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Abstract

In this thesis we introduce a low complexity Recursive Least Square (RLS) based Orthogonal
Frequency Division Multiplexing (OFDM) channel estimation for two-way relay system. Using
the estimate of the channel, a bit and power loading scheme for OFDM based two-way relay
system is implemented.

In a wireless communication scenario, the channel frequency response is usually correlated
across both time and frequency. Hence an optimal Minimum Mean Square Error (MMSE)
estimator for OFDM channel is one which considers the correlation in the dimension of time and
frequency. These estimators are known as 2D estimators. Since the channel is time varying and
the channel statistics are not available, we implement a 2D-RLS adaptive filter based channel
estimator.

The 2D-RLS filter used for channel estimation is based on the principle of fast array based
algorithms. The advantage of this algorithm is that it has a computational complexity compa-
rable to that of 2D-Normalized Least Mean Square (2D-NLMS) algorithm while having same
convergence rate as the conventional 2D-RLS algorithm. The reason for the low complexity
of fast array algorithm is due to the fact that it considers the time shift structure in the input
data vector while updating the inverse of covariance matrix. In the case of OFDM channel, this
time shift structure is not directly evident. Hence we propose a simple reordering of the input
data vector so as to bring in the notion of time shift structure. The adaptive filter so proposed is
called Fast Array Multichannel 2D-RLS (FAM 2D-RLS) filter. In order to reduce the number of
training symbols, the OFDM adaptive channel estimator is implemented based on the principle
of Decision Directed Channel Estimation (DDCE).

The standard literature on adaptive filter usually assumes that the data to be estimated is a
scalar quantity while the weight is a vector. But in our proposed OFDM channel estimation
method, the data to be estimated is a vector and the weight is a matrix. The steady state analysis
of the RLS filter with weight matrix is derived and verified using simulations. The proposed
steady state analysis is derived based on the fact that any adaptive filter can be viewed as an
iterative equation solver, with RLS algorithm being a special case. Hence this method could be
used for deriving the steady state analysis of any adaptive filter algorithm which has a weight
matrix.

A two-way relaying scheme is a spectrally efficient relaying scheme. Using FAM 2D-RLS,
an OFDM-DDCE is proposed for this relaying scheme. It is observed that even a simple case of
relaying involving nodes and relay with single antenna requires the concepts of Multiple Input
Multiple Output (MIMO) systems for estimating the channel. The performance of the FAM 2D-
RLS for estimating pedA, pedB and vehA channel in case of two-way relay are analyzed. The
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complexity of FAM 2D-RLS can be further reduced, if instead of considering the correlation
of the frequency response across all the frequency samples, we consider only a block of the
frequency response, i.e the channel frequency response vector is grouped into M subvectors
and is estimated using M parallel FAM 2D-RLS filters. This estimation algorithm is called
Block FAM 2D-RLS (BFAM 2D-RLS). The computational complexity of BFAM 2D-RLS is
lesser compared to that of FAM 2D-RLS by a factor of 1

M
. It is observed that even though

BFAM 2D-RLS does not consider the correlation across all the frequency response samples,
the Mean Square Error (MSE) of the estimate is comparable to that of FAM 2D-RLS. It is also
observed that MSE of channel estimation for BFAM 2D-RLS with large M is lesser compared
to FAM 2D-RLS for the case of highly frequency selective channels like pedB and vehA.

The capacity and Bit Error Rate (BER) of a communication system can be improved if the
modulation scheme and transmitted power is adapted with respect to the variation of the chan-
nel. In order to perform adaptive modulation, the channel State Information (CSI) should be
available at the transmitting node. In the case of Adaptive OFDM (AOFDM) systems, based
on Signal to Noise Ratio (SNR) of each subchannel, power and bit could be assigned. This is
known as power and bit loading algorithms. In a two-way relay system, if the channel estimation
is performed at the node, the channel response so obtained pertains to that of the overall chan-
nel between the two transmitting nodes. In order to implement loading algorithms, the nodes
require the CSI of individual channel, i.e channel between source - relay and relay - destina-
tion. Since our proposed channel estimation method is implemented in the frequency domain,
the individual channel can be easily obtained from the estimated combined channel with a sign
ambiguity. The effect of channel estimation error on loading algorithms for two-way relay is
also analyzed. All the computer simulations are performed using MATLAB R©.

As a summary of this section, we point out the unique features of this thesis,

1. A low complexity adaptive filter called FAM 2D-RLS filter is proposed for DDCE-
OFDM.

2. Steady state equations for RLS filter with matrix weight is derived.

3. FAM 2D-RLS based DDCE-OFDM is implemented for two-way relay systems.

4. Complexity of FAM 2D-RLS is further reduced by BFAM 2D-RLS.

5. A loading algorithm is implemented for OFDM based two-way relay systems.

6. Effect of channel estimation error on loading algorithm for two-way relay system is ana-
lyzed
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Chapter 1

Introduction

In the present scenario of communication systems, wireless devices like smart phones, laptops
and tablets have become ubiquitous. These devices are used for applications that require large
bandwidth, like High Definition (HD) video streaming. An obvious way to increase bandwidth
would be to decrease the symbol rate. But this leads to Inter Symbol Interference (ISI) [1]. Mul-
tichannel modulation technique like Orthogonal Frequency Division Multiplexing (OFDM) [1]
could be used to counter ISI. An introduction to OFDM is given in Appendix-A. The advan-
tage of OFDM is that, by using Fast Fourier Transform (FFT) algorithm it can be implemented
with low complexity. OFDM is the preferred modulation technique for the downlink of a Long
Term Evolution (LTE) system [2]. Some of the latest research in wireless communication is in
the field of relay based systems. Relay based communication finds wide scale use in LTE sys-
tems [3]. Relay based communication is also known as cooperative communication [4],[5]. In
wireless communication, there might be scenarios where direct communication is not possible
between source and destination due to the presence of large shadowing effect [1]. If a third party
device or a dedicated relay is present between source and destination that has low shadowing
effect, then this device can help in forwarding the data to destination[6]. In a wireless device
like mobile phone the presence of multiple antennas is not feasible due to space constraint.
Cooperative communication can be used to form diversity between the communicating nodes.
This is known as virtual MIMO [7]. Another important use of relaying is to conserve the power
in the communicating devices by helping to forward the data to the destination.

The simplest form of relay communication is the one-way relay[8]. But this technique is not
spectrally efficient. Consider the case of a one hop communication system. In a one way relay,
during the first time slot the sender node transmits data to relay while in the next time slot this
data is forwarded to the destination. During these two time slots the destination node cannot
transmit any information back to the source node. Thus a total of four time slots are required
to complete the two way communication process while a non relay based system would have
taken only two time slots. Thus the capacity of a one way relay is half that of a non relay
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system. In order to alleviate this problem, a two-way relaying scheme was proposed in [8]. In
this case, both the communicating nodes send data simultaneously to the relay in the first time
slot. In the next time slot the relay broadcasts this combined signal to the nodes. Thus the whole
communication process would be completed in two time slots.

The high spectral efficiency of two-way relay systems and the advantages of OFDM can be
combined to form an OFDM based two-way relay system [9]. In a coherent detection scheme
the Channel State Information (CSI) should be known at the nodes. The channel frequency
response of an OFDM system is usually correlated across both time and frequency [10]. The
optimal estimator in the MMSE sense would be a 2D-Wiener filter [11]. But for implementing
this filter the second order statistics of the channel are required [12]. In practice this would not
be available at all times due to the time varying nature of the channel. Hence we introduce a low
complexity 2D-RLS filter [13],[14] known as FAM 2D-RLS filter [15] for tracking the channel.
An introduction to adaptive filter is given in Appendix-B. In order to reduce the number of
preamble symbols required, the channel estimation is performed using the Decision Directed
(DD) principle [16]. In DDCE, the detected data of the previous sample is used to find a Least
Square (LS) estimate of the channel in the present time. In order to improve this estimate, we
use the FAM 2D-RLS filter [17]. To find the LS estimate of the channel in a two-way relay
system, the methods used in MIMO-OFDM systems [18] are required even in the case of single
antenna scenario.

In multicarrier systems, if the channel is known at the relay then bit and power could be
allocated based on the SNR of each subchannel [19]. More power and bit could be allocated
to the subchannel with higher SNR. These algorithms are known as loading algorithms. Using
bit and power loading we can increase the capacity or decrease the BER. FAM 2D-RLS based
channel estimation scheme implemented at the node is used to obtain the combined channel,i.e.
the overall channel between Source-Relay-Destination. In order to calculate the SNR, individ-
ual channels are required. Since our proposed channel estimation technique is in the frequency
domain, we can easily obtain the individual channel from the estimate of the combined channel.
The loading algorithm used in this thesis is the Levin-Campello algorithm [20]. But our frame
work could be used to implement other loading algorithms [21],[22],[23] for two-way relay
systems.

Hence in this thesis we propose and implement a FAM 2D-RLS based channel estimation
for OFDM based two-way relay systems. The channel estimate is used to implement a loading
algorithm for two-way relay system. The effect of channel estimation error on loading algorithm
is also analyzed.

A list of acronyms and notations used in this thesis are provided in Appendix-C and Appendix-
D respectively.
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1.1 Publications

The following are the publications based on which this thesis is prepared,

1.1.1 Journal

1. A.Joy and V.Chakka,“Fast Array Multichannel 2D-RLS Based OFDM Channel Estima-
tor”, Circuits, systems and signal processing, Springer, Nov.2012

2. A.Joy and V.Chakka, “Adaptive Channel Estimation and Loading for OFDM Based Two-
Way Relay Systems”,submitted to Circuits, systems and signal processing, Springer

1.1.2 Conference

1. A.Joy and V.Chakka, “An IQR-RLS based transceiver filter for MIMO two-way relaying
in frequency selective environment”, in proc. UKIWCWS 2010, IIT Delhi, Dec.2010.

2. A.Joy and V. Chakka, “ Performance comparison of LMS/NLMS based transceiver filters
for MIMO two-way relaying scheme”,in proc. ICCSP 2011, NIT Calicut, Feb. 2011.

3. A.Joy and V.Chakka,“An Affine projection algorithm based transceiver filter for MIMO
two-way relaying scheme”, in proc. wireless VITAEE 2011, Chennai, Mar. 2011.

4. A.Joy and V.Chakka, “AOFDM Based Two-Way Relay Systems”, proc. AICERA 2013,
Kerala, June 2013

5. A.Joy and V.Chakka, “Joint Adaptive Channel Estimation and Transceiver Design for
Two-Way Relay Systems”, proc. ICACC 2013, Kerala, Aug 2013

6. A.Joy and V.Chakka, “Low Complexity 2D Adaptive Channel Estimation for OFDM
Based Two-Way Relay Systems”, proc. of NGMAST 2013, Prague, Czech Republic, Sept
2013

1.2 Motivation

In this section we discuss the initial simulation work done by us on two-way relay systems
which is the motivation for channel estimation and adaptive OFDM schemes implemented in
the later chapters of this thesis. In this work it is assumed that the relay is capable of performing
complex signal processing techniques. Hence we call this system a two-way relay with relay
capability. Adaptive transceivers at the relay based on LMS, NLMS and Partial Rank Algorithm
(PRA) [24] are designed and their performances are compared. This work is an extension of
[25].
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Figure 1.1: Two-Way relay with relay capability

1.2.1 System Model

In two-way relaying with relay capability, two nodes S1 and S2 are considered that commu-
nicates via an intermediate RS as shown in Figure 1.1. We assume that no direct path ex-
ists between the two nodes. The nodes S1 and S2 is assumed to have M (1) and M (2) an-
tennas, respectively. For MIMO two way relaying it is assumed that M (1) = M (2) = M

and the RS is assumed to have MRS ≥ M (1) + M (2) = 2M antennas. The data vector
x(k) =

[
x

(k)
1 , · · · , x(k)

M

]T
, k = 1, 2 consists of data symbols x(k)

n , n = 1, · · · ,M, transmit-
ted from node Sk to the opposite node, where [.]T denotes the transpose of a matrix. The
overall data vector is defined as a partitioned vector x =

[
x(1)T |x(2)T

]T with covariance ma-
trix Rx = E{xxH} where E{.} and [.]H denote the expectation and conjugate transpose [26]
respectively. The transmission phase consists of both the nodes transmitting to the RS at the
same time. During this phase the data to be transmitted from S1 and S2 is processed using
scalar transmit filters defined by matrices Q(1) and Q(2) respectively where Q(1) = q(1)IM and
Q(2) = q(2)IM . A scalar transmit filter is assumed because spatial filtering is done at the RS.
The identity matrix of dimension M is defined as IM .We assume that E(1) and E(2) are the
maximum transmit energies of S1 and S2 respectively. Then the energy transmit constraint is
given by E{‖q(k)x(k)‖2} ≤ E(k), k = 1, 2 where ‖.‖ is the Euclidean norm of a vector. The
overall scalar transmit filter Q is a block diagonal matrix with diagonal elements as Q(1) and
Q(2) . The channel is assumed to be flat fading and the channel matrix [25] between node
Sk, k = 1, 2 and RS is denoted as H(k). The overall channel matrix is defined as the partitioned
matrix H =

[
H(1)|H(2)

]
. The data received at the RS is called the receive vector and is denoted

as yRS = HQx + nRS . At RS the receive vector is passed through a spatial filter G leading
to the RS transmit vector denoted as xRS . The RS transmit vector has to satisfy the constraint
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E{‖xRS‖2} ≤ ERS where ERS is the maximum transmit energy at the RS. During the receive
phase, the RS transmit vector is simultaneously transmitted to S1 and S2. The scalar receive
filter at S1 and S2 is P = P I2M . A scalar receive filter is assumed because the spatial filtering is
done at RS. It is assumed that the channel matrix is constant for two time slots. So the channel
from RS to S1 and S2 can be considered to be HT . The RS after processing the data using the
transceiver filter sends it simultaneously to S1 and S2. The estimate for data vector x2 at S1 is
denoted as x̂1 and the estimate for data vector x1 at S2 is denoted as x̂2. The overall partitioned
estimated data vector x̂ = [x̂1|x̂2] is given as x̂ = p(HTGHQx + HTGnRS + nR) where nR

is an AWGN with covariance matrix RnR
.

1.2.2 Linear Transceiver Filter

The linear transceiver filter [27] consists of the linear combination of three filters and is de-
fined as, G = GTGπGR where GT ,Gπ and GR are the transmit, mapping and receive filters
respectively . The functionality of these filters are as explained as follows,

During the transmission phase, data is sent simultaneously from S1 and S2 to the RS. During
the RS data processing phase, RS will estimate the transmitted data vector from the receive
vector using the receive filter GR. This estimated data vector is denoted as a partitioned vector,

x̂RS =
[
x̂

(1)T
RS |, x̂

(2)T
RS

]T
with x̂

(1)
RS being the estimate for x(1) and x̂

(2)
RS being the estimate of

x(2).The estimated data is then input to RS mapping filter. This is done so as to ensure that,
S1 is provided with an estimate of data vector x(2) and S2 is provided with estimate of data
vector x(1). The mapped data vector is then passed through the transmit filter GT so as to
produce the RS transmit vector xRS . The transmit filter separates the data to S1 and S2 before
retransmission and performs self interference cancellation. Hence no CSI is required at S1 and
S2. The use of transceiver filter at the RS reduces the processing load at the nodes S1 and S2.
MMSE cost function for designing the receive filter is similar to that in [25]. The instantaneous
scalar transmit and receive filter coefficients are obtained using Karush-Kuhn-Tucker (KKT)
conditions [28] as,

q
(k)
i =

√
E(k)

tr{Rx,i}
k = 1, 2 (1.1)

GT =
1

p
tr

{(
H∗HT +

tr{RnR
}

ERS
I

)−1
}

H∗Rx̂RS,i
(1.2)
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and,

pi =

√√√√√tr

{(
H∗HT +

tr{RnR
}

ERS
I
)−1
}−2

H∗Rx̂RS,i

ERS
(1.3)

where tr{.} is the trace of matrix, [.]∗ is the conjugate operation[5], qi and pi are the instan-
taneous coefficient of the scalar receive and transmit filters respectively while Rx̂RS ,i is the
instantaneous covariance matrix.

LMS Transceiver Filter

LMS Receive Filter: This filter finds the optimal GR by doing multiple recursions. The recur-
sion equation is defined as,

GR,i = GR,i−1 + µ [xi −GR,i−1yRS,i] y
H
RS,i (1.4)

where i denotes the ith iteration and µ is the step size which should be properly chosen so that
filter converges. In adaptive filter terminology yrs is the regression vector while x is the desired
data vector [24]. The initial value of GR is denoted as GR,−1 is assumed to be Φ2M i.e. a null
matrix of dimension 2M × 2M .
LMS Transmit Filter: This filter finds the optimal GT by performing multiple iterations. The
recursion equation is given as,

G′T,i = G′T,i−1 + µ[x̂RS,i −G′T,i−1zi]z
H
i (1.5)

where x̂RS,i = Gπx̂RS,G
′
T,i = piH

TGH
T,i and zi = x̂RS,π + G+nR . The Moore-Penrose pseu-

doinverse [29] of G′T is denoted as G+ and initial value of G′T is Φ2M .

NLMS Transceiver Filter

In LMS algorithm the update direction is a scaled version of the regression vector i.e. for e.g.
in the case of (1.4) µ is scaled by eiy

H
RS,i where ei = [xi − GR,i−1yRS,i] and is known as

the a priori output estimation error. So the amount of change in GR,i−1 during an iteration
will be proportional to the norm of the regression vector. This can have adverse effect on the
performance of LMS algorithm in cases where the signal consists of large amplitude variations.
In this type of signals large fluctuations in the norm of the regression vector is observed. In
order to rectify this problem the step size µ is normalized by the squared norm of the regression
vector. This algorithm is known as NLMS algorithm.
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NLMS Receive Filter: The recursion equation is defined as ,

GR,i = GR,i−1 +
µ

‖ε+ yRS,i‖2
[xi −GR,i−1yRS,i]yRS,i (1.6)

where ε is a small non-zero value which is included so as to ensure that the step size does not
go to infinity when the norm of the regression vector becomes zero.
NLMS Transmit Filter: The recursion equation is given as,

G′T,i = G′T,i−1 +
µ

‖ε+ zi‖2
[x̂RS,i −G′T,i−1zi]z

H
i (1.7)

where x̂RS,G
′
T and zi are the same as in the case of LMS transmit filter.

PRA Transceiver Filter

PRA Receive Filter: This filter finds the optimal GR by performing multiple iterations. Let
A = GH

R and is of dimension 2M × 2M . The recursive update equation is given as,

an,i = an,i−2M + µYRS,i[εI + YH
RS,iYRS,i]

−1[X
(k)
n,i −YH

RS,ian,i−2M ] (1.8)

where n = 1 · · · 2M ,k = 1, 2 and an,i is the nth column of A at ith iteration. YRS,i =

[yRS,i,yRS,i−1 · · ·yRS,i−2M+1] ,where yRS,i is the receive vector at ith iteration. The data vector
at node Sk k = 1, 2 is X

(k)
n,i = [x

(k)
n,i · · ·x

(k)
n,i−2M+1]H . The regularization factor [24] is repre-

sented as ε and I is a unit vector of dimension 2M × 2M . The step size is denoted as µ. Note
that in (1.8), the weight vector at ith iteration depends on the weight vector at iteration i− 2M .
Thus the weight vector is kept constant for 2M iterations. This is the difference between the
standard Affine Projection Algorithm (APA) [24] and PRA.
PRA Transmit Filter: The optimal GT in the least square sense is found using multiple recur-
sions. Let, G′T = piH

TGTH and zi = x̂RS + G+nR where G+ is Moore-Penrose pseudoin-
verse [29] of G′T . Finding optimal value of GT is same as finding optimal value of G′T . Define
a matrix B = G

′H
T which is of dimension 2M ×2M . The recursive update equation is given as,

bn,i = bn,i−2M + µZi[εI + ZH
i Zi]

−1[x̂
(k)
RS,i − ZH

i bn,i−2M ] (1.9)

where n = 1 · · · 2M,k = 1, 2 and bn,i is the nth column of B at ith iteration. Zi = [zi, zi−1 · · · zi−2M+1].
The data vector is x̂

(k)
RS,i =

[
x̂

(k)
RS,i · · · x̂

(k)
RS,i−2M+1

]
.

1.2.3 Simulation Results

In this section MSE performance of the LMS, NLMS and PRA transceiver filter is compared
using MATLAB simulations. It is assumed that S1 and S2 are equipped with M = 1 antenna
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Figure 1.2: MSE performance of NLMS and LMS receive filter

each and RS is equipped with MRS = 2 antennas. The data of S1 and S2 is QPSK modulated.
The channel coefficients are spatially white and their amplitude is Rayleigh distributed.The
experimental results are averaged over 100 runs.

In Figure 1.2,1.3 the performance comparison of MSE for LMS and NLMS for receive
and transmit filter is shown respectively. Using the results in [24] the step size of the NLMS
transmit and receive filter are both considered to be 0.2.The ε value is 0.001. In the case of LMS
transceiver filter the step size is considered to be 0.01. It is seen that NLMS transceiver filter
has a faster rate of convergence compared to LMS transceiver filter. This can be attributed to
the fact that NLMS algorithm is obtained as a stochastic gradient approximation to Newton’s
method while LMS is a stochastic gradient approximation of the steepest descent algorithm .
It is shown in [24] that the Newton’s method has a superior convergence rate compared to that
of the steepest descent algorithm. In the case of receive filter the NLMS algorithm converges
at 200 iterations while it takes about 400 iterations for the LMS algorithm to converge. For the
case of transmit filter it is seen that the NLMS algorithm converges at 100 iterations while LMS
converges at 280 iterations. For the case of receive filter the step size is taken as 0.2 while for
that of transmit filter it is taken as 0.1.

In Figure 1.4 it is seen that PRA converges around 40 iterations but the NLMS algorithm
converges around 200 iterations. In Figure 1.5 it is seen that PRA based transmit filter outper-
forms the NLMS based filter. So in a fast varying channel environment a PRA based transceiver
filter could be used. In Table 1.1, the computational complexity of different adaptive transceiver
filters are shown. It is observed that PRA has a computational complexity of O(M2) while that
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Figure 1.3: MSE performance of NLMS and LMS transmit filter

Figure 1.4: MSE performance of PRA and NLMS receive filter
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Figure 1.5: MSE performance of PRA and NLMS transmit filter

Algorithm × +
PRA 8M2 + 4M + 1 8M2 + 16M

NLMS 20M + 3 20M
LMS 16M + 2 16M

Table 1.1: A comparison of the computational cost in terms of the number of real addition, real
multiplication and division required in the estimation of a single row of GR or GT

of NLMS and LMS is O(M). In practical scenario where the antennas in the relay and source
are less, the computational cost of APA and NLMS/LMS are comparable.

1.2.4 Open Problems

1. The simulations in this section assumed that the channel is flat . But this is not valid in
practical scenario, due to the presence of multipath.

2. The multipath channel could be converted to flat parallel channels with the use of OFDM.
Hence the performance of OFDM based two-way relay systems should be analyzed

3. It is assumed in this section that the relay is capable of complex signal processing tasks.
But this is only valid in the presence of dedicated relays. A more practical scenario would
be a third party device acting as a relay. In this case the signal processing tasks should
be implemented at the nodes. Hence a two-way relay with node capability which uses
OFDM should be proposed and its performance analyzed
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4. In the above simulations it is assumed that CSI is available and is time invariant. But
this is not a valid assumption in real scenario. Hence a low cost 2D adaptive channel
estimation based filter should be proposed for time varying channel

5. If CSI is available at node then we can perform adaptive OFDM [30] to improve the bit
rate and power efficiency

1.3 Thesis contribution

This thesis solves all the open problems mentioned in the previous section.

1. In Chapter-2, we propose a low complexity 2D adaptive filter called FAM 2D-RLS which
is used for estimating an OFDM channel. The complexity of this filter is similar to the
existing 2D-NLMS [31] filter but has same convergence rate as that of 2D-RLS [13],[14]
filters. Steady state analysis of this filter is also performed.

2. In Chapter-3 we use FAM 2D-RLS filter for estimating the OFDM channel of two-way
relay systems with node capability and relay capability respectively.

3. In Chapter-4 we use the channel estimate to perform bit and power loading so as to in-
crease the overall system capacity and power efficiency for a two-way relay system
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Chapter 2

Fast Array Multichannel 2D-RLS Based
OFDM Channel Estimator

2.1 Introduction

In the present scenario of wireless communication, OFDM is a prominent modulation technique
due to its ability to provide high data rate, robustness to Inter Symbol Interference (ISI) and ease
of implementation [32]. For coherent detection of data, the channel information is required at
the receiver [1]. There is abundant research material available on the topic of OFDM chan-
nel estimation [33]. In [34] channel estimation based on time domain channel statistics have
been introduced. It was shown that Minimum Mean Square Error (MMSE) estimator has lesser
Symbol Error Rate (SER) compared to Least Square (LS) estimator especially in the case of low
Signal to Noise ratio (SNR). In [35], the performance of LS estimation is improved by perform-
ing Inverse Discrete Fourier Transform(IDFT) of the Channel Frequency Response (CFR) and
then replacing all elements greater than the multipath length by zeros. This is called the signifi-
cant path capture method. In [10], a robust MMSE channel estimator which is insensitive to the
channel statistics have been proposed. In [36], an OFDM channel estimator for time varying
channels have been introduced, where the time variation of the channel is captured by a basis
expansion model. In [37], a channel estimation technique for the case of insufficient Channel
Prefix (CP) is studied. Channel estimation for various OFDM pilot placement is studied in [38].
Preamble based OFDM channel estimation scheme for the use in two-way relay network is dis-
cussed in [39]. But all the methods mentioned above assume that the true channel statistics is
available with the receiver at all times. But this is impractical, especially in the case of mobile
devices where the channel statistics might vary with time. Thus in [40] an adaptive channel
estimator for OFDM based on Normalized Least Mean Square (NLMS) and RLS algorithms
have been proposed. This filter estimates the channel by making use of the correlation of the
channel coefficients across time. An adaptive channel estimation scheme based on Kalman fil-
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ter is implemented in [41]. In [1] it is shown that channel coefficients are correlated across both
time and frequency. So the optimum estimator in the MMSE sense would be the 2D-Wiener
filter [42]. A 2D-RLS channel estimator has been implemented in [13]. In order to combat the
numerical instability inherent in the classical RLS algorithm [24], an array based 2D-RLS was
implemented in [14]. But the RLS algorithms of [13] and [14] have a computational cost of
O(M2) in the case of an M order filter. This makes the 2D-RLS filter virtually unusable for
channel estimation for OFDM in the frequency domain. In order to reduce this complexity, a
2D-NLMS [31] filter could be implemented. But generally NLMS has a poorer convergence
rate compared to the RLS algorithm [24]. So it might not track fast varying channels.
In this chapter we design a 2D adaptive filter for OFDM channel estimation which has similar
complexity as 2D-NLMS i.e. O(M), convergence property of the classical 2D-RLS and hav-
ing numerical stability in finite precision. In [24], it is shown that by making use of the shift
structure of the input data vector, the computational cost of classical RLS is reduced while pro-
viding the same convergence rate. In this chapter we show the similarity between 2D adaptive
estimation and multichannel adaptive filter. Thus fast 2D-RLS adaptive filter could be used for
OFDM channel estimation. The performance is evaluated using MATLAB simulations.

2.2 2D OFDM Channel Estimation

Consider the length of the channel to be L. If the channel prefix CP ≥ L − 1, then ISI is
eliminated. Also assume that the channel is constant for at least one OFDM symbol duration.
Then the OFDM system can be represented by K parallel Gaussian channels, where K is the
IFFT size for generating the OFDM symbols. If xn is the K × 1 transmit data vector, then the
received data vector after performing CP removal and K-point DFT is,

yn = Xnhn + wn (2.1)

where Xn = diag{xn} and wn is AWGN noise in the frequency domain. The channel fre-
quency response of dimension K × 1 is defined as,

hn = [h(n, 0)∗, h(n, 1)∗, · · · , h(n,K − 1)∗]H (2.2)

During the initial phase of data transmission(training phase), OFDM symbols xpn called pream-
bles which are known at the receiver is sent. Then the LS estimate of the channel frequency
response is,

h̄n = (Xp
n)−1yn (2.3)
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Since the channel is assumed to be slowly varying, the OFDM channel estimator can be assumed
to work based on the Decision Directed (DD) principle introduced in [16]. The advantage of
using DD estimator is that, the detected OFDM symbols can be used as preamble for estimating
the channel frequency response. If x̄n+1 is the LS estimate of the (n + 1)th transmitted data,
then the DD-OFDM channel estimator works as follows,

x̄n+1 = Ĥ−1
n yn+1 (2.4)

where Ĥ−1
n = diag{ĥn}. The vector ĥn is the estimate of the channel coefficient obtained by

performing a 2D filtering on the LS channel estimate. The vector x̄n+1 is then passed through
a decision device in order to detect the transmit data vector. Assuming that there is no error in
the detected data, the LS estimate of (n+ 1)th channel coefficient vector is obtained as,

h̄n+1 = X−1
n+1yn+1 (2.5)

Let ūn be an NK× 1 vector that contains the LS channel estimate for the past N time samples.
It is defined as,

ūn =
[
h̄∗(n, 0) · · · h̄∗(n,K − 1) · · · h̄∗(n−N + 1, 0) · · · h̄∗(n−N + 1, K − 1)

]H (2.6)

Assuming that hn is the true channel frequency response vector at time n of dimension K × 1,
our aim is to design an adaptive filter to solve the following exponentially weighted regularized
least square problem [24],[14],

arg min
W̄n

[
λn+1W̄nΠW̄H

n +
n∑
i=0

λn−i‖hn − ĥn‖2

]
(2.7)

where the estimate of the channel at time n is,

ĥn = W̄nūn (2.8)

and W̄n is of dimension K × NK. The regularization factor is Π = δINK×NK . The method
of selecting the regularization parameter δ and the forgetting factor λ is discussed in the later
sections.

It is observed in (2.7), that in order to design the adaptive filter, we require the true channel
frequency response. The true channel frequency response acts as the reference signal to the
adaptive filter. But satisfying this condition is impossible. Hence we need to obtain an estimate
of the reference signal vector. During the training period of the adaptive filter the significant
path capture technique is performed on h̄n in order to obtain a noise reduced estimate of hn [5].
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Figure 2.1: Adaptive DD channel estimator for OFDM system

During significant path capture method, K-point DFT of h̄n is performed. Then consider the L
largest coefficients while discarding the rest. Perform a K-point DFT on the L coefficients to
obtain a noise reduced estimate of hn. After the convergence of the adaptive filter, the reference
signal vector can be obtained by assuming hn ≈ ĥn−1. This is possible since the channel is
assumed to be slowly varying. The block diagram of the adaptive DD-OFDM channel estimator
is shown in Figure 2.1.

2.3 Fast Array Multichannel 2D-RLS

The computational cost for estimating a single row of weight matrix W̄n using classical algo-
rithm based 2D-RLS [13],[24] isO((NK)2) whereNK is the order of the filter, e.g for the case
of 256 point OFDM, assuming time correlation for 3 time samples i.e. N = 3, K = 256 the
cost is O(7682). But by making use of the shift structure of the input vector, the computational
cost can be reduced to O(NK). In [43], a fast array based RLS has been used to design an
adaptive transmultiplexer while in [44], a block based fast RLS has been used in radar imaging
application.

In this chapter we extend the 1D fast multichannel RLS of [43],[24],[44] into 2D and apply
it for the channel estimation of OFDM systems. In order to bring in the notion of shift structure,
we rewrite ūn as,

un =
[
h̄∗(n, 0) · · · h̄∗(n−N + 1, 0) · · · h̄∗(n,K − 1) · · · h̄∗(n−N + 1, K − 1)

]H (2.9)

and define,

cn,k =
[
h̄∗(n, k), h̄∗(n− 1, k) · · · , h̄∗(n−N + 1, k)

]H
, k = 0 · · ·K − 1 (2.10)
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Figure 2.2: 2D OFDM Adaptive Channel Estimator as a Multichannel Adaptive Filter

Even though un does not have a shift structure in the real sense it is seen that each subvector
cn,k has a shift structure. So we can consider each cn,k as the input vector of K parallel N -tap
adaptive filters. This is equivalent to stating that individual subcarrier of the OFDM symbol
is provided with an N tap adaptive filter and they work in parallel to estimate hn as shown in
Figure 2.2. Then (2.8) is rewritten as,

ĥn = Wnun (2.11)

where Wn is obtained by rearranging the terms in W̄n in accordance with the changes that
where made in ūn, to obtain un. Hence we have shown that an adaptive OFDM channel esti-
mation that makes use of the correlation of channel coefficients in frequency and time can be
converted to multichannel adaptive filtering problem with time shift structure.

2.3.1 Adaptive Filter as an Iterative Equation Solver

The aim of an adaptive filter is to solve the mean square optimization problem iteratively. Adap-
tive filter also tracks the statistical changes in the system. All the standard literature considers
the various algorithms of adaptive filtering to be unrelated. But in [45] it is shown than this is
not the case. It is proved that any adaptive filter can be considered to be an iterative equation
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solver of the Wiener-Hopf equation. The advantage of viewing an adaptive filter in this per-
spective is that all the different adaptive filter algorithms could be designed and analyzed using
a unified framework. The steady state analysis of the RLS filter designed in this chapter is done
based on this principle. Hence our approach can be used to analyze some of the other common
adaptive filters like Affine projection or LMS. This unified framework for analysis is called the
energy conservation method [24].

Consider the following optimization problem,

arg min
W̄n

‖hn −Wnun‖2 (2.12)

where hn,Wn and un have the same meaning as in the previous section. In case the second
order statistics of the signals are available, then we can find the optimal weight matrix Wo by
solving the Wiener Hopf equation defined as

WoRuu = Rhu (2.13)

where Ruu = E
[
uuH

]
and Rhu = E

[
huH

]
are the autocovariance matrix of u and cross-

covariance matrix of h,u respectively. This linear equation could be solved by direct or iter-
ative methods [46]. A direct method finds the solution in a prescribed finite number of steps
while iterative methods find an approximate solution at each iteration and after a finite number
of iterations might converge to the true solution. All the versions of the Gaussian elimina-
tion methods are direct methods [29] while some of the common iterative methods are Jacobi’s
method, Gauss-Siedel method and successive over relaxation method. All the iterative algo-
rithms can be unified by the notion of splitting of the coefficient matrix. This is known as the
Richardson’s method [47]. Let’s consider the Wiener-Hopf equation in (2.13). Assume that
Ruu can be splitted as,

Ruu = M−N

= M− (M−Ruu)
(2.14)

where M is a non singular matrix. Substituting this in (2.13) and forming an iterative equation,

Wn = Wn−1(M−Ruu)M−1 + RhuM−1

= Wn−1 + (Rhu −Wn−1Ruu)M−1
(2.15)

The same iterative equation can be obtained if we try to solve the equation

WoRuuM−1 = RhuM−1 (2.16)

The number of iterations required for the equation to converge to the actual solution depends
on the selection of M−1.The matrix M−1 is known as the preconditioner [48]. If we select

17



M−1 = R−1
uu, then the solution is obtained in a single iteration. But this negates the purpose

of using an iterative equation. The precoder should be selected such that the solution can be
solved easily. In 2.15 it is observed that the iterations can be performed only if Ruu and Rhu

is known. But in real life the true autocovariance and cross covariance will not be available.
Hence an approximation should be made. A good approximation of the covariance matrix are,

Rhu,n ≈
1

j − i+ 1

j∑
k=i

hku
H
k (2.17)

and

Ruu,n ≈
1

j − i+ 1

j∑
k=i

uku
H
k (2.18)

These equations could be written in matrix form as,

Rhu,n ≈ 1
j−i+1


hi
...

hj

[ uHi · · ·uHj
]

≈ 1
j−i+1

dnx
H
n

(2.19)

and

Ruu,n ≈ 1
j−i+1


ui
...

uj

[ uHi · · ·uHj
]

≈ 1
j−i+1

xnx
H
n

(2.20)

Using these approximations we can rewrite the Wiener Hopf equation in (2.13) as,

Wnxnx
H
n = dnx

H
n (2.21)

After using the Richardson splitting method we obtain,

Wn = Wn−1 + (dnx
H
n −Wn−1xnx

H
n )M−1 (2.22)

The various adaptive filters is defined by i, j and M−1. The NLMS filter as nth iteration is
defined by selecting i = j = n and M−1 = µI

‖un‖2 , where µ is the step size [24]. Hence the

18



NLMS weight update equation is,

Wn = Wn−1 +
µI

‖un‖2
[hn −Wn−1un] uHn . (2.23)

The exponentially weighted regularized RLS is defined by selecting i = j = n and M−1
n =[

λn+1Π + unΛnu
H
n

]−1 where Λn = diag{λn, λn−1, · · · , 1} and λ is the forgetting factor. It can
be observed that M−1 selected for RLS is a better approximation of Ruu than that of NLMS .
This is the reason for the fast convergence of RLS compared to NLMS. It is observed in (2.22)
that every iteration requires the calculation of the M−1. This requires a computational com-
plexity of O(NK)3 where M is of dimension NK×NK. In order to reduce the computational
complexity, M−1 can be be calculated recursively using the Woodsbury matrix identity [28].
Considering M−1 = Pn the weight update equation is,

Wn = Wn−1 + enu
H
n Pn (2.24)

where en = hn −wn−1un is the a priori output estimation error [24].

2.3.2 Derivation of the FAM 2D-RLS

The derivation of the FAM 2D-RLS is based on modifying the classical RLS algorithm by
making use of the shift structure of the input data. Hence we reproduce the 2D-RLS derived in
[13],

gn = λ−1Pn−1unγ(n), (NK × 1) (2.25)

γ(n) =
1

1 + λ−1uHn Pn−1un
, (1× 1) (2.26)

Pn = Pn−1 −
gng

H
n

γ(n)
, (NK ×NK) (2.27)

en = hn − ĥn, (K × 1) (2.28)

Wn = Wn−1 + eng
H
n , (K ×NK) (2.29)

where gn is the gain vector , γ(n) is the conversion factor and Pn is the instantaneous covariance
matrix. Due to the time shift structure in un we can relate it with un−1 as ,

[
h̄(n, 0)∗, cHn−1,0, h̄(n, 1)∗, cHn−1,1, · · · , h̄(n,K − 1)∗, cHn−1,K−1

]H
=

[
cHn,0, h̄(n−N, 0)∗, cHn,1, h̄(n−N, 1)∗, · · · , cHn,K−1, h̄(n−N,K − 1)∗

]H
(2.30)
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The gain vector is partitioned as,

gn =
[
g(0)H
n g(1)H

n . . . g(K−1)H
n

]H
, (NK × 1) (2.31)

and the covariance matrix is partitioned as,

Pn =


P

(0,0)
n , · · · , P

(0,K−1)
n

... . . . ...
P

(0,K−1)
n , · · · , P

(K−1,K−1)
n

 (2.32)

where each g
(k)
n is of dimension N × 1 and P

(l,k)
n is of dimension N × N . In order to bring in

the time shift structure relation of (2.30) into the RLS algorithm, we will modify (2.25) as,

γ−1(n)



g
(0)
n

0

g
(1)
n

0
...
0

g
(K−1)
n

0


=

λ−1



[
P

(0,0)
n−1 0N×1

01×N 0

]
· · ·

[
P

(0,K−1)
n−1 0N×1

01×N 0

]
... . . . ...[

P
(K−1,0)
n−1 0N×1

01×N 0

]
· · ·

[
P

(K−1,K−1)
n−1 0N×1

01×N 0

]





h̄(n, 0)

cn−1,0

...
h̄(n,K − 1)

cn−1,K−1


(2.33)

Similarly we can write,

γ−1(n− 1)



0

g
(0)
n−1

0

g
(1)
n−1

0
...
0

g
(K−1)
n


=
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λ−1



[
0 01×N

0N×1 P
(0,0)
n−2

]
· · ·

[
0 01×N

0N×1 P
(0,K−1)
n−2

]
... . . . ...[

0 01×N

0N×1 P
(0,K−1)
n−2

]
· · ·

[
0 01×N

0N×1 P
(K−1,K−1)
n−2

]





h̄(n, 0)

cn−1,0

...
h̄(n,K − 1)

cn−1,K−1


(2.34)

subtracting (2.34) from (2.33) and utilizing (2.30), we obtain,

γ−1(n)



g
(0)
n

0

g
(1)
n

0
...
0

g
(K−1)
n

0


− γ−1(n− 1)



0

g
(0)
n−1

0

g
(1)
n−1

0
...
0

g
(K−1)
n



= λ−1


∆P

(0,0)
n−1 · · · ∆P

(0,K−1)
n−1

... . . . ...
∆P

(0,K−1)
n−1 · · · ∆P

(K−1,K−1)
n−1




h̄(n, 0)

cn−1,0

...
h̄(n,K − 1)

cn−1,K−1


(2.35)

= λ−1∆Pn−1



h̄(n, 0)

cn−1,0

...
h̄(n,K − 1)

cn−1,K−1


where ∆Pn−1 is of dimension K(N + 1) × K(N + 1). Hence we have derived an update
equation for the gain vector that depends only on the difference between the correlation matrix
at time n and n− 1, defined as ∆Pn−1. Now the update equation of conversion factor in terms
of ∆Pn−1 is obtained by manipulating (2.26) as,

γ(n)−1 − γ(n− 1)−1 = λ−1
[
uHn Pn−1un − uHn−1Pn−2un−1

]
(2.36)
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The RHS of (2.36) can be expressed as,

λ−1
[
h̄(n, 0)∗, cHn−1,0, · · · , h̄(n,K − 1)∗, cHn−1,K−1

]
∆Pn−1



h̄(n, 0)

cn−1,0

...
h̄(n,K − 1)

cn−1,K−1


(2.37)

The regularization factor Π should be selected in a special way so that an efficient calculation
of ∆Pn−1 is possible. This is because the initial value of ∆Pn−1 is defined as,

∆P−1 =



[
P

(0,0)
−1 0N×1

01×N 0

]
· · ·

[
P

(0,K−1)
−1 0N×1

01×N 0

]
... . . . ...[

P
(K−1,0)
−1 0N×1

01×N 0

]
· · ·

[
P

(K−1,K−1)
−1 0N×1

01×N 0

]



−



[
0 01×N

0N×1 P
(0,0)
−2

]
· · ·

[
0 01×N

0N×1 P
(0,K−1)
−2

]
... . . . ...[

0 01×N

0N×1 P
(0,K−1)
−2

]
· · ·

[
0 01×N

0N×1 P
(K−1,K−1)
−2

]


(2.38)

The inverse of (l, k)th block of Π is assigned as the value of the (l, k)th block of P−1. It is
selected as,

P
(l,k)
−1 =

[
Π(l,k)

]−1
=

1

δ
· diag

{
λ2, λ3, . . . , λN+1

}
(2.39)

and,

P
(l,k)
−2 = λ

[
Π(l,k)

]−1
=

1

δ
· diag

{
λ3, λ4, . . . , λN+2

}
, (2.40)

where δ is the regularization parameter and is selected as [21],[22];

δ = σ2
u(1− λ) (2.41)

The variance of the input signal to the adaptive filter (2.8) is σ2
u and λ is the forgetting factor.
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Hence each (l, k)th block of ∆p−1 is,

∆p
(l,k)
−1 =

λ2

δ
diag

{
1, 0, · · · , 0,−λN

}
(2.42)

Thus we observe that each N × N block of P−1 is reduced to a rank-2 matrix. It is proved in
[15] that the rank-2 property of P

(l,k)
−1 is invariant over time (this is the case of single channel

fast array RLS). Hence we claim that this property holds for our scenario of FAM 2D-RLS.
Factorizing ∆P−1 as,

∆P−1 = λL̄−1S−1L̄
H
−1 (2.43)

where L̄−1 of dimension K(N + 1)× 2 is defined as,

L̄−1 =


L̄

(0)
−1

L̄
(1)
−1
...

L̄
(K−1)
−1

 (2.44)

and

L̄
(k)
−1 =

√
ηλ



1 0

0 0
...

...
0 0

0 λN/2


(2.45)

is of dimension (N + 1)×2. The signature matrix is defined as S−1 = diag{1,−1}. Due to the
rank preserving property of ∆Pn−1 the signature matrix remains a constant across time. Then
at time n we can write,

∆Pn−1 = L̄n−1SL̄H
n−1 (2.46)

Substituting (2.46) in (2.36),(2.37) and writing them in the array form we obtain the pre-array
and post-array [24]. Defining J = diag{1,S}, the objective is to find a J-unitary matrix Θn

that annihilates the last two elements in the first row of the pre-array(LHS of 2.47). This could
be done by making use of Householder or Givens rotations [24],[29]. Then gn is propagated
iteratively as shown (2.47),[24].
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

γ−1/2(n− 1)
[
h̄(n, 0)∗, cHn−1,0 . . . h̄(n,K − 1)∗cHn−1,K−1

]
L̄n−1

0

g
(0)
n−1γ

−1/2(n− 1)
...
0

g
(K−1)
n−1 γ−1/2(n− 1)




L̄

(0)
n−1

L̄
(1)
n−1
...

L̄
(K−1)
n−1




Θn

=



γ−1/2(n) 01×2

g
(0)
n γ−1/2(n)

...
0

g
(K−1)
n γ−1/2(n)

0


√
λ


L̄

(0)
n−1

L̄
(1)
n−1
...

L̄
(K−1)
n−1




(2.47)

The weight vector Wn is updated as,

Wn = Wn−1 + (hn −Wnun)
[
gnγ

−1/2(n)
]H [

γ−1/2(n)−1
]

(2.48)

where gnγ−1/2(n) and γ−1/2(i)−1 are read from the post-array in (2.47).

2.4 Steady State Analysis of FAM 2D-RLS

Let the optimal weight matrix in the MMSE sense be Wo. The aim of this section is to analyze
the proximity of the weight matrix obtained by FAM 2D-RLS in steady state to that of Wo.
The analysis is based on the energy conservation method described in [24]. But unlike in [24],
where the weight is a vector and the desired data is scalar, our scenario consist of a weight
matrix and the desired data is a vector. Since gn = Pnun we can rewrite (2.29) as,

Wn = Wn−1 + enu
H
n PH

n (2.49)

subtracting both sides of the above equation by Wo,

W̃n = W̃n−1 − enu
H
n PH

n (2.50)
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multiplying both sides by un from the right,

eapsn = eaprn − en‖un‖2
PH

n
(2.51)

where eapsn is the a posteriori error vector , eaprn is the a priori error vector and ‖un‖2
PH

n
=

uHn PH
n un is the weighted norm of un. Substituting for en in (2.50) by making use of (2.51),

W̃n + eaprn

uHn PH
n

‖un‖2
PH

n

= W̃n−1 + eapsn

uHn PH
n

‖un‖2
PH

n

(2.52)

Taking Frobenius norm weighted by (PH
n )−1 on both sides of (2.52),∥∥∥∥∥W̃n + eaprn

uHn PH
n

‖un‖2
PH

n

∥∥∥∥∥
2

F,(PH
n )−1

=

∥∥∥∥∥W̃n−1 + eapsn

uHn PH
n

‖un‖2
PH

n

∥∥∥∥∥
2

F,(PH
n )−1

(2.53)

where

‖A‖2
F,K = tr{AKAH} (2.54)

Expanding (2.53) by making use of (2.54), and cancelling out cross product terms by substitut-
ing eapsn = Wnun and eaprn = Wn−1un we obtain,

‖W̃n‖2
F,(PH

n )−1 +
‖eapsn ‖2

‖un‖2
PH

n

= ‖W̃n−1‖2
F,(PH

n )−1 +
‖eaprn ‖2

‖un‖2
PH

n

(2.55)

This equation is the energy conservation relation for the case of an RLS filter having a weight
matrix. In order to obtain the variance relation [24] we have to find the average of the covariance
matrix PH

n . This is defined in [24] as,

E[PH
n ] = (1− λ)R−1

u = P (2.56)

Since at steady state,

E[‖W̃n‖2
F,(PH

n )−1 ] = E[‖W̃n−1‖2
F,(PH

n )−1 ] (2.57)

(2.55) can be reduced to,

E

[
‖eapsn ‖2

‖un‖2
PH

n

]
= E

[
‖eaprn ‖2

‖un‖2
PH

n

]
n→∞ (2.58)
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substituting for eapsn from (2.51) into (2.58) and expanding we can rewrite (2.58) as,

E

‖eaprn ‖2 + ‖en‖2‖un‖4
PH

n
− 2Re

{
eapr,Hn en‖un‖2

PH
n

}
‖un‖2

PH
n

 = E

[
‖eaprn ‖2

‖un‖2
PH

n

]
(2.59)

cancelling equal terms in (2.59), we obtain the variance relation [24] as,

E[‖un‖2
PH

n
‖en‖2] = 2Re{E[eapr,Hn en]} (2.60)

Now assume a linear regressor model,

hn = Woun + vn (2.61)

where vn is zero mean i.i.d random vector with covariance matrix Rv = σ2
vIK×K . Also assume

that vi is independent of all uj for all i, j and the initial weight matrix W−1 is independent of
all {hn,vn,un}. The above assumptions lead to the following relation [24],

en = eaprn + vn (2.62)

Making use of (2.62), we can rewrite (2.60) as,

tr{Rv}E[‖un‖2
PH

n
] + E[‖un‖2

PH
n
‖eaprn ‖2] = 2E[‖eaprn ‖2] = 2ξRLS (2.63)

where ξRLS is the Excess Mean Square Error (EMSE). Making use of (2.56) and the separation
property i.e assuming that at steady state, ‖un‖2

PH
n

is independent of eaprn [24], an expression for
EMSE is obtained from (2.63) as,

ξRLS =
tr{Rv}(1− λ)NK

2− (1− λ)NK
(2.64)

when λ ≈ 1 (which is normally the case),

ξRLS =
tr{Rv}(1− λ)NK

2
(2.65)

Hence the Mean Square Error (MSE) at steady state is,

MSE = ξRLS + tr{Rv} (2.66)
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Algorithm × +

FAM 2D-RLS 6NK + 10 10NK + 16
2D-RLS (NK)2 + 5NK + 2 (NK)2 + 3NK

2D-NLMS 3NK + 2 3NK

Table 2.1: Computational Complexity per Iteration in terms of complex multiplication and
complex addition for estimating a single row of weight matrix.
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Figure 2.3: Theoretical and simulated MSE for FAM 2D-RLS
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Figure 2.5: Numerical stability analysis of FAM 2D-RLS, 2D-NLMS & 2D-RLS for 16 bit
quantized data

2.5 Simulation Setup

A SISO 256 point OFDM system is considered. The modulation technique is QPSK. A five
path Rayleigh fading channel with tap delay line is considered and the CP length is taken as
four so as to eliminate ISI. The carrier frequency is 2.5 GHz and channel bandwidth is 8 MHz.
The device is assumed to move with a velocity of 60 km/hr.

2.6 Results and Analysis

The computational complexity of various 2D adaptive filters is shown in Table 2.1. The Fast
array 2D-RLS algorithm has a computational complexity comparable to that of 2D-NLMS i.e.
O(NK). In Figure 2.3, the theoretical and simulated MSE is plotted for various values of
forgetting factor assuming σ2

u = 1. The optimal weight matrix Wo is a K × NK complex
Gaussian matrix with zero mean and unit variance. In Figure 2.3, it is seen that λ = 0.995 gives
the best MSE and hence is chosen as the value of forgetting factor for our simulations. The
regularization parameter i.e. δ is obtained by substituting λ = 0.995 and σ2

v = 0.001 in (2.41).
It is shown in Figure 2.4 that FAM 2D-RLS and 2D-RLS converges in about 8 iterations while it
takes about 80 iterations for the 2D-NLMS to converge. In Figure 2.5 the numerical stability of
FAM 2D-RLS is compared with 2D-RLS [13] and 2D-NLMS [31] by quantizing the input data
vector and filter coefficients to 16 bits. It is observed that FAM 2D-RLS and NLMS converges
using quantized data, while 2D-RLS does not converge. The better numerical stability of FAM
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2D-RLS compared to 2D-RLS is because the former is implemented using the array method
[24] while the latter is implemented using the classical algorithm of RLS [24].

2.7 Conclusion

In this chapter we proposed an adaptive OFDM channel estimation in the frequency domain that
makes use of Fast array multichannel 2D-RLS technique. It was shown that the computational
cost of the filter is comparable to that of 2D-NLMS while providing the same convergence
property as 2D-RLS algorithm. Hence this low complexity filter could be used to track fast
varying OFDM channels. Also it was shown that this filter is numerically stable compared to
2D-RLS filter. Thus we conclude that this channel estimation technique for OFDM improves
upon the algorithms proposed in [13],[14],[31].
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Chapter 3

FAM 2D-RLS Based Channel Estimation
for Two-Way Relay Systems

3.1 Introduction

The field of cooperative communication is considered by many to be the future of wireless
communication [49]. The basic idea of cooperative communication is that, dedicated terminals
or user nodes called relays assist in conveying information between two communicating nodes.
The use of relays help in increasing the link quality, reliability and data rate of the system.
The initial relay systems proposed were one-way relay systems i.e any node S2 will not be
able to transmit data to S1 at the same time as S1 is transmitting data to S2. So in the case
of a two hop network two time slots are required for S1 to convey its message to S2 while it
takes another two time slots for S2 to convey its message to S1. If the relay was not present, the
whole communication process would have been over in two time slots. This decrease of spectral
efficiency of relay systems is termed as resource devouring worms [50]. In order to alleviate
this problem the concept of two-way relay system was introduced in [8]. In two-way relaying
scheme, both S1 and S2 transmit data to the relay simultaneously. This is known as transmit
phase. In the next time slot known as broadcast phase, the relay broadcasts this data after
performing some signal processing on it. This relaying concept is similar to network coding
[51]. Two-way relay systems is compatible with the Long Term Evolution (LTE) standard as
discussed in [2],[3]. The advantage of bandwidth efficiency of two-way relay systems over one-
way relay system comes at an extra cost of advanced signal processing to be performed at the
relay or source nodes.

OFDM is a prominent modulation technique in latest communication standards like WIMAX
and LTE [2] due to its ability to provide high data rates, robustness to intersymbol interfer-
ence(ISI) and ease of implementation [32]. It was first combined with two-way relay system
in [9] to obtain OFDM based two-way relay system. Some of the later works in this area are
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[52], [53]. For coherent detection since the channel has to be known at the receiver [1], we pro-
pose a FAM 2D-RLS [15] based OFDM channel estimation for two-way relay system. Channel
estimation scheme for two-way relay system with node capability i.e. relay systems that only
performs a simple amplification of the received data while complex signal processing is per-
formed by the nodes is proposed. This is the standard Amplify-Forward (AF) [9] scheme and in
this thesis it is known as two-way relay with node capability. We further reduce the complexity
of FAM 2D-RLS by introducing Block FAM 2D-RLS (BFAM 2D-RLS) [17]. The idea is to
break up the channel frequency response vector into subvectors and each of the subvectors are
estimated by parallel FAM 2D-RLS filters. A thorough simulation analysis of this scheme is
performed. Two-way relay with node capability is more practical in a cooperative communi-
cation scenario than a two-way relay with relay capability which was discussed in Chapter-1.
This is because in cooperative communication usually the relay consists of third party mobile
devices which would be capable of carrying out complex signal processing tasks. But in order
to have completeness we provide a FAM 2D-RLS based channel estimation scheme for relay
capable two-way relay system.

3.2 Two-Way Relay With Node Capability

3.2.1 System Model

Let S1 and S2 be two source nodes and R be the relay node. All the devices consist of a single
antenna. The system model is as shown in Figure 3.1. The communication process in two-way
relay is divided into two phases. During the transmission phase, the source nodes convert the
serial data symbols into K parallel data streams . Let the K × 1 data vector at node Sq, q = 1, 2

be x(q) =
[
x

(q)
0 , · · · , x(q)

K−1

]T
. Then aK-point IFFT is performed to obtain the time domain data

vector x̃(q), q = 1, 2. If the length of the channel between S1 and R is L1 and that between S2

and R is L2 then a Channel Prefix (CP ) of length CP ≥ max(L1, L2)− 1 is added to the time
domain data vector at each node. Then the data vectors are simultaneously send to R. After the
removal of CP and performing a K-point DFT, the data received at R during the transmission
phase is,

y(R) = X(1)c(1) + X(2)c(2) + n(R) (3.1)

where X(q) = diag{x(q)}, q = 1, 2 . The channel frequency response vector between S1 − R
and S2 − R is c(1), c(2) respectively . The maximum power available at the relay is P (R) while
the maximum power at S1 and S2 is P (1) and P (2) respectively. The received data is multiplied
by a diagonal matrix of dimension K × K. Each of the diagonal element αk is known as the
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Figure 3.1: Two-way relay system with node capability

amplifying factor of subcarrier k and is defined as,

αk =

√√√√ P
(R)
k

|c(1)
k |2P

(1)
k + |c(2)

k |2P 2
k +N (R)

(3.2)

where P (1)
k , P

(2)
k and P (R)

k is the power provided for subcarrier k at, S1, S2 and relay respec-
tively. In this chapter the power at all the subcarriers are equally distributed. Hence αk is a
constant across subcarriers and is equal to α. During the broadcast phase, the K-Point DFT of
y(R) is performed and CP is added. Then this data vector is broadcasted. Due to symmetry, only
the data received at S1 is considered. Since the two-way relay system considered in this chapter
is Time Division Duplex (TDD), the reverse channel can be assumed to be same as the forward
channel. After the removal of CP and performing the K-point DFT of the data received at S1

and S2, it is given respectively as,

y(1) = α(X(1)c(1) � c(1) + X(2)c(2) � c(1) + c(1) � n(R)) + n(1) (3.3)

and
y(2) = α(X(2)c(2) � c(2) + X(1)c(2) � c(1) + c(2) � n(R)) + n(2) (3.4)

The first term in (3.3),(3.4) is known as self interference, because it consists of the actual data
X(1) and X(2) that was transmitted by S1, S2 respectively. So if c(1) � c(1) is known at S1 and
c(2) � c(2) is known at S2, then the self interference could be removed by subtracting the first
terms from the received data. After the self interference removal , the knowledge of c(2) � c(1)

could be used to detect X(1) at S2 and X(2) at S1. Since (3.3),(3.4) have the same structure, the
channel estimation algorithm implemented at S1 and S2 is the same. Hence from now on, we
consider channel estimation at S1.

Let h(1) = c(1)�c(1) and g(1) = c(1)�c(2). The noise term at S1 is w(1) = αc(1)�n(R)+n(1).
Hence,

y(1) = α(X(1)h(1) + X(2)g(1)) + w(1) (3.5)
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This equation states that a single antenna based two-way relay system with node capability can
be considered as a Multiple Input Single Output (MISO) system. Hence the channel estimation
technique implemented in [57] could be used to find the LS estimate of the channels h(1) and
g(1). Another important observation which is made in (3.5) is that unlike the non relay based
communication system, in a two-way relay with node capability we have to estimate two chan-
nel coefficient vectors h(1) and g(1). These channel coefficients in turn consists of the c(1) and
c(2). Hence we call h(1) and g(1) as the combined channel coefficients while c(1) and c(2) is
known as the individual channels.

3.2.2 Least Square Channel Estimation

The Least Square (LS) cost function for estimating the channel coefficients is,

J(h̄(1), ḡ(1)) = (y(1) − ȳ(1))H(y(1) − ȳ(1)) (3.6)

where ȳ(1) = X(1)h̄(1) + X(2)ḡ(1) and h̄(1) and ḡ(1) are the LS estimate of the channel h(1) and
g(1) respectively. The LS estimate of the channel is obtained by finding the complex gradient
of (3.6) w.r.t h̄(1)H and ḡ(1)H and equating to zero. The gradient vectors are [58],

∇h̄(1)H = −X(1)Hy(1) + X(1)HX(1)h̄(1) + X(1)HX(2)ḡ(1) = 0 (3.7)

∇ḡ(1)H = −X(2)Hy(1) + X(2)HX(1)h̄(1) + X(2)HX(2)ḡ(1) = 0 (3.8)

The above equations can be solved by assuming that the two source nodes send training data at
orthogonal frequency locations. Let S1 send preamble data at even frequency locations while
no data is sent at odd frequency locations, and S2 send preamble data at odd frequency locations
while no data is sent at even frequency locations. Let X

(1)
p and X

(2)
p be the preamble symbol

matrix send from S1 and S2 respectively. Let X
(1)
p,even and X

(2)
p,odd be the vector consisting of

the non zero elements of X
(1)
p and X

(2)
p respectively. The LS estimate of channel frequency

response at even and odd sample locations of h(1),g(1) using these preamble matrices are,

h̄(1)
even = (X(1)H

p,evenX
(1)
p,even)−1(X(1)H

p,eveny
(1)) (3.9)

ḡ
(1)
odd = (X

(2)H
p,oddX

(2)
p,odd)

−1(X
(2)H
p,oddy

(2)) (3.10)
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A simple interpolation technique could be used to obtain the full LS channel estimate h̄(1) and
ḡ(1) . The linear interpolation for obtaining h̄(1) is,

h̄(1)(k) = 1
2

[
h̄

(1)
even(k−1

2
) + h̄

(1)
even

k+1
2

]
, k is odd and k 6= K − 1.

h̄(1)(k) = h̄
(1)
even(k

2
− 1), k is even.

h̄(1)(K − 1) = h̄
(1)
even(K

2
− 1).

(3.11)

The linear interpolation for obtaining ḡ(1) is,

ḡ(1)(k) = 1
2

[
ḡ

(1)
odd(

k
2
) + ḡ

(1)
odd(

k
2

+ 1)
]
, k is even and k 6= 0.

ḡ(1)(k) = ḡ
(1)
odd(

k−1
2

), k is odd.

ḡ(1)(0) = ḡ
(1)
odd(0).

(3.12)

Since in the next section an adaptive filter is implemented, we include a subscript n to the
LS channel frequency response to denote the estimate at time n. Thus the structure of the
instantaneous LS channel estimate is,

h̄
(1)
n =

[
h̄(n, 0)∗, · · · , h̄(n,K − 1)∗

]H
ḡ

(1)
n = [ḡ(n, 0)∗, · · · , ḡ(n,K − 1)∗]H

(3.13)

3.2.3 DDCE-OFDM

The implementation of DDCE-OFDM [16] even in the case of a single antenna two-way relay
system is different from that of a SISO system. This is due to the presence of self interference.
The self interference at S1 is αX

(1)
n h

(1)
n . Since X

(1)
n is known at S1, the self interference com-

ponent could be eliminated if an estimate of h
(1)
n is available. Assume that α and the refined

estimate of the channel coefficients, ĥ
(1)
n−1 and ĥ

(2)
n−1 is available at S1. The channel coefficients

is assumed to remain constant for two symbol duration. Then at time n, DD estimator for single
antenna OFDM two-way relay system functions as follows,
Step-1: Self interference cancellation,

s(2)
n = y(1)

n − αX(1)
n ĥ

(1)
n−1 (3.14)
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Step-2: The LS estimate of x
(2)
n is obtained as,

x̄(2)
n = (αĜ

(1)
n−1)−1s(2)

n (3.15)

where Ĝ
(1)
n = diag{ĝ(1)

n }.
Step-3: The estimated data x

(2)
n is sent to a detector

Step-4: Assuming that there is no error in detection, the LS estimate of g
(1)
n is obtained as,

ḡ(1)
n = (αX(2)

n )−1s(2)
n (3.16)

Step-5: ḡ
(1)
n is input to the adaptive filter to obtain a refined estimate ĝ

(1)
n .

Step-6: The interference due to x
(2)
n is cancelled,

s(1)
n = y(1)

n − αX(2)
n ĝ(1)

n (3.17)

Step-7: The LS estimate of channel ĥ
(1)
n is obtained as,

h̄(1)
n = (αX(1)

n )−1s(1)
n (3.18)

Step-8: h̄
(1)
n is input to the adaptive filter to obtain a refined estimate ĥ

(1)
n .

Step-9: Repeat steps 1 to 8 until OFDM symbols are send from S1 and S2.

3.3 Two-Way Relay with Relay Capability

3.3.1 System Model

The two-way relay system in this section consists of two nodes S1 and S2 that communicate
with each other through the relay R, as shown in Figure 3.2. There is no direct path between
S1 and S2. The nodes are considered to be single antenna devices. Unlike in the previous
section, here the relay consists of at least two antennas. The reason for this will be evident
later in this section. The communication process is divided into two phases, transmission phase
and broadcast phase. During the transmission phase, the source nodes converts the serial data
symbols into K parallel data streams . Let the K × 1 data vector at node Sq, q = 1, 2 be x(q).
Then a K-point IFFT is performed to obtain the time domain data vector x̃(q), q = 1, 2. If the
length of the channel between S1 and R is L1 and that between S2 and R is L2 then a Channel
Prefix (CP ) of length CP ≥ max(L1, L2) − 1 is added to the time domain data vector at
each node. Then the data vectors are simultaneously sent to R. After the removal of CP and
performing a K-point DFT, the data received at jth antenna of R during the nth transmission
phase for a two antenna relay system is,
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Figure 3.2: Two-way relay system with relay capability

y
(R)
n,j = X(1)

n h(j,1)
n + X(2)

n h(j,2)
n + w(j,R)

n , j = 1, 2 (3.19)

where X
(q)
n = diag{x(q)

n }, q = 1, 2. The channel frequency response between node Sq and jth

antenna of R is h
(j,q)
n , j, q = 1, 2 and Additive White Gaussian Noise (AWGN) at antenna j

of the relay is w
(j,R)
n . The data received at the antennas can be combined and written in vector

form as,

y(R)
n = Hnxn + w(R)

n (3.20)

where xn =
[
x

(1)
n ,x

(2)
n

]T
, wn =

[
w

(R)
n,1 ,w

(R)
n,2

]T
and,

Hn =

[
diag{h(1,1)

n } diag{h(1,2)
n }

diag{h(2,1)
n } diag{h(2,2)

n }

]
(3.21)

It can be observed from (3.19),(3.20) that even a simple single antenna node based two-way
relay system with relay processing capability requires multiple antennas at the relay in order to
separate the signals from S1 and S2. This requires the channel frequency response to be known
at the relay. It is also observed that the LS channel estimation at the relay requires the method
implemented in [58] for a 2 × 2 MIMO system. Thus consider that S1 send pilot symbols at
even frequency samples while S2 send pilot symbols at odd frequency samples.
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3.3.2 Least Square Channel Estimation

Let’s consider the first antenna at the relay. The data received is,

y
(R)
n,1 = X(1)

n h(1,1)
n + X(2)

n h(1,2)
n + w(1,R)

n (3.22)

The aim is to find the LS estimate h(1,1) and h(1,2), which is denoted as h̄(1,1) and h̄(1,2) respec-
tively. The cost function that has to be minimized is,

J
(
h̄(1,1), h̄(1,2)

)
=
(
y(1,R)
n − ȳ

(R)
n,1

)H (
y(1,R)
n − ȳ(1,R)

n

)
(3.23)

where ȳ
(1,R)
n = X

(1)
n h̄

(1,1)
n + X

(2)
n h̄

(1,2)
n . Similar to the LS channel estimation technique to two-

way relay with node capability, S1 sends non-zero preamble data at even frequency locations
while S2 sends at odd frequency locations. The overall estimate of the channels can be obtained
using a simple frequency interpolation technique as explained in (3.11),(3.12). The second an-
tenna also performs similar LS estimation technique to obtain h̄

(2,1)
n and h̄

(2,2)
n . After obtaining

the initial LS estimate of the channels, in order to reduce the number of preamble symbols a
DDCE based technique in implemented.

3.3.3 DDCE-OFDM

Let H̄n be the LS channel estimate of Hn. In order to find a better estimate, the LS estimate of
the channel is passed through an adaptive filter to obtain Ĥn. Assuming that the channel fre-
quency response is approximately constant for two time slots, we can use the channel estimate
at time n− 1 to obtain the estimate of the transmitted data at time n. After passing this estimate
through a decision device, the data sent from S1 and S2 can be used to find the estimate of the
channel at time n. Due to the multiple antennas present at the relay, we have to implement a
MIMO OFDM based DDCE. The steps required in obtaining the LS channel estimate using
MIMO-DDCE is as follows,
Step-1: Using preambles, the LS estimate of xn is obtained as,

Ĥ−1
n−1y

(R)
n = x(R)

n + Ĥ−1
n−1w

(R)
n (3.24)

Step-2: LS estimates of data is send to detector to obtain xn.
Step-3: Subtracting the interference term due to x

(1)
n from (3.24),

s(2)
n = y(R)

n − Ĥn−1(:, 1 : K)x(1)
n (3.25)
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where Hn(:, p : q) is the matrix containing the pth to qth column of Hn.
Step-4: Obtain the LS estimate of Hn(:, K + 1 : 2K),

(X
(2)
n )−1s

(2)
n (1 : K) = Hn(1 : K,K + 1 : 2K) + (X

(2)
n )−1w

(R)
n (1 : K)

(X
(2)
n )−1s

(2)
n (K + 1 : 2K) = Hn(k + 1 : 2K,K + 1 : 2K) + (X

(2)
n )−1w

(R)
n (K + 1 : 2K)

(3.26)
Step-5: This LS estimate of partial channel frequency response is bettered using an adaptive
filter to obtain Ĥn(:, K + 1 : 2K).
Step-6: The interference due to x

(2)
n is subtracted from (3.24) as,

s(1)
n = yn − Ĥn(:, K + 1 : 2K)x(2)

n (3.27)

Step-7: Obtain the LS estimate of Hn(:, 1 : K) as,

(X
(1)
n )−1s

(1)
n (1 : K) = Hn(1 : K, 1 : K) + (X

(1)
n )−1w

(R)
n (1 : K)

(X
(1)
n )−1s

(1)
n (K + 1 : 2K) = Hn(K + 1 : 2K, 1 : K) + (X

(1)
n )−1w

(R)
n (K + 1 : 2K)

(3.28)

Step-8: This LS estimate of partial channel frequency response is bettered using an adaptive
filter to obtain Ĥn(:, 1 : K).
Step-9: Until S1 and S2 stops sending data, step 1-8 should be repeated.

3.3.4 Transceiver Matrix

In Chapter-1 it was assumed that the actual CSI was available at the relay. But in a practical sce-
nario, it has to be estimated as explained previously. After the channel estimate Ĥn is obtained
at the relay, transceiver matrix could be designed as explained in [54],[55] and [56]. The advan-
tage of having CSI at the relay is that it reduces the computational complexity at the nodes. But
this method is feasible only in cases where the relay node is a dedicated system having enough
power to perform complex signal processing tasks.

3.4 BFAM 2D-RLS Based Channel Estimation

In this section we first explain a general scenario of estimating a channel frequency response
vector hn of dimension K × 1. Let the LS estimate of hn be h̄n and the output of the adaptive
filter be ĥn. The adaptive channel estimation schemes for two-way relay with node and relay
capability can be easily obtained by changing the variable hn, h̄n and ĥn. Assuming that the
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channel is correlated for N OFDM symbols, define a vector ūn of dimension NK × 1 that
contain LS channel estimate of past N time samples,

un =
[
cHn,0 · · · cHn,K−1

]H
(3.29)

where
cn,k =

[
h̄(n, k), h̄(n− 1, k), · · · , h̄(n−N + 1, k)

]T (3.30)

In the previous chapter we designed a filter called FAM 2D-RLS. It was assumed that each
of the elements in the K × NK input vector to the adaptive filter was correlated among each
other. If un is the input vector then the estimate is obtained as ĥn = Wnun. This requires
a computational complexity of O(NK2). In order to alleviate this problem, the assumption
of correlation among all the channel frequency response samples can be relaxed. The K × 1

channel frequency response can be considered to be made up of subvectors of dimension K
M
×1

i.e. the channel frequency response is broken up intoM blocks. ThenM parallel adaptive filters
with tap length of K

M
×NK

M
is used to estimate the channel frequency response. The advantage of

this technique is that the computational complexity is reduced from O(NK2) to O(NK
2

M
). But

the drawback of this technique is that we consider only the correlation of frequency samples
in each block. This will not give the full advantage of the 2D adaptive filter. This adaptive
filtering scheme is called Block Fast Array Multichannel 2D-RLS (BFAM 2D-RLS). This filter
consists of M parallel FAM 2D-RLS filters. The working of FAM 2D-RLS for estimating the
mth ,m = 1 · · ·M block is as follows.

The NK
M
× 1 input vector of each of the M adaptive filters is,

u(m)
n =

[
cH
n,

(m−1)K
M

· · · cH
n,mK

M
−1

]H
, m = 1 · · ·M (3.31)

and the estimate of mth group of the channel frequency response is,

ĥ(m)
n = W(m)

n u(m)
n , m = 1 · · ·M (3.32)

Assuming that h
(m)
n is the actual channel frequency response of mth group at time n, the

optimization problem solved by the BFAM 2D-RLS adaptive filter is,

min
W

(m)
n

[
λn+1W(m)

n ΠW(m)H
n +

n∑
i=0

λn−i‖h(m)
n − ĥ(m)

n ‖2

]
(3.33)

The regularization factor is Π = δINK
M
×NK

M
. The forgetting factor is λ and the regularization

parameter is δ.
As mentioned before, the aim is to design an adaptive filter that makes use of the time shift

structure of the input data vector so as to reduce the computational complexity. In our case
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the input data vector is u
(m)
n (3.31). But it doesn’t have a shift structure in the real sense. But

observing (3.30), it is seen that cn,k has time shift structure. Hence u
(m)
n has a block shift

structure. Thus a K
M

-channel adaptive filter could be designed with the input vector at the k(th)

channel being c
(m)
n,k k = 0 · · · K

M
− 1.

Algorithm

Consider data
{

u
(m)
j ,h

(m)
j

}n
j=0

. The forgetting factor is λ and γ is the conversion factor. The

gain vector of dimension NK
M
× 1 at time n is gn and is partitioned as,

gn =
[
g(0)
n g(1)

n . . . g
( K
M
−1)

n

]T
(3.34)

Let the inverse of the NK
M
× NK

M
regularization matrix be Π−1. Each of its (k, l) block is

represented as, [
Π(k,l)

]−1
=

1

δ
· diag

{
λ2, λ3, . . . , λN+1

}
, δ < 0. (3.35)

Define a signature matrix S = diag {1,−1} and a matrix of dimension 3×3 as J = diag {1, S}.
The FAM 2D-RLS finds the solution W

(m)
n for the optimization problem in (3.33) in a recursive

manner,

Step-1: Initialize,
W

(m)
−1 = 0 K

M
×NK

M
, γ−1/2(−1) = 1, g−1 = 0NK

M
×1

Define a matrix of dimension K
M

(N + 1)× 2 as,

L̄−1 =


L̄

(0)
−1

L̄
(1)
−1
...

L̄
( K
M
−1)

−1

 (3.36)

where

L̄
(k)
−1 =

√
ηλ



1 0

0 0
...

...
0 0

0 λK/2M


(3.37)

is of dimension (N + 1)× 2. For n ≥ 0, repeat the following steps,

Step-2: Find a J-unitary matrix Θn that annihilates the last two elements in the first row of the
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Algorithm × +

BFAM 2D-RLS 6NK2

M
+ 10 10NK2

M
+ 16

2D-RLS N2K3 + 5NK2 + 2 N2K3 + 3NK2

2D-NLMS 3NK2 + 2 3NK2

Table 3.1: Computational Complexity of BFAM 2D-RLS per Iteration in terms of complex
multiplication and complex addition

pre-array(LHS of (19)). Then gn is propagated iteratively [18],[21] as,



γ−1/2(n− 1)
[
um(n, 0) umn−1,0 . . . u

m(n,K − 1)umn−1,K−1

]


0

g
(0)
n−1γ

−1/2(n− 1)
...
0

g
(K−1)
n−1 γ−1/2(n− 1)




L̄

(0)
n−1

L̄
(1)
n−1
...

L̄
(K−1)
n−1




Θn

=



γ−1/2(n) 01×2

g
(0)
n γ−1/2(n)

...
0

g
(K−1)
n γ−1/2(n)

0


√
λ.


L̄

(0)
n

L̄
(1)
n

...
L̄

(K−1)
n




(3.38)

Step-3: The weight vector W
(q)
n is updated as

W(m)
n = W(m)

n−1 +
(
h(m)
n −W(m)

n u(m)
n

) [
gnγ

−1/2(n)
]H
γ1/2(n) (3.39)

where gnγ−1/2(n) and γ−1/2(i)−1 are read from the post-array in (25).
After the convergence of the filter, the transmitter starts sending data symbols. During

this phase the LS estimate of the channel is obtained using the Decision Directed(DD) [16]
technique discussed in the previous section .

3.5 Simulation setup

The computer simulation is performed in MATLAB for 16-QAM OFDM based two-way relay
systems. The number of subchannel is 64. The pedestrian-A (pedA), pedestrian-B (pedB) and
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Figure 3.3: pedA channel power delay profile
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Figure 3.4: pedB channel power delay profile
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Figure 3.5: vehA channel power delay profile
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Figure 3.6: Frequency response of the channels
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Figure 3.7: Dependence of channel estimation MSE and forgetting factor for FAM 2D-RLS

vehicular-A (vehA) channel model is used to evaluate the channel estimator performance. It
is assumed that the nodes in pedA and pedB move with a velocity of 5 km/hr and 15 km/hr
respectively while the nodes have a velocity of 60 km/hr in the vehA environment. Channel
bandwidth is 8MHz and carrier frequency is 2.5 GHz. The power delay profiles of these chan-
nels are respectively depicted in Figure 3.3,3.4 and 3.5. Sufficient channel prefix (CP ) is added
such that ISI is eliminated. In the case of pedA channel CP is 3, for pedB channel CP is 29
and for vehA channel CP is 20. The forgetting factor of FAM 2D-RLS, λ = 0.995 and step
size µ = 0.001 for 2D-NLMS.

3.6 Results and Analysis

In Figure 3.6, the frequency response of pedA, pedB and vehA channels are shown. It is ob-
served that pedB and vehA are highly frequency selective compared to pedA channel. In Figure
3.7, the dependence of MSE for varying values of forgetting factor is shown. It is observed that
λ = 0.995 gives the best result. The computational complexity of various 2D adaptive filters are
shown in Table 3.1. The computational complexity of BFAM 2D-RLS is only O(NK

2

M
) while

that of FAM 2D-RLS is O(NK2) and that of 2D-RLS is O(N2K3), where K is the channel
frequency response length and N is the number of OFDM samples for which the channel is
correlated. In Figure 3.8,3.9 the convergence performance of FAM 2D-RLS and 2D-NLMS for
estimating h(1) and g(1) in pedA environment is shown for varying SNR. Similarly convergence
performance of the two filters are shown for pedB and vehA environment in Figure 3.10,3.11
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Figure 3.8: Convergence performance of FAM 2D-RLS and 2D-NLMS for estimating h(1) in
the case of a pedA channel
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Figure 3.9: Convergence performance of FAM 2D-RLS and 2D-NLMS for estimating g(1) in
the case of a pedA channel
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Figure 3.10: Convergence performance of FAM 2D-RLS and 2D-NLMS for estimating h(1) in
the case of a pedB channel
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Figure 3.11: Convergence performance of FAM 2D-RLS and 2D-NLMS for estimating g(1) in
the case of a pedB channel
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Figure 3.12: Convergence performance of FAM 2D-RLS and 2D-NLMS for estimating h(1) in
the case of a vehA channel
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Figure 3.13: Convergence performance of FAM 2D-RLS and 2D-NLMS for estimating g(1) in
the case of a vehA channel
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M MSE(dB) at SNR=30dB MSE(dB) at SNR=20dB MSE(dB) at SNR=10dB
1 -48 -28 -18
2 -49 -29 -19
4 -46 -27 -17
8 -35 -19 -9

16 -25 -13 -2
32 -18 -10 does not converge

Table 3.2: Performance of BFAM 2D-RLS for varying M in case of pedA channel

M MSE(dB) at SNR=30dB MSE(dB) at SNR=20dB MSE(dB) at SNR=10dB
1 -46 -30 -19
2 -46 -30 -19
4 -46 -30 -19
8 -47 -31 -19

16 -48 -31 -20
32 -49 -33 -21

Table 3.3: Performance of BFAM 2D-RLS for varying M in case of pedB channel

and Figure 3.12,3.13 respectively. It is seen that FAM 2D-RLS converges much faster than
2D-NLMS in all the cases. In Table 3.2, the MSE performance of BFAM 2D-RLS is shown
for varying number of blocks M in a pedA channel environment. The MSE increases as M in-
creases. This is because pedA is not highly frequency selective as observed in Figure 3.6. Hence
when we break up the channel frequency response vector into blocks, the whole 2D correlation
is not taken into consideration. In Table 3.3 and Table 3.4 the MSE performance of BFAM 2D-
RLS for pedB and vehA channel is shown respectively. It is observed that MSE decreases as M
increases. This is due to the fact that pedB and vehA are highly frequency selective channels
and hence the channel frequency response is correlated only across a few frequency samples.
Hence we note that BFAM 2D-RLS becomes effective for the case of highly frequency selective
channels like pedB and vehA. We also performed the simulation for 4-QAM, 32-QAM and 64-
QAM based OFDM systems. The results obtained are similar to that obtained for the 16-QAM
based OFDM system. This is due to fact that we have assumed in this thesis that the symbol
detection is perfect. If we account for the detection error , then the performance of the different
M-ary QAM systems might be different.

In Figure 3.13 the convergence of FAM 2D-RLS is compared with 2D-NLMS for estimating
h(1,1) i.e. channel between S1 and first antenna of relay for case of two-way relay with relay
capability. SNR is 30dB. The channel is assumed to be vehA at 60 km/hr. As expected, FAM
2D-RLS outperforms 2D-NLMS. We do not perform further analysis of this estimation problem
because as mentioned before, the channel estimation problem for two-way relay with relay
capability is exactly same as MIMO channel estimation.
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M MSE(dB) at SNR=30dB MSE(dB) at SNR=20dB MSE(dB) at SNR=10dB
1 -43 -22 -13
2 -43 -23 -13
4 -43 -26 -13
8 -44 -30 -14

16 -46 -31 -16
32 -47 -33 -17

Table 3.4: Performance of BFAM 2D-RLS for varying M in case of vehA channel

Figure 3.14: Convergence performance of FAM 2D-RLS & 2D-NLMS for estimating h(1,1) at
SNR = 30dB
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3.7 Conclusion

In this chapter we introduced adaptive filter based channel estimation schemes for OFDM two-
way relay systems with node capability. The adaptive filter used in this chapter is known as
BFAM 2D-RLS which is a modified version of FAM-2D-RLS. It was shown that the MSE
performance of BFAM 2D-RLS filter deteriorates significantly for the case of pedA channel as
the number of blocks increases while in the case of pedB and VehA channels, MSE performance
improves. Hence we conclude that BFAM 2D-RLS with large number of blocks are useful in the
case of highly frequency selective channels while we have to use FAM 2D-RLS (single block
BFAM 2D-RLS) or BFAM 2D-RLS with less blocks in the case of low frequency selective
channels. In all cases it was observed that FAM 2D-RLS and BFAM 2D-RLS converged much
faster than 2D-NLMS filter. We also introduced a FAM 2D-RLS filter estimation scheme for
two-way relay with relay capability. It is observed that two-way relay with relay capability has
the same structure as MIMO systems.
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Chapter 4

Adaptive OFDM Based Two-Way Relay
Systems

4.1 Introduction

In this chapter we introduce the concept of Adaptive OFDM (AOFDM) for two-way relay sys-
tem. In an OFDM system, the channel is divided into subchannels and data symbols are sent
over it. The data rate and BER performance of the system can be improved if the channel
is known at the transmitter. Based on the gains of each subchannel, the modulation scheme
and power can be varied [58],[59]. This is known as bit and power loading [60]. Most of the
earlier works on loading were implemented for wired systems. AOFDM for wireless system
was first proposed in [61]. AOFDM has been recently introduced for one way relay systems
in [62],[63],[64]. Adaptive modulation based two-way relay system was first introduced in
[65]. But all these works assumed that CSI is perfectly known. But in reality it is estimated
[17]. Hence the effect of channel estimation error on the loading algorithms should be analyzed.
Some of the research work for channel imperfection based AOFDM for non relay based systems
are [66], [67] ,[68]

4.2 System Model

Consider a two-way relay system with transmitting nodes S1 ,S2 and relay R. Both the nodes
and relay are single antenna devices. During Multiple Access (MA) phase both S1 and S2 send
K subchannel OFDM data to R simultaneously. The Channel Prefix (CP) added is assumed to
be sufficient to mitigate the effect of ISI. The frequency domain data received at the relay at
time n after removal of CP is,

y(R)
n = X(1)

n c(1)
n + X(2)

n c(2)
n + n(R)

n (4.1)
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where c
(1)
n =

[
c(1)(n, 0), · · · , c(1)(n,K − 1)

]T and c
(2)
n =

[
c(2)(n, 0), · · · , c(2)(n,K − 1)

]T are
the K × 1 channel frequency response vector between S1 − R and S2 − R respectively. The
diagonal matrices X

(1)
n and X

(2)
n consists of the data vector sent from S1 and S2 respectively.

The AWGN noise vector at relay is n
(R)
n . The relaying scheme is considered to be AF, hence

y
(R)
n is scaled by an amplifying factor αn as defined in the previous chapter. This amplified data

is then broadcasted by the relay. The data received at S1 and S2 are respectively given as,

y(1)
n = αn(X(1)

n h(1)
n + X(2)

n g(1)
n ) + w(1)

n (4.2)

and

y(2)
n = αn(X(2)

n h(2)
n + X(1)

n g(2)
n ) + w(2)

n (4.3)

where h
(1)
n =

[
h(1)(n, 0), · · · , h(1)(n,K − 1)

]T
= c

(1)
n � c

(1)
n ,g

(1)
n = g

(2)
n = c

(1)
n � c

(2)
n and

h
(2)
n =

[
h(2)(n, 0), · · · , h(2)(n,K − 1)

]T
= c

(2)
n � c

(2)
n . Since g

(1)
n = g

(2)
n , we ignore the

superscript, and this channel is equal to gn = [g(n, 0), · · · , g(n,K − 1)]T . If h
(1)
n ,gn and

h
(2)
n ,gn is known respectively at S1 and S2 then the self interference terms can be subtracted.

After self interference cancellation the available data is,

s(1)
n = αnX

(2)
n gn + w(1)

n (4.4)

s(2)
n = αnX

(1)
n gn + w(2)

n (4.5)

The instantaneous SNR at kth subchannel of S1 and S2 is respectively given as,

SNR(1)(n, k) =
α2
n|g(n, k)|2E(2)(n, k)

α2
n|c(1)(n, k)|2N (R) +N (1)

(4.6)

SNR(2)(n, k) =
α2
n|g(n, k)|2E(1)(n, k)

α2
n|c(2)(n, k)|2N (R) +N (2)

(4.7)

where E(1)(n, k) and E(2)(n, k) are the energy provided to kth subchannel at S1 and S2 respec-
tively. The noise power at S1 is N (1) while that at S2 is N (2). The noise power at R is N (R).
The instantaneous sum rate of a two-way relay system is defined as,

Rn =
1

2

(
K−1∑
k=0

log2

(
1 + SNR(1)(n, k)

)
+ log2

(
1 + SNR(2)(n, k)

))
(4.8)

It is observed that for a two-way relay the rate of the system consists of the sum of rates obtained
at S1 and S2. The pre-log factor of 1

2
is due to the fact that two time slots are required in order

for the overall communication between S1 and S2 to be completed i.e, data is sent from S1
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and S2 simultaneously to the relay in the first time slot while in the next time slot the relay
broadcasts an amplified version of this data to the nodes. The pre-log factor should be taken
into consideration while designing the adaptive OFDM algorithm. Since the equation of data
rate in (4.8) is different from the equation of data rate of a non relay system or one-way relay,
some modifications have to be made in the derivation of existing loading algorithms.

4.3 Obtaining Individual CSI from Overall CSI

Implementing adaptive OFDM requires the knowledge of SNR(2)(n, k) and SNR(1)(n, k) at
S1, S2 respectively. It is observed in (4.6) and (4.7) that SNR(1) and SNR(2) can be only
calculated if the individual channels c(2) and c(1) are known at S1 and S2. It was shown in
the previous chapter that DDCE adaptive filter based channel estimator could be designed to
estimate h

(1)
n ,gn at S1 and h(2),gn at S2. We know that h(1) = c(1)�c(1) and g(1) = c(1)�c(2).

Let’s consider the kth frequency coefficient h(1)(n, k) = (c(1)(n, k))2 at S1. The individual
channel can be obtained with a sign ambiguity by taking the square root.√

h(1)(n, k) = ±c(1)(n, k) (4.9)

We may choose + or − sign. Since g(n, k) is available, we can obtain c(n, k) as,

g(n, k)

±c(1)(n, k)
= ±c(2)(n, k) (4.10)

Similarly c(1)(n, k) can be calculated at S2. It must be noted that the sign ambiguity only
appears in pairs, i.e if −c(1)(n, k) is selected when in reality the channel is +c(1)(n, k), then we
obtain−c(2)(n, k). This is known as simultaneous sign ambiguity [9], [69]. The sign ambiguity
will not be a problem because the SNR calculation requires only the knowledge of magnitude
of channel coefficient.

4.4 Adaptive OFDM for Two-Way Relay Systems

The channel capacity of kth channel of S1 is defined as,

R(1)(n, k) =
1

2
log2

(
1 + SNR(2)(n, k)

)
(4.11)

This is the maximum rate that can be transmitted assuming that the probability of error tends to
zero. In practice the probability of error is greater than zero. Thus actual number of bits that
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can be transmitted per QAM symbol on the kth subchannel is,

b(1)(n, k) =
1

2
log2

(
1 +

SNR(2)(n, k)

Γ

)
(4.12)

where Γ is the gap function [19]. The equal probability of error at S2 for each subchannel is
assumed to be P (2)

e . The gap function can be calculated as [19],

Γ =
1

3

[
Q−1

(
b(1)(n, k)P

(2)
e

4(1− 2−b(1)(n,k)/2)

)]2

(4.13)

Let SNR(2)(n, k) = E(1)(n,k)

CNR(2)(n,k)
where,

CNR(2)(n, k) =
α2|g(1)(n, k)|2

α2|c(2)(n, k)|2N (R) +N (2)
(4.14)

then (4.12) can be rewritten as,

b(1)(n, k) =
1

2
log2

(
1 +

E(1)(n, k)CNR(2)(n, k)

Γ

)
(4.15)

Hence the instantaneous energy applied to kth subchannel at S1 is,

E(1)(n, k) =
Γ

CNR(2)(n, k)
(22b(1)(n,k) − 1) (4.16)

The amount of extra energy needed to add a single bit to the kth subchannel is ,

E
(1)
b(n,k)+1 − E

(1)
b(n,k) = Γ

CNR(2)(n,k)
(22(b(n,k)+1) − 1)− Γ

CNR(2)(n,k)
(22b(n,k) − 1)

= 3Γ
CNR(2)(n,k)

22b(n,k)
(4.17)

where E(1)
b(n,k) is the amount of energy required to transmit b(1)(n, k) bits from S1 at a given

probability of error. The LHS of above equation is known as incremental energy. The loading
algorithm assigns bits to the subchannel having the least incremental energy.

4.4.1 Levin-Campello Loading Algorithm

In [20] Campello proposed the necessary and sufficient conditions for a bit distribution to be a
solution of Margin Adaptive (MA) and Rate Adaptive (RA) loading algorithms. Assume that
we have distributed the bits according to a vector b

(1)
n =

[
b(1)(n, 0) · · · b(1)(n,K − 1)

]T . This
allocation is considered to be energy efficient if,

max
i

∆E
(1)
b(n,i) ≤ min

j
∆E

(1)
b(n,j)+1 i, j = 0, · · · , K − 1. (4.18)
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where ∆E
(1)
b(n,j)+1 is the incremental energy as defined in (4.17). If any random bit allocation

is provided then it can be converted to an efficient allocation by performing the efficientizing
algorithm [20] as given below,

Step-1: Find max
i

∆E
(1)
b(n,i) and min

j
∆E

(1)
b(n,j)+1

Step-2: Check if ∆E
(1)
b(n,j)+1 < ∆E

(1)
b(n,i), where j, i = 0 · · ·K − 1

Step-3: If step-2 is satisfied, then one bit from subcarrier i should be transferred to j.
Step-4: Go to step-1 and then to step-2 until the condition in step-2 is not satisfied.

RA Solution

In RA solution the following optimization problem is solved,

max
b
(1)
n ∈ZK

K−1∑
k=0

b(1)(n, k)

subject to
K−1∑
k=0

E(1)(n, k) ≤ E(1) (4.19)

where E(1) is the total energy available at S1. In order to satisfy this constraint we have to
modify the efficientizing algorithm. This is known as E-tightening . A bit distribution is E-tight
if,

k−1∑
K=0

E
(1)
b(n,k) ≤ E(1) ≤

k−1∑
K=0

E
(1)
b(n,k) + min

0≤k≤K−1
∆E

(1)
b(n,k)+1 (4.20)

This means we can add an extra bit only if more energy than the maximum energy E(1) is
available. The algorithm for E-tightness is given as,
Step-1: The total energy assigned to the subchannel by S1 till the present iteration is E(1)

a =∑K−1
k=1 E

(1)
b(n,k)

Step-2: If E(1) − E
(1)
a < 0, i.e. more energy is allocated than the maximum available, then

remove a bit from subchannel having maximal incremental energy. Again check if condition is
satisfied.
Step-3: If E(1) − E

(1)
a ≥ min

k
∆Eb(n,k)+1, i.e there is still energy available to increment the

number of bits. Add a bit to the subchannel requiring the minimum incremental bit energy.
Perform this step until energy is allocated optimally.
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MA solution

In MA solution the following optimization problem is satisfied,

min
b
(1)
n ∈ZK

K−1∑
k=0

E(1)(n, k)

subject to

K−1∑
k=0

b(1)(n, k) = B(1) (4.21)

where B(1) is the total bits that is to be transmitted in a single OFDM symbol from S1. Some
modifications are required to the efficientizing algorithm. This is known as B-tightening algo-
rithm as given below,
Step-1: Let the total assigned bit be Ba =

∑K−1
k=0 b

(1)(n, k)

Step-2: If B(1)
a > B(1), i.e. more bits are assigned than the target. In this case remove a bit from

the subcarrier having maximal incremental energy.
Step-3: If B(1)

a < B(1), then add a bit to the subcarrier having the minimal incremental energy.
It can be observed for RA and MA solution that, they both solve a similar optimization problem.
This duality is explained in [70].

4.5 Channel Estimation Error and AOFDM

In the previous sections it was assumed that the perfect CSI information was available at S1

and S2. In reality only as estimate of CSI, which can be obtained by the method proposed
in the previous chapter is available. Hence the SNR values calculated at the nodes will be
different compared to (4.6), (4.7). The estimate of the channel frequency response vectors are
ĥ

(1)
n , ĥ

(2)
n , ĝn. They are defined as,

ĥ(1)
n = h(1)

n + ξ
h
(1)
n

(4.22)

ĥ(2)
n = h(2)

n + ξ
h
(2)
n

(4.23)

ĝn = gn + ξgn (4.24)

where ξ
h
(1)
n
, ξ

h
(2)
n
, and ξgn are the estimation error vectors. It can be assumed to be an AWGN

vector [66] with variance equal to the MSE of the channel estimation error. The MSE of channel
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estimation are defined as,

MSE
h
(1)
n

= E

[
‖ξ

h
(1)
n
‖2

K

]
(4.25)

MSE
h
(2)
n

= E

[
‖ξ

h
(2)
n
‖2

K

]
(4.26)

MSEgn = E

[
‖ξgn‖2

K

]
(4.27)

In this chapter without loss of generality, we assume that MSE
h
(1)
n

= MSE
h
(2)
n

= MSEgn =

MSE. Due to the channel estimation error, the self interference cancellation defined in (4.4),(4.5)
should be modified as,

s(1)
n = αnX

(2)
n gn + w(1)

n − αnX(1)
n ξ

h
(1)
n

(4.28)

s(2)
n = αnX

(1)
n gn + w(2)

n − αnX(2)
n ξ

h
(2)
n

(4.29)

Equation (4.6),(4.7) is modified as,

SNR(1)(n, k) =
α2
n|g(n, k)|2E(2)(n, k)

α2
n|c(1)(n, k)|2N (R) +N (1) − α2E(1)(n, k)MSE

(4.30)

SNR(2)(n, k) =
α2
n|g(n, k)|2E(1)(n, k)

α2
n|c(2)(n, k)|2N (R) +N (2) − α2E(2)(n, k)MSE

(4.31)

In a practical scenario this modified SNR is used for implementing AOFDM. In the next section
computer simulations are performed to analyze the performance of AOFDM on two-way relay
systems with channel estimation error.

4.6 Simulation setup

The channels used are pedA, pedB and vehA as discussed in previous chapter. The number
of subcarriers for OFDM is 64. The total number of bits B used in MA is 256 and the total
available energy at S1, S2 is E(1) = E(2) = 30dB. The target probability of error is 10−5.

4.7 Results and Analysis

In Figure 4.1, the normalized individual pedA channels c(1) and c(2) is shown. The product
of these two channels form the combined channel gn as shown in Figure 4.2. The gain of
gn is used in calculating SNR. It is observed that the gain of the channel gn is high only if
both c(1) and c(2) has high gain as can be observed from Figure 4.1,4.2. In Figure 4.3,4.4 bit
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Figure 4.2: Overall pedA channel gn

58



0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

subchannel

bi
ts

 a
ss

ig
ne

d

 

 
RA
MA

Figure 4.3: Bit allocation for RA and MA assuming perfect CSI for pedA channel

allocation and energy allocation for perfect CSI is plotted for pedA channel. Comparing with
Figure 4.2, it can be observed that bit and energy is allocated based on the gain of the combined
channel. When the combined subchannel gain is very low, no bit or energy is allocated to this
subchannel. Hence the concept of capacity versus outage is insignificant in the case of AODFM
[1]. Similarly bit and power allocation are depicted for pedB channel in Figure 4.5,4.6. The
performance of the loading algorithm for vehA channel environment is shown in Figure 4.7,4.8.
In Table 4.1, the total bits allocated in RA and total energy allocated in MA are shown for
varying MSE of channel estimation of combined channel in pedA environment. It is seen that
for MSE ≤ −15dB, the performance of AOFDM is similar to that of a perfect CSI case.
Similar observations are made for the case of pedB and vehB channels in Table 4.2,4.3. In the
previous chapter it was observed that the MSE of channel estimation using FAM 2D-RLS was
lesser than -15dB in all cases of SNR except for vehA channel where it was -13dB for SNR =
10dB. But when the number of blocks were increased, the MSE of BFAM 2D-RLS decreased
to -17dB. In the case of pedA channel, increasing the blocks decreased the MSE to -10dB for
SNR=20dB while the filter does not converge in the case of SNR = 10dB. Hence we can state
that the Levin-campello based loading for two-way relay works well when we use a BFAM
2D-RLS with large number of blocks in the case of pedB and vehA channel, while the block
number should be less in the case of pedA channel. BFAM 2D-RLS with M = 1 based was
seen to provide the best estimate for implementing AOFDM in case of pedA channel while
BFAM 2D-RLS with M=32 gives the best estimate for implementing AOFDM in case of pedB,
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Figure 4.4: Energy allocation for RA and MA assuming perfect CSI for pedA channel

MSE (dB) Bits assigned (RA) Energy assigned in dB (MA)
perfect CSI 122 38.7701

-30 122 38.7703
-20 121 38.7712
-15 120 38.7741
-10 103 39.1032
0 81 39.9241

Table 4.1: Performance of Levin-Campello RA/MA loading algorithm for varying values of
MSE of pedA channel estimation for two-way relay

vehA channel.

4.8 Conclusion

In this chapter we implemented an AOFDM based two-way relay system. A simple method is
proposed to obtain the individual channels from the combined channel of a two-way relay. This
CSI is then used to calculate the SNR. The AOFDM is based on Levin-Campello algorithm. But
our framework can be used to implement any other AOFDM schemes for the case of two-way
relays. The effect of CSI estimation error on performance of AOFDM is analyzed. It is observed
that MSE ≤ −15dB gives similar performance as that of perfect CSI case. Hence if we have a
channel estimator with MSE ≤ −15dB, then an AOFDM based scheme can be used for two-
way relay without loss of performance. In the case of a time varying channel, the gain varies

60



0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

subchannel

no
rm

al
iz

ed
 g

ai
n

Figure 4.5: Overall pedB channel gn
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Figure 4.6: Bit allocation for RA and MA assuming perfect CSI for pedB channel
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Figure 4.7: Energy allocation for RA and MA assuming perfect CSI for pedB channel
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Figure 4.8: Overall vehA channel gn
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Figure 4.9: Bit allocation for RA and MA assuming perfect CSI for vehA channel

0 10 20 30 40 50 60 70
18

20

22

24

26

28

30

32

34

subchannel

E
ne

rg
y 

as
si

gn
ed

 (
dB

)

 

 
RA
MA

Figure 4.10: Energy allocation for RA and MA assuming perfect CSI for vehA channel
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MSE (dB) Bits assigned (RA) Energy assigned in dB (MA)
perfect CSI 282 28.5621

-30 282 28.5621
-20 280 28.5563
-15 279 28.5416
-10 261 29.1033
0 243 29.7243

Table 4.2: Performance of Levin-Campello RA/MA loading algorithm for varying values of
MSE of pedB channel estimation for two-way relay

MSE (dB) Bits assigned (RA) Energy assigned in dB (MA)
perfect CSI 273 27.0564

-30 273 27.0565
-20 271 27.0572
-15 270 27.0612
-10 263 28.1014
0 234 29.0065

Table 4.3: Performance of Levin-Campello RA/MA loading algorithm for varying values of
MSE of vehA channel estimation for two-way relay

w.r.t time. This can be tracked with the help of an adaptive filter. Hence our proposed method for
adaptive channel estimation in the previous chapter can be used for estimating and tracking the
channel, followed by implementation of an AOFDM scheme. In the case of pedA channel the
number of blocks for BFAM 2D-RLS should be less so that the condition of MSE ≤ −15dB

is satisfied for low SNR. In the case of pedB and vehA channels the number of blocks of BFAM
2D-RLS should be high so that the condition of MSE ≤ −15dB is satisfied for low SNR.

64



Chapter 5

Conclusion

In this thesis a low complexity adaptive DDCE based channel estimation is proposed for two-
way relay systems. The low complexity channel estimator called FAM 2D-RLS filter has a
computational complexity comparable to that of 2D-NLMS scheme while having similar con-
vergence performance of the classic 2D-RLS algorithm. The steady state analysis of an adaptive
filter with weight matrix is derived based on the fact that any adaptive filter can be considered
as an iterative equation solver with RLS being a special case. Hence our method can be used
for analyzing any adaptive filter with weight matrix. The channel estimation can either be per-
formed at the relay or at the node. FAM 2D-RLS channel estimation for both these schemes
are proposed. The convergence performance is analyzed by varying the SNR value. The com-
putational complexity of FAM 2D-RLS is further reduced. This adaptive filtering scheme is
called BFAM 2D-RLS. The BFAM 2D-RLS filter consists of M parallel FAM 2D-RLS filters
that estimates the channel frequency response vector at each iteration. It is seen that BFAM
2D-RLS has computational complexity lesser that FAM 2D-RLS by a factor of 1

M
. The MSE

performance of BFAM 2D-RLS increases asM is increased for pedA channel while it decreases
for pedB and vehA channels. The estimated channel is used for implementing a bit/power load-
ing algorithm for two-way relay. A simple technique for separating the combined channel is
proposed so that the SNR can be calculated. The loading algorithm used is the Levin-Campello
algorithm. But our framework could be used for implementing other loading algorithms for
two-way relay systems. It is observed that the loading algorithm with channel estimation error
of MSE ≤ −15dB has similar performance as perfect CSI case.

The future work comprises of implementing the FAM 2D-RLS based channel estimation
technique in a cooperative communication scheme. Hence it finds application in a decentralized
cognitive relay network.
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Appendix A

OFDM

In a wireless communication scenario a symbol transmitted will be reflected by scatterers like
trees or buildings present in between the transmitter and receiver. Due to the presence of multi-
ple scatterers, we obtain multiple copies of the symbol. This is known as the multipath effect.
Let us consider a simple two path channel with channel coefficient h0 and h1. If x(0), x(1) are
the symbols transmitted, then the received symbols would be, y(0)

y(1)

y(2)

 =

 h0 0

h1 h0

0 h0

[ x(0)

x(1)

]
+

 n(0)

n(1)

n(2)

 (A.1)

where the coefficients n(.) comprises of Additive White Gaussian Noise (AWGN). The above
equation can be written as y = Hx + n. The channel estimation problem comprises of finding
the coefficients of H by observing y. After H is estimated the effect of the channel could
be removed by multiplying both sides of the equation by H−1. The complexity involved in
inverting this matrix could be drastically reduced if H can be converted into a diagonal matrix.
OFDM technique can be used to diagonalize the channel matrix. Initially the data symbols to be
transmitted are converted into groups of K. This K × 1 vector is known as transmission vector
and is denoted as x. The K point Inverse Discrete Fourier Transform (IDFT) of this vector is
performed. Let it be denoted as s = WHx, where W is theK point Discrete Fourier Transform
(DFT) matrix. Assuming that the channel length L is known, the last L− 1 frequency samples
of s are appended to the beginning of s. This redundant data is known as Cyclic Prefix (CP). So
the new transmission vector becomes scp and is of dimension K+L−1×1. At the receiver the
CP data is removed . Hence the received data is r = HWHx+n. It is seen that H is a circulant
matrix. Hence we can use a result from matrix theory which states that any circulant matrix is
diagonalized by the DFT matrix. Hence the channel matrix is diagonalized by WHWH = Λ,
where Λ is the diagonal matrix that contains the DFT coefficients of the channel coefficients. In
order to bring in this notion of diagonalizing the channel matrix, we perform a K point DFT of
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the received data vector r as shown,

Wr = WHWHx + Wn = Λx + Wn (A.2)

Hence OFDM channel estimation in the frequency domain is the problem of estimating the
diagonal elements in Λ by observing Wr. This could be estimated by making use of an adaptive
filter.
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Appendix B

Adaptive Filter

Assume the scenario of estimating a scalar zero mean random variable d by observing a zero
mean random vector u. The observation is assumed to be corrupted by noise. The dimension
of u is 1 ×M . In the standard literature on adaptive filter [24], d is known as desired data and
u is the observation vector. If w is the weight matrix of dimension M × 1, then the estimation
problem is to find a linear estimate of d such that the following cost function is minimized,

J(w) = E
[
|d− uw|2

]
(B.1)

where E is expectation operator. This cost function is know as the mean square error. In order
to minimize this function , the derivate with respect to w is taken and is then equated to zero.
The solution thus obtained is wo and is defined as,

wo = R−1
u Rdu (B.2)

where Ru = E
[
uHu

]
is the covariance matrix of u and Rdu = E

[
duH

]
is the cross covariance

vector of d and u. Unlike the case of mean square error, the closed form solution i.e wo might
not exist for general cost function [24]. It is also observed in (B.2) that, the inverse of the
M × M matrix Ru is to be performed. It has a computational cost of O(M3). In order to
alleviate these problems, we could use an iterative method to solve the linear equation. One of
the common iterative method is known as the steepest descent method. The basic idea of this
method is that at every iteration i a solution wi is obtained from the solution at time i− 1. The
weight update equation is,

wi = wi−1 + µp (B.3)

where µ is the step size and p is the negative of the gradient of cost function. The reason for
choosing the negative gradient is that it points towards the decreasing direction of the curve of
the cost function. Hence for the case of a cost function with a global minimum, if a proper step
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size is chosen the solution converges to the optimal value . The mean square error cost function
could be iteratively minimized by the following update equation [24],

wi = wi−1 + µ [Rdu −Ruwi−1] i ≥ 0 (B.4)

In order to perform the steepest descent algorithm we require the knowledge of exact statistics
i.e. Rdu and Ru. But it is rarely known in practice. Hence approximations of the covariance ma-
trices are made. Based on the approximations made, two of the commonly used adaptive filter
algorithms are Normalized Least Mean Square (NLMS) and Recursive Least Square Algorithm
(RLS).

B.1 NLMS Algorithm

NLMS algorithm is a modified version of the Least Mean Square(LMS) algorithm. The ap-
proximations of the covariance matrices at each iteration are Rdu,i = d(i)uHi and Ru,i = uHi ui.
Substituting this in (B.4), the LMS weight update equation is,

wi = wi−1 + µuHi [d(i)− uiwi−1] (B.5)

The above equation is modified to obtain the NLMS update equation as,

wi = wi−1 +
µ

ε+ ‖ui‖2
uHi [d(i)− uiwi−1] (B.6)

The reason for this modification is that in LMS the difference between wi and wi−1 depend on
the norm of ui. So when ui has a large norm, there would be large difference in the weights at
different iterations. This could be avoided if ui is divided by its norm. A small positive value ε
is added so that the algorithm does not breakdown in the situation when ‖ui‖2 ≈ 0.

B.2 RLS Algorithm

In the previous subsection it was seen that the NLMS and LMS equations where an approximate
iterative technique to minimize the mean square error. The RLS algorithm minimizes the Least
Square (LS) error. Minimizing the least square cost is approximately equal to minimizing the
mean square error when we have large number of observations. Assume that at time N where
N is very large we approximate the mean square error as,

E
[
|d− uw|2

]
≈ 1

N

N−1∑
i=0

|d(i)− uiw|2 (B.7)
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The LS cost function is obtained by removing the scaling factor 1
N

. This cost function could be
written in vector form as,

J(wN) = ‖yN −HNwN‖2 (B.8)

where

yN =


d(0)

...
d(N − 1)

 (B.9)

and

HN =


u0

...
uN−1

 (B.10)

This is the standard LS problem and for an overdetermined system its solution is wN =

(HH
NHN)−1HH

NyN . It can be observed that when HN is rank deficient the inverse of HH
NHN

does not exist and hence wN cannot be obtained. In order to alleviate this problem the LS cost
function is modified as,

J(w) = λ(N+1)wHΠw + (yN −HNw)HΛN(yN −HNw) (B.11)

where ΛN = diag
{
λN , λN−1, · · · , 1

}
and λ is known as forgetting factor. The term Π is

the regularization parameter.The cost function in (B.11) is known as exponentially weighted
regularized least square function. Usually forgetting factor is a value less than 1. So in (B.11)
it can be seen that as N increases the effect of regularization decreases. The solution for this
optimization problem is,

wN = (λN+1Π + HH
NΛNHN)−1HH

NΛNyN (B.12)

It can be seen in (B.12) that the inverse of the matrix always exist due to the presence of the
regularization parameter which is a positive definite matrix. The RLS algorithm can be used
to iteratively solve the linear equation in (B.12). Thus the complexity inherent in the matrix
inversion is reduced.
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Appendix C

Acronyms

AOFDM - Adaptive Orthogonal Frequency Division Multiplexing
BER - Bit Error Rate
BFAM 2D-RLS - Block Fast Array Multichannel 2D Recursive Least Square
DDCE - Decision Directed Channel Estimation
FAM 2D-RLS - Fast Array Multichannel 2D Recursive Least Square
LMS - Least Mean Square
MIMO - Multiple Input Multiple Output
MSE - Mean Square Error
NLMS - Normalized Least Mean Square
OFDM - Orthogonal Frequency Division Multiplexing
RLS - Recursive Least Square
SNR - Signal to Noise Ratio
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Appendix D

Notations

In this thesis bold face capital letters are used for matrices and bold face lower case letters are
used to represent vectors. Scalars are represented by normal font lower case letters. Conjugate
transpose is represented by (·)H and (·)T is used to represent transpose operation. The expecta-
tion operator, trace and Euclidean norm are represented by E[·], tr{·}, ‖ · ‖ respectively. We
use diag{·} to represent both a diagonal matrix and the vector containing the diagonal elements
of a matrix. Hadamard product is defined by �.
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