for wireless

networks. Here our focus is on distributed methods of CDS construction. So, we will

mainly discuss the other two solution methods Maximum Independent Set(MIS) based

methods and Multi-point Relay (MPR) based methods.

Some other topology control solutions like [72, 73, 74] are specifically designed target-

ing IEEE 802.15.4 based networks. Jian Ma et. al [72] proposed three centralized pruning

based topology control algorithms with O(1), O(n) and O(
√

n) running time. Here n is

network size. Li Deying et. al in [73], using Euclidean plane, modeled the topology con-

trol problem as power assignment problem. Using simulation results they have shown the

effectiveness of the proposed scheme which creates strongly connected network consuming

minimum total power. A. Haffiz et. al [74] used Super Frame resolution algorithm to

target the problem of interference.

In the case of MIS based methods [68, 7, 75, 76, 77] the network first identifies the

independent set based on certain node properties like identity, node degree or their lo-

cation. Once the network identifies independent nodes, it connects this set to provide

connected network.

Peng-Jun Wan et. al. [68, 7, 75] analyzed the complexity and approximation ratio of

previous algorithms and proposed the distributed algorithm for connected dominating set

generation. Many modifications of [68] have been proposed in literature. Main changes

are in the comparison method used in node selection rules.

In their original work [68], node identity was the comparison parameter while others

have tried with node degree, node location or available energy. A variant of it uses X
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and Y coordinates in case the node degrees are same for the nodes. Yi Zou et. al. in [76]

proposed coverage-centric active node selection method using the concept of connected

dominating set. They showed that when communication range is more than double of

the sensing range the coverage itself provides the connectivity.

Funke. S [77] proposed constant approximation based CDS generation algorithm.

Their algorithm is an improvement over [7] using the relation between the MIS and

Minimum Connected Dominating Set(MCDS). MIS based methods can be implemented

in a distributed way and may have approximation ratio smaller than MPR based methods.

The main drawback of this approach is that it increases the network diameter which leads

to higher energy consumption in packet transmission and data collection. MPR based

methods helps in achieving smaller network diameter.

In the case of MPR based methods [8, 9, 78, 79, 80, 81, 82], each node identifies the

relay nodes from its one hop neighbors. Mainly these methods are classified as source de-

pendent methods and source independent methods. In source dependent methods, relay

nodes are identified for each node considering source nodes, while in case of source inde-

pendent methods, relay nodes are selected independent of source nodes. These selected

nodes then propagate the information in the network.

Amir et. al. [9] proposed multipoint relay based broadcast flood control mechanism.

First, they showed that to generate MPR is an NP-Hard problem. Then they gave an

approximation algorithm with log n approximation ratio, here n is number of nodes in the

network. Many solutions afterwards have extended their work to generate CDS. Later on,

Cedric et. al. in [78] proposed MPR based algorithm to generate a connected dominating

set. They have defined forwarding rules for pure flooding and Multi Point Relay based

flooding. They have proposed algorithm to compute MPR. It selects nodes in increasing

order of their identity. They compute the MPR set for current node in O(m3) time, where

m is the node degree.

Je Wu [82] has enhanced relay node selection by providing new rules which they called

rule 1 and rule 2. They have used extended marking process to generate the dominating

set. In their analysis they have also shown the comparative analysis between cluster
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based and dominating set based methods. In their process, they have marked their nodes

to be a part of dominating set based on node identity and node coverage. Dia F and Je

Wu in[83] gave the extended localized algorithm for connected dominating set which is

an extension of their previous work [82]. Here they have extended rule 1 and rule 2, in

their general form as rule k.

Das B et. al. in [80] have proposed three distributed algorithms for MCDS construc-

tion. First two algorithms are the distributed implementation of Guha and Khullers [79]

algorithms and last one is bounded degree MCDS construction algorithm. K Mohammed

et al. in [81] have proposed algorithm to generate the CDS considering network diame-

ter, risk-factor and interference. It is one of the early works in which solution uses other

parameters besides minimizing approximation ratio of generated CDS. Algorithm in [79]

generates the tree similar to depth first way, while in [81], author has used breadth first

approach to reduce the diameter of the network. Stojmenovic et. al in [8] have proposed

internal node based broadcasting method and they have compared their scheme with the

cluster based scheme.

R

A B C D E

1 3 5 7 92 4 6 8 0

Figure 8.1: Example showing problem with greedy selection

Majority of above MPR based CDS construction schemes selects the cover nodes or
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Figure 8.2: Example showing problem with limited information

relay nodes using greedy approach. In their process of relay node selection, they select

the replay nodes based on node identity, node degree, number of covered nodes, location

of nodes, or based on physical coverage provided by the nodes. For example [80] uses

unmarked neighboring nodes, [82] and [83] uses node identity.

In general in all the cases these methods are extensions or modifications of greedy

approach. As it is known that greedy approach has problem of selecting sub-optimal

results. For example [9] selects relay nodes based on node degree and many times it

selects those higher degree nodes which are not required as part of solution. But due to

greedy approach they become a part of the solution. These are the redundant nodes in

the final selection. As shown in figure 8.1 here, due to greedy selection node C is getting

selected though node B and node E provides the required cover. Other approaches like

Dynamic programming help in this scenario but they are mainly centralized approaches.

Other solutions [82, 83], solve this problem but they require more than 2 hop information

to solve it.

Secondly MPR based methods are distributed methods and they have limitation on

their local knowledge. Here, due to limited information many overlapping nodes are
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getting selected by the algorithm. As shown in figure 8.2 one of the nodes 7 or 8 is

redundantly getting selected in CDS.

Wireless network requires distributed localized algorithm that should rely on localized

information. To solve this redundant node problem and overlapping node problem we

have proposed distributed localized multi-point relay based topology control algorithm

ROOT-I to construct CDS for wireless sensor network. The algorithm constructs the con-

nected dominating set that helps in reducing the broadcast flooding traffic, by controlling

the broadcasting nodes participating in the flooding process.

8.3 ROOT-I Topology Control Algorithm

Proposed ROOT-Initiative(ROOT-I) algorithm is multipoint relay based topology control

algorithm. ROOT-I generates the connected dominating set using two hop information.

Algorithm divides the steps of CDS generation into four phases namely level assignment,

ranking of node, cover selection and decision making.

First phase is of level assignment which assigns level to each node. Level is a node’s

shortest hop count from the base station. Second phase is to determine the rank of the

node. In this phase, node decides its rank with respect to neighboring nodes. In the

third phase, node collects two hop neighboring information and calculates its covering

nodes. Here covering nodes are one hop neighboring nodes having two hop neighbors

of a given node as neighbors. The last phase is decision making phase in which node

decides whether they should work as FFD or be a neighboring node of one of FFD nodes.

Following is the detailed explanation of each of the above steps.

8.3.1 Level assignment

First phase is of level assignment. Here, each node receives its shortest hop count distance

from the root node (PAN coordinator) and propagates this information further in the

network. Root which is normally the base station initiates this process in the network.

To decide which nodes should work as root node is a problem in itself called leader election
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problem.

Normally in IEEE 802.15.4 based networks PAN coordinator works as root node. Root

node assigns itself level zero and broadcasts the message. On receiving level message, node

calculates the new level. If it finds that the new level is smaller than node’s current level

it updates its current level and broadcasts this message to neighboring nodes. Nodes in

the network follow the same process and process terminates at leaf node when it finds

that all the neighboring nodes have decided their level.

Major advantage of using leveling in the network is that it helps to control the network

diameter. Primary task of sensor network is to collect information from the network. Net-

work node collects the required information and forwards that information towards the

base station. Base station records the network wide information for application specific

tasks. Small network diameter helps in reducing the cost of packet forwarding and rout-

ing updates in the network. Approaches available in literature, mainly independent set

based approaches ignore this requirement that increases their overall energy consumption

though they have smaller CDS size. Another advantage of assigning level to the network

node is that it helps in giving unique rank to the network nodes.

8.3.2 Ranking of the node

An important component of ROOT-I algorithm is rank assignment to the nodes. Each

node gets its rank from the information that it collects from the neighboring nodes. In

the process, the node collects one hop neighbor information and its depth from the root

node.

Rank of a node consists of three tuples < Level,Degree, ID >. Here level is node’s

shortest hop distance from the base station, degree is nodes one hop neighbor count and

ID is a unique number assigned to the node. Combining these three pieces of information

each node gets its unique rank in the network. Nodes are compared in order of level,

degree and ID. Node N1 is higher rank node than node N2 based on following criteria.

if N1.Level < N2.Level

elseif N1.Level = N2.Level AND N1.Degree > N2.Degree
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elseif N1.Level = N2.Level AND N1.Degree = N2.Degree AND N1.ID > N2.ID

For example consider node 1 < 1, 3, 1 > , node 2 < 1, 4, 2 > and node 3 < 2, 5, 3 >.

Here node 2 has higher rank than node 1 and node 3 while node 1 has higher rank than

node 3. Rank of the node highlights its relative importance among the neighboring nodes.

8.3.3 Cover selection

Next step in the process of CDS construction is the cover selection. As mentioned above,

a cover is the subset of one hop neighbors whose combined one hop neighbor set contains

all the two hop neighbors of a given node. To calculate cover set nodes in the network, we

require their two hop neighbor information. To get the required information, the nodes

broadcast their one hop neighbors. Doing that all the nodes in the network will get their

two hop neighbor information. After collecting two hop information, node generates the

two hop graph, considering itself as root node of that graph. Then node uses greedy

approach on its one hop neighbors to find cover set.

In the process of cover set generation, node first selects the essential nodes. Here,

essential nodes are those nodes which cover two hop neighbors not covered by any other

nodes. After selecting essential nodes, ROOT-I algorithm marks those selected nodes as

essential nodes. Next, to cover remaining two hop neighbors, node selects the covering

nodes based on the node ranking, these are called greedy nodes. At the end of iteration,

the selected node set contains the essential nodes and greedy nodes. Then the algorithm

removes the other one hop nodes from the two hop graph and starts the next iteration.

The algorithm repeats this step until only essential nodes remain as marked nodes.

A majority of the previously proposed greedy selection algorithms faces the unwanted

node problem in the final solution. This step removes those unwanted nodes that appear

in greedy selection. For example, node R as shown in figure 8.1 first selects node E,

C and B in first iteration. Here it marks the node E as an essential node and node C

and B as greedy nodes. In the next iteration, from node C and B it selects node B as

essential node. In this step, node E and B together covers all the two hop nodes of node

R. In other words all the two hop nodes are covered by essential nodes that ends the
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iteration. By this we have overcome the problem of greedy selection and have acquired

local optimal solution. Though it removes redundant nodes from the local solution but

still the global solution contains overlapping nodes. Algorithm refines these nodes in final

phase. These overlapping nodes are mostly ignored by most of the algorithms proposed

in literature and those who have considered it require more than two hop information.

8.3.4 Decision making

With limited information, nodes only have two hop information. In many of the occasions

they select unnecessary nodes as FFD. Previously proposed MPR based algorithms have

not addressed this problem in their work. In our work we have used reverse notification

mechanism that removes these unnecessary nodes from the CDS.

Final phase in the algorithm is of decision making. Here node makes the decision

whether they should work as FFD or RFD. In the decision making, selected one hop

neighbor nodes send their selection information to two hop neighbor nodes. On receiving

this information all the two hop nodes know the nodes which cover them. Based on rank

they choose the best among all available options. Here the cover selection process is not

one way. It is a two way process.

Following example explains the point further. Here, network has 10 nodes spanning in

five levels. Node 1 is the root node. Label beside the node gives the three tuple ranking

information of the node.

In figure 8.3, nodes which works as FFD and part of CDS are shown in double circles,

other nodes which work as RFD are shown in single circle. As shown in the figure, node

1 selects node 2 and node 3 as it’s covering nodes to cover it’s two hop neighbor node 4

and node 5. At level 3, node 7 and node 8 both are selected as part of CDS to cover the

node 10 which is two hop neighbor node of node 4 and node 5. As node 4 and 5 do not

have this information, both the nodes get selected by CDS.

To overcome this, node 10 selects one of the nodes to cover it. Here, in decision

making phase, second level nodes inform the covering node about their maximum rank

covering node. If one hop node does not receive any notification from two hop nodes with
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Algorithm 8.1: ROOT-I Topology Control Algorithm

1: Phase 1: Level assignment
2: Root Node broadcast levelmsg < id, level >
3: On levelmsg < id, level > calculate new level
4: if new level < current level then
5: update current level
6: Broadcast levelmsg < id, newlevel >
7: end if
8:
9: Phase 2:Ranking of Node

10: All nodes send neighbor1msg < id, degree, level >
11: On neighbor1msg < id, degree, level >,
12: based on ranking rule categorize neighboring nodes as
13: sibling,parent or child list
14:
15: Phase 3:Coverage Selection
16: Collect two hop neighbor information by Neighbor2msg < id, neighbors >
17: Select essential nodes
18: while not covered all two hop neighbor do
19: Select one hop neighbor with highest rank
20: Update cover list
21: end while
22: Mark selected nodes as essential nodes and greedy nodes
23: Remove other nodes from One hop set
24: Repeat 17-24 until all the selected nodes are essential nodes
25: Send Cover information to one hop neighbor
26: Selected one hop nodes broadcast their covered node list
27:
28: Phase 4: Decision Making
29: Select higher rank node from received covering nodes
30: Send notification msg to selected node
31: if no notification msg received then
32: be non CDS node
33: end if

maximum nodes as itself, it will withdraw itself from CDS. It does so because nodes to

which it was providing cover have selected other node to be the covering node.

In the example node 10 has two covering nodes, node 7 and node 8, for node 4 and

node 5 respectively. Here node 8 has higher rank than the node 7 so node 10 selects node

8 as its covering node. Node 7 does not have any node to which it provides cover and

will withdraw itself from the CDS and become RFD. Same can be seen in figures 8.4 and

8.5. Here, dots are RFD nodes and dots with circle are FFD nodes.
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Figure 8.3: Example showing working of ROOT-I

Figure 8.4 shows that all the two hop nodes are selected as FFD nodes. Same topolog-

ical configuration is there in figure 8.5 but here ROOT-I removes the overlapping nodes

from the solution.

Figure 8.4: Example showing overlapping nodes

Algorithm 8.1 is our ROOT-I algorithm for the CDS generation or FFD selection.
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Figure 8.5: Broad view showing working of ROOT-I

In ROOT-I algorithm root initiates the process and gradually decision making phase

moves towards the leaf nodes. ROOT-I algorithm uses level assignment and ranking

phase for the coverage selection and decision making. Node sends the covering node list

to its one hop neighbors and they send the cover by message to level two nodes. Using

this information two hop neighbors send the reverse notification message to one hop

neighbor of the nodes. This reverse flow of decision making helps in reducing unwanted

covering nodes and gradually decreases the CDS size. Here, we have achieved the better

performance within available information. In many other solutions it requires more than

two hop information to achieve required results.

8.4 Fault Tolerable Topology Control Algorithm

As discussed above wireless sensor network collects the information at the base station.

Sensor node senses the data and forwards it towards the base station. As information

moves towards the base station, investment made by the network in terms of energy

increases. It is well known that chances of packet loss increases as hop count increases. If

information loss occurs near the base station it will cost more to the network. Network
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should try to reduce the packet loss near the root node to get the benefit of the investment

that network has put in getting information near the root.

8.4.1 K-connectedness

In case of 1-connected network, one and only one node is expected to receive the packet.

Due to bad channel or node failure it may happen that the required receiver may not

receive the intended packet. In 1-connected network there are high chances of packet

loss. Improvement over 1-connected network is k-connected network. Here objective is

to ensure that if one path in the network breaks then there must be some alternate paths

through which a packet reaches to the base station.

Figure 8.6: Example showing CDS-k with k set to 4

Figures 8.6 to 8.9 show the connectivity graph for various k-values. Figure 8.6, 8.7, 8.8

and 8.9 are of 4-connected, 3-connected, 2-connected and 1-connected graphs respectively.

In figure 8.6 which is of 4-connectedness, each node is required to be connected to 4 upper

layer nodes. Here, all the nodes are working as FFD nodes and hardly any node can

configure itself as RFD node. In figure 8.7 the network is 3-connected and one node at

every level can go to off mode. As shown in figure 8.8 and 8.9 number of RFD nodes

increases for 2-connected and 1-connected networks.
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Figure 8.7: Example showing CDS-k with k set to 3

Figure 8.8: Example showing CDS-k with k set to 2

Figure 8.9: Example showing CDS-k with k set to 1
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8.4.2 Problem with k-connectedness

In k-connected network, k-connectivity is achieved at every level of the network from

leaf node to root node. Here, starting from the leaf nodes every node at given level

is connected to k-nodes of the level above it. Each level maintains k-connectivity that

provides k path between source and destination.

Figure 8.10: Example of CDS-k with k set to 2

Figure 8.10 shows the 2-connected network. Every node in the level is connected to at

least 2 nodes of immediate upper layer. This rule is not followed at level 1, where all the

nodes are connected to the base station. Node 7 is connected to two nodes of level one

node 3 and node 4. Node 3 and 4 are connected to root, node 0. Here the broadcasted

packet from 7 is received by node 3 and 4 and both will try to broadcast that packet to

deliver it to the root node. With the higher value of k, number of rebroadcasted packets

is high.

Each packet received at the base station has cost associated with it. This cost consists

of two components: a ) cost that the network has invested in to bring that packet at the

base station and b) additional cost that the network has invested to prevent packet loss.

In k-connected case the first part increases as the information goes near the base

station but the second part remains constant. At each level, network node is connected

with k immediate upper layer nodes making constant provision to overcome the packet

loss.

Here, broadcasted packets move simultaneously on k paths towards the destination.

At each level, network invests equal amount of energy in packet forwarding. This mech-
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anism tries to prevent packet loss at each level with the same priority. As packet moves

towards the base station, the total energy invested by the network keeps on increasing.

Normally, it has been observed that as the packet moves near the base station its

chances of getting lost increases. The constant provision to decrease the packet loss does

not help much in such circumstances. It requires dynamic adaptation scheme that adapts

itself based on packet loss probability. Literature available on k-connectedness has not

addressed this problem at its depth.

In our work we have focused on analyzing the energy investment of the network while

making decision about the fault tolerability of the network. As network invests more

energy in information forwarding, network should also make sufficient provisions so that

the investment made in information forwarding should not get lost.

On this line our first observation is that near the base station the chances of packet

loss are higher and at the leaf the chances of packet loss are less. Second during its path

towards destination network invests some energy at each level. Here near the leaf the

total investment is very low and near the root investment is high. Considering that to

reduce the packet loss and increase the fault tolerability of network we have extended

ROOT-I to ROOT-Ik algorithm to provide k-connectivity.

8.5 Value of k in k-connectivity

In k-connectedness, at every level the node is connected to k parent nodes. At level

one all the nodes are connected to only base station. As talked previously, in such a

mechanism at each level network provides same amount of provision for fault tolerability.

To improve over it we are dynamically configuring the k parameter of the network while

maintaining the k-connectivity. At every level, node chooses its value of k, based on its

current network parameter and traffic requirement with observed loss rate.

As the value of k-decreases the network has more nodes that can configure themselves

as RFD nodes and as the value of k increases this number decreases. For higher value of

k network has high fault tolerability but also has high energy cost. Low value of k saves
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the network energy but network is less tolerable to link or node failure.

Instead of accepting one extreme or the other, we seek a method to construct a net-

work topology that provides good trade-off of fault tolerability and energy consumption.

Near the leaf where network has not invested much in the information transfer, losing

information will not cost much to network, but as the information goes near to base

station here network has invested more energy so requires more fault tolerability to the

network. Based on that, value of k is the function of node level and fault tolerability

required at each level. We have defined the value of k based on spatial and temporal

network parameters. In first case, k is function of node proximity, that is node’s location

in the network relative to the base station. In second case, k is function of temporal

information that is packet loss encountered at each level.

8.5.1 k based on node proximity

Network has two extreme values of k, one is Kmax and other is Kmin. Kmax is the

maximum connectivity count of the network and Kmin is minimum connectivity count

of the network. Maximum value that Kmax can take is the minimum node degree of all

the nodes and minimum value that Kmin can take is one. In other words Kmax, Kmin ∈

[min node degree, 1].

k = max(1, Kmax ∗ (ξ)) (8.1)

Here, the value of ξ ∈ [0, 1]. Here ξ is fault tolerability parameter. If more importance

is given to the fault tolerability then the network has higher number of FFD nodes and

in other case network has less number of FFD nodes. In our case we require higher value

of fault tolerability near the base station and relatively low fault tolerability near the leaf

nodes.

The intuition is that, the further the information has to travel in the network, the

more likely that it will encounter a failure. When information gets close to the base

station, we want to give it the best possible chance to make it the rest of the way so
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Table 8.1: Symbols used to derive value of k in k-connected network
Symbol Comment
µi Service Rate at level i
λi Arrival Rate at level i
ni Number of Nodes at level i
Ti Number of Active Transmission possible at level i
Ac Interference Area of a Node
Ai Level i Interference zone
Prloss

i Packet loss probability at level i
Di Packets Dropped at level i
PktAi Number of packets arrived at level i from level i-1
PktDi Number of packets departed from level i
Pkti Number of packets at level i

that it will be recorded at base station. Here value of ξ is the function of node level. we

calculate the value of ξ at each node and for node i the value of ξ is ξi .

ξi = 1 − li/L (8.2)

Here, L is farthest node from the base station, or in other words it is the diameter of

the network with one end having base station and other end a leaf node. li is the level of

node i. Using this value each node calculates the value of ξi and using that value of ξi the

node calculates its connectivity count k. Effect of this on the CDS size, packet delivery

and overhead are examined through simulation in chapter 9.

Here, value of k is derived from node’s spatial information. This information is static

throughout the lifetime of the network. Next we have derived the value of k based on

temporal information. Here we have used traffic experienced at given level to derive the

value of k.

8.5.2 k based on traffic

Next we have derived the value of k based on traffic experienced at each level. Table 8.1

explains the variables used in the derivation. Here objective is that at each level all the

received packets are successfully delivered to the next level.

First of all we derive number of concurrent transmissions possible at the given level.
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To make it simple we have assumed that communication and carrier sensing range are

same for the nodes.

Ti =
Ai

Ac
(8.3)

Using this and service rate, we can derive the value of total number of packets transmitted

from a given layer.

Pkti = Tiµi (8.4)

At the given layer node generates the packet and node receives the packet from the

previous layer. So total number of packets available at the layer is sum of this two.

PktAi = Ti−1µi−1ki−1(1 − Prloss
i ) (8.5)

PktGi = λini (8.6)

PktTotal
i = PktAi + PktGi (8.7)

= Ti−1µi−1ki−1(1 − Prloss
i ) + λini (8.8)

This helps in deriving the number of packets loss at the given layer.

PktDi = PktTotal
i − Pkti (8.9)

= Ti−1µi−1ki−1(1 − Prloose
i ) + λini − Tiµi (8.10)

If we consider that packet loss is zero at each level then,
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Ti−1µi−1ki−1(1 − Prloss
i ) + λini − Tiµi = 0 (8.11)

Tiµi − λini

Ti−1µi−1(1 − Prloss
i )

= ki−1 (8.12)

That gives the set of equations to derive value of k at each level i = 1, 2..., L. Using

this value network defines the connectivity required at each level.

8.5.3 ROOT-Ik topology control algorithm

ROOT-Ik is extension of ROOT-I algorithm. ROOT-I is special case of ROOT-Ik with

value of k set to one. ROOT-I algorithm for each node defines one forwarder node. Here,

first two steps are same in both the algorithms ROOT-I and ROOT-Ik. In the third step

the extended algorithm selects the k forwarder nodes instead of selecting one forwarder

node. Same is with the final step. Here instead of sending one notification message the

two hop node sends the k notification messages. Here k nodes are getting selected based

on their rank. ROOT-Ik selected the value of k at each level or at each node based on

the equation derived in the previous section.

8.5.4 Packet forwarding in k-connectedness

There are two places where the information of broadcasting and connectivity can be ma-

nipulated in the favor of network performance. First, as discussed above from two parts

of energy consumption, one can update the second part. As done in ROOT-Ik, at each

level the connectivity is modified based on node level. Here instead of making constant

investment, network dynamically adjusts its investment based on the current environ-

ment. Secondly the broadcast packet count can be modified to control the broadcast

flooding in the network.

For k-connected network, on hearing the packet from other node, node will broadcast
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that packet if it is part of k-connected set. Each node has k-connected nodes in the above

layer. Packet broadcasted by the node will be heard by all the k-nodes belonging to the

above layer. On hearing packet from child nodes all the k-nodes try to broadcast that

packet.

As wireless media is broadcast media and shared by all the nodes. Only one node can

successfully transmit its packet while others have to wait for their chance to access the

channel. Here objective with k-connectedness is to increase the chances of connectivity

and make sure that the packet is successfully delivered to destination.

In our protocol we try to reduce these rebroadcasted packets probabilistically based

on available topological information. Every node knows about their level, parents level

and relaying mode. Based on this information nodes probabilistically decides whether to

broadcast that packet or not. On hearing the packet from child, node will set the timer

to broadcast the packet with probability one. In that waiting time, if it hears the same

packet from nodes that belong to same level as that of the node then it decreases the

probability of sending the packet after time out. In case if it hears the same packet from

the parent then it reduces the probability of that broadcasted packet by higher value or

makes it to zero so on timeout that packet will not be broadcasted. The probability is

decreased based on the k value in k-connectivity.

As this k-connectivity based probabilistic broadcast control mechanism prunes the

broadcasting nodes, this will reduce the rebroadcasted packets. With proper selection

of probability decrement mechanism, the network can achieve required fault tolerability

with reduced broadcast overhead. Effect of these can be seen in the packet delivery

simulation results discussed in next chapter.

8.6 Summary

Topology control is the mechanism by which network manages its structure. We have pro-

posed MPR based topology control algorithms ROOT-I and ROOT-Ik which generates

1-connected and k-connected network respectively. The chapter explained the working
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of ROOT-I and ROOT-Ik algorithms. In k-connectedness tradeoff between energy con-

sumption and fault tolerability is managed by dynamically selecting value of k based on

partial and temporal information.



Chapter 9

Modeling and Simulation of

Topology Control algorithms

9.1 Modeling

We have modeled network as Unit Disk Graph (UDG) G = (V, E), where V is node set of

reduced function and full function devices and set E represents bidirectional link between

devices. IEEE 802.15.4 devices have 64 bit (later on mapped to 16 bit) MAC address so

each device in the network has unique MAC address assigned to it. Devices are deployed

in two dimensional plane with fixed communication range. Here, communication range is

normalized to one unit and two nodes can communicate with each other if the distance

between them is at most one unit.

Let Nk(v) be the k hop neighborhood of node v. Special cases are one hop neigh-

borhood N(v) without any subscript and N0(v) = v. Subgraph Gv
k of graph G(V, E) is

defined as Gv
k = (V v, Ev) where V u = ∪k

i=0Ni(v) and Ev = {(x, y)|x ∈ Nk−1 and y ∈

Nk, Nk−1, Nk ⊂ V v}. Graph Gv
k is tree having node v as root node and rest of the nodes

are union of k hop neighborhood of node v. Node which is already selected as coordinator

node maintains a two hop neighbor set N2. Using Gv
2 node v selects the one hop neighbor

nodes from N(v) as coordinator set to cover its two hop neighbors N2(v). Selected coor-

dinator node u remains as coordinator node if one of the N2(v) nodes selects the node u

145
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as uplink node otherwise it works as a device node.

Figure 9.1: Node v local approximation ratio O(n′)

Theorem 1. (Local Upper Bond): The ROOT-I has a O(n′) local approximation

ratio.

ROOT-I works on two hop neighbor information. Let v be the node having transmission

range r and let n′ = |N2(v)|, be the number of two hop neighbors of v. To show that local

approximation ratio for ROOT-I is O(n′), let node v be at the center of disk(v, r) and

disk(v, 2r). Here, disk(v, r) covers all one hop neighbors of node v and disk(v, 2r) covers

all the one and two hop neighbors of node v, as shown in figure 9.1.

To analyze the worst case scenario, consider that all the one hop neighbors of node

v are placed at the edge of disk(v, r) and all the two hop neighbors of v are placed at

the edge of disk(v, 2r). To cover N2(v), node v selects nodes from N(v). Selected node

set is called coordinator node set and each selected node will work as coordinator based

on ROOT-I algorithm. Each node in N2(v) is covered by only one node from N(v). As

shown in figure 9.1, node w will be covered by node u only. Based on it, as the number of

nodes in N2(v) increases, corresponding coordinator set size increases. Therefor the local

approximation ratio for ROOT-I is O(n′) �.

Let c be the finite deployment region with d = r√
2
. Union U(c) and Intersection I(c)

region of c are union and intersection of disk(u, r) of all u ∈ c, shown in figure 9.2. Region

I(c) contains level i − 1 nodes for given level i nodes of c. Here I(c) is non overlapping
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Figure 9.2: Union U(c) and Intersection I(c) region for finite region c having width
d = r√

2

region, while U(c) may overlap by neighboring region, as level i + 1 may be overlapped

by other level i nodes neighbor.

Figure 9.3, shows the three neighboring regions c−1, c0 and c1. As the parent nodes

at level i−1 don’t know about neighboring node’s leveli nodes regions I(c−1), I(c0), I(c1)

are independent and non-overlapping from each other. As the second level nodes may

be overlapped by other node’s coordinators, U(c) may have an overlap from neighbor

regions. The amount of overlap between neighboring regions is called overlapping factor

Of(c) for the region c. Overlapping factor for a given region depends on the position of

neighboring regions. In other words it depends on the node density. The overlap factor

for region c varies from 0 to maxL, as shown in figure 9.3. Here c−1 and c0 with maximum

overlap maxL while c0 and c1 with minimum overlap 0. Here ORank(c) represents the

fraction of U(c) covered by only nodes belonging to c.

Area of I(c) = 0.5r2 (9.1)

Area of U(c) = d2 + 8dr + 4r2 (9.2)

ORank(c) =
U(c)(1 − Of(c)) − 1

2
Of(c)U(c)

U(c)
(9.3)

Theorem 2. The number of coordinator nodes selected by ROOT-I in a finite
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Figure 9.3: Overlapping with multiple regions

region c is bounded by O(n) · ORank(c).

Let u be the node in c. For any node v ∈ I(c), node u becomes the coordinator node based

on following conditions, first, node u has same level with higher coverage and higher id

node than any other nodes in c. In other word next highest node among the remaining

nodes in c. Second condition is node w ∈ U(c) selects node u as uplink node as shown in

figure 9.2.

Condition one gives the number of coordinator nodes selected for a given region and

condition two reduces the size of selected nodes based on U(c) selection. Based on Theorem

1 and rank of region, total number of coordinator nodes selected after the algorithm is

O(n) · ORank(c). �

Theorem 3. In a network with n nodes randomly and uniformly deployed in

a finite region C, limn→∞ E(CDSROOT−I) = O(n′) · ORank(C) · E(CDSopt). Here

CDSROOT−I is size of CDS that ROOT-I algorithm generates.

We assume that the finite region C is divided into N equal square regions having width

d = r√
2
. Let CDSopt be the optimal dominating set .

Here each square region is covered by the coordinator node in CDSopt. Considering

there is no overlapping and redundant nodes in CDSopt. Each node in CDSopt can

cover O(1) nonempty squares. Total number of squares covered by CDSopt is given by

the following equation.
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N = O(1) · E(CDSopt)

Based on Theorem 1, expected number of coordinator nodes for given square is O(n′).

Assuming high node density, each square region contains at least one node. Consider-

ing Theorem 1 and Theorem 2, the expected number of coordinator nodes in ROOT-I

algorithm is given by,

lim
n→∞

E(CDSROOT−I) = O(n′) · ORank(c) · N

Considering above two results we can get our required result. �

9.2 Time and Message Complexity

ROOT-I N0(u) requires N(u) and N2(u) information to select coordinator nodes. N0(u)

collects the N(u) and N2(u) information and based on N2(u) it selects the coordinator

node from N(u). N0(u) selects the N(u) node based on its precedence which is decided by

three tuple formation. Further this primary selection is further filtered by N2(u) uplink

information. N2(u) selects the uplink node from all the available N(u) nodes.

To do this N0(u) requires N(u) steps to find out the one hop neighbors essential

nodes. In next step N0(u) selects nodes from remaining N(u) nodes to cover N2(u).

Calculating essential nodes and then finding the remaining N(u) nodes requires 2 ·N(u)

steps. Considering ∆ coordinator selected total time required for each step is 2 ·∆ ·N(u).

In last step N2(u) node selects the uplink node from the available ∆ nodes. It requires

∆ ·N2(u) steps. Finally total time complexity of ROOT-I is O(2 ·∆ ·N(u) + ∆ ·N2(u) +

∆ · N(u) · N(u)). Here, N(u) · N(u) is the time required to sort one hop nodes based on

its neighbor.

ROOT-I requires two hop information at N0(u). To collect that information N(u) and

N2(u) send HELLO messages. Using that N0(u) collects its required information. To do

these ROOT-I uses N(u) and N2(u) HELLO messages. After finding ∆ coordinator nodes
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N0(u) propagates these information to N2(u) using ∆ + 1 messages. In final step N2(u)

nodes send uplink message. So the total message complexity of ROOT-I is O(N(u) + 2 ·

N2(u) + ∆ + 1).

9.3 Implementation Details

Figure 9.4 shows architecture for our implementation. Here rule base contains rules for

topology control mechanism. Application layer provides the information about fault tol-

erability of the network to CNI. MAC layer provides the channel detail and working role

of the node. At initialization time application layer calculates the required fault toler-

ability and updates the CNI. Network layer updates the CNI by providing information

about the neighbor table. It triggers the event in CNI. CNI propagates these events to

cross layer engine. Cross layer engine gets the topology control rules from rule base.

Topology control rules contain the information about the working role of the node.

Cross layer engine gets this information and generates the messages to set the working

mode at MAC layer. It puts these messages into notification layer. Notification layer

sends these messages to MAC layer. MAC at the end updates its parameter and working

role. Here MAC layer itself does not decide its working role. It sets its working role

based on the notification messages received from notification layer. Knowledge base

and inference engine control the over all working. That makes the conventional layer

mechanism untouched from the cross layer implementations.

9.4 Simulation Results

ROOT-I and ROOT-Ik algorithms are simulated using Network Simulator 2. Section

9.3 shows CLAPDAWN representation of proposed algorithm. We have compared our

ROOT-I algorithm with MPR and MIS based method. We have tested these algorithms

for different network conditions by varying number of nodes in the network, changing

the deployment area and varying transmission range. Performance of these algorithms
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Figure 9.4: CLAPDAWN Architecture

is evaluated based on the number of FFDs, number of packets delivered and energy

consumption. Following section covers simulation results showing comparative study of

ROOT-I algorithm with multipoint relay based approach MPR and maximum indepen-

dent set based approaches MIS.

9.4.1 Connected dominating node size

First set of results is of connected dominating set size. Figure 9.5 shows the simulation

results for connected dominating set. Here connected dominating set size shows number

of nodes working as FFD. Simulation is carried out for two communication ranges a) 20

meter and b) 40 meters. Simulation also checks the effect of different network size on

CDS size. Here, nodes are deployed randomly following uniform distribution in given

field area. In result, X-axis represents the number of nodes in the network, and Y-axis

represents the CDS size.

Figure 9.5(a) and 9.5(c) cover the simulation results for 20 meter transmission range.
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Figure 9.5: Result showing Connected Dominating Set Size
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Y-axis represents number of nodes in CDS, size of CDS or number of nodes working as

FFD nodes. Simulation results show that the multi-point relay has maximum number of

nodes in CDS. Next, MIS has smaller number of nodes in CDS and ROOT-I has lower

value of number of nodes working as FFD compare to other methods.

As ROOT-I removes the unwanted nodes in its decision making phase that helps

in decreasing the size of coordinator nodes. Further, we have tested our scheme with

increasing the field area that decreases the node density and increases the number of

CDS nodes. Here, connectivity of sparse network remains same for all the cases. In the

result we have ignored the isolated nodes for all the cases. Effect of it is visible in the

results after 60 network nodes and with increased field area. Here reduced CDS size is

not because of overlap or redundant nodes removal but its due to isolated nodes in the

network. Results show that in sparse connectivity ROOT-I has better results than the

other proposed algorithms.

By increasing the field area, we have decreased the node density. In the next set of

results we have tested the effect of increasing the node density. We increased the node’s

transmission range that increases the node’s connectivity in the network. Figure 9.5(b)

and 9.5(d) show the simulation results for 40 meter transmission range. Here also, the

ROOT-I has smaller CDS than the other schemes.

Comparing these results with the 20 meter communication range shows that 40 me-

ter communication range has higher number of neighboring nodes. Higher number of

neighboring nodes also creates more overlap and that ends up having smaller CDS set.

That matches with the analytical results. As Of(c) increases, it decreases ORank(C)

and overall CDS size. In multi-point relay each node generates its cover only considering

its two hop neighborhood. This process continues and that keeps on increasing the CDS

size for MPR. In the case of MIS, network generates the independent set and that helps

it to reduce the size of CDS node set. Improvement over greedy selection and overlapping

nodes reduces the CDS size in ROOT-I.
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9.4.2 Energy per bit

Next set of results show the total energy consumption that network encounters while

collecting packets from the network nodes. Here, each node transmits packets to the base

station and FFD node forwards those packets towards the base station. Here, energy

consumption is calculated for all the packets that base station receives.

Simulation is carried out for different number of nodes. X-axis represents the number

of nodes in the network and Y-axis represents the normalized energy consumption. This

energy consumption is normalized to per bit energy consumption. That shows, how much

energy, network has to invest to receive one bit of data. Energy per bit is calculated for two

networks one with communication range set to 20 meters and other with communication

range set to 40 meters. Similarly base station to node traffic flow can also be analyzed.
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Figure 9.6: Overall Per Bit Energy Consumption

Figures 9.6(a) show the simulation results for the 20 meter communication range.

Result shows that the ROOT-I has higher energy consumption than the MIS and MPR

methods. In our previous results we have shown that the MIS and MPR have higher

number of CDS nodes that generate many redundant packets in the network. This

increases the total number of packets received at the base station. As the number of

packets received increases it decreases the per bit energy consumption.

Next we have also checked the effect of increasing transmission range on per bit energy

consumption in figure 9.6(b). It shows that as the communication range increases there
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are higher chances of packet reception. This increases the packet delivery but increased

transmission power increases the energy consumption per bit.

9.4.3 Energy per bit goodput

Next set of results is for per bit energy consumption for goodput. Here, by goodput

we mean, number of packets delivered after removing the redundant packets. We have

considered the broadcast network. Network nodes broadcast the packet and CDS nodes

propagates these packets towards the base station.

In previous result, we have considered the total received packets and per bit energy

count for that. Figures 9.7 shows the simulation results for goodput. Here, results are in

two sets, one is with network having communication range set to 20 meters and other is

network having communication range set to 40 meters.

Figures 9.7(a) and 9.7(b) show goodput results for the network having communication

range set to 20 meters. Here, X-axis represents the number of nodes in the network and

Y-axis represents the normalized energy consumption per bit. Simulation results show

that the MPR has the highest energy consumption compared to other algorithms.

In our previous results we saw that MPR has lesser total energy consumption than the

other schemes and ROOT-I has higher energy consumption. There MRP delivers higher

number of packets to the base station that decreases the per bit energy consumption. As

the total received packets contain higher chunk of redundant packets, that gives the low

per bit energy consumption.

Next, we have removed those redundant packets from the results to get goodput

results. It shows that ROOT-I has lower energy consumption than the other algorithm.

It suggests that as the total number of packets delivered is higher, the network has higher

capacity. But due to redundant delivery, network is not utilized properly. That makes

the network resources under utilized in other algorithms.

Figures 9.7(c) to 9.7(d) show the simulation results for the network having communi-

cation range set to 40 meters. As we saw in our previous result that higher communication

range has higher packet delivery. That helps in improving the energy results and we have
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Figure 9.7: Goodput Per Bit Energy Consumption

lesser energy cost than the previous results.

Here, higher communication range increases energy consumption but as seen in the

previous result it also affects the number of FFD nodes. Reduced number of FFD reduces

the redundant packets in the network. That decreases the energy consumption. Here

increased transmission power increases the energy usage and reduced redundant packets

reduces the energy consumption. Overall effect of this is visible in the result. Here MPR

and MIS have higher increment in per bit energy consumption compared to 20 meter

communication range. This increase in energy consumption is relatively low in ROOT-I

based method due to reduced redundant packets.
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9.4.4 K-connectedness

ROOT-Ik is extension of ROOT-I and next set of results are for ROOT-Ik. Above set

of results are for 1-connectedness which is special case of K-connected network with k

set to one. There we saw that ROOT-I performs better than the compared algorithms.

For ROOT-Ik, we performed simulations for changing the way the value of k is selected.

One is by keeping the value of k fixed at all the layers as done in normal cases of k-

connectedness. For that we considered two extremes k minimum and k maximum. In

k minimum value of k is set to one and described it as K-Min in the results. For k

maximum, value of k is set to minimum node degree of all the nodes and described it

as K-Max in the results. We compared this two mechanisms with our dynamic policy in

which value of k is configured based on network parameters. In the result it is shown as

k-dynamic and it uses node proximity to configure the value of k as discussed in section

8.5.1.

CDS size

Figure 9.4.4 shows the simulation results for the size of connected dominating set. Simu-

lation is carried out for fixed number of network nodes that is 50 nodes. Algorithms are

tested for different network scenarios like varying deployment area that changes network

density. Here, X-axis represents the network deployment area and Y-axis represents the

CDS size. In the results the isolated nodes are considered as FFD nodes and included

into CDS size. Here, nodes having the same level are not selected as coordinator for other

nodes of that level.

Results shows that K-Max has higher number of nodes in CDS compared to K-

Dynamic and K-Min. K-Dynamic CDS has lesser number of nodes in CDS as it is

not selecting same number of nodes at every level. And K-Dynamic has higher number

of nodes in CDS as it selects more than minimum nodes as it moves towards the base

station. Result shows that as network size increases network density decreases and more

nodes contribute in CDS. As the network size increases network becomes sparse and more

nodes become the isolated nodes.
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Figure 9.8: Result showing CDS size of 50 network nodes
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In figure 9.8(a) as field size increases network becomes sparse and soon looses its con-

nectivity. With this as the network size increases more and more nodes contributes in

CDS. Next, as the communication range increases it increases the network connectivity.

Figure 9.8(b) and 9.8(c) show results with better network connectivity, achieved by in-

creasing the transmission range. We will see the effect of different values of k on network

performance in next results.

Packet received

Figure 9.9(a) covers the simulation result that gives analysis of received packets. Result

shows the total received packet in the network. Results are for 50 nodes and for varying

field area. Results show that K-Max receives higher number of total packets compared

to other methods. As number of CDS nodes are high in K-Max, it increases the total

packet delivery. In the case of K-Dynamic, it has less number of CDS nodes compared

to K-Max and has lower number of total packet received compared to K-Max. Same is

true with K-Min.

Results also show that as the network density decreases, it affects the connectivity

that changes the packet delivery. Initially as the field area increases network gets higher

chances of packet delivery because of less congestion and available connectivity. As the

field area increases further, network looses its connectivity and that decreases the packet

delivery. Because of this in the result we have first upward slope and then downward

slope. Network achieves the maximum delivery at 150 sq.m. area.

Next result shown in figure 9.9(b) talks about the actual packet delivery. As talked

previously, total packets contain all the received packets which also includes the redundant

packets. Result shown in figure 9.9(b) gives the packet delivery after removing redundant

packets.

It shows that the network with higher number of CDS nodes deliver more packets but

they also deliver more number of redundant packets. In the K-Max case network starting

from leaf node starts replicating the packets. With k-Dynamic the network reduces that

redundancy starting from leaf nodes. Reduced redundant packets increase chances for
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Figure 9.9: Result showing performance of network for 50 network nodes
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other packets to get delivered to the base station.

Result shows that at 150 sq.m. area, network has higher packet delivery considering

the effect of congestion and connectivity. Here K-Dynamic has higher actual packet

delivery compared to other schemes.

Packet loss

In this section we discussed about the packet loss in the network. As the number of

CDS nodes increases, network has higher chances of collision. Opposite to it with low

connectivity network gets less chances of packet delivery and increases the packet loss.

It requires a balanced mechanism which reduces the broadcast storm and also increases

the delivery chance. Results show that k-Dynamic serves this purpose.

Figure 9.9(c) shows the simulation result covering packet loss in the network. Results

shows that k-dynamic has lesser number of packet loss compared to other mechanism,

while K-Max has higher packet loss. Normally k-connectivity is used to increase the

packet delivery but results show that the higher number of CDS nodes create the conges-

tion problem. With higher value of k, network performance degrades and reaches lower

than the the one connectivity. But K-Dynamic selects the value of k based on network re-

quirement and that controls the congestion. That increases the chances of packet delivery

which improves the effective packet delivery and reduces the packet loss.

9.5 Summary

ROOT-I is multi-point relay based topology control algorithm, designed for network

having single sink node, for example IEEE 802.15.4 based networks. Level assignment,

ranking, cover selection and decision making are the main four phases of ROOT-I al-

gorithm. Using O(2 · ∆ · N(u) + ∆ · N2(u) + ∆ · N(u) · N(u)) time complexity and

O(N(u) + 2 · N2(u) + ∆ + 1) message complexity ROOT-I solves the problem of greedy

selection and multiple overlapping nodes, faced by majority of the greedy based MPR

algorithms. ROOT-I has O(n) approximation ratio and simulation results show the ef-
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fect of overlapping factor ORank(C) on CDS size. Simulation results show that due to

ROOT-I topology control algorithm network achieves better performance in packet deliv-

ery and energy consumption. ROOT-I algorithm is designed to provide one connectivity

to the nodes. For better fault tolerability ROOT-I algorithm is extended to ROOT-Ik

algorithm. ROOT-Ik increases the connectivity of ROOT-I algorithm. ROOT-Ik dy-

namically selects the value of k based on spatial and temporal information. Dynamically

selected value of k increases the network performance, simulation results support it.



Chapter 10

Future Work and Summary

10.1 Cross Layer Architecture for Protocol Design

in A Wireless Network

To provide rapid development platform for cross layer implementation, we have proposed

cross layer architecture “Cross Layer Architecture for Protocol Design in A Wireless Net-

work (CLAPDAWN)”. CLAPDAWN addresses the problems to which available cross

layer architectures in the literature do not provide efficient solutions. These include the

following problems: lack of support for multiple cross layer interactions, longer develop-

ment time, accidental occurrence of feedback loops in the system and recovery from cross

layer interactions.

CLAPDAWN simplifies the complex functioning of cross layer interactions into two

parts: functional plane and control plane. Furthermore, to manage cross layer interac-

tions, control plane is divided into four subcomponents a) Control Network Interface b)

Execution Engine c) Knowledge base and d) Layer Notification Interface. This functional

decoupling makes it easy to provide support for multiple cross layer interactions in the

system.

We have implemented our architecture by extending Network Simulator 2 using POSIX

sockets and threads. Here, class Agent is extended to provide necessary communication

functionality. Majority of the protocols in NS-2 are derived from this classes so inherently
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all the classes get their required support. Classes which are not derived from Agent class

are extended by patching additional communication codes to them. This additional sup-

port works as interfaces using which various components in CLAPDAWN communicate

with each other.

For comparative analysis we have also implemented ECLAIR using the same method-

ology. Adaptability and applicability of our architecture is verified by implementing

complex cross layer video streaming protocol [10]. Furthermore, both the architectures

are tested for odd CLI scenarios, like conflicting CLI and feedback loops.

CLAPDAWN manages to reduce development time by separating execution of cross

layer interaction from its logic. Any modification that takes place in cross layer interaction

logic remains transparent to the implementation of that interaction. Section 2.5.2 shows

that compared to other architectures, it is easy to implement cross layer interactions

in CLAPDAWN. Simulation study done in section 4.2.1 highlights that performance

results achieved by implementing cross layer interaction in CLAPDAWN are as good as

implemented in the layer.

CLAPDAWN implements cross layer logic as ECA rules in knowledge base. It helps

in identifying the possible conflicts and feedback loops which may take place due to

multiple cross layer interactions. CLAPDAWN identifies possible conflicts in the system

and applies configurable policy mechanism over them to reduce their effect on the overall

system. Simulation study done in section 4.2.2 shows that policy mechanism makes the

system more stable compared to ECLAIR.

In our work we have verified the performance of CLAPDAWN through simulation.

Our future objective is to port CLAPDWAN to operating system like Linux. Furthermore

configuring ECA rules in knowledge base is key part of implementing cross layer interac-

tion in CLAPDAWN. Currently, CLAPDAWN uses menu driven rule editor to configure

ECA rules. Our objective is to make it more flexible with drag and drop features to

configure rules in CLAPDAWN.
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10.2 IPCAP and EPCAP Channel Access Protocols

Implicit and explicit prioritized channel access protocols are designed to help event driven

wireless sensor networks implemented on IEEE 802.15.4 communication standards. IP-

CAP and EPCAP increase delivery chances of critical events in event driven application.

IPCAP and EPCAP do not assume strict conditions like all the nodes being in each

other’s communication range.

IPCAP increases the delivery chances of critical events by modifying CSMA-CA con-

figurations supported by IEEE 802.15.4. Same is modeled as two dimensional Markov

chain. Unlike previous work, our modeling does not assume that both the Clear Channel

Access have same priority. EPCAP uses secondary beacon concept to increase critical

event delivery. Pre-configuration step helps here to overcome limitations faced by previ-

ous work. We have modeled EPCAP as M/G/c model and derived waiting time equation

for each priority class.

Both the protocols are simulated using Qualnet Network Simulator and compared

with IEEE 802.15.4 standard. Simulation result shown in chapter 7 highlights that both

the protocols have higher delivery ratio for critical events compared to normal events.

IPCAP achieves this by controlling the number of channel access tries and time between

two accesses. In the case of EPCAP, it reduces the number of contending nodes to provide

more chances to critical events.

In current implementation, EPCAP only defines the priority level in primary beacon.

It can be further enhanced to provide better control over active duration of the FFD

nodes. Currently we are working on the optimal assignment of superframe duration and

beacon interval based on number of nodes in given priority class. IPCAP is designed to

work with beacon enabled mode and can be extended to work with non-beacon enabled

mode.
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10.3 ROOT-I and ROOT-Ik Topology Control Mech-

anism

ROOT-Initiative (ROOT-I) and ROOT-Initiative k (ROOT-Ik) are multi-point relay

based topology control algorithms. IEEE 802.15.4 comes with two types of device config-

urations: FFD and RFD nodes. ROOT-I and ROOT-Ik decide node type and configure

the network topology as 1-connected and k-connected dominating sets respectively.

ROOT-I overcomes the problem of redundant and overlapping nodes faced by many

of the previously proposed topology control algorithms. ROOT-I removes the unwanted

nodes from the final solution using repetitive selection of essential nodes and reverse

messaging as discussed in section 8.3. Here, network is modeled as unit disk graph.

Using that we have derived approximation ratio for the ROOT-I algorithm in section 9.1.

To provide better fault tolerability 1-connectedness of ROOT-I is extended to k-

connectedness in ROOT-Ik. Tradeoff between energy consumption and fault tolerability

is adjusted by dynamically configuring the value of k based on node proximity discussed

in section 8.5.1 and based on temporal traffic discussed in section 8.5.2.

ROOT-I and ROOT-Ik are implemented in Network Simulator 2. ROOT-I is com-

pared with extended MRP and MIS based algorithms. Performance of ROOT-Ik is tested

for various values of k in normal configuration and in dynamic configuration. Results dis-

cussed in chapter 9 show that due to reverse notification and repetitive essential node

selection ROOT-I has better performance results than the other compared schemes.

ROOT-I and ROOT-Ik both the algorithms are initiated by the root node or the base

station node, in IEEE 802.15.4 notation referred as PAN coordinator. In homogeneous

wireless sensor networks selection of the PAN coordinator is a problem in itself called the

leader election algorithm. Currently we are working on a leader election algorithm that

decides that in a given random deployment of homogenous nodes which node will work

as PAN coordinator and initiates the ROOT-I or ROOT-Ik algorithm.
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10.4 Summary

Problem of cross layer architecture is not addressed adequately in the literature. In our

work we have worked on cross layer architecture design and proposed “Cross Layer Archi-

tecture for Protocol Design in A Wireless Network (CLAPDAWN)”. Using CLAPDAWN

one can easily experiment with multiple cross layer interactions in the system. Further

in our work we have designed solutions for prioritized event delivery problem as IPCAP

and EPCAP, and for topology control problem as ROOT-I and ROOT-Ik algorithms.

Both the mechanisms: IPCAP and EPCAP are able to deliver more number of critical

events to the base station than the standards. The IPCAP and EPCAP extend the IEEE

802.15.4 to work with event driven wireless sensor networks. ROOT-I and ROOT-Ik

control the number of Full Function Devices in the networks. Dynamically configured

value of k in k-connectedness provides better tradeoff between energy consumption and

fault tolerability.

We have modeled these problems as cross layer protocols in CLAPDAWN, as dis-

cussed in section 7.2 and 9.3. In the above mentioned protocols decisions regarding the

node priority (in IPCAP and EPCAP) and node type (FFD or RFD in ROOT-I and

ROOT-Ik) are made in cross layer execution engine and not inside the conventional lay-

ers. Hence, these layers remain less affected and this provides rapid development and

experimentation.

CLAPDAWN is implemented by extending Network Simulator 2 and compared with

ECLAIR [3] for complex video streaming cross layer protocol [10] and multiple conflicting

cross layer interactions. Result shows that CLAPDAWN outperforms the ECLAIR and

provides better and stable platform for cross layer protocol development. With CLAP-

DAWN it is easy to add, remove or modify cross layer interactions and see the effect of it

on the system. Cross layer designer can easily identify conflicts and loops among multiple

cross layer interactions.



Appendix A

ECA Rule Editor

CLAPDAWN and ECLARI cross layer architectures implement cross layer interactions

outside the network protocol stack. CLAPDAWN stores the cross layer interactions in its

knowledge base in the form of ECA rules. ECLAIR implements cross layer interactions as

optimizer. To make the development of cross layer interaction easy in both cases we have

developed a rule editor. Current version of rule editor is menu driven text based editor.

It generates two output files a) “.c” file which contains the ECLAIR implementation and

“.kb” which contains the ECA rules for the CLAPDAWN implementation. Following

screen shots show the working of our rule editor.

Figure A.1: Rule Editor with the file name for cross layer interaction to be stored in

Figure A.1 and A.2 show the rule editor screen. Here user gives the file name to which

the generated cross layer interaction will be stored by the editor.
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Figure A.2: Rule Editor asking for number of input parameters involved in cross layer
interaction

Figure A.3: Rule Editor asking for layer for first input parameter

Figure A.4: Rule Editor, user entering first input parameter for physical layer
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Figure A.5: Rule Editor asking for number of output parameters

Figure A.6: Rule Editor, user selecting first output parameter

To generate it ask for the number of input parameters and output parameters. Figure

A.3, A.4, A.5 and A.6 show the steps to configure input and output parameters. First

it asks for the number of input parameters. Accepting number of input parameters, for

each parameter it asks for layer name and parameter of that layer. This information is

stored in parameter xml file. Same steps it repeats for output parameters.
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Figure A.7: Rule editor asking for number of conditions to be checked

Figure A.8: Rule editor accepting first condition from user

After accepting the input and output parameters editor goes for the conditions. It

first ask for the number of conditions required for this cross layer interaction and then it

one by one accepts each conditions. Same steps are shown in figure A.7 and A.8.
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Figure A.9: Rule Editor accepting first action part from the user

Figure A.10: Rule editor with action and generated output files

After collecting conditions it ask for the action part. In the current version action part

only accepts one action. Remaining actions can be added by modifying ”.c” and ”.kb”

files. Figure A.9 and A.10 show the final steps. Any further modification can be made

by modifying the optimization() funciton of the generated file or the rules of the kb file.

Sample optimizer file for ECLAIR and CLAPDAWN rulebase file is given in appendix B

and C respectively.



Appendix B

ECLAIR Implementation of CLI

/* ECLAIR Implementation of cross layer interaction discussed in

chapter 4. */

Optimizer( )

{

/*

Code

*/

switch(frameType) {

case 1:

if(qlen1< threshold1) {

pri_i=1;

done=1;

}

else if((qlen1 < threshold2)) {

prob= rob0*(qlen1-threshold1)/(threshold2-threshold1);

tmpx=Random();

if(tmpx<prob)

if((qlen2 < threshold2))

pri_i =2;

else

pri_i =3;

else

pri_i = 1;

done=1;

}

else if((qlen2 < threshold2)) {
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prob= prob0*(qlen2-threshold1)/(threshold2-threshold1);

tmpx=Random();

if(tmpx<prob)

if((qlen3 < threshold2))

pri_i=3;

else

pri_i=2;

else

pri_i=2;

done=1;

}

else

{

tmpx=Random();

if(tmpx<prob0)

if((qlen3< threshold2))

pri_i=3;

else

pri_i=2;

else

pri_i=2;

done=1;

}

break;

case 2:

if((qlen1< threshold1))

{

pri_i=1;

done=1;

}

else if((qlen1 < threshold2))

{

prob= prob1*(qlen1-threshold1)/(threshold2-threshold1);

tmpx=Random();

if(tmpx<prob)

if((qlen2< threshold2))

pri_i=2;

else

pri_i=3;

else

pri_i=1;

done=1;

}

else if((qlen2< threshold2))

{

prob= prob1*(qlen2-threshold1)/(threshold2-threshold1);
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tmpx=Random();

if(tmpx<prob)

if((qlen3< threshold2))

pri_i=3;

else

pri_i=2;

else

pri_i=2;

done=1;

}

else

{

tmpx=Random();

if(tmpx<prob1)

if((qlen3< threshold2))

pri_i=3;

else

pri_i=2;

else

pri_i=2;

done=1;

}

break;

case 3:

if((qlen1< threshold1)){

pri_i=1;

done=1;

}

else if((qlen1< threshold2))

{

prob= prob2*(qlen1-threshold1)/(threshold2-threshold1);

tmpx=Random();

if(tmpx<prob)

if((qlen2< threshold2))

pri_i=2;

else

pri_i=3;

else

pri_i=1;

done=1;

}

else if((qlen2< threshold2))

{

prob= prob2*(qlen2-threshold1)/(threshold2-threshold1);

tmpx=Random();

if(tmpx<prob)

if((qlen3< threshold2))
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pri_i=3;

else

pri_i=2;

}

else

pri_i=2;

done=1;

}

else {

tmpx=Random();

if(tmpx<prob2) {

if((qlen3< threshold2))

pri_i=3;

else

pri_i=2;

}

else

pri_i=2;

done=1;

}

default:

printf("Error in PriQ::pri_recv() frame type %d\n",frameType);

break;

}

/* Code */

}



Appendix C

CLAPDAWN Implementation of

CLI

/* CLAPDAWN implementation of cross layer interaction discussed in chapter 4*/

RULE 1 PARA LL frametype 2 1

RULE 1 CONDITION 1 LL frametype CO 1 e

RULE 1 CONDITION 2 LL qlen1 LL threshold1 l

RULE 1 ACTION 1 LL pri_i CO 1 CO 0 d E

RULE 2 PARA LL frametype 3 4

RULE 2 CONDITION 1 LL frametype CO 1 e

RULE 2 CONDITION 2 LL qlen1 LL threshold1 ge

RULE 2 CONDITION 3 LL qlen1 LL threshold2 l

RULE 2 ACTION 1 LO l1 LL threshold2 LL threshold1 d E

RULE 2 ACTION 2 LO l2 LL qlen1 LL threshold1 d E

RULE 2 ACTION 3 LO l3 LL prob0 LO l2 m E

RULE 2 ACTION 4 LO prob LO l3 LO l2 d E

RULE 3 PARA LL frametype 5 1

RULE 3 CONDITION 1 LL frametype CO 1 e

RULE 3 CONDITION 2 LL qlen1 LL threshold1 ge

RULE 3 CONDITION 3 LL qlen1 LL threshold2 l

RULE 3 CONDITION 4 LL tmpx LO prob l

RULE 3 CONDITION 5 LL qlen2 LL threshold2 l

RULE 3 ACTION 1 LL pri_i CO 2 CO 0 d E

RULE 4 PARA LL frametype 5 1

RULE 4 CONDITION 1 LL frametype CO 1 e

RULE 4 CONDITION 2 LL qlen1 LL threshold1 ge

RULE 4 CONDITION 3 LL qlen1 LL threshold2 l

177



Appendix A3. Appendix Title Here 178

RULE 4 CONDITION 4 LL tmpx LO prob l

RULE 4 CONDITION 5 LL qlen2 LL threshold2 ge

RULE 4 ACTION 1 LL pri_i CO 3 CO 0 d E

RULE 5 PARA LL frametype 4 1

RULE 5 CONDITION 1 LL frametype CO 1 e

RULE 5 CONDITION 2 LL qlen1 LL threshold1 ge

RULE 5 CONDITION 3 LL qlen1 LL threshold2 l

RULE 5 CONDITION 4 LL tmpx LO prob ge

RULE 5 ACTION 1 LL pri_i CO 1 CO 0 d E

RULE 6 PARA LL frametype 3 4

RULE 6 CONDITION 1 LL frametype CO 1 e

RULE 6 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 6 CONDITION 3 LL qlen2 LL threshold2 l

RULE 6 ACTION 1 LO l1 LL threshold2 LL threshold1 d E

RULE 6 ACTION 2 LO l2 LL qlen2 LL threshold1 d E

RULE 6 ACTION 3 LO l3 LL prob0 LO l2 m E

RULE 6 ACTION 4 LO prob LO l3 LO l2 d E

RULE 7 PARA LL frametype 5 1

RULE 7 CONDITION 1 LL frametype CO 1 e

RULE 7 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 7 CONDITION 3 LL qlen2 LL threshold2 l

RULE 7 CONDITION 4 LL tmpx LO prob l

RULE 7 CONDITION 5 LL qlen3 LL threshodl2 l

RULE 7 ACTION 1 LL pri_i CO 3 CO 0 d E

RULE 8 PARA LL frametype 5 1

RULE 8 CONDITION 1 LL frametype CO 1 e

RULE 8 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 8 CONDITION 3 LL qlen2 LL threshold2 l

RULE 8 CONDITION 4 LL tmpx LO prob l

RULE 8 CONDITION 5 LL qlen3 LL threshodl2 ge

RULE 8 ACTION 1 LL pri_i CO 2 CO 0 d E

RULE 9 PARA LL frametype 5 1

RULE 9 CONDITION 1 LL frametype CO 1 e

RULE 9 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 9 CONDITION 3 LL qlen2 LL threshold2 l

RULE 9 CONDITION 4 LL tmpx LO prob l

RULE 9 CONDITION 5 LL qlen3 LL threshodl2 ge

RULE 9 ACTION 1 LL pri_i CO 2 CO 0 d E

RULE 10 PARA LL frametype 3 1

RULE 10 CONDITION 1 LL frametype CO 1 e

RULE 10 CONDITION 2 LL qlen1 LL threshold2 ge
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RULE 10 CONDITION 3 LL qlen2 LL threshold2 ge

RULE 10 ACTION 1 LO prob LL prob0 CO 0 d E

RULE 11 PARA LL frametype 5 1

RULE 11 CONDITION 1 LL frametype CO 1 e

RULE 11 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 11 CONDITION 3 LL qlen2 LL threshold2 ge

RULE 11 CONDITION 4 LL tmpx LO prob l

RULE 11 CONDITION 5 LL qlen3 LL threshodl2 l

RULE 11 ACTION 1 LL pri_i CO 3 CO 0 d E

RULE 12 PARA LL frametype 5 1

RULE 12 CONDITION 1 LL frametype CO 1 e

RULE 12 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 12 CONDITION 3 LL qlen2 LL threshold2 ge

RULE 12 CONDITION 4 LL tmpx LO prob l

RULE 12 CONDITION 5 LL qlen3 LL threshodl2 ge

RULE 12 ACTION 1 LL pri_i CO 2 CO 0 d E

RULE 13 PARA LL frametype 4 1

RULE 13 CONDITION 1 LL frametype CO 1 e

RULE 13 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 13 CONDITION 3 LL qlen2 LL threshold2 ge

RULE 13 CONDITION 4 LL tmpx LO prob ge

RULE 13 ACTION 1 LL pri_i CO 2 CO 0 d E

RULE 14 PARA LL frametype 2 1

RULE 14 CONDITION 1 LL frametype CO 2 e

RULE 14 CONDITION 2 LL qlen1 LL threshold1 l

RULE 14 ACTION 1 LL pri_i CO 1 CO 0 d E

RULE 15 PARA LL frametype 3 4

RULE 15 CONDITION 1 LL frametype CO 2 e

RULE 15 CONDITION 2 LL qlen1 LL threshold1 ge

RULE 15 CONDITION 3 LL qlen1 LL threshold2 l

RULE 15 ACTION 1 LO l1 LL threshold2 LL threshold1 d E

RULE 15 ACTION 2 LO l2 LL qlen1 LL threshold1 d E

RULE 15 ACTION 3 LO l3 LL prob1 LO l2 m E

RULE 15 ACTION 4 LO prob LO l3 LO l2 d E

RULE 16 PARA LL frametype 5 1

RULE 16 CONDITION 1 LL frametype CO 2 e

RULE 16 CONDITION 2 LL qlen1 LL threshold1 ge

RULE 16 CONDITION 3 LL qlen1 LL threshold2 l

RULE 16 CONDITION 4 LL tmpx LO prob l

RULE 16 CONDITION 5 LL qlen2 LL threshold2 l

RULE 16 ACTION 1 LL pri_i CO 2 CO 0 d E
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RULE 17 PARA LL frametype 5 1

RULE 17 CONDITION 1 LL frametype CO 2 e

RULE 17 CONDITION 2 LL qlen1 LL threshold1 ge

RULE 17 CONDITION 3 LL qlen1 LL threshold2 l

RULE 17 CONDITION 4 LL tmpx LO prob l

RULE 17 CONDITION 5 LL qlen2 LL threshold2 ge

RULE 17 ACTION 1 LL pri_i CO 3 CO 0 d E

RULE 18 PARA LL frametype 4 1

RULE 18 CONDITION 1 LL frametype CO 2 e

RULE 18 CONDITION 2 LL qlen1 LL threshold1 ge

RULE 18 CONDITION 3 LL qlen1 LL threshold2 l

RULE 18 CONDITION 4 LL tmpx LO prob ge

RULE 18 ACTION 1 LL pri_i CO 1 CO 0 d E

RULE 19 PARA LL frametype 3 4

RULE 19 CONDITION 1 LL frametype CO 2 e

RULE 19 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 19 CONDITION 3 LL qlen2 LL threshold2 l

RULE 19 ACTION 1 LO l1 LL threshold2 LL threshold1 d E

RULE 19 ACTION 2 LO l2 LL qlen2 LL threshold1 d E

RULE 19 ACTION 3 LO l3 LL prob1 LO l2 m E

RULE 19 ACTION 4 LO prob LO l3 LO l2 d E

RULE 20 PARA LL frametype 5 1

RULE 20 CONDITION 1 LL frametype CO 2 e

RULE 20 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 20 CONDITION 3 LL qlen2 LL threshold2 l

RULE 20 CONDITION 4 LL tmpx LO prob l

RULE 20 CONDITION 5 LL qlen3 LL threshodl2 l

RULE 20 ACTION 1 LL pri_i CO 3 CO 0 d E

RULE 21 PARA LL frametype 5 1

RULE 21 CONDITION 1 LL frametype CO 2 e

RULE 21 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 21 CONDITION 3 LL qlen2 LL threshold2 l

RULE 21 CONDITION 4 LL tmpx LO prob l

RULE 21 CONDITION 5 LL qlen3 LL threshodl2 ge

RULE 21 ACTION 1 LL pri_i CO 2 CO 0 d E

RULE 22 PARA LL frametype 5 1

RULE 22 CONDITION 1 LL frametype CO 2 e

RULE 22 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 22 CONDITION 3 LL qlen2 LL threshold2 l

RULE 22 CONDITION 4 LL tmpx LO prob l

RULE 22 CONDITION 5 LL qlen3 LL threshodl2 ge
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RULE 22 ACTION 1 LL pri_i CO 2 CO 0 d E

RULE 23 PARA LL frametype 3 1

RULE 23 CONDITION 1 LL frametype CO 2 e

RULE 23 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 23 CONDITION 3 LL qlen2 LL threshold2 ge

RULE 23 ACTION 1 LO prob LL prob1 CO 0 d E

RULE 24 PARA LL frametype 5 1

RULE 24 CONDITION 1 LL frametype CO 2 e

RULE 24 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 24 CONDITION 3 LL qlen2 LL threshold2 ge

RULE 24 CONDITION 4 LL tmpx LO prob l

RULE 24 CONDITION 5 LL qlen3 LL threshodl2 l

RULE 24 ACTION 1 LL pri_i CO 3 CO 0 d E

RULE 25 PARA LL frametype 5 1

RULE 25 CONDITION 1 LL frametype CO 2 e

RULE 25 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 25 CONDITION 3 LL qlen2 LL threshold2 ge

RULE 25 CONDITION 4 LL tmpx LO prob l

RULE 25 CONDITION 5 LL qlen3 LL threshodl2 ge

RULE 25 ACTION 1 LL pri_i CO 2 CO 0 d E

RULE 26 PARA LL frametype 4 1

RULE 26 CONDITION 1 LL frametype CO 2 e

RULE 26 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 26 CONDITION 3 LL qlen2 LL threshold2 ge

RULE 26 CONDITION 4 LL tmpx LO prob ge

RULE 26 ACTION 1 LL pri_i CO 2 CO 0 d E

RULE 27 PARA LL frametype 2 1

RULE 27 CONDITION 1 LL frametype CO 3 e

RULE 27 CONDITION 2 LL qlen1 LL threshold1 l

RULE 27 ACTION 1 LL pri_i CO 1 CO 0 d E

RULE 28 PARA LL frametype 3 4

RULE 28 CONDITION 1 LL frametype CO 3 e

RULE 28 CONDITION 2 LL qlen1 LL threshold1 ge

RULE 28 CONDITION 3 LL qlen1 LL threshold2 l

RULE 28 ACTION 1 LO l1 LL threshold2 LL threshold1 d E

RULE 28 ACTION 2 LO l2 LL qlen1 LL threshold1 d E

RULE 28 ACTION 3 LO l3 LL prob2 LO l2 m E

RULE 28 ACTION 4 LO prob LO l3 LO l2 d E

RULE 29 PARA LL frametype 5 1

RULE 29 CONDITION 1 LL frametype CO 3 e
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RULE 29 CONDITION 2 LL qlen1 LL threshold1 ge

RULE 29 CONDITION 3 LL qlen1 LL threshold2 l

RULE 29 CONDITION 4 LL tmpx LO prob l

RULE 29 CONDITION 5 LL qlen2 LL threshold2 l

RULE 29 ACTION 1 LL pri_i CO 2 CO 0 d E

RULE 30 PARA LL frametype 5 1

RULE 30 CONDITION 1 LL frametype CO 3 e

RULE 30 CONDITION 2 LL qlen1 LL threshold1 ge

RULE 30 CONDITION 3 LL qlen1 LL threshold2 l

RULE 30 CONDITION 4 LL tmpx LO prob l

RULE 30 CONDITION 5 LL qlen2 LL threshold2 ge

RULE 30 ACTION 1 LL pri_i CO 3 CO 0 d E

RULE 31 PARA LL frametype 4 1

RULE 31 CONDITION 1 LL frametype CO 3 e

RULE 31 CONDITION 2 LL qlen1 LL threshold1 ge

RULE 31 CONDITION 3 LL qlen1 LL threshold2 l

RULE 31 CONDITION 4 LL tmpx LO prob ge

RULE 31 ACTION 1 LL pri_i CO 1 CO 0 d E

RULE 32 PARA LL frametype 3 4

RULE 32 CONDITION 1 LL frametype CO 3 e

RULE 32 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 32 CONDITION 3 LL qlen2 LL threshold2 l

RULE 32 ACTION 1 LO l1 LL threshold2 LL threshold1 d E

RULE 32 ACTION 2 LO l2 LL qlen2 LL threshold1 d E

RULE 32 ACTION 3 LO l3 LL prob2 LO l2 m E

RULE 32 ACTION 4 LO prob LO l3 LO l2 d E

RULE 33 PARA LL frametype 5 1

RULE 33 CONDITION 1 LL frametype CO 3 e

RULE 33 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 33 CONDITION 3 LL qlen2 LL threshold2 l

RULE 33 CONDITION 4 LL tmpx LO prob l

RULE 33 CONDITION 5 LL qlen3 LL threshodl2 l

RULE 33 ACTION 1 LL pri_i CO 3 CO 0 d E

RULE 34 PARA LL frametype 5 1

RULE 34 CONDITION 1 LL frametype CO 3 e

RULE 34 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 34 CONDITION 3 LL qlen2 LL threshold2 l

RULE 34 CONDITION 4 LL tmpx LO prob l

RULE 34 CONDITION 5 LL qlen3 LL threshodl2 ge

RULE 34 ACTION 1 LL pri_i CO 2 CO 0 d E

RULE 35 PARA LL frametype 5 1
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RULE 35 CONDITION 1 LL frametype CO 3 e

RULE 35 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 35 CONDITION 3 LL qlen2 LL threshold2 l

RULE 35 CONDITION 4 LL tmpx LO prob l

RULE 35 CONDITION 5 LL qlen3 LL threshodl2 ge

RULE 35 ACTION 1 LL pri_i CO 2 CO 0 d E

RULE 36 PARA LL frametype 3 1

RULE 36 CONDITION 1 LL frametype CO 3 e

RULE 36 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 36 CONDITION 3 LL qlen2 LL threshold2 ge

RULE 36 ACTION 1 LO prob LL prob2 CO 0 d E

RULE 37 PARA LL frametype 5 1

RULE 37 CONDITION 1 LL frametype CO 3 e

RULE 37 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 37 CONDITION 3 LL qlen2 LL threshold2 ge

RULE 37 CONDITION 4 LL tmpx LO prob l

RULE 37 CONDITION 5 LL qlen3 LL threshodl2 l

RULE 37 ACTION 1 LL pri_i CO 3 CO 0 d E

RULE 38 PARA LL frametype 5 1

RULE 38 CONDITION 1 LL frametype CO 3 e

RULE 38 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 38 CONDITION 3 LL qlen2 LL threshold2 ge

RULE 38 CONDITION 4 LL tmpx LO prob l

RULE 38 CONDITION 5 LL qlen3 LL threshodl2 ge

RULE 38 ACTION 1 LL pri_i CO 2 CO 0 d E

RULE 39 PARA LL frametype 4 1

RULE 39 CONDITION 1 LL frametype CO 3 e

RULE 39 CONDITION 2 LL qlen1 LL threshold2 ge

RULE 39 CONDITION 3 LL qlen2 LL threshold2 ge

RULE 39 CONDITION 4 LL tmpx LO prob ge

RULE 39 ACTION 1 LL pri_i CO 2 CO 0 d E
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