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Abstract

It is always an interest of a mankind to explore the various resources of the earth

such as minerals, agriculture, forestry, geology, ocean etc., Before the invention of the

remote sensing, in order to analyze the various resources it was required to visit the field

to take the different forms of data samples and later on those were processed further. The

revolution in terms of photography using satellite made it possible to view the earth’s

surface without being in touch with the area of interest. With the help of satellite tech-

nology it is also possible to view the locations on the earth which are not accessible by

the mankind. Remote sensing has effectively enabled the mapping, studying, monitoring

and management of various resources present on the earth. It has also enabled moni-

toring of environment and thereby helping in conservation. In the last four decades, the

advancement of the remote sensing technologies have improved the methods of collection,

processing and analysis of the data.

Remote sensing involves the acquiring of the pictorial data of the earth’s surface

without any type of physical contact. It provides the information which not only helps

in managing and protecting the natural resources but also helpful in the development

of land usage in terms of urban planning. One of the major advantages of the remote

sensing satellites is the ability to provide the repetitive observations of the same area.

This capability is very useful to monitor dynamic phenomena such as cloud evolution,

vegetation cover, snow cover, forest fires, etc. A farmer may use thematic maps to monitor

the health of his crops without going out to the field. A geologist may use the images to

study the types of minerals or rock structure found in a certain area. A biologist may

want to study the variety of plants in a certain location.

The image acquisition process of remote sensing system consists of sensing the reflected

electromagnetic energy from the surface of the earth. The amount of energy reflected from

the earth’s surface depends on the composition of the material. The variations in the

reflected energy are captured by the remote sensing sensors placed in the satellite or

aircraft which are then quantized and digitized into the pictorial form i.e., images. The

smallest element of an image i.e., pixel corresponds to an area of a few squared meters in

the actual scene which is referred to the spatial resolution of the given sensor. The spatial

resolution is limited by the instantaneous field of view (IFOV) of the remote sensing
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system. Smaller the IFOV, lesser is the area covered by sensor and hence the amount

of collected light energy is reduced. By keeping the small IFOV, one can increase the

amount of light falling on the sensor i.e. photo detector element by increasing the spectral

width of the sensor. This results in wider spectral width with high spatial resolution.

Alternatively, one can use the sensor with wide IFOV that covers large surface area. This

makes the sensor to collect more light energy but the image formed has lower spatial

resolution. However, in this case the spectral width of the sensor can be made narrower

in order to sense the data in that spectral width which results in an image with high

spectral resolution having fine spectral details. The data with narrower spectral width

always helps in better classification since the materials present in the scene reflect the

light energy of different wavelengths based on their composition. If one can capture the

reflected energy at different bands of wavelengths then it provides separate information

about the same scene content. However, this set of images obtained at different spectral

bands is possible with the compromise of poor spatial resolution. This trade off in high

spatial and spectral resolutions imposes the limitations on the hardware construction in

the remote sensing sensors.

It is always of interest to visualize the content of the scene with high spatial and

spectral resolutions. However, constraints such as the tradeoff between high spatial and

spectral resolutions of the sensor, channel bandwidth, on board storage capability of

a satellite system place the limitations on capturing the images with high spectral and

spatial resolutions. Due to this, many commercial remote sensing satellites such as Quick-

bird, Ikonos and Worldview-2 capture the earth’s information with two types of images:

a single panchromatic (Pan) and a number of multispectral (MS) images. Pan has high

spatial resolution with lower spectral resolution while MS image has higher spectral re-

solving capability with low spatial resolution. An image with high spatial and spectral

resolutions i.e., fused image of MS and Pan data can lead to better land classification,

map updating, soil analysis, feature extraction etc. Also, since fused image increases

the spatial resolution of the MS image it results in sharpening the image content which

makes it easy to obtain greater details of the classified maps. The pan-sharpening or

multi-resolution image fusion is an algorithmic approach to increase the spatial resolu-

tion of the MS image with the preservation of spectral contents by making use of the high

spatial resolution Pan image. In this thesis we address some new multi-resolution image
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fusion techniques.

In multi-resolution image fusion problem, the given MS and Pan images have high

spectral and high spatial resolutions, respectively. One can think of obtaining the fused

image using these two by injecting the missing high frequency details from the Pan image

into the MS image. The quality of the final fused image will then depend on the method

used for high frequency details extraction and also on the technique for injecting these

details into the MS image. In the literature various approaches have been proposed based

on this idea. Motivated from this, we first address the fusion problem by using different

edge preserving filters in order to extract the high frequency details from the Pan image.

Specifically, we have chosen the guided filter and difference of Gaussians (DoGs) for detail

extraction since these are more versatile in applications involving feature extraction,

denoising, etc. Using these edge preserving filters we extract the high frequency details

from the Pan image and inject them into the upsampled MS image.

One of the drawbacks of the fusion methods using edge preserving filters is the up-

sampling operation required to perform on the MS image before the injection of high

frequency details into the same. Since this operation do not consider the effect of alias-

ing it results in distortions in the final fused image. Solving the problem of fusion by

model based approach is accurate since aliasing present due to undersampled MS ob-

servation can be taken care of while modeling. Many researchers have used the model

based approaches for fusion with the emphasis on improving the fused image quality

and reducing the color distortion. In a model based method, the low resolution (LR)

MS image is modeled as the blurred and noisy version of its ideal high resolution (HR)

fused image. Since this problem is ill-posed, it requires regularization to obtain the final

solution. In the proposed model based approach a learning based method that uses Pan

data is used to obtain the required degradation matrix that accounts for aliasing. We use

sub-sampled as well as non sub-sampled contourlet transform based learning to obtain

close approximation to fused image (initial estimate). Then using the proposed model,

the final solution is obtained by solving the inverse problem where a Markov random field

(MRF) smoothness prior is used for regularizing the solution.

We next address the fusion problem based on the concept of self similarity and com-

pressive sensing (CS) theory. In the earlier proposed approach, the degradation matrix

entries were estimated by modeling the relationship between the Pan derived initial esti-
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mate of the fused MS image and LR MS image which may be inaccurate as the estimate

depends on the low spectral resolution Pan data. If the initial fused estimate is derived

using the available LR MS image only, then the transformation between the estimated

high resolution initial estimate and the observed MS image would be more accurate.

This makes the estimated degradation matrix to better represent the aliasing. In this

case we obtain the initial estimate using the available LR MS image only. Here, we use

the property of natural images that the probability of availability of same or similar in-

formation in the current resolution and its coarser resolution is high. We exploit this self

similarity concept and combine it with CS theory in order to obtain the initial estimate

of fused image which is then used in obtaining the degradation. Finally, in order to

better preserve the spatial details and to improve the estimate of fused image, we solve

the multi-resolution fusion problem in a regularization framework by making use of a

new prior called Gabor prior. Use of Gabor prior ensures features at different spatial

frequencies of fused image image to match those of the available HR Pan image. Along

with Gabor prior we also include a MRF prior which maintains the spatial correlatedness

among the HR pixels.
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Chapter 1

Introduction

One of the major achievements of mankind is to record the data of what we observe in

the form of photography which is dated to 1826. Man has always tried to reach greater

heights (treetops, mountains, platform and so on) to observe the phenomenon of interest,

to decide habitable places, farming and such other activities. This motivates man to take

photographs of earth from elevated platforms. To take the elevated photographs initially

balloons, pegions and kites were used to capture the scene. After the invention of the

aircraft in 1903, the first aerial photograph with stable platform was made possible in

1909. The primary platform that was used to carry remotely sensed instruments shifted

from aircrafts to satellites in 1960s and 1970s. Satellites can cover much more land space

than planes and can monitor areas on a regular basis. During the same time the word

‘remote sensing ’ replaced the frequently used word ‘aerial photograph’.

The new era in remote sensing began when the United State launched the first earth

observation satellite called earth resources technology satellite (ERTS-1) dedicated pri-

marily for land observation. This was followed by many other satellites like Landsat 1-5,

systeme pour l’ observation de la terre (SPOT), Indian remote sensing (IRS), Quickbird,

Ikonos, etc. Change in image format from analog to digital was another major step to-

wards the processing and interpretation of remotely sensed data [1]. The digital format

made it possible to display and analyze imagery using computers, a technology that was

also undergoing rapid change during this period. Due to the advancement of technology

and development of the new sensors capture of the earth’s surface in several different por-

tions of the electro-magnetic spectrum are possible these days. One could now view the

same area by acquiring the data as several different images in portions of the spectrum

1
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beyond what the human eye could view. The remote sensing technology made it possible

to see things occurring on the earth’s surface which may not be detected by human eye.

The appropriate definition of ‘remote sensing ’ can be given as follows [1]. “It means

sensing of the earth’s surface from space by making use of the properties of electromagnetic

wave emitted, reflected or diffracted by the sensed objects, for the purpose of improving

natural resource management, land use and the protection of the environment.” Remote

sensing has enabled mapping, studying, monitoring and management of various resources

like agriculture, forestry, geology, water, ocean etc. It has further enabled monitoring of

environment thereby helping in conservation. One of the major advantage of the satellite

is its ability to provide repetitive observations of the same area with intervals of few

minutes to a few weeks depending on the sensor and the orbit. This capability is very

useful to monitor dynamic phenomena such as cloud evolution, vegetation cover, snow

cover, forest fires, etc. A farmer may use thematic maps to monitor the health of his

crops without going out to the field. A geologist may use the images to study the types

of minerals or rock structure found in a certain area. A biologist may want to study the

variety of plants in a certain location. In the last four decades satellite imaging has grown

as a major tool for collecting information on almost every aspect on the earth.

The imaging sensors on board can acquire information in different spectral bands

on the basis of the exploited frequency or at different resolutions. Therefore, a wide

spectrum of data can be available for the same observed site. For many applications

the information provided by individual sensors are incomplete, inconsistent, or imprecise

and additional sources may provide complementary data. Fusion of different information

results in better understanding of the observed site thus decreasing the uncertainty related

to the single sources. In the interpretation of a scene, contextual information is important.

For example in an image labeling problem, a pixel considered in isolation may provide

incomplete information about the desired characteristics. Context can be defined in the

frequency, space and time domains. These bands may be acquired by using either a single

multispectral sensor or by using number of sensors operating at different frequencies. The

spectral context improves the separation between various ground cover classes compared

to a single-band image.
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1.1 Characteristics of Remote Sensing Imagery

The resolution is an important characteristic feature of aerial images. In general sense

the term ‘resolution’ is defined as the smallest physical quantity that is discernable by

an instrument. In other words, resolution is the power of the instrument to record finer

details. High resolution of an instrument enables one to measure the quantity with more

precision. In image processing, the resolution refers to the ability of the imaging sensor

to record smallest measurable detail in a visual presentation. High resolution of an image

is important in image processing as it helps to derive precise and accurate information in

various applications.

Remote sensing images are characterized by four types of resolution: spatial resolution,

spectral resolution, radiometric resolution, and temporal resolution.

• Spatial resolution: In digital image sensors, the analog images produced by the op-

tical system are spatially sampled by the detector. Spatial resolution is a measure

of the optical sensor’s ability to record closely spaced objects such that they are dis-

tinguished as separate objects. If the imaging scenes are oversampled with a spatial

frequency higher than the Nyquist frequency, it results in high resolution image.

However, in practice, most digital image sensors undersample the analog scene. As

a consequence the resulting resolution is determined by the spatial sampling fre-

quency. In remote sensing, it refers to area of land space represented by one pixel

in an image. It can be thought as the projection of the photo detecting element

on to the ground. Thus the resolution is directly related to the area on the ground

that represents a pixel in the detector. A sensor with 1m × 1m spatial resolution

can give finer details of the scene compared to a sensor with 10m × 10m spatial

resolution. Thus high spatial resolution allows for sharp details and fine intensity

transitions across all directions. For representing an object, high spatial resolution

image has more pixels compared to low resolution image. In other words, as the

spatial resolution increases, the associated file size increases. Capturing a high spa-

tial resolution camera needs a high density image sensor with closely spaced photo

detectors. Different applications require different spatial resolutions. For applica-

tions such as large area change detection, it is economical to use medium-resolution

imagery with large swath widths, to observe into areas where changes of interest
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Table 1.1: Spatial resolution of some satellites

Satellite Multispectral image Panchromatic image
Landsat 30m× 30m 15m× 15m

SPOT 2, 4 20m× 20m 10m× 10m
Ikonos 4m× 4m 1m× 1m

OrbView3 4m× 4m 1m× 1m
Quickbird 2.4m× 2.4m 0.6m× 0.6m

have occurred. Similarly, for planimetric applications, it is recommended that im-

agery with the highest possible resolution be used to extract various features such

as pavements, roads, etc. Different satellites capture images at various resolutions.

For example in Table 1.1 we list the spatial resolution of the various satellites for

capturing multispectral (MS) and panchromatic (Pan) images.

• Spectral resolution: Spectral resolution refers to the frequency or spectral resolving

power of a sensor and is defined as the smallest resolvable wavelength difference by

the sensor. Spectral resolution represents the width of the band within the elec-

tromagnetic spectrum that can be sensed by a sensor. As the bandwidth becomes

narrower, the spectral resolution becomes higher. The spectral resolution plays

important role in satellite imaging. High spectral resolution images captured by

remote sensing camera provide more detailed information about mineral resources

and geographical structures of the earth or any other planet under observation.

High spectral resolution images can be acquired by capturing images of narrow

spectral range. These images consists of pixels that represent spectral response

within the band. For example in the case of vegetation, maximum reflectance oc-

curs at the near infrared (NIR) region. Hence images captured in the band of NIR

give more details of vegetation compared to the images captured in red or green

spectral bands. A set of images captured at different spectral bands can be used to

monitor land and other natural resources, including vegetated areas, wetlands, and

forests. In Table 1.2 we display the spectral resolutions of different MS bands and

Pan image provided by two satellites namely, Landsat enhanced thematic mapper

plus (ETM+) and Quickbird.

• Radiometric resolution: Pixels carry information of the image intensity in form of
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Table 1.2: Comparison of the spectral resolutions of the Landsat ETM+ and Quickbird
sensors’ bandwidth (µm)

Spectral band Landsat ETM+ Quickbird
Panchromatic 0.52-0.90 0.45-0.90
Blue (band-1) 0.45-0.51 0.45-0.52

Green (band-2) 0.52-0.60 0.52-0.60
Red (band-3) 0.63-0.69 0.63-0.69

Near-infrared (band-4) 0.75-0.90 0.76-0.90

Table 1.3: Radiometric resolution of some satellites

Satellite Radiometric resolution (bits)
Landsat 8

IRS 7
SPOT 8

Quickbird 11
Ikonos 11

OrbView3 11

binary digits called ‘bits’. The intensity at any location in a real world scene may

vary from zero to infinity. However in digital image it is not possible to represent

this entire range. In practice this range is divided into a finite levels and the real

world intensity is quantized and assigned the nearest finite level. The radiometric

or brightness resolution refers to the smallest change in brightness that can be

represented in an image. Each radiometric level is assigned a binary code. The

increase in the brightness resolution requires more number brightness levels and

hence more number of bits for each level. A binary image has two levels; black

and white, hence requires only one bit for each pixel. A gray scale image is usually

quantized using 256 grey levels with each level represented using 8 bits. Similarly,

if each color plane of an RGB image requires 8 bits then at least 24 bits are needed

for representing each pixel. For the illustration purpose we display the radiometric

resolution of different satellites in Table 1.3.

• Temporal resolution: The term temporal resolution is related to video signals. A

video of an event is a sequence of images (frames) captured at regular and short

time interval between them. Temporal resolution, also known as frame rate, is the

measure of the capability of displaying smallest movement/ motion of the moving
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Table 1.4: Temporal resolution of various satellites

Satellite/Sensor Revisit period(days)
Landsat 8

IRS 7
SPOT 8

Quickbird 11
Ikonos 11

OrbView3 11

objects in the video. Thus it refers to the number of frames captured per second.

A video captured with low temporal resolution exhibits flicker or transitions of the

moving objects in the scene/event. With high temporal resolution, the movement

of the moving objects appears smooth and continuous. For a given duration of

time, a high temporal resolution video requires more memory for storage and large

bandwidth for transmission. In remote sensing temporal resolution refers to the

frequency at which a given geographical area is imaged. Higher temporal resolution

enables monitoring occurrence of rapid changes such as forests, floods, etc. This also

improves the probability of obtaining cloud-free imagery over areas that experience

frequent cloud cover. The revisit period of different satellites are listed in the

Table 1.4.

There exists a trade-off while selecting a sensor. For example, if we want a high

spatial resolution then the requirement is to keep low IFOV which reduces the energy of

the reflected light acquired by the sensor causing the reduction in signal to noise ratio.

Thus the captured image is distorted. One can improve the spatial resolution by capturing

the image using higher spatial width for the sensor. However, this is possible at the cost

of poor spectral resolution. Thus in order to have sensor with optimum performance

we are required to make the suitable choice as per the requirement. The high spatial

resolution images have better details which help in accurate measurement of the feature

extension in the image. On the other hand the images with high spectral resolution give

the better classification of different regions which are benefitted in accurate identification

of the object. In this work we address the problem of reconstructing remotely sensed

images that posses both the high spatial and high spectral resolutions.
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1.1.1 Multispectral Images

Objects appear different through red lenses, or through blue or green lenses. Hence cer-

tain satellite sensors can record reflected energy in the red, green, blue, or infrared bands

of the spectrum for the purpose of better analysis of data. This process of acquiring few

different band images is call multispectral (MS) imaging. The improved ability of multi-

spectral sensors provides a basic remote sensing data resource for quantitative thematic

information, such as the type of land cover. Resource managers use information from

multispectral data to monitor fragile lands, vegetated areas, wetlands, forests, etc. These

data provide unique identification characteristics leading to a quantitative assessment of

the earth’s features.

In the area of remote sensing we are interested in recognizing an object or a feature

from the images which are captured by using sensing devices. These feature includes veg-

etation, soil, rocks, minerals, water/ocean, snow and man-made features. The recognition

of such objects requires high spectral resolution of the sensor. Remote sensing satellites

are fitted with a camera that has a multi-channel detector with a few spectral bands.

Each detector is sensitive to radiation within a narrow wavelength band. The resulting

MS image contains both the brightness and spectral (color) information of the targets

being observed. The MS sensors can record reflected energy in the red, green, blue, or

infrared bands of the spectrum. The improved ability of MS sensors provides a basic re-

mote sensing data resource for various kinds of applications. Examples of multi-spectral

satellite systems include: Landsat TM, MS scanner (MSS), SPOT high resolution visible

multispectral (HRV-XS), Ikonos MS, QuickBird MS.

In order to capture MS images, the light reflected from the scene is passed through fil-

ters with different spectral characteristics. These filters decompose the light into different

spectral components which are then collected by multi-channel detectors and converted

into digital image. Since the optical power is divided into several components, the avail-

able power to each detector is reduced. This leads to poor signal to noise ratio resulting

in low spatial resolution. Thus multispectral images are characterized by high spectral

resolution i.e. narrow bandwidth and low spatial resolution. As an example in Fig. 1.1

we show images of MS bands captured by QuickBird satellite. The spectral range of these

bands are: blue (0.45 − 0.52 µm), green (0.52 − 0.60 µm), red (0.63 − 0.69 µm), near
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(a) (b) (c) (d)

Figure 1.1: Multispectral (MS) images with spatial resolution of 2.4m×2.4m correspond-
ing to the area of Sundarban, India captured using Quickbird satellite: (a) blue (band-1,
0.45 − 0.52 µm), (b) green (band-2, 0.52 − 0.60 µm), (c) red (band-3, 0.63 − 0.69 µm)
and (d) near-IR (band-4, 0.76− 0.90 µm).

(a) (b)

Figure 1.2: Color composition of MS image: (a) Natural color composition (NCC) and
(b) false color composition (FCC)

infrared (0.76−0.90 µm). Each spectral band has the utility in different kinds of analysis.

Band 1 (blue) images are useful for representing water bodies, land, soil, vegetation etc.

Band 2 (green) images enable us to inspect health of vegetation. Band 3 (red) images

help in discrimination of vegetation, delineation of soil and geologic boundaries. Band 4

(NIR) images identify crops, emphasize land-water contrasts, etc. In order to visualize

the image in RGB color format it is required to combine the red, green and blue bands.

The resulted image is said to have natural color composition (NCC). However, in the case

of vegetation where there is a maximum reflectance occurring at the NIR region we are

required to observe the effects in color images. This can be accomplished by combining

near NIR, red and green bands in RGB color image format which is referred to false

color composition (FCC) since the represented color is not the true color perceived by

us. Examples of NCC and FCC images are displayed in Fig. 1.2.
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Figure 1.3: Panchromatic (Pan) image with spatial resolution of 0.6m×0.6m correspond-
ing to the same geographical area as shown in Fig. 1.1 acquired using Quickbird satellite.
The spectral range of Pan sensor is 0.45− 0.90 µm.

1.1.2 Panchromatic Image

Panchromatic (Pan) sensor is a single channel detector sensitive to radiation within a

broad wavelength range. Since the wavelength range coincides with the visible range, the

resulting image is called Pan (all inclusive) image. The physical quantity being measured

is the apparent brightness of the targets. Since the amount of light falling on the Pan

sensor is higher when compared to that of MS sensors, the signal to noise ratio is higher

in Pan image if both Pan and MS captured at the same spatial resolution. This makes it

possible to capture the Pan image with a high spatial resolution without compromising

on the SNR. Reason for low spatial resolution in MS image is: SNR will be too low if

the spatial resolution increases for MS sensor. Examples of Pan imaging systems are:

Ikonos Pan, Quickbird Pan, SPOT Pan, Landsat ETM+ Pan. An example of Pan image

captured by Quickbird satellite is shown in Fig. 1.3. One can see that the details are

clearly visible in the Pan image. Such high spatial resolution image when used with low

spatial resolution MS image (i.e. fused MS image) help us in improving the accuracy in

classification and interpretation. The spectral range of the Pan image is 0.45− 0.90 µm.
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1.2 Low Spatial Resolution Imaging

In order to check the quality of the remotely sensed imagery, both spatial and spectral

resolutions are very important. Images with high spatial and spectral resolutions provide

the required information for many of the remote sensing tasks. Following is one of the

important factors which limit the spatial resolution of the sensors used in remote sensing

camera.

• Instantaneous field of view (IFOV): It is the angular cone of collected energy by the

remote sensing camera. The narrower the IFOV the area of the land mass covered

by sensor reduces and hence the amount of light energy collected by the sensor is

also decreased resulting in noisy image. If we use a sensor with wide IFOV it covers

large area on the earth and hence it results in increase of light energy. Keeping

the IFOV small, one can still increase the amount of light falling on the sensor by

increasing the spectral width of the sensor. This can result in high spatial resolution

which is the case in Pan image. In the case of MS image, it is necessary to keep

the spectral width narrow. This causes decrease in signal to noise ratio (SNR) and

hence we must increase the IFOV of the sensor so to obtain acceptable SNR. A

sensor with a wide IFOV acquires an image at lower spatial resolution. Therefore

the sensor hardware in the satellite is constructed to capture low spatial resolution

MS images. To overcome this limitation one can use algorithmic approach i.e.

multi-resolution image fusion or pan-sharpening to combine the MS and Pan image

into single image which has both high spatial and spectral resolutions.

In the remote sensing, earth observing satellites provide MS and Pan data having

different spatial, spectral, temporal, and radiometric resolutions as illustrated in Ta-

ble 1.1-1.4. The need for a single image having the complementary information from

both the MS and Pan images has increased. MS image with high spatial and spectral

resolutions provide feature enhancement by increasing the accuracy of classification and

change detection. The designing of a sensor to provide both high spatial and spectral

resolutions is limited by the tradeoff between spectral and spatial resolutions. Hence,

there exist number of image processing techniques to combine the available high spectral

resolution MS image and high spatial resolution Pan image to obtain an image that has

both high spatial and spectral resolutions.
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1.3 Fusion in Remotely Sensed Images

Due to the tradeoff between spatial and spectral resolutions of the sensors and other

constraints such as bandwidth and on-board storage capabilities of satellite most of the

commercial remote sensing satellites such as Quickbird, Ikonos and Worldview-2 capture

a single panchromatic image and a set of multispectral images. Pan has high spatial

resolution with low spectral resolution while MS image has higher spectral but lower

spatial resolution. For example, the Ikonos satellite provides Pan image with 1m × 1m

spatial resolution and an MS image with 4m× 4m spatial resolution. These two images

are required for the accurate description of captured scene. Since the Pan image has

high spatial resolution, it describes subtle details in the scene such as roads, cars, etc.

Hence it gives us detailed information of objects and features on the earth’s surface.

The MS sensors provide multi-band images with color information but with low spatial

resolution. They are better suited for the discrimination and/or identification of land

type. Also, MS images provide the necessary spectral information for the applications

such as classification and hence different objects can be easily identified. These two types

of images allow identifying different regions on the ground using the spectral signature

on one hand and using the geometrical information on the other hand. In many remote

sensing applications, the spatial information is as important as the spectral information.

In other words, it is necessary to have images that have spectral resolution of multi-

spectral images and the spatial resolution of a panchromatic image. A sensor with high

resolution for both is hardly feasible [2]. It is always an interest among remote sensing

community to merge these images.

Given the low spatial resolution MS image and high spatial resolution Pan image the

pan-sharpening or multi-resolution image fusion uses an algorithmic approach to enhance

the spatial resolution of MS images to make it same as the Pan image. Ideally, the

fused image should have spatial resolution of original Pan image and spectral resolution

of given low resolution (LR) MS image. Such a fused image can lead to better land

classification, map updating, soil analysis, feature extraction etc. The goal of multi-

resolution image fusion is to integrate complementary and non redundant information to

provide a composite image which could be used for better understanding of the entire

scene.
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1.4 Multi-resolution Image Fusion: An Ill-posed In-

verse Problem

One of the limitations of the low spatial resolution imaging is the mechanism used in the

image acquisition process. This mechanism includes the lens subsystem along with the

optical sensors which may result in degradation due to out-of-focus and diffraction limit.

Distortions may also rise due to the optical aberration or the atmospheric turbulence. In

addition to this the speed of shutter and relative motion between camera and object also

affect the quality of the captured image. Thus the observed images are degraded that

also includes aliasing due to down sampling. In order to solve the image reconstruction

problem, one can formulate a mathematical model that represents the image acquisition

process. This model, known as observation or forward model, relates the original image

to the observed image(s). The accurate formulation of the observation model plays an

important role in the success of any image reconstruction approach. The most commonly

used forward models incorporate translation, blur, aliasing and noise in the formulation.

The image fusion algorithms attempt to reconstruct the high spatial resolution MS

image from the given low resolution MS image and a high resolution Pan image. Note

that each MS image is sampled at a rate less than Nyquist rate thereby causing alias-

ing effect. This is an inverse problem wherein the original information is retrieved from

the observed data. A schematic representation of the inverse problem is shown in Fig-

ure 1.4. Solving the inverse problem requires inverting the forward transformation. It

is difficult to invert the forward model without amplifying the noise present in the ob-

served data and multiple solutions are possible because of more number of unknowns

than the knowns. Such problems are called ill-posed inverse problems. While solving the

multi-resolution fusion problem the forward model of high resolution (HR) to LR trans-

formation can be reduced to matrix manipulations. Hence it is logical to formulate the

fusion problem in a restoration framework as a matrix inversion. Knowing the forward

model alone is not sufficient to obtain satisfactory solution. Some form of constraints

on the space of solutions must be included. Procedure adopted to stabilize the inversion

of ill-posed problems is called regularization. The regularization based approaches solve

the ill-posed inverse problems by making them better-posed using the prior information

about the solution. It is a systematic method for adding more information to the recon-
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Forward Model

Imaging System

Inverse ProblemReal World Scene

Observation

Figure 1.4: Schematic representation of inverse problem. The forward model is a mathe-
matical description of the image degradation process. The inverse problem addresses the
issue of reconstructing the original digital image corresponding to the real world scene.

struction system. Bayesian reconstruction approach is commonly employed for solving

these problems. This method is used when a posterior probability density function of

the original image given the observation can be established. Bayesian estimation distin-

guishes between the possible solutions by using an priori model for fused image. The

major advantages of the Bayesian approach are its robustness and flexibility in modeling

noise characteristics and a priori knowledge about the solution and solving using the opti-

mization techniques. In case of convex optimization efficient gradient based methods can

be used to obtain the solution which otherwise would require computationally expensive

methods such as simulated annealing.

1.5 Applications of Image Fusion

The image fusion is the specific category of data fusion which was started in 1950s. Due to

the rapid growth in the advancement of technology and inventions of new sensors a huge

collection of data is possible where the provided information are of complementary in

nature. Instead of processing this individual sensor output it is always desirable to merge

these data in order to increase the throughput of the system. The data fusion process

consists the combination and utilization of data originating from the different sources

with an aim to obtain information with “greater quality”. The meaning of “greater

quality” depends upon the application [3,4]. When the given data is in the form of image

resultant fusion process is called image fusion. The objectives of fusion differ with the

applications. For example in the medical community the feature enhancement is often
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required in order to carry out the diagnosis process. The diagnosis could be improved

by fusing the different images such as computed tomography (CT), magnetic resonance

imaging (MRI), and Positron emission tomography (PET). Similarly the RGB camera

mounted with thermal sensor provide the images which are very useful in detecting the

security threats into public places or military areas. Fusion of these complementary

images enhance the capability of the surveillance systems. A single imaging sensor is

often unable to provide a complete information of the scene. The process of fusion aims

at integrating the complementary information provided by the different sensors for a

better representation of the situation than which would have been possible by using any

of the sensors individually.

In remote sensing, by using image interpretation an area can be studied without being

physically present there. The processing and interpretation of remote sensing images also

have specific use in various fields. In geology, for instance, remote sensing can be applied

to study and analyze large geographical areas. Remote sensing interpretation makes it

easy for geologists to identify the types of rocks and changes in an area occurred due to

natural events such as a flood or landslide.

Remote sensing is also helpful in studying vegetation types. Interpretation of remote

sensing images allows physical and biogeographers, ecologists, those studying agriculture,

and foresters to easily detect which kind of vegetation is present in certain areas and its

growth potential. Additionally, those studying urban and other areas of land use are

also concerned with the remote sensing because it allows them to easily pick out the

used land in an area. This can then be used as data in city planning applications and

the study of species habitat. Because of its varied applications and ability to allow

users to collect, interpret, and manipulate data over large often not easily accessible and

sometimes dangerous areas, remote sensing has become a useful tool for all geographers.

Remote sensing techniques have proven to be powerful tools for the monitoring of the

earth’s surface and atmosphere on a global, regional, and even local scale, by providing

important coverage, mapping and classification of land cover features such as vegetation,

soil, water and forests. The volume of remote sensing images continues to grow at an

enormous rate due to advances in sensor technology for both high spatial and temporal

resolution systems. Consequently, an increasing quantity of image data from satellite

sensors have been available, including multi-resolution images, multi-temporal images,
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and multi-spectral bands images. The goal of multiple sensor data fusion is to integrate

complementary and non redundant information to provide a composite image which could

be used to better understanding of the entire scene. It has been widely used in many

fields of remote sensing, such as object identification, classification, and change detection.

Change detection is the process of identifying differences in the state of an object or

phenomenon by observing it at different times. Change detection is an important process

in monitoring and managing natural resources and urban development because it provides

quantitative analysis of the spatial distribution of the population of interest. Image

fusion for change detection takes advantage of the different configurations of the platforms

carrying the sensors. The combination of these temporal images in same place enhances

information on changes that might have occurred in the area observed. Sensor image data

with low temporal resolution and high spatial resolution can be fused with high temporal

resolution data to enhance the changing information of certain ground objects.

MS images with high spatial resolution are desired in many remote sensing applica-

tions. High resolution MS images lead to better analysis, classification and interpretation

and fusion technique can be considered to improve the spatial resolution of the land area.

The fused images of land fields can lead to accurate estimate of types of crops. The

fused images of geographical land area help in better segmentation of regions containing

forests, rivers, roads and other geographical structures.

The remote sensing satellite captures the same geographical area at the regular interval

depending on the temporal resolution of that satellite. The availability of multi-temporal

data sets over the same scene makes it possible to extract valuable temporal characteristics

of surface cover types that may be of interest to applications requiring the monitoring

of spectral or spatial characteristic changes over time. It also helps in crop monitoring,

climate change and during the period of natural disaster.

One of the shortcomings of the MS image is the limited number of bands in the

electromagnetic spectrum with wide spectral width of the individual band. This do not

provide the contiguous and dense spectral bands which is often required in order to ac-

curate discrimination of the materials present in the scene. This can be accomplished by

acquiring large number of images with relatively less spectral width. In remote sensing

this is referred as hyperspectral imaging. The hyperspectral image provides a densely

sampled and almost continuous spectral information over the given wavelengths. Thus
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essentially it capture even minor variations in the scene reflectance. Although the hyper-

spectral data results with better classification of the regions the processing and analysis

of the same requires large computational since it includes many numbers of images. In

this thesis we are addressing the problem of resolution enhancement of MS images only.

1.6 Contributions of the Thesis

In this thesis we solve the problem of multi-resolution image fusion. In this problem,

the given high spectral resolution MS image and high spatial resolution Pan image are

combined to give a single fused image which has both high spatial and high spectral

resolutions. Since the MS sensor is sensitive to particular spectral range only, it is required

to increase the size of detector to get adequate amount of light to have acceptable SNR.

Because of this the spatial resolution of the MS sensor is restricted when compared to

that of Pan sensor. On the other hand, Pan has wider spectral range which makes it with

poor spectral resolution and due to this the size of detector is decreased and the spatial

resolution becomes high. In other words, the multi-resolution image fusion requires to

infer the missing high frequency details of MS image from the high spatial resolution

Pan image. In this thesis we address two fusion approaches in which the extracted

high frequency details from the Pan image are injected into the MS image using edge

preserving filters. In addition to this, we also propose the model based solutions to the

multi-resolution image fusion.

• The Pan image has high spatial resolution. One could think of extracting the high

frequency details from the Pan image and inject the same into the MS image to

obtain the fused image. In this case the quality of the fused image depends on two

important points. First is the details extraction process and second is the injection

model using which the extracted details are injected into the MS image. Hence we

start our work of fusion using edge extraction methods. We use the edge preserving

filters such as guided filter and difference of Gaussians in order to extract the details

from the Pan image. Motivation behind choosing these filters is the versatile use

of the same in the various applications of feature extraction in the computer vision

community. The extracted details are injected to the upsampled MS image after

weighting them with scaling factor calculated based on the MS pixel intensity values.
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We conducted the experiments on different satellite images and also compared the

results with the state of the art methods. Along with the qualitative evaluation we

also perform the quantitative analysis by computing the different measures.

• The main limitation of the fusion techniques based on edge preserving filters is the

upsampling operation of the MS image. In order to overcome this limitation we

propose the model based approach. In this approach we model the given low resolu-

tion MS image as blurred and noisy version of the unknown fused MS image. In this

model the degradation due to the downsampling can be estimated which takes care

of aliasing. In order to estimate the degradation ideally we require the true fused

MS image, however it is unknown in our case. In this situation we use the approxi-

mation of the true MS image. This initial HR approximation is obtained using the

directional transforms such as contourlet transform (CT) and non-subsampled CT

(NSCT). Motivation for choosing these transforms is due to their properties such as

multi-scale decomposition and higher directionality. Using the initial HR approxi-

mation and the given MS image, we obtain the degradation. Since the problem of

model based fusion is ill-posed inverse regularization is required to obtain the final

solution, A maximum a posteriori Markov random field (MAP-MRF) framework is

used to obtain the final cost function in which smoothness prior is used resulting

in convex cost function and same is minimized using gradient descent optimization

technique. In order to show the efficacy of the proposed fusion method, experiments

are conducted on the different datasets captured using satellites such as Ikono-2,

Quickbird and Worldview-2. Along with perceptual comparison of the proposed ap-

proach with the state of the art methods using degraded and un-degraded datasets

we have also conducted the quantitative evaluation by calculating various spatial

and spectral measures.

• In the same regularization framework we also cast the fusion problem with the

patchwise estimation of degradation. To do this we first obtain pairs of LR and

HR patches from the given MS observation using the concepts of self-similarity and

compressive sensing. In the regularization framework we use a new Gabor prior

to extract the bandpass spatial details from the Pan image. The potential of the

proposed fusion approach is verified by conducting the different experiments on the
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images of various satellites. Similar to the earlier approach, here also the efficacy

of the proposed method is evaluated by conducting the experiments on degraded as

well as on un-degraded datasets of three different satellites i.e., Ikonos-2, Quickbird

and Worldview-2. The results are compared on the basis of traditional measures as

well as recently proposed quality with no reference (QNR) measure which does not

require the reference image.

1.7 Objective of the thesis

Images with high spectral and spatial resolution provide accurate details of the earth.

This information is required in many of the remote sensing tasks such as classification,

change detection, etc. However, due to the hardware limitation the acquired MS image

low spatial resolution though it has high spectral resolution. Pan image has high spatial

resolution with poor spectral details. Thus there exist need for a single image having

complementary information from both the MS and Pan image. This has motivated us

to propose algorithmic approach to combine MS and Pan image pixels which can better

represent the information of both the images. Following are the objectives of the thesis:

• To develop an algorithm which capture the spatial details from Pan data to pro-

vide a high spatial and spectral resolution MS image which can be used for better

understanding of the scene.

• Formulate the fusion process as an inverse problem to estimate degradation arising

due to aliasing.

• Use regularization framework to obtain the better solution to the ill-posed problem.

1.8 Organizations of the Thesis

In this thesis we propose new approaches for multi-resolution image fusion. We first

consider this problem by using detail extraction from Pan image. Then we address the

fusion problem using model based approach. The effect of aliasing is considered in the

model by estimating the degradation matrix. We then use the regularization framework



1.8 Organizations of the Thesis 19

to obtain the fused image. Along with the smoothness prior we also propose a new prior

called Gabor prior in order to extract the high frequency details from the Pan image.

The literature survey for different fusion methods are described in chapter 2. Different

approaches for extraction of details along with the various injection models for carrying

out multi-resolution fusion are the topics of discussion in this chapter.

In chapter 3, two new approaches for multi-resolution image fusion by using different

edge preserving filters are proposed. We have chosen the guided filter and difference

of Gaussians (DoGs) for detail extraction. In a guided filter based technique, the Pan

and MS images are used to extract the missing high frequency details. In the second

technique, the difference of Gaussians is used as a band-pass filter to discard all but a

handful of spatial frequencies that are present in the Pan image. The comparison of the

results obtained using these proposed fusion approaches is shown with various state of

the art methods.

The undersampling of MS images introduces aliasing in the images. The filter based

methods presented earlier do not take care of aliasing. In chapter 4, we present a model

based approach that takes care of aliasing due to undersampling of MS observation. The

the LR MS image is modeled as the blurred and noisy version of its ideal HR fused

image. The degradation between LR and HR MS images is estimated by first estimating

an initial approximation to fused image. Results obtained using the proposed model

based approach are compared and discussed with the other existing approaches.

In order to increase the accuracy, one needs to derive the initial estimate using the

available LR MS image only. With this motivation, we next tackle the problem of im-

age fusion using the concepts of self-similarity and compressive sensing. We obtain the

degradation estimation and propose a new prior based on Gabor filter in order to extract

the details from the Pan image. The details of this are given in chapter 5.

We summarize our works in the form of conclusions and possible future directions in

chapter 6.



Chapter 2

Literature Review

In many remote sensing applications, the spatial information of a fused image is as impor-

tant as the spectral information. In other words, it is necessary to have images that have

spectral resolution of multi-spectral images and the spatial resolution of a panchromatic

image. A sensor with high resolution for both, spatial and spectral, at the same time is

hardly feasible [2]. The coarse spatial resolution of MS images is the result of a trade-off

due to physical and technical constraints. The quantity of energy which arrives onto the

detector is proportional to the width of its spectral range and hence is smaller in the

MS sensor than in the Pan sensor. It is therefore necessary to increase the energy that

impinges on the MS detector to obtain satisfactory signal-to-noise ratio. However, this

is not possible due to technological limitations. Further, if MS images were having high

resolution, the amount of data to transmit would be larger. The on-board storage and

data transmission to the ground also restrict the spatial resolution of MS images. This

makes the remote sensing satellite sensors to acquire MS images with low spatial resolu-

tion and Pan image with high spatial resolution. Thus the MS images have high spectral

but low spatial resolution and the Pan has high spatial but low spectral resolution.

The goal of multi-resolution fusion or pan-sharpening is to combine high spatial res-

olution of the panchromatic image with the high spectral information of the MS image.

The fused MS image should have high spatial resolution in order to aid in the detection

and classification tasks. It should also contain the same spectral (color) information as

the original multi-spectral data for better identification of targets. In other words the

fused image should possess both high spatial quality and spectral quality.

In the remote sensing community, multi-resolution image fusion or pan-sharpening
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is a challenging problem. During the last two decades, a great amount of research has

been carried out in this field. SPOT 1, the satellite launched in 1986 had provided the

Pan and MS images with spatial resolution of 10m× 10m and 20m× 20m, respectively.

Since then the problem of multi-resolution image fusion has drawn significant attention

of remote sensing community in developing algorithms for better fusion. In 1999, the

first review article on the different fusion methodologies was presented by Pohl et. al. [5].

Here, authors have described different fusion techniques which are divided into different

categories based on arithmetic operations, wavelet transforms and PCA transform. This

article also includes the different applications of image fusion such as land usage, flood

monitoring and applications based on geology.

The multi-resolution fusion techniques can be classified in number of ways. In [6]

authors have classified these methods based on spatial and transform domains. In the

methods based on spatial domain, the processing is performed directly on the pixel inten-

sity values. However, in the transform domain methods, the test images are first converted

to domains such as Fourier or discrete cosine transform, etc., and the processing takes

place in the transform domain itself. Here, inverse transform is necessary to obtain the

final fused image in the spatial domain. The fusion methods can also be grouped based

on the approaches used in obtaining the final fused image. One such classification is

reported in [7] where authors classify the pan-sharpening approaches into three different

groups: projection substitution, relative spectral contribution and the fusion methods

based on mlioration de la rsolution spatiale par injection de structures (ARSIS) concept.

The ARSIS is a French word which means to improve the spatial resolution by structure

injection. Authors in [8] discuss the framework of general image fusion (GIF) which con-

sist of the classification as well as comparison and comparative analysis of the existing

fusion methods.

To understand the concepts behind different multi-resolution image fusion techniques

in a better way here we classify them into three different categories as projection-substitution

methods, multi-resolution analysis (MRA) based methods and model based approaches.

In the following sections we describe the different fusion methods under these categories.

Note that in this thesis the terms “pan-sharpening” and “multi-resolution image fusion”

are used interchangeably.
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2.1 Projection Substitution based Techniques

A multispectral data captured by a remote sensing satellite has the collection of several

monochromatic images. Each of this image is referred to as band which is captured using

a sensor with a particular spectral range. For example Landsat-7 satellite captures the

MS images having seven bands in the spectral range from 0.45 to 1.25 µm. One can

visualize the MS image by consisting any three bands as red, green and blue images in

the RGB color space format. However, same can also be projected onto other color space

such as intensity hue saturation (IHS) where I describes the luminance component of

the scene, H refers to the contribution of colors and saturation component represents the

purity of colors. The human visual system also works on the principle of IHS color space

to identify/describe the objects being imagined by us. The IHS transformation converts

the given RGB image into IHS color space where intensity component corresponds to the

spatial information of the image and hue and saturation components together represent

the spectral details of the scene [9]. Since the IHS transformation separates the spatial

and spectral details one can use the same to fuse the MS and Pan images i.e., the spatial

component resulted in IHS color space can be manipulated using a mathematical oper-

ation without disturbing the color details. This category of the fusion classification not

only includes the fusion methods based on IHS [10–17] but it also includes those based

on principal component analysis (PCA) [18–21] which are proposed in early 1990s.

In these approaches one has to use suitable interpolation technique to make the size

of MS image same as the Pan image before the suitable fusion method is applied. Also,

since the MS and Pan images are of complement characteristics it is required to perform

the radiometric corrections on the Pan image using the histogram matching between the

intensity component of the upsmapled MS image and the Pan image. The histogram

matched Pan image is then substituted into the intensity component in the IHS color

space to get the pan-sharpened image in the IHS color space. The final fused image

is obtained after taking the inverse IHS transform in the last step. An alternative to

the IHS transform is the PCA which transforms the intercorelated bands into the set of

uncorelated bands. After this, first principal component i.e. PC1 is replaced with the

Pan image since it represents an image with highest variance. Histogram matching of

Pan to PC1 is mandatory before substitution because the mean and variance of PC1 are
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different than those of Pan image. In addition to fusion methods based on IHS and PCA

under this category of classification, we also include the pan-sharpening methods based

on the concept of relative spectral contribution [7]. In this concept, it is assumed that

the spatially degraded Pan image is a linear combination of acquired MS images. This

assumption is based on the observation that the spectral response functions of Pan image

overlaps with the various bands of MS image. Some of the common methods that fall

under this category are Brovey [22,23] and P+XS [24] fusion methods.

One of the drawbacks in the IHS based fusion methods is that it can be applied on

three bands only. Due to this the Pan image do not correspond to better representation

of luminance component in the entire set which affects the quality of fused image severely.

Literature shows that the performance of the fusion methods based on IHS, PCA trans-

form and relative spectral contribution is highly depended on the correlation between the

intensity component of the MS and the Pan image [25]. Although these fusion methods

result in a fused image with better preservation of geometrical structures [26–28] which

are well suited for the applications such as cartography, visual analysis and target recogni-

tion [14,28] the major drawback in these fusion methods is the spectral or color distortion

which may be localized to certain land area [14,29]. The reason behind this spectral dis-

tortion is due to the modification or alteration of the low frequency details present in

the MS image during the injection of high frequency details from Pan image [7, 30]. In

addition to this if the spectral responses of the MS bands are not perfectly overlapped

with that of Pan image the performance of the fusion techniques based on PCA or IHS

and relative spectral contribution results in poor fused data [31].

In order to overcome the three band limitation of IHS fusion method Tu et. al. [32,33]

have proposed a framework to use more than three bands for fusion using IHS transform.

This work is considered to be a pioneer in extending the IHS transform for further use

in multi-resolution image fusion. This fusion method is referred to as generalized IHS

(GIHS) or fast IHS (FIHS) in the literature. Here weights are fixed to compute the

intensity component. In order to improve the quality of the fused image researchers have

modified the framework of FIHS method in [33].

Unlike the FIHS method [33] in which fixed weights are used to compute the inten-

sity component, authors in [34] estimate the weights and the same are computed using

the genetic algorithm. They also use the same algorithm to compute the appropriate
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gain constants that are multiplied with the extracted details of the Pan image before

injecting them into the upsampled MS image. Although this method obtains better pan-

sharpened image it suffers from the computational issues since it requires the population

based optimization techniques such as genetic algorithm to estimate the weights. The

computational complexity of FIHS fusion method [33] is lesser than that of transform

based fusion method. In [31] Gonzalez et. al. utilize the spectral response functions

of MS and Pan images in order to compute the intensity component of the IHS trans-

form which further reduces the computational burden of FIHS method. They verified

their fusion method by conducting the experiments on the images captured using Ikonos

satellite. The disadvantage of the this method is that one has to know the spectral re-

sponses of the given images in order to obtain better fusion performance. Similar to the

method in [31] the approach proposed in [35] also has lesser computational complexity.

In this case the radiometric properties of MS and Pan data are used in selecting the high

frequency details from the Pan image and are injected into the upsampled MS image.

In addition to this the weights on the extracted Pan details are also computed before

injecting it to MS image. As done in [31] here also the authors verify the potential of

their method using the images acquired by Ikonos satellite. Although the fusion methods

proposed in [31, 35] have the advantage in terms of reduced computational complexity

they require the knowledge of spectral response functions of the data and this restricts

their usefulness only to limited sensors.

In [36] the authors obtain better solution for fusion when compared to FIHS tech-

nique of [33] by applying adaptive component substitution. Here, the final fused image

is obtained after estimating the initial low and high resolution component images by

computing the statistical parameters such as correlation coefficient (CC) and standard

deviation between MS and Pan images. An adaptive IHS method proposed in [37] es-

timates the different weights used in the component substitution. In addition, in this

case the final fused image is obtained by inserting the edge details from the Pan image

estimated using the exponential edge detector.

The IHS fusion model is also generalized to include any projection substitution tech-

niques in [38]. Here, a generalized intensity component is modeled as the weighted average

of the MS bands which is similar to the concept of fusion methods based on relative spec-

tral contribution. The weights are obtained as regression coefficients between the MS
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observations and the spatially degraded Pan image with an aim of capturing the spectral

responses of the sensors. These weights are then used in obtaining the intensity compo-

nent from the MS bands which is then injected into the upsampled version of the MS

image to be fused in order to obtain the final fused image.

Authors in [39] introduce a tradeoff parameter in order to control the amount of in-

jected details from Pan to MS image. They formulate the fusion problem as minimization

problem in which the difference between upsampled and fused MS images is minimized.

At the same time the fused image should be as close as possible to the high spatial res-

olution Pan image. The tradeoff parameter is involved between these two constraints

which controls the spectral and spectral resolutions in the final fused image. The range

of tradeoff parameter is from one to infinity which varies the fused image from MS image

(no spatial details from Pan image) to the fused image obtained using FIHS method [33],

respectively. They conclude that the spatial and spectral resolutions can not be obtained

simultaneously. An improvement to this model is proposed by the authors in [40] where

the tradeoff parameter is automatically adjusted. The idea of tradeoff parameter is fur-

ther extended by researchers in [41] where the tradeoff parameter is obtained by using

wavelet transform.

A method based on the Gram-Schmidt (GS) orthogonalization procedure is proposed

in [42] in order to obtain the fused image. This approach is patented by Eastman Kodak

and implemented in the environment for visualizing images (ENVI) software package. In

this method the fused image can be obtained by selecting the one of the different versions

of the spatially degraded Pan image. Later the authors in [38] modified this preprocessing

step of Pan image by using the multiple regression weights estimation on the MS bands

which has been proven to be an effective fusion method using GS orthogonalization.

Another fusion method based on the concept of the matting model is proposed in [43].

This model decomposes the given MS image into three components, i.e., alpha channel,

spectral foreground and background. Similar to the concept of IHS method, here also

the alpha channel is substituted by Pan image and inverse operation is then applied to

obtain the fused image. A fusion approach that uses the smoothing filter-based intensity

modulation (SFIM) is proposed in [44]. Their method modulates the intensity values of

low spatial resolution MS image based on the ratio of Pan and its degraded version. The

proposed method was shown to perform superior when compared to fusion techniques
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based on Brovey transform [22] and IHS transform [33]. In order to remove the distortion

in fusion caused due to the bicubic interpolation in [44], a new fusion method is proposed

in [45] which uses the nonlinear upscaling operation instead of bicubic interpolation that

gives a sharper and better correlated upscaled image. The frequency details from the

Pan image is extracted using a pair of upscaling and downscaling filters which are then

added to the upscaled image. An adaptive pan-sharpening method based on smoothing

filter intensity modulation (SFIM) is also proposed in [46].

Though the above fusion algorithms have certainly advantages they result in fused

image with some degradations in terms of spectral as well as spatial contents. The

IHS transform based approaches enhance the texture features however they make use of

interpolated version of MS images. Due to this interpolation prior to the replacement of

the high frequency details from the Pan image it causes the spatial degradation in the

fused images. The projection substitution based fusion techniques also result in spectral

distortion due to the dissimilarity between intensity component and the the Pan data [25].

The IHS based methods require much less computational burden when compared to fusion

methods based on transform domain and are easy to implement. However, they still suffer

from spatial and spectral distortions.

2.2 Multi-resolution based Techniques

In the last decade, pan-sharpening techniques based on multi-resolution analysis (MRA)

have become significant due to their ability to capture the information present at different

scales. These methods work on the following principle: extract the high frequency details

not available in MS image from the Pan image and inject those details to the MS image.

This concept of detail extraction and injection was pioneered by Chavez in [47] which

was based on high pass filtering (HPF). Here, author extracted the high frequency details

from the Pan image by taking the difference of Pan and its low pass filtered version

usually blurred with the box type filter. These extracted details are then injected into

the upsampled MS image to obtain the fused image. The comparison of fusion methods

based on IHS, PCA and HPF was done in [18] which shows the better performance of HPF

method when compared to IHS and PCA based fusion techniques. Later the improvement

in terms of detail extraction and injection was effectively handled by the development of
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MRA i.e., wavelet, contourlet, etc., to carry out data fusion task.

MRA calculates the approximation of signals at various scales, which is done by using

wavelet basis functions. Theory of wavelet was introduced in the beginning of the last

century and is applied to perform signal processing tasks since the year 1980. Due to its

desirable properties such as multi-scale decomposition and time-frequency localization it

is a very promising tool in the various signal and image processing applications. While

performing fusion using MRA, the details extracted from an image using the wavelet

transform can be injected into that of another image using number of methods. For

example the method can be based on substitution, addition, or a selection on either

frequency or spatial context. The first effective MRA in this domain is a decimated dis-

crete wavelet transform (DWT) which is orthogonal, non-redundant and non-symmetric

directional transform. It captures the detail information present at horizontal, vertical

and diagonal directions at each stage of decompositions. Various approaches have been

proposed for pan-sharpening that are based on the use of DWT [26, 48–52]. In these

methods, first the histogram matching is performed between Pan and each band of MS

images. The histogram matched Pan image and each band of interpolated MS image are

then decomposed separately using DWT. Finally, the approximation and detail layers

obtained at different levels of decompositions of MS and Pan images are used in obtain-

ing the fused image. Here, the extracted details from Pan may be added to or they

may be substituted for MS image pixels to obtain the fused image. The inverse DWT

is performed on the modified MS image to obtain the final fused image in the spatial

domain. It has been found that the fusion results obtained by using DWT with additive

or substitution fusion rule perform similar in terms of quality of final pan-sharpened im-

age [53]. Although MRA using DWT provides effective tool to carry out data-fusion tasks

the process of detail injection may result in spatial distortions such as blurring, ringing

as well as aliasing effects in the fused images which are mainly due to the shift variant

property of DWT [54–56]. However, multi-resolution representation of image using DWT

makes the fusion results better when compared to that of HPF or IHS based methods

which do not use such hierarchical description to describe the image.

In order to avoid the problem of shift variance of DWT, researchers in the fusion

community use either “a trous” wavelet transform (AWT) or Laplacian pyramid (LP)

to decompose the image. Unlike the DWT which is critically subsampled, the AWT



2.2 Multi-resolution based Techniques 28

and LP are oversampled which allow an image to be decomposed into nearly disjointed

bandpass channels in the frequency domain without losing the spatial connectivity of its

high frequency contents such as edges regions. Use of AWT or LP leads to a stack of

image layers obtained from different band-pass filters with same dimensions and with

the reduction in resolution by factor of 2 for each level. The AWT is a nonorthogonal,

redundant, undecimated and symmetric directional transform. It was first proposed by

authors in [57] for music synthesis. The term “a trous” (“with holes”) was introduced

by Dutilleux [58] and its theoretical analysis is described in [59]. Various fusion schemes

using AWT are presented in [56, 60, 61]. In [56] AWT with additive fusion rule is used

to obtain the fused image by making the use of three MS three bands. This approach

was later generalized for more than three bands and is often referred as additive wavelet

luminance proportional (AWLP) [60]. Authors in [60] also propose a model for multi-

resolution fusion using the spectral response function of the MS and Pan images provided

by the manufacturer. In [61] Ranchin et. al. propose a framework for fusion using AWT

with different detail injection methods. The comparison of fusion results obtained using

DWT and AWT is reported in [53] where authors conclude that AWT outperforms DWT.

In addition to AWT, the MRA based on LP also represents an undecimated transform

[62]. The theory of LP was introduced prior to MRA by Burt and Adelson [63] for compact

image representation. Similar to AWT, LP is a bandpass image decomposition derived

using the Gaussian pyramid (GP) which is a multi-resolution image representation. This

can be regarded as an AWT in which the image is recursively low pass filtered and

downsampled to generate a low pass approximation image, which is re-expanded and

subtracted pixel by pixel from the original image to yield the detail layer. The LP is

used in [61, 64] to obtain the multi-resolution fusion of MS and Pan images while it is

used by authors in [65] to obtain the fusion of hyperspectral data. One of the benefits

from the AWT and LP based pan-sharpening methods is that by generalization of these

methods it is easy to fuse MS and Pan images of having non-integer or even fractional

resolution difference. One such implementation is presented in [54] where the authors

propose the fusion of the MS and Pan images having non-octave or fractional resolution

ratio. The generalization of these works are proposed in [66–68] in which the idea of

multi-rate signal processing [69] is used. The common characteristic of the AWT and LP

is that they are redundant multi-resolution transforms which are well suited for image
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fusion as demonstrated in [53, 54]. It is interesting to note that the use of undecimated

DWT (UDWT) as MRA to decompose the image may also be useful to obtain the fused

image since it is also an oversampled transform. However, the computational cost along

with complexity issues are high when it is intended to fuse images having non-octave or

fractional resolution ratio.

A number of fusion methods based on MRA framework that use various methods for

details extraction and injection are modeled in a generic way by using ARSIS concept

[51,61]. Authors in [7,25] classify the fusion methods based on MRA using ARSIS concept

which comprises of three different models. First one is the multi-scale model (MSM)

that performs hierarchical description of the information content related to the spatial

contents in an image. Examples of MSM include DWT, LP, AWT and UDWT which have

been already discussed earlier. In addition to these it also includes Gaussian pyramids

(GP) [70], HPF [18] and iterative filter banks [71]. The second one in the ARSIS concept

is the inter band structure model (IBSM) which deals with the relationship between the

approximation and/or details of MS and images. It uses a radiometric transformation

such as gain or offset of spatial structures when injecting details from Pan to MS image.

The final model is the high resolution IBSM (HRIBSM) which is concerned with the

procedure to inject the extracted details from Pan to MS image. For example the fusion

method proposed in [55] considers the modulation transfer function (MTF) of MS images

during the injection process. Note that the fusion implementations with the choice of

MSM, IBSM and HRIBSM make the different pan-sharpening methods affect the quality

of the fusion method.

In ARSIS concept authors also elaborate the examples of successful implementation

of image fusion using AWT and LP as MSMs and the results are compared using different

IBSMs. IBSM aims to achieve the goal of making the fused image most similar to the

original MS image. In [51] Ranchin and Wald demonstrate the use of two local models

for image fusion by making use of details instead of approximations. The need for such

IBSM in the fusion process is discussed in [72]. Here, they show the effect of both global

and local IBSMs on the results of pan-sharpening using redundant transforms i.e., AWT

and LP and conclude that the local IBSM outperforms when compared to global one.

They use the local IBSM as proposed in [54] which consist of space-varying gain. Here,

Pan detail coefficients are multiplied with gain constant to achieve local equalization of
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the MS and Pan sensors.

Few researchers have worked on fusing Pan and MS images where the resolution

difference is not a power of 2 e.g., fusion of systeme pour l’ observation de la terre

(SPOT) Pan and Landsat thematic mapper (TM) MS bands. Blanc et. al. [71] use the

ARSIS concept with iterated rational filter banks to pan-sharpen the MS image and they

compare their results with the method based on DWT which is designed for non-integer

resolution factor and show that DWT performs poor for non-integer case. Use of the

multi-band DWT to merge SPOT Pan and Landsat TM MS images is discussed in [73].

Using the framework of ARSIS concept Aiazzi et. al. [54] also propose the generalized LP

using context-based decision (GLP-CBD) to merge the data of non-integer or fractional

resolution difference between the Pan and MS images.

In order to exploit the benefits of projection substitution based fusion techniques

several pan-sharpening approaches have been proposed by combining MRA and projection

substitution. Nunez et. al. [56] combine the IHS transform and the wavelet based MRA

to obtain a fused image. A fusion method that uses PCA and wavelet transform is

discussed in [74]. The authors in [75] and [76] combine the IHS with bi-orthogonal

and redundant wavelet transforms, respectively in order to obtain the pan-sharpened

image. Hong and Zhang in [77] use integrated IHS and wavelet to fuse the MS and Pan

images and they demonstrate their results on images acquired from Quickbird and Ikonos

satellites. Gonzalez et. al. [12] discuss the framework to merge the MS and Pan images by

integrating wavelet transform with the IHS and PCA methods, respectively. Recently, a

detail injection model based on MTF [55] is used in the fusion approach of [56] to obtain

the fusion [78]. The main advantage of combining MRA and projection substitution

methods is to obtain the fused image with better perceptual and quantitative measures.

Though wavelet transform preserves spectral information efficiently, it lacks in preser-

vation of spatial fidelity due to limited directionality. Moreover, the isotropic wavelets are

scant of shift-invariance and multi-directionality and fail to provide an optimal solution

for highly anisotropic edges and contours that are encountered in images. Also, due to

the limited directionality the edge extraction and injection may not correspond to those

in true MS images. In order to solve these limitations, the MRA based fusion methods

using transforms such as curvelet [79] and contourlet [80, 81] have also been proposed.

Curvelet has the property of anisotropy and has higher directional property which makes
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it better suited for image fusion than the wavelet transform. In [82] Choi et. al. fuse the

MS and Pan images using ARSIS concept that uses curvelet transform. They compare

their fusion results with that of IHS and wavelet based methods. Similarly, the authors

in [83] propose a fusion approach based on curvelet transform for resolution factor of 2

and 4 for Quickbird and Ikonos dataset. They use the curvelet transform to extract the

high frequency details from the Pan image and inject them into the corresponding details

of MS bands. They evaluate perceptual and quantitative test by comparing the fusion

results with traditional methods.

The construction of curvelet transform requires a rotation operation and also it corre-

sponds to a partition of the 2D frequency plane based on polar coordinates. This property

makes the idea of curvelet transform simple in the continuous domain but causes prob-

lems in the implementation for discrete images. Similar to the curvelet transform, the

contourlet transform (CT) proposed in [80] has the properties of wavelet transform. In

addition it also possesses the characteristics such as multi-directionality and anisotropy

which captures the details present in different directions. It employs LP [84] and di-

rectional filter bank (DFB) [85] to capture and link the discontinuities into geometric

structures. The disadvantage of CT is that it is shift variant whenever subsampling is

used. The shift invariance version of CT called non-subsampled CT (NSCT) [81] per-

forms better in fusion due to the absence of decimation but it suffers from redundancy.

The fusion methods based on CT and NSCT can be found in [86–88]. In [86] Shah and

Younan obtain the fusion of MS and Pan images using the PCA and NSCT. Here, after

applying the PCA on upsampled MS images they choose a principal component (PC) im-

age that has high correlatedness with Pan image. The selected component and histogram

matched Pan image are then decomposed using the NSCT. The detail coefficients of the

Pan image are then replaced the corresponding selected component in the CT domain in

order to obtain the fused image. A similar approach is presented in [87], where the trans-

formed image corresponding to first PC and Pan images are decomposed using NSCT

and details are injected based on local variance of Pan and first principal component

images. Authors in [88] consider both spectral and spatial similarity while fusing. They

decompose the Pan and MS images using NSCT and the detail coefficients of Pan image

are injected to MS image based on spatial similarity measure. Similar to [86] they inject

detail coefficients at all levels from Pan to MS image.
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In addition to the standard DWT, the compl wavelet transform (CWT) is a complex-

valued is a two-dimensional wavelet transform which provides multi-resolution, sparse

representation, and useful characterization of the structure of an image [89–91]. Steer-

able filterbanks [92] proposed by Simoncelli was one of the first nonadaptive designs that

provided an elegant way to obtain flexible orientation specificity with redundant rep-

resentation. Attempts have been made to achieve near shift-invariance and improved

directionality using the idea of near-analytic transform designs such as CWT with small

redundancy. Salient features of these complex transform designs are shiftability i.e., near

shift-invariance, increased directionality and the availability of phase information. In [93],

Nguyen and Oraintara proposed a shiftable complex directional transform by combining

Laplacian pyramid and complex directional filter bank. Here in order to obtain the ana-

lyticity, dual-tree structure of real DFBs is constructed where the fan filters used in two

trees are constrained to satisfy the Hilbert pair criteria and certain conditions on phase

responses. In [94] the same authors addressed the implementation issues such as border

artifacts and the constraints on the designed finite impulse response (FIR) filters. How-

ever these FIR filters are truncated versions of infinite impulse response (IIR) filters and

the transform is approximately shift-invariant. In [95], authors proposed complex-valued

steerable filter banks for texture synthesis application and utilize the same for finding

features based on local phase and energy. Use of subsampled MDFBs and CWTs in

many image processing applications result in suboptimal performance due to the use of

downsamplers. Down-sampling stages used in these transforms lead to large reconstruc-

tion error (caused by aliasing), limited directional flexibility, difficulty in filter design

etc. Subsampled complex-valued transforms are used in [96–98] for the same. Approach

in [96] uses DT-CWT [89], while the approaches in [97, 98] use shiftable complex direc-

tional transform [93]. Note that all these MRA-based pan-sharpening approaches are

nonadaptive and to the authors best knowledge use of spatially adaptive transform-based

pan-sharpening approach has not been proposed yet.

In the literature number of methods are discussed that use different approaches for

fusion. In order to compare these methods the data fusion committee of the IEEE

geoscience and remote sensing society (GRS-S) sponsors a yearly “Data Fusion Contest”

focusing on one specific application each year. The Data Fusion Contest-2006 was held

with an aim to identify the best pan-sharpening algorithm. Fusion techniques that were
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based projection substitution as well as MRA were included in this contest. Outcomes

of this contest are presented in [4]. An important observation of the evaluation results

was that two best performing algorithms, GLP-CBD [54] and AWLP [60] based on MRA

using AWT and LP, respectively share a common philosophy of taking into account the

imaging sensor related physical models in the algorithm. These techniques are widely

used as state of the art methods. However, AWLP and GLP-CBD methods have the

limitation that the quality of the fused image depends on size of the target present in

an image. Depending on the size of target either AWLP [60] or GLP-CBD [54] performs

better. In [99] the authors have proposed an approach to use either AWLP [60] or GLP-

CBD [54] based on the target size. They have shown that AWLP perform better when

the target size is small and similarly GLP-CBD performs better when the target is larger.

2.3 Model based Fusion Approaches

While a majority of pan-sharpening methods adopt a projection-substitution, MRA or

a combination of these two, techniques independent of these frameworks have also been

proposed in the literature. The most relevant techniques to our discussion here are the

methods that based on model based approach, where the multi-resolution image fusion

is posed as minimizing a cost function based on a model of the imaging sensor. All

those approaches addressed earlier do not use an explicit relation between the observed

and fused images. The model based fusion methods are partly motivated by image

restoration and super-resolution research which use the image formation model and obtain

the solution by formulating it as an inverse optimization process.

The image formation involves the degradation of the true high resolution MS image.

Because much information is lost in the this process, estimating a true MS image from

its degraded version is an ill-posed inverse problem where solution is not unique. This

means that according to the degradation process, many different high resolution MS im-

ages can produce the same low resolution MS image. Regularization theory is an effective

framework to obtain the better solution for the ill-posed problem. Similarly, Bayesian

framework has also been proven to be an important tool to solve such inverse problems.

Within this framework, the fused image is extracted from Bayesian posterior distribution

in which the prior knowledge and artificial constraints on the fusion results are incorpo-
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rated. These model based fusion methods utilize the image formation models and regard

the fusion process as an inverse optimization problem. During recent years, several model

based fusion techniques have been proposed which are based on a regularization theory

and/or on a Bayesian framework. Generally, there are two types of image formation

models used in these methods, first is based on the LR MS formation which relates the

high resolution MS image to its LR version and the second is the formation of Pan image

which relates the given Pan image to the true MS image.

The main advantage of a Bayesian formulation is that the problem gets converted

into the probabilistic framework. Using this idea authors in [100] have proposed the

fusion of MS and Pan images captured using Ikonos satellite. They use the LR MS and

Pan image formation models and assume that the resulting error components follow the

Gaussian distribution. In a Bayesian framework it is also required to define the prior

knowledge of the fused image. Here, authors used a non informative model for the fused

image since the fused data itself is unavailable i.e. probability density function of the

fused data is uniform. The weighting coefficient between spectral and spatial details

is also introduced in the same Bayesian formulation in this method. Within Bayesian

framework, maximizing a posterior distribution in the form of maximum a posteriori

(MAP) has resulted in improved solution in many areas of image processing. An MAP

estimation for enhancing the resolution of hyperspectral data was proposed by Hardie et.

al. [101]. In their work they obtained two terms in the final cost function, first is due

to the result of the LR MS image formation and second term is due to the correlation

between the different data to be merged.

In [102, 103] authors use LR MS image formation model where they model an LR

MS image as a blurred and decimated version of the true HR MS image. Using MAP

estimation final cost function is obtained where appropriate priors are used in order to

regularize the final solution. The Pan image formation model is not used in these fusion

techniques instead same (i.e., Pan image) is used to estimate the different parameters of

the priors with the assumption that all the MS bands have similar spatial structures to the

Pan image. In [102] Joshi et. al. have used the autoregressive prior for fusion and different

parameters of this prior were estimated using the Pan image. It is well known that Markov

random field (MRF) based modeling for capturing the spatial correlation among pixels

is the most general model and is often used as a prior during regularization while solving
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the ill-posed problems. In the area of image processing and computer vision, many

researchers use the MRFs as a convenient way of modeling the contextual entities such as

image pixels, depth field, and other correlated features. In [103] authors have modeled the

final fused image as an MRF and have used an edge preserving inhomogeneous Gaussian

MRF (IGMRF) prior in the regularization framework. They estimate IGMRF prior

parameters using the available Pan image. Since the final cost function in the methods

proposed in [102, 103] is convex simple gradient based iterative optimization method is

used to obtain the final solution. Using MRF based prior Aanaes et. al. [104] have also

solved the multi-resolution fusion problem. Here, the spatial neighborhood weights for

the MRF are computed from the Pan image to transfer edge information from Pan to the

fused image.

The LR MS image formation model without decimation is used in [105] where authors

have assumed that the interpolated LR MS image is the degraded versions of its fused

MS image and hence they do not consider downsampling operation in their model. Along

with the LR MS image formation they also use the Pan image formation where the

original Pan image is modeled as a linear combination of all the bands of the fused MS

image. The final cost function is derived using discrete sine transform and the solution

is obtained by using constraint least squares method. Similar model is also employed

in [106] where gradient field of modified Pan image is used for spatial enhancement. The

modified Pan is obtained using an intensity modulation based fusion method i.e, SFIM

in [44]. Here, authors have used the local correlation coefficients between the MS and Pan

image to adjust the amount of spatial and spectral details in the fused image. Finally,

they obtain the pan-sharpened or fused image by optimizing the cost function by using

gradient descent optimization method.

In [107] Zhang et. al. have addressed the fusion problem using adjustable model

based approach. They model the LR MS image as decimated, blurred and noisy version

of its true MS image. Along with this they also include the regularization term related

to the modeling of the Pan image which accounts for the spatial detail preservation. A

Huber edge preserving prior is used in MAP framework to regularize the final solution.

The regularization parameters are also estimated that take care of the amount of spectral

and spatial details in the pan-sharpened image. Although this method results in better

fusion quality it uses a prior which requires fine tuning to get better fused image.
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Aly and Sharma [108] have proposed a model based approach for pan-sharpening using

the image formation models of LR MS and Pan images. Here, the Pan image formation

term in the final cost function includes a high pass filter in order to preserve the high

frequency details from the Pan image. In addition to this they also add the regularization

prior term which takes care of adding the spatial details of Pan image to the fused image

based on the correlation between Pan and fused images. Since the final cost function is

convex they use the gradient based optimization method to obtain the final fused image.

There are several model based methods that exploit the variational framework in

order to obtain the fusion of MS and Pan images. The approach of total variation (TV)

was initially introduced for the regularization of inverse problems in [109] for solving

denoising problem. Due to its ability to preserve the sharp discontinuities such as edges

it has obtained greater success in the applications such as image restoration, denoising,

inpainting, etc. The pan-sharpening method based on variational framework was first

attempted by authors in [110] which has used the geometric information of the Pan

image by aligning the same with each band of MS image. In order to get the spectral

information for the fused image, it makes the assumption that the Pan image is an

approximated linear combination of the high resolution MS images. The other fusion

methods based on similar concept are reported in [111–113]. In [111], Moeller et. al.

combine the idea of wavelet transform for a higher spectral quality and use the concept of

variational approach in order to obtain the spatial information. Similarly in [112] authors

utilize the assumption that a linear combination of the fused images gives the Pan image.

In addition to this they also assume that the decimation of the pan-sharpened image

gives the observed MS image. Using these assumptions they cast the fusion problem in

regularization framework where TV prior on the fused image is used which encourages

images that are piecewise smooth between edges. Similar assumption was used by He et.

al. in [113]. They incorporate the gradient of Pan image in addition with that of the

high resolution MS image in the form of TV prior to obtain the final fused image. An

extension of this work is presented in [114] by including the total variation sparsity priors

based on the characteristics of the MS and Pan images.

One of the advantages of the variational framework is that the different constraints

can be included in the form of different terms in the objective function which is to be

minimized. In [115], authors utilize few constraints such as the gradient of the Pan image
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is a linear combination of the gradient of the true MS image, the upsampled MS image

is the degraded version of the true MS image and the gradient of fused MS band is

approximated by that of the uspsampled MS image to obtain the cost function. They

proved the effectiveness of the proposed fusion method by conducting subjective as well

as quantitative evaluation on two sets of images acquired using Quickbird and Ikonos

satellites. The TV prior is also extended to the non local TV (NLTV) [116,117] method.

A pan-sharpening method based on the NLTV was proposed by Buades et. al. in [118].

Here, the final cost function consists of two terms: the first term forces the pan-sharpened

image to be consistent with Pan and MS data, and the second corresponds to a non local

regularization term which acts as a neighborhood filter on Pan image. The Pan image

is used to derive nonlocal relationships among patches describing the geometry of the

desired fused image.

Although TV and NLTV regularization may give better fusion results they suffer from

certain implementation issues. A TV prior has L1 norm in the regularization term. Al-

though this results in edge preservation, the computational complexity is increased due

to the non-differentiability of term with L1 norm. The difficulty of non-differentiability

can be avoided by the small perturbation in the prior [109]. However, it results in the

modification of the original cost function and hence it causes the deviation in the re-

quired solution [119]. In addition to this, the final output also depends on the value of

regularization parameter. Various methods are proposed in the literature to estimate this

regularization parameter [120–124] which are either computationally expensive or yield

approximate solution. It is interesting to note that though there are various approaches

proposed in the literature to minimize the cost function using the TV prior, close form so-

lution does not exist for the cost function with TV prior [125]. Unlike the TV prior which

utilizes same weights to its neighbors, NLTV prior incorporates the nonlocal interaction

among the neighboring pixels and computes the weights accordingly. In order to obtain

the better solution using NLTV regularization, the accuracy of this weight function is

very important. Researchers often use a reference image with features similar to the orig-

inal image to estimate the weight function since original image is unavailable [126]. The

NLTV prior also suffers with the drawbacks such as the selection of the size of patch for

computing the weight function and window size for computing the image gradients which

are set empirically [126]. Besides this the NLTV regularization algorithms designed for
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a particular penalty are often not applicable to other functionals [127]. Thus, although

TV and NLTV regularization may give better fusion results, they suffer from the high

computational complexity [128] and implementations issues.

Recently, the use of compressive sensing (CS) theory has become very popular due

to its ability to recover the unknown sparse signal from a small set of linear projections.

The key point of CS theory is the sparsity regularization which refers to the charac-

teristic of many natural signals which makes it suitable to solve the inverse problem.

In [129] Li and Yang introduced the CS theory to obtain the fusion for remotely sensed

images. In this method, a dictionary is constructed using sample images having high spa-

tial resolution. They obtain fused image as the sparse linear combination of HR patches

available in dictionary. Authors in [130, 131] construct an overcomplete joint dictionary

from the available MS and Pan images and extract the most relevant spectral and spatial

information using the `1 minimization. On a similar line Zhu and Bamler [132] use a

dictionary constructed using the Pan image and its downsampled LR version and obtain

the fusion by exploring the sparse representation of HR/LR multi-spectral image patches.

In [133], authors have used the CS framework with dictionary patches learned from the

initial high resolution MS image obtained using AWLP method [60]. They obtain the

final fused image using a trained dictionary obtained from K-singular value decomposi-

tion (K-SVD). Authors in [134] create the over-complete dictionary with basis functions

of different transforms such as discrete cosine transform (DCT), wavelets, curvelets and

ridgelets and the best bases for MS and Pan images are obtained with convex optimiza-

tion. The final fused MS image is obtained by merging best bases coefficients of Pan and

MS bands as per values of the local information parameter. In addition to this Harikumar

et. al. [135] use the CS theory in order to obtain initial HR approximation of the final

fused image. The final solution is obtained by forming a cost function where truncated

quadratic smoothness prior is used to regularize the solution. A graph cut optimization

method is used to obtain the pan-sharpened image.

Regardless of the fusion classification, most of these fusion techniques required the set

of MS images to be perfectly aligned with the Pan image i.e., the MS and Pan images

have to be registered. The discussion on the different effects of image misregistration on

different pan-sharpening methods is extensively reviewed in [136]. The image interpola-

tion used in many fusion methods may cause the misregistration between the expanded



2.3 Model based Fusion Approaches 39

MS and Pan images. The distortion due to the image interpolation is studied by authors

in [137] in case of multi-resolution image fusion. It has been found that the visual and

quantitative performances of fusion methods largely depend on interpolation accuracy.

Here, authors have proposed the new bicubic interpolation technique which can perfectly

align the expanded MS and Pan images. We mention here that in this thesis we present

few new approaches for fusion in which the registered MS and Pan data are used. How-

ever, we do not inject the high frequency details into the interpolated version of the MS

image in the proposed model based approaches as done in most of the fusion approaches.

The multi-resolution image fusion is one of the most emerging research area among the

fusion community and is now quite matured problem. Several survey papers have been

published that consisting of various approaches for pan-sharpening or multi-resolution

image fusion [2, 25, 28, 138–144]. Similarly many books are also published on the fusion

techniques and its applications [145–148].



Chapter 3

Image Fusion using Different Edge

Preserving Filters

In this chapter we discuss the approaches of multi-resolution image fusion using guided

filter and difference of Gaussians (DoGs). In multi-resolution image fusion problem, the

given MS and Pan images have high spectral and high spatial resolutions, respectively.

One can obtain the fused image using these two images by injecting the missing high

frequency details from the Pan image into the MS image. The quality of the final fused

image will then depend on the method used for high frequency details extraction and

also on the technique for injecting these details into the MS image. In the literature

various approaches have been proposed based on this that also includes the state of the

art methods such as additive additive wavelet luminance proportional (AWLP) [60] and

generalized Laplacian pyramid-context based decision (GLP-CBD) [54]. Motivated by

these works, we first address the fusion problem by using different edge preserving filters

in order to extract the high frequency details from the Pan image. Specifically, we have

chosen the guided filter and difference of Gaussians (DoGs) for detail extraction since

these are more versatile in applications involving feature extraction, denoising, etc.

3.1 Related Work

A large number of techniques have been proposed for the fusion of Pan and MS im-

ages which are based extracting the high frequency details from Pan image and injecting

them into MS image. They are discussed in detail in the chapter on literature survey.

40
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These methods have been broadly cover the different categories as projection-substitution

methods i.e., based on principal component analysis (PCA) and intensity hue saturation

(IHS) [20, 33] and multi-resolution approaches based on obtaining a scale-by-scale de-

scription of the information content of both MS and Pan images [56, 149]. Among these

methods, the multi-resolution based methods have proven to be successful [25]. Most

of the multi-resolution techniques have been based on wavelet decomposition [56,149] in

which the MS and Pan images are decomposed into approximation and detail sub-bands,

and the detail sub-band coefficients of the Pan image are injected into the corresponding

sub-band of MS image by a predefined rule in which the MS image is first interpolated

to make it to the size of Pan image. This is followed by inverse wavelet transform to

obtain the fused image. This concept was taken forward in “a trous” Wavelet Transform

(AWT) based fusion [56] in which the image is first convolved with cubic spline filter and

decomposed into wavelet planes. The GLP-CBD fusion method [54] is an improved and

successful version of AWT. It proposes to add the wavelet coefficients not directly but

after weighting them with a constant which is computed based on local correlation of

MS and Pan images. Another technique known as AWLP [60] which is based on AWT

method that intends to preserve the spectral signature between the bands of the MS

image by injecting high frequency values proportional to their original values. A new

multi-resolution based technique, which takes into account the characteristics of multiple

information sources simultaneously is introduced in [150]. This method is based on bilat-

eral filter [151]. Though this approach takes into account both images while extracting

detail bands, no clear relationship is established between the Pan and the MS images.

In this chapter we discuss two separate fusion approaches based on guided filter and

difference of Gaussians, respectively. Since the Pan and MS images correspond to the

same scene captured with the different sensors, there exists a definite relation between

their detail bands. We make use of this relationship in our proposed approach using

multistage guided filter similar to the methods on MRA framework. Assuming that this

relationship is linear, we derive a multistage guided filter in which the Pan or MS image

is used as guidance image while extracting the details from the other image. Since the

details extraction process consist not only Pan image but also MS image the spatial

distortion of MS image is reduced. The proposed method of fusion is accomplished by

using a two stage guided filter. The extracted high frequency details are added to the
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corresponding MS image to obtain the final fused image.

Similar to guided filter the other fusion approach is proposed based on the difference

of Gaussians (DoGs) for extracting the edge details from the Pan image. The difference

of Gaussians can be used as a band-pass filter to discard all but a handful of spatial

frequencies that are present in the Pan image. In the first level, the Pan image is filtered

using Gaussian kernel and the resulting blurred image is subtracted from the original

image to get the first level of high frequency details. We then extract second level of high

frequency details by applying the same procedure on the blurred Pan image. The high

frequency details obtained in the first and second levels are merged into the upsampled

MS image to get the final result. Advantage of the proposed approach using DoGs is the

reduction in spatial degradation of the final fused image due to the use of non subsampled

Pan image while fusing.

3.2 Fusion Approach using Multistage Guided Filter

(MGF)

We propose a multi-resolution image fusion approach based on multistage guided filter

(MGF) in order to extract the details from MS and Pan images. The detail extraction

process exploits the relationship between the Pan and MS images by utilizing one of

them as a guidance image while extracting details from the other. This way the spatial

distortion of MS image is reduced by consistently combining the details obtained using

both types of images. The final fused image is obtained by adding the extracted high

frequency details to corresponding MS image. The results of the proposed algorithm are

compared with the traditional and the state of the art methods using the images captured

with different satellites such as Quickbird, Ikonos-2 and Worldview-2. The quantitative

assessment is evaluated using the conventional measures as well as using a relatively new

index i.e., quality with no reference (QNR) which does not require a reference image. The

results and measures clearly show that there is significant improvement in the quality of

the fused image using the proposed approach. The multi-resolution image fusion problem

using MGF can be posed as follows. The given high spectral resolution MS image and

high spatial resolution Pan image we obtain the single fused image with high spatial and
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spectral resolutions using multistage guided filter.

3.2.1 Multistage Guided Filter (MGF)

He et. al. [152] have introduced the guided filter which is an edge preserving smoothing

filter. They have experimented successfully to use the guided filter for a variety of appli-

cations including detail enhancement, compression, flash/no-flash de-noising etc. Later

on Li et. al. [153] extended the guided filter for fusion of multifocus, multitemporal and

multiexposure images. Motivated from this here we use the guided filter explicitly for

fusion of remotely sensed images. In order to extract more meaningful details from these

images we extend the guided filter to multistage form. A brief discussion of guided filter

is given below:

A guided filter is a filter which uses guidance image as one of the inputs to the

filter. Given the guidance image I, the guided filter output Λ is assumed to be a linear

transformation of this image. This transformation is given for a local window νk centered

at a pixel k as [152],

Λi = akIi + bk,∀i ∈ νk, (3.1)

where Λi and Ii represent the ith pixel intensity of filter output and guidance images,

respectively. The size of window νk is r × r and r is an integer. The coefficients ak and

bk are constants in window νk. These constants are estimated by minimizing the squared

difference between output image Λ and input image ℘ as,

E(ak, bk) =
∑
i∈νk

((akIi + bk − ℘i)2 + εa2
k), (3.2)

where ε is a regularization parameter set by the user. The constants ak and bk are given

by [152] as,

ak =

1
|ν|Σi∈νkIi℘i − µk℘̄k

σ2
k + ε

, and bk = ℘̄k − akµk, (3.3)

where σ2
k and µk are the variance and mean of I in νk, |ν| is the number of pixels in νk,

and ℘̄k = 1
|ν|Σi∈℘i℘i is the mean of ℘ in νk. In equation (3.1), the values of ak and bk are

same for all the pixels in the window νk and they are computed for all the overlapping

windows in an image. Due to this the filter output for ith pixel (Λi) has different values

for all the overlapping windows over a pixel i. The obtained values of ak and bk for the
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overlapping windows are averaged first and then used in equation (3.1) to compute the

filter output. Then the final guided filter as follows

Λi = āiIi + b̄i, (3.4)

where āi = 1
|ν|
∑

k∈νi ak and b̄i = 1
|ν|
∑

k∈νi bk.

For the purpose of fusing Pan and MS images, guided filter is extended to a multistage

form. In order to get adequate amount of extracted details, either of the Pan or MS image

is used as a guidance image for the other as explained below. Since the Pan and MS images

have different sizes, resampling is done on the MS image to obtain the same size for both.

Also, it is worth to mention here that since the spatial resolution of the MS images are

poor the meaningful high frequency details from them are extracted from the intensity

component (INT ) which is obtained as the weighted average of all the resampled MS

bands. Due to the average operation, the computed intensity component has the spectral

response similar to the spectral response of the Pan image which helps in extracting

the possible high frequency details from the MS image when it is used as the guidance

image. To describe the multistage form of guided filter here we use z(℘, I) notation as

the guided filter function with ℘ and I as input and guidance images, respectively. At

the first stage (j = 1) to extract the details from the Pan image, the intensity component

(INT ) is used as guidance image (I) and Pan image is used as an input image (℘). This

can be represented as,

PanjA = z(Pan, INT ), (3.5)

where PanjA represents the guided filtered output or approximation layer with Pan image

as an input image. Similarly, the Pan image is used as a guidance image (I) for INT

component image as an input image (℘) which can be given as,

MSjA = z(INT, Pan), (3.6)

where MSjA denotes the approximation layer with intensity component as an input image.
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The details layers at this stage can written as,

PanjD = Pan− PanjA and (3.7)

MSjD = INT −MSjA, (3.8)

For the jth stage (j > 1), the guided filter equations can be depicted as follows:

PanjA = z(Panj−1
A ,MSj−1

D ) and (3.9)

MSjA = z(MSj−1
A , Panj−1

A ), (3.10)

where Panj−1
A and MSj−1

A are the approximation layers (guided filtered outputs) of Pan

and INT component as input images, respectively for (j − 1)th level. The detail layers

for the jth decomposition stage (PanjD and MSjD) for the Pan and the MS images can be

expressed as,

PanjD = Panj−1
A − PanjA and (3.11)

MSjD = MSj−1
A −MSjA, (3.12)

3.2.2 The Proposed Approach using Guided Filter

The proposed fusion technique is outlined in Fig. 3.1. An approach of two stage guided

filter is used to combine the details of the Pan and MS images in a consistent manner.

Note that unlike the conventional methods where the information is extracted from the

Pan and injected into the MS image, the details in the proposed method are extracted

from both MS and Pan images in which each one is functioning as a guidance image.

The detail is then adjusted using a gaining constant to achieve a fused image with higher

spatial as well as higher spectral content. Considering an MS image with l different bands

and the Pan image (Pan), the proposed fusion technique obtains the fused image (Z) for

each band. The steps of the proposed fusion method can be detailed as follows:

1. The low resolution (LR) MS image is resampled to the size of Pan image by using

a suitable interpolation technique (bicubic interpolation is normally preferred).

2. Considering number of MS bands as 4, an intensity image INT is formed using
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Figure 3.1: Block diagram of the proposed approach

them in order to make same spectral widths for both MS and Pan images. This is

obtained using a weighted average of the four MS bands [33] i.e.,

INT =
1

l

l∑
k=1

ck ·MSk, (3.13)

where MSk, k = 1, . . . , l denotes the resampled band of the MS image. The ck, k =

1, . . . , l are the different constant estimated from the spectral response of MS bands.

3. The intensity component of MS image (INT ) and the Pan image are used for mul-

tistage guided filter decomposition given in equations (3.5) to (3.12) and the detail

and approximation layers are obtained. Here, a two stage guided filter decomposi-

tion is used.

4. In order to combine the extracted details in a consistent manner, they are merged

band wise using a weighted gain. The gain factor gk, calculated separately for each

pixel in a band, is given by

gk(i) =
MSk(i)

INT(i)
k = 1, . . . , l, (3.14)

where i denotes the pixel location in an image.
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5. Finally, the extracted details are merged band wise with the MS image after weight-

ing with gk as,

Zk = MSk + gk

N∑
j=1

PanjD, k = 1, . . . , l, (3.15)

where N represents the number of stages for guided filter. Here, the first term

(MSk) i.e. the resampled MS image contains spectral information while spatial

information is carried by the second term i.e. the weighted sum of extracted details.

3.3 Fusion Approach using Difference of Gaussians

(DoGs)

Use of the multistage form of guided filter to extract the details from the Pan image

provides improvement in terms of detail extraction. However, due to multistage extension

and patchwise computations, it results in increased computation in obtaining the final

fused image. In this section, we describe a fast method for multi-resolution image fusion

based on the difference of Gaussians (DoGs). The Pan and MS images are used to obtain

a fused image having both high spectral and spatial resolutions. The method is based

on two stage form of DoG on the Pan image. First, the Pan image is convolved with

Gaussian kernel to obtain a blurred version and the high frequency details are extracted

as the first level DoGs by subtracting the blurred image from the original. In order to get

the second level DoG, same steps are repeated on the blurred Pan image. The extracted

details at both DoGs are added to MS image to obtain the final fused image. Experiments

have been conducted with different values of standard deviations of Gaussian blur with

images captured from different satellite sensors such as Ikonos-2, Quickbird and Worlview-

2. A QNR index along with the other measures are evaluated to check the efficacy of

the proposed algorithm. The subjective and the quantitative assessment show that the

proposed technique performs better, fast and less complex when compared to recently

proposed state of the art techniques.
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(a) (b) (c) (d)

Figure 3.2: Example of DoGs. (a) Input test image, (b) Gaussian blurred image with
standard deviation of σ1 = 4, (c) Gaussian blurred image with standard deviation of
σ2 = 2 and (d) DoGs of (b) and (c), shown as inverted pixel intensity values.

3.3.1 Difference of Gaussians (DoGs)

Difference of Gaussians (DoGs) involves the subtraction of Gaussian blurred image from

the image which is usually less blurred. The Gaussian blurred image can be obtained by

convolving the Gaussian kernel with the input image. The DoG image D̃j(x, y) at jth

level can be given as,

D̃j(x, y) =  L(x, y, σj1)−  L(x, y, σj2), (3.16)

where  L(x, y, σ) is a blurred image obtained by convolving the input image I(x, y) with

the Gaussian kernel £(x, y, σi) as,

 L(x, y, σji ) = £(x, y, σji ) ∗ I(x, y), (3.17)

where σji , i = 1, 2 are the different values of standard deviation for Gaussian kernel at jth

level. Gaussian blurring suppresses high-frequency spatial information of the input image.

Subtracting one image from the other preserves spatial information that lies between the

range of frequencies that are preserved in the two blurred images. Thus, the DoGs is

a band-pass filter that discards all but a handful of spatial frequencies that are present

in the original image. The spreading parameter (σ) of the Gaussian can be chosen to

select the edge details within the bandpass region of the Pan image. Fig. 3.2 displays

the example of DoGs. In Fig. 3.2(a) we display the input test image. Two image blurred

with σ1 = 4 and σ2 = 2 are displayed in Fig. 3.2(b) and (c), respectively. The DoG image

is displayed in Fig. 3.2(d).
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Figure 3.3: Block schematic of the proposed approach for kth MS image. Here, gk is a
gain constant.

3.3.2 Proposed Approach using DoGs

Difference of Gaussians is widely used for feature extraction and edge detection. In

fusion approaches the high frequency details present in the Pan image are extracted for

injecting these details in the MS images. In the proposed method we use the DoGs for

extracting these details at two different levels. Since we are interested in extracting the

high frequency details from the Pan image, first level of DoG is performed by taking the

difference between the original Pan image and its blurred version and the second level

DoG is performed by taking the difference of second and first level. The extracted details

of the first and second levels are merged with the MS image with appropriate weight gk

to get the final result. We conducted the experiments with more than two levels of DoGs

but the improvement was not significant with the increased computation cost. Hence we

used two stage approach. The block schematic of the proposed method is displayed in

Fig. 3.3. The high frequency details extraction from the Pan image using DoGs is shown

with dotted box in Fig. 3.3.

Let the MS images of the size M ×M . The high spatial resolution Pan image has
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spatial resolution of qM × qM , where q is the spatial resolution difference between the

Pan and MS images. Our problem can now be posed as, given the LR MS image and a

high spatial resolution Pan image (Pan), obtain the fused MS image (Zk) with both high

spatial and spectral resolutions. The proposed method is described in following steps:

1. The MS images are resampled to the resolution of Pan image using suitable inter-

polation technique. Here, we use bicubic interpolation due to its simplicity and

fast output. This resampled MS band is denoted as MSk, k = 1, . . . , l. Here, l

represents the number of bands.

2. The Pan image (Pan(x, y)) is convolved with Gaussian kernel £(x, y, σ1). In order

to obtain the blurred version  LP (x, y, σ1
1) which is given as,

 LP (x, y, σ1
1) = £(x, y, σ1

1) ∗ Pan(x, y). (3.18)

3. The first level DoG is obtained by subtracting the blurred Pan image from the

original Pan image without blur to obtain the high frequency details as

Pan1
D = Pan(x, y)−  LP (x, y, σ1

1). (3.19)

4. Gaussian kernel is again convolved with blurred Pan image  LP (x, y, σ1
1) that gives

us the blurred Pan at second level i.e,

 LP (x, y, σ2
2) = £(x, y, σ2

2) ∗  LP (x, y, σ1
1). (3.20)

5. The other possible details at the second level, Pan2
D, are obtained by performing

DoG between  LP (x, y, σ1
1) and  LP (x, y, σ2

2) as,

Pan2
D =  LP (x, y, σ1

1)−  LP (x, y, σ2
2). (3.21)

6. The extracted details (PanjD, j = 1, 2) are combined with MS image (MSk) to get
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Table 3.1: Details of datasets used in experimentation.

Satellite Ikonos-2 Quickbird Worldview-2
Downloaded from [154] [155] [156] [157]

Acquired Date 22nd February, 2003 4th July, 2005 28th January, 2005 9th October, 2011
Area covered Mount Wellington Area around Sundarban San Francisco

area near Hobart Boulder city India USA
Tasmania USA

Spatial Resolution: MS 4m× 4m 2.4m× 2.4m 2m× 2m
Pan 1m× 1m 0.6m× 0.6m 0.5m× 0.5m

Data format 11-bits 8-bits 11-bits 11-bits
No. of Pan and 1 Pan, 4 bands 1 Pan, 4 bands 1 Pan, 4 bands 1 Pan, 8 bands

MS images
Original size: MS 3031× 3287 828× 815 16384× 16384 16384× 16384

Pan 12124× 13148 3312× 3260 4096× 4096 4096× 4096

the final fused image (Zk) as,

Zk = MSk + gk

2∑
j=1

PanjD, k = 0, 1, . . . , l. (3.22)

Here, gk is a gain constant given in equation (3.14).

3.4 Experimental Results

The performance of the proposed fusion methods is evaluated by conducting the experi-

ments on the images of different satellite sensors. We use the the images captured using

Ikonos-2, Quickbird and Worldview-2 satellites. Various details of data captured using

these satellites are listed in Table 3.1. In the experimentations, first MS and Pan images

are co-registered. We prepare the datasets by cropping the original acquired MS and

Pan images with the size of 256 × 256 and 1024 × 1024, respectively. Based on Wald’s

protocol [29], the MS and Pan images are spatially degraded and the experiments are

carried out on them to quantitatively test the output of the fused results with the true

MS images. In order to do so we downsample the MS and Pan images by a factor of 4. In

all the experiments of degraded dataset, the size of MS and Pan images are 64× 64 and

256× 256, respectively. In addition to degraded dataset experiments, we also conducted

the experiments on the un-degraded dataset. In the un-degraded dataset the size of MS

and Pan images correspond to the size of original MS and Pan images. The results of the

proposed fusion methods are compared with the other approaches on the basis of quality

of images in terms of perceptual as well as quantitative measures. The following quanti-
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tative measures are used for quantitative evaluation for those experiments conducted on

degraded images.

• The correlation coefficient (CC) is calculated as

CC =

N1∑
i=1

N2∑
j=1

[Z(i, j)− Z̄][Iref (i, j)− Īref ]√
N1∑
i=1

N2∑
j=1

[Z(i, j)− Z̄]2

√
N1∑
i=1

N2∑
j=1

[Iref (i, j)− Īref ]2
, (3.23)

where Iref and Z denote the reference and fused images with each of size N1 ×N2,

respectively. The Īref and Z̄ indicate the mean of reference and fused images,

respectively. The correlation coefficient indicates the degree of correlation between

Iref and Z. When Z and Iref are same, the correlation coefficient approaches to

one.

• The root mean squared error (RMSE) is the intensity difference between two images

[60]. It is defined as

RMSE =
1

N1N2

√√√√ N1∑
i=1

N2∑
j=1

(Iref (i, j)− Z(i, j))2. (3.24)

The ideal value of RMSE is 0 which indicates fused image is equal to the reference

image.

• ERGAS is an acronym in French for “Erreur relative globale adimensionnelle de

synthese” which translates to “relative dimensionless global error in synthesis”. It

gives a global spectral quality measure of the fused image (Z) [60], which is defined

as

ERGAS = 100
h

ι

√√√√1

l

l∑
i=1

(
RMSE2(i)

MEAN2(i)
) (3.25)

where h is spatial resolution of the Pan image; ι is spatial resolution of the MS

images; l is the number of bands of the fused image Z ; MEAN(i) is the mean

value of the ith band of the original MS image and RMSE(i) is the RMSE between

the ith band of the original and fused MS images. Smaller the value of ERGAS

indicates better fusion result. The ideal value of ERGAS is zero.



3.4 Experimental Results 53

• The average quality (QAV G) index is defined as the average value of the universal

image quality (UIQ) index of each band [60]. UIQ index models the distortion

between two images as a combination of distortion due to loss of correlation, lumi-

nance, and contrast. This index is given as [60],

UIQ =
4σIrefZ · Īref · Z̄

(σ2
Iref

+ σ2
Z)(Ī2

ref + Z̄2)
, (3.26)

where σIrefZ denotes the covariance between Iref and Z, Īref and Z̄ are the mean of

Iref and Z, respectively. σ2
Iref

and σ2
Z are the variances of Iref and Z, respectively.

Higher value of UIQ indicates better quality of the fused image. The ideal value of

this measure is 1.

In addition to the above measures we also conducted the quantitative analysis of the

fused image by computing a new measure called quality with no reference (QNR) which

does not require the reference image.

• The QNR [158] is defined as,

QNR = (1−Dλ) · (1−Ds), (3.27)

where Ds and Dλ are the spatial and spectral distortions. The ideal value of QNR

is 1. Spatial distortion index (Ds) is calculated as [158]:

Ds =

√√√√1

l

l∑
i=1

|Q(MSi, PanLR)−Q(Zi, Pan)|. (3.28)

Here, l is number of MS bands. MSi and Zi denote the ith band of original and fused

MS image, respectively. Pan is the original Pan image and PanLR represents the

spatially degraded version of the Pan image obtained by passing it through lowpass

filter having normalized cutoff frequency at the resolution ratio between MS and

Pan, followed by decimation. The Q(·, ·) is quality index defined in equation (3.26).

The index Ds attains its minimum velue of zero when quality measures are same

for two images. Spectral distortion index (Dλ) is calculated as [158]:

Dλ =

√√√√ 1

l(l − 1)

l∑
i=1,

l∑
r=1,r 6=i

|Q(MSi,MSr)−Q(Zi, Zr)|. (3.29)
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(a) (b) (c)

Figure 3.4: Downsampled LR MS images. The LR test MS images of size 64 × 64
obtained using (a) Ikonos-2 satellite shown with the color composition of 4, 3 and 2
bands, (b) Quickbird satellite shown with the color composition of 3, 2 and 1 bands and
(c) Worldview-2 satellite shown with the color composition of 5, 3 and 2 bands.

Here, Dλ is derived from the difference of inter-band quality index (Q) values cal-

culated using the fused and the original MS bands. The ideal value of Dλ is 0.

The different parameters setting related to these proposed fusion approaches are as

follows. In the proposed MGF based fusion method, the window of different size r is used

for all three datasets while the regularization parameter ε is chosen as 10−6 for all the

experiments. The values of r are 2, 7 and 9 for the experiments on Ikonos-2, Quickbird

and Worldview-2 satellite images, respectively. These parameters are selected by trial

and error method. In the fusion approach based on DoGs, we use the standard deviation

for Gaussian kernel as 2 and 1 at first and second stages, respectively i.e.σ1
1 = 2 and

σ2
2 = 1. These values are tuned empirically. We extended the experimentation with more

than two levels of DoG. However, the extracted high frequency details after second DoG

level were less effective in improving the quality of final fused image. The effectiveness of

the proposed fusion methods based on MGF and DoGs are demonstrated by comparing

its fusion results with the results of other popular methods such as fast IHS (FIHS) [33],

adaptive IHS [37] and AWLP [60].

In the following subsections we present the experimental results obtained using differ-

ent satellite images. The subsections 3.4.1-3.4.3 discuss the fusion results obtained using

the datasets of Ikonos-2, Quickbird and Worldview-2 satellites, respectively. The com-

putational complexity of different fusion methods is the topic of discussion in subsection

3.4.4.
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Results of multi-resolution image fusion on the degraded dataset of Ikonos-
2 satellite shown with the color composition of 4, 3 and 2 bands. Fusion results of
size 256 × 256 obtained using (a) FIHS method [33], (b) AIHS method [37] (c) AWLP
approach [60], (d) proposed approach using MGF and (e) proposed method using DoGs.
(f) Original MS image of size 256 × 256. The magnified region of a small squared area
shown in (e) is displayed at top right corner.

3.4.1 Experimental results on the degraded and un-degraded

datasets of Ikonos-2 satellite

We evaluate the performance of the proposed methods by conducting experiments on

both degraded and un-degraded datasets. We first consider the images captured using

Ikonos-2 satellite. The details of data captured using this satellite have been listed in

Table 3.1 which correspond to the area of Mount Wellington, Hobart, Tasmania. The

fusion results obtained using different methods are displayed in Fig. 3.5 and Fig. 3.6 for

degraded and un-degraded datasets, respectively. Here, the results are shown with the

color composition of 4, 3 and 2 bands. The downsampled test MS image for the degraded

experiment is displayed in Fig. 3.4(a). In Fig. 3.5(a) and Fig. 3.6(a) we display the fusion

results obtained using FIHS method [33] for degraded and un-degraded case, respectively.

The results of AIHS method [37] are depicted in Fig. 3.5(b) and Fig. 3.6(b). In addition

to this we have also compared our results with the fusion technique based on wavelet
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Results of multi-resolution image fusion on the un-degraded dataset of Ikonos-
2 satellite shown with the color composition of 4, 3 and 2 bands. Fusion results of size
1024 × 1024 obtained using (a) FIHS method [33], (b) AIHS method [37] (c) AWLP
approach [60], (d) proposed approach using MGF and (e) proposed method using DoGs.
(f) Original Pan image of size 1024× 1024. The magnified region of a small squared area
shown in (e) is displayed at top right corner.

transform [60] and the results for the same are shown in Fig. 3.5(c) and Fig. 3.6(c),

respectively. Finally, the results of the proposed fusion approaches using MGF and DoGs

are displayed in Fig. 3.5(d, e) and Fig. 3.6(d, e) for degraded and original datasets,

respectively. In the experiment of degraded dataset the original MS image is available

and the same is displayed in Fig. 3.5(f). However, for the un-degraded case we display

the original Pan image in Fig. 3.6(f) since we do not have the original MS image. In

results displayed in Fig. 3.5 & 3.6, we show the magnified images corresponding to a

small square portion shown with a yellow border in Fig. 3.5(e) and Fig. 3.6(e) and the

same are displayed at top right corner in all the results for better comparison. The

quantitative assessment for these experiments are depicted in Table 3.2.

Following observations are made from the fusion results displayed in Fig. 3.5 and
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Fig. 3.6. In the results of the FIHS method [33] which are displayed in Fig. 3.5(a) and

Fig. 3.6(a), one can see the preservation of color details along with the spatial contents.

Since this approach is based on the spectral response of Ikonos-2 satellite, the results of

this method show the improvement in the final fused image. By looking at the magnified

images one can compare the results of FIHS [33] method with the results of AIHS [37] and

AWLP [60] methods which are displayed in Fig. 3.5(a-c) and Fig. 3.6(a-c). Here, we may

observe that the fusion results obtained using AIHS [37] and AWLP [60] methods lack in

preserving the spectral and spatial contents when compared to the FIHS approach [33].

However, we can see the improvement in the results of the proposed MGF based approach

which are displayed in Fig. 3.5(d) and Fig. 3.6(d) for degraded and un-degraded datasets,

respectively over the FIHS method [33]. It is important to note that since the proposed

MGF fusion method utilizes the high frequency details which are extracted not only from

Pan image but also from MS image it shows better preservation of color information

along with edge details. This observation is clearly visible in the magnified images of

the proposed MGF fusion method (see Fig. 3.5(d) and Fig. 3.6(d)) which indicates that

the results of proposed MGF fusion method have the spatial details such as boundary

of houses and streets similar to the Pan image and spectral information close to original

MS image. The results of the proposed fusion method based on DoGs are displayed

in Fig. 3.5(e) and Fig. 3.6(e), respectively and its performance is also similar to these

methods (AIHS and AWLP). Also, it is worth to mention that the performance of the

proposed fusion method based on DoGs is close to that of the AWLP method [37] which

is one of the state of the art fusion methods.

The quantitative measures for the experiments on degraded and un-degraded dataset

are listed in Table 3.2. In this table, we also display the ideal values of these mea-

sures within brackets as a reference. Values shown as boldface indicate that they are

closer to the ideal value. In the experiment of the degraded dataset, the quantitative

performance of the proposed fusion method using MGF is better in terms of QAV G and

RMSE. However, for the other measures such as CC and ERGAS the proposed DoGs

fusion method performs better when compared to other fusion techniques. For the ex-

periment of the un-degraded dataset, the quantitative evaluation in terms of QNR, Ds

and Dλ are better for the proposed fusion approach based on MGF when compared to

the other fusion methods. Looking at this quantitative assessment we can mention the
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Table 3.2: Quantitative measures for the experiments of Ikonos-2 dataset shown in Fig. 3.5
and Fig. 3.6

Dataset Measure FIHS AIHS AWLP Proposed Proposed
[33] [37] [60] using MGF using DoGs

Degraded CC(1) 0.980 0.975 0.964 0.973 0.988
(Fig. 3.5) ERGAS(0) 10.929 8.966 5.511 4.160 4.210

QAV G(1) 0.860 0.879 0.896 0.906 0.944
RMSE(0) 21.816 10.544 7.636 5.645 8.110

Un-degraded QNR(1) 0.429 0.583 0.576 0.640 0.595
(Fig. 3.6) Ds(0) 0.429 0.287 0.299 0.228 0.288

Dλ(0) 0.326 0.181 0.177 0.171 0.164

following points. Although the visual assessment of FIHS method [33] for degraded and

un-degraded datasets is better it lacks in showing better quantitative performance. Also,

one may notice that though the qualitative performance of the proposed fusion method

based on DoGs is close to AIHS [33] and AWLP [60] methods its quantitative measures

have shown improvement in almost all measures except for RMSE. As we can see from

the Table 3.2, the values of different measures for degraded and un-degraded datasets

for the proposed methods are closer to the ideal values when compared to other fusion

techniques.

3.4.2 Experimental results on the degraded and un-degraded

datasets of Quickbird satellite

The second experiment is conducted on the degraded and un-degraded datasets of the

Quickbird satellite which is downloaded from [156]. The details of the data captured

using this satellite is presented in Table 3.1 and the captured area corresponds to an

area of Sundarban, India. In Fig. 3.7 and Fig. 3.8 we display the fusion results with the

color composition of 3, 2 and 1 bands. The test MS image for the experiment on the

degraded dataset is displayed in Fig. 3.4(b). Similar to the earlier experiments on Ikonos-

2 dataset here also we compare our fusion results with the recently proposed methods and

the same are displayed in Fig. 3.7(a-c) and Fig. 3.8(a-c) for degraded and un-degraded

datasets, respectively. The results of the proposed fusion methods based on MGF and

DoGs are displayed in Fig. 3.7(d, e) and Fig. 3.8(d, e) for degraded and un-degraded

datasets, respectively. For better visualization a small region shown in Fig. 3.7(e) and
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Results of multi-resolution image fusion on the degraded dataset of Quickbird
satellite shown with the color composition of 3, 2 and 1 bands. Fusion results of size 256×
256 obtained using (a) FIHS method [33], (b) AIHS method [37] (c) AWLP approach [60],
(d) proposed approach using MGF and (e) proposed method using DoGs. (f) Original
MS image of size 256 × 256. The magnified region of a small squared area shown in (e)
is displayed at bottom left corner.

Fig. 3.8(e) with yellow border are magnified and shown in the top right corner of all

the results. Looking at the results following observations can be made. The results of

FIHS method [33] displayed in Fig. 3.7(a) and Fig. 3.8(a) show poor spectral and spatial

contents due to the poor injection of details from the Pan to MS image in this method.

Since the detail injection approach uses the the model based on spectral response of

Ikonos-2 satellite it results in fused images with distortions when one tries to use it on

the data captured using other satellites. These distortions can be seen in the fused images

displayed in both Fig. 3.7(a) and Fig. 3.8(a). The other two fusion methods i.e., AIHS [37]

and AWLP [60] perform better when compared to FIHS method [33]. Visual observation

of the results obtained using the proposed method based on MGF which are displayed in

Fig. 3.7(d) and Fig. 3.8(d) indicates that the edges and spectral changes are better for the

proposed fusion method based on MGF when compared to the other methods. Similarly

results obtained using proposed approach based on DoGs (Fig. 3.7(e) and Fig. 3.8(e))

have better preservation of homogenous as well as edge regions. This observation can be
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Results of multi-resolution image fusion on the un-degraded dataset of Quick-
bird satellite shown with the color composition of 3, 2 and 1 bands. Fusion results of
size 1024× 1024 obtained using (a) FIHS method [33], (b) AIHS method [37] (c) AWLP
approach [60], (d) proposed approach using MGF and (e) proposed method using DoGs.
(f) Original Pan image of size 1024× 1024. The magnified region of a small squared area
shown in (e) is displayed at bottom left corner.

easily verified by comparing the magnified images of these results displayed in Fig. 3.7(b,

c, e) and Fig. 3.8(b, c, e) for degraded and un-degraded datasets, respectively. Also, it

is of interest to note that the results of proposed fusion method based on MGF perform

better when compared to that with the other proposed fusion approach based on DoGs.

While comparing the magnified images of all the fusion results displayed in Fig. 3.7 and

Fig. 3.8 one can say that the results of proposed fusion approach based MGF and DoGs

perform better when compared to that with other methods.

The quantitative analysis for this experiment is depicted in Table 3.3 . The values of

CC, ERGAS and RMSE measures are better for the proposed method based on MGF.

However, QAV G is highest for the proposed fusion method using DoGs. Similarly, the

quantitative evaluation of the results obtained using un-degraded dataset for the proposed
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Table 3.3: Quantitative measures for the experiments of Quickbird dataset shown in
Fig. 3.7 and Fig. 3.8

Dataset Measure FIHS AIHS AWLP Proposed Proposed
[33] [37] [60] using MGF using DoGs

Degraded CC(1) 0.867 0.917 0.920 0.942 0.929
(Fig. 3.7) ERGAS(0) 6.228 3.996 4.476 3.874 4.661

QAV G(1) 0.892 0.802 0.832 0.845 0.875
RMSE(0) 20.645 13.413 16.037 12.609 13.959

Un-degraded QNR(1) 0.281 0.408 0.410 0.559 0.577
(Fig. 3.8) Ds(0) 0.605 0.453 0.447 0.325 0.373

Dλ(0) 0.288 0.254 0.258 0.171 0.079

method based on DoGs is better in terms of the QNR and spectral distortion index (Dλ).

Also, the spatial distortion measure (Ds) is lowest for the proposed fusion technique based

on MGF. From the visual inspection and quantitative analysis one can conclude that our

method on guided filters and difference of Gaussians have noticeable improvement over

different regions when we compare the same with the results of other popular fusion

methods.

3.4.3 Experimental results on the degraded and un-degraded

datasets of Worldview-2 satellite

Finally, the last experiment is conducted on the degraded and un-degraded datasets of

data captured using Worldview-2 satellite. The original acquired MS and Pan images

of this satellite correspond to the area of San Francisco, USA. The spatial resolutions of

images provided by this satellite are highest among the other satellites used in the previous

two experiments. The fusion results obtained using different techniques are displayed in

Fig. 3.9 and Fig. 3.10, respectively with the color composition of 5, 3 and 2 bands.

Similar to the previous two experiments here also we display the input MS test image in

Fig. 3.4(c) for the experiment on the degraded dataset. In Fig. 3.9(a-c) and Fig. 3.10(a-

c), we display the fusion results obtained using different methods such as FIHS [33],

AIHS [37] and AWLP [60] for degraded as well as un-degraded case. Similar to the

earlier experiments on Ikonos-2 and Quickbird satellites here also we display the zoomed-

in images for a small square area shown in Fig. 3.9(e) and Fig. 3.10(e) with yellow border.

By looking at the fusion results obtained using FIHS method [33] which are displayed
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Results of multi-resolution image fusion on the degraded dataset of
Worldveiw-2 satellite shown with the color composition of 5, 3 and 2 bands. Fusion
results of size 256× 256 obtained using (a) FIHS method [33], (b) AIHS method [37] (c)
AWLP approach [60], (d) proposed approach using MGF and (e) proposed method using
DoGs. (f) Original MS image of size 256× 256. The magnified region of a small squared
area shown in (e) is displayed at bottom right corner.

in Fig. 3.9(a) and Fig. 3.10(a) we can see that the performance of this method is better

for this dataset when compared to the results of AIHS [37] and AWLP [60] which are

displayed in Fig. 3.9(b, c) and Fig. 3.10(b, c), respectively. Results of these methods look

blurred and also lack of preservation of color details. However, the results of FIHS fusion

method (see Fig. 3.10(a) and Fig. 3.9(a)) appear closer to the original MS image which is

displayed in Fig. 3.9(f). Similar observation also holds good for the results obtained using

the un-degraded dataset. When we compare the results of our approaches based on MGF

and DoGs displayed in Fig. 3.9(d, e) for degraded datasets with the results of all other

fusion techniques displayed in Fig. Fig. 3.9(a-c) we can observe that their performance

is improved in the preservation of spatial details with color information. Similarly, we

notice the improvement in the results of our methods for the un-degraded case too. One

can compare the magnified images of all these results of degraded and un-degraded cases

and conclusion may be drawn that results of proposed fusion techniques using MGF and

DoGs have better edge details with spectral information. For example, the zoomed-in
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: Results of multi-resolution image fusion on un-degraded dataset of
Worldview-2 satellite shown with the color composition of 5, 3 and 2 bands. Fusion
results of size 1024 × 1024 obtained using (a) FIHS method [33], (b) AIHS method [37]
(c) AWLP approach [60], (d) proposed approach using MGF and (e) proposed method
using DoGs. (f) Original Pan image of size 1024× 1024. The magnified region of a small
squared area shown in (e) is displayed at bottom right corner.

images displayed in Fig. 3.10(d, e) show that the fused images in the proposed methods

appear sharper and are in consistent to Pan image which is displayed in Fig. 3.10(f).

The quantitative analysis for these experiments is given in Table 3.4. For the exper-

iment on the degraded dataset, the measures such as CC and QAV G are closer to their

ideal values for the proposed fusion method based on MGF. Similarly, the ERGAS and

RMSE are better for the proposed method using DoGs. For the un-degraded case all the

three measures i.e., QNR, Ds and Dλ are better for proposed fusion method based on

DoGs.

It is of interest to note that the proposed fusion method using MGF extracts the details

from both MS and Pan images and due to this it results in better fused image. However,

in the fusion method using DoGs, it uses Pan image only to extract the meaningful
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Table 3.4: Quantitative measures for the experiments of Worldview-2 dataset shown in
Fig. 3.9 and Fig. 3.10

Dataset Measure FIHS AIHS AWLP Proposed Proposed
[33] [37] [60] using MGF using DoGs

Degraded CC(1) 0.908 0.919 0.916 0.925 0.911
(Fig. 3.9) ERGAS(0) 9.031 8.360 7.612 7.334 7.103

QAV G(1) 0.665 0.679 0.675 0.695 0.681
RMSE(0) 30.448 22.320 20.915 19.807 18.072

Un-degraded QNR(1) 0.4760 0.1587 0.6118 0.6150 0.6658
(Fig. 3.10) Ds(0) 0.3600 0.5830 0.2390 0.1950 0.1758

Dλ(0) 0.2550 0.6192 0.1960 0.2360 0.1921

Table 3.5: Computational complexity of different fusion methods.

Method Average computation time (in seconds)
Degraded dataset Un-degraded dataset

FIHS [33] 0.229 0.570
AIHS [37] 0.789 2.290
AWLP [60] 0.333 0.634

Proposed approach 1.236 4.896
using MGF

Proposed approach 0.208 0.480
using DoGs

details and performance of this method is slightly poor when compared to same with

MGF fusion method. Although it is worth to mention that the performance of these two

fusion methods are considerably improved when compared to the results of the state of

the art methods.

3.4.4 Computational Complexity

The proposed algorithms as well as those used for comparison are executed on Matlab

7.6 installed on desk top computer with Intel dual core processor having 4 GB RAM. The

proposed fusion methods are based on simply extracting the details from the Pan image

using different filters, and hence are computationally efficient as compared to different

state of the art techniques. However, since the fusion approach based on MGF is based on

multistage it has slightly higher computational complexity when compared to the other

approaches. Table 3.5 lists the average time taken to execute the main body of different

methods. In this table one can clearly observe that the average run time for the proposed

method based on DoGs is less when compared to other methods.
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3.5 Conclusion

We have proposed two fusion methods based on guided filter and difference of Gaussians.

The multistage form of guided filter is introduced to extract the details from Pan and MS

images. Similarly, DoGs have been used to extract the high frequency details from the

Pan image. The extracted details are transferred to MS image via a weighted average gain

factor. The results have been compared with the state of the art methods by conducting

the experiments on images of Quickbird, Ikonos-2 and Worldview-2 satellites. Comparison

based on perceptual and quantitative measures clearly shows improvement in the quality

of fused image obtained using the proposed fusion methods based on the MGF and DoGs.

From the displayed results, quantitative measures and the computational complexity

analysis one may say that the performance of the proposed fusion methods based on

MGF and DoGs is better, fast and less complex when compared to the state of the art

methods.



Chapter 4

Model based Approach for

Multi-resolution Image Fusion

Recently, many researchers have attempted to solve the problem of multi-resolution image

fusion by using the model based approaches with the emphasis on improving the fused

image quality and reducing the color distortion [103, 107]. They model the low resolu-

tion (LR) MS image as the blurred and noisy version of it’s ideal high resolution (HR)

fused image. Solving the problem of fusion by model based approach is desirable since

aliasing present due to undersampling of MS image can be taken care of while modeling.

The fusion using the interpolation of MS images and edge preserving filters as given in

Chapter 3 do not consider the effect of aliasing. In this chapter we propose a model

based approach in which a learning based method is used to obtain the required degra-

dation matrix that accounts for aliasing. Using the proposed model, the final solution is

obtained by solving it as inverse problem. The proposed approach uses sub-sampled as

well as non sub-sampled contourlet transform based learning and a Markov random field

(MRF) prior for regularizing the solution.

4.1 Previous Work

Many researchers have used model based approach for fusion with the emphasis on im-

proving fusion quality and reducing the color distortion [100, 101, 103–105, 107, 129, 130,

132]. In [104] the authors have proposed a spectrally consistent method for pixel-level

fusion based on the model of the imaging sensor and using the pixel neighborhood regular-

66
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ization. The fused image is obtained by optimizing an energy function consisting of a data

term and a prior term. The image fusion based on restoration framework is suggested by

authors in [105] which models the LR MS image as the blurred and noisy version of it’s

ideal. Also they model the Pan image as a linear combination of true MS images. The

final fused image is obtained by using a constrained least squares (CLS) framework. The

same model with maximum a posteriori (MAP) framework is used in [101,107]. In [101],

authors use the model based approach to enhance the hyperspectral images using the

Pan image. Their framework takes care of enhancement of any number of spectral bands.

In [107], authors use the same model as used in [101] for fusion and regularize the solution

with Huber-Markov prior. They also estimate the regularization parameters adaptively

with the use of spectral response of the sensor.

The authors in [103] use the image formation process using a linear modal and solve

the problem of fusion by applying a discontinuity preserving prior constraint under the

regularization framework. An Inhomogeneous Gaussian Markov Random Field (IGMRF)

is used as a prior and its parameters are estimated using the Pan image that has high

spatial resolution. However, since the learning of the spatial relationship is entirely

based on the Pan data, it adds to spectral distortion in the fused image. The fusion

performance of this method is also affected due to the approximate parameters estimation

using maximum likelihood. It is also computationally taxing since IGMRF parameters

are estimated at every location in the image. Our proposed approach in this chapter

uses a transform domain method for using the high frequency details. Hence, we briefly

explain few fusion techniques that are based on transform domain.

The favorable time-frequency localization to express the signal locally makes the

wavelet a candidate for multi-sensor image fusion. However, wavelet bases are isotropic

and represent limited directions. Therefore they fail to represent anisotropic edges and the

contours in images in a better way. The MRA based fusion methods using the other trans-

forms such as curvelet [82] and contourlet [86] have also been proposed. The contourlet

transform (CT) has the characteristics of localization, multi-direction, and anisotropy.

The CT gives the asymptotic optimal representation of contours and has been efficiently

applied in image fusion techniques. However, the CT lacks shift-invariance which causes

energy content at different levels of decomposition to differ. Hence it’s performance while

fusing MS and Pan images may be slightly inferior when compared to NSCT. In the non-
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subsampled contourlet transform (NSCT) the input to filter banks is without subsampling

and this makes it shift-invariance and hence it performs better. Fusion methods based

on these transforms are reported in [86–88].

The authors in [86] obtain enhancement in spectral and spatial information by using

principal component analysis (PCA) and non-subsampled CT. Here, all the detail coeffi-

cients at different scales of histogram matched Pan image are injected into MS image. A

similar approach is presented in [87], where the first principal component i.e., PC1 is also

decomposed using NSCT and details are injected based on local variance of Pan details

and PC1. Authors in [88] obtain the fused image by using both spectral and spatial sim-

ilarity. They decompose Pan and MS images using NSCT and the detail coefficients of

Pan image are injected to MS image based on spatial similarity measure. Here, authors

assume that the spectral frequency bands of MS images are same as the NSCT filter bank

outputs. All these approaches do not consider aliasing and blurring present in the low res-

olution MS image and hence do not solve the problem of ill posedness inherently present

in multi-resolution fusion. Although they use CT, no attempt is made to minimize the

aliasing effect by exploiting the relationship between LR and HR MS images.

In this chapter, we propose a model based approach that uses subsampling as well as

non subsampling CT for edge preservation. In our work a close approximation (initial

estimate) to the final fused image is first obtained using the available Pan, MS image

and the CT/NSCT which is then used in deriving the relation between LR and HR MS

images and also the edges in the final fused image. We assume that the derived initial

estimate has the desirable global characteristics of the fused image. The final fused MS

image is obtained by using regularization for which we use a homogenous MRF prior that

requires simple gradient based optimization in order to obtain the final solution. We take

care of edge preservation in the final fused image by regularizing the non edge regions

only. This is because our method uses CT/NSCT in order to obtain an initial estimates

of fused image that has strong edges. Our approach in this paper differs from other CT

based approaches and has the following advantages.

• As we are considering not only the Pan image but also the MS images while obtain-

ing the initial estimate, it captures the smooth contours (i.e., spatial dependencies)

as well as sharp edges effectively while still preserving the spectral content.
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• Use of homogeneous MRF prior reduces the computational complexity. Though the

prior is homogeneous MRF, the method still takes care of preserving edge pixels.

• Use of Canny edge detector which is an optimum edge extractor to locate the edge

pixels in the initial estimate and retaining them as edges in the final fused image

gives better edge details in the final solution.

• Optimization is carried out only on those pixels which do not belong to edges. This

avoids oversmoothing of edge regions.

• Our method uses a degradation matrix estimated using the available MS image and

the initial estimate, thus it avoids the need for assuming the degradation matrix in

MS image formation process. The advantage here is that the degradation matrix

is estimated from the given data itself and this leads to accurate estimation of the

fused image.

• The proposed approach preserves the edge details without using the computation-

ally taxing optimization methods [159,160].

4.2 Description of the Proposed Approach using Block

Schematic

The block schematic of our proposed multi-resolution fusion is shown in Fig. 4.1 in which

an mth low resolution MS image and the Pan image are fused giving Zm as the fused

image. The initial approximation of fused image (initial estimate) obtained using the

CT/NSCT is used to recover the high frequency details for the fused MS image. Using

this initial estimate and the given LR MS image, the degradation matrix entries are

estimated by posing it as a least squares problem. This degradation matrix gives us the

relationship between the LR and HR MS images. The discontinuities in the final fused

image correspond to the edge pixels in the initial estimate. A Canny edge detector is

used to extract these edge details from the initial estimate. The final solution is obtained

by using the maximum a posteriori -Markov random field (MAP-MRF) formulation in

which the MRF prior parameters are estimated using the initial estimate. With this

MAP framework the final cost function consists of data fitting term and the MRF prior
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Figure 4.1: Block schematic of the multi-resolution fusion process for fusing an mth MS
and the Pan image. Here LR and HR correspond to low resolution and high resolution,
respectively. The process is repeated for each of the MS image to obtain fused image
separately for each of the LR observations.

term. Here the data fitting term forms the likelihood function. This cost function is

optimized using gradient based optimization technique in order to smooth the non edge

regions only. This takes care of preserving the homogeneity as well as edges in the final

fused image without affecting the spectral content in the MS image.

4.3 Contourlet Transform based Edge Learning

The approaches based on multi-scale model (MSM) are popular among the fusion com-

munity. The first MSM which is still widely used by the researchers corresponds to

the wavelet transform (WT) based model. It has the properties of multi-scale analysis

and time-frequency localization. However, use of WT in fusion process preserves the

edge details present in the horizontal, vertical and diagonal directions only. One can

overcome this limitation using more recently proposed multi-resolution and directional

transforms called contourlet transform (CT) and non-subsampled CT(NSCT) presented

in [80,81], respectively. The NSCT is the shift invariant version of CT that avoids using

subsampling. These contourlet transforms not only have the advantages of multi-scale

and time-frequency-localization properties of wavelets, but it also provides a high degree

of directionality and anisotropy. The CT and NSCT employ directional filter bank (DFB)
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Figure 4.2: Learning the initial approximation to final fused image (initial estimate)
using contourlet transform. (a) Two level contourlet decomposition of an MS image,
(b) four level contourlet decomposition of initial estimate. Here shaded area sub-bands
coefficients are to be learned from contourlet decomposition of the Pan image and (c)
four level contourlet decomposition of the Pan image.

and non-subsampled DFB (NSDFB) that capture the edges in the different directions by

linking the point discontinuities into linear structures. For details on contourlet transform

the reader may refer to [63,81,85,161].

We now explain the contourlet transform based method to obtain the initial estimate

of the fused image for the given LR MS image. It may be mentioned here that though

this procedure is explained using CT it can be easily extended to non-subsampled case by

using the CT without using downsampling at every level. The contourlet decomposition

is done on the LR MS and the Pan images. We take two level CT for the given low

resolution MS image, which is shown in Fig. 4.2(a). Here, sub-band 0 corresponds to

coarsest sub-band. The sub-bands I − IV represent the directional sub-bands for first
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level contourlet decomposition and the sub-bands V −V III correspond to those at second

level. Considering a resolution difference of 4 between the Pan and MS, the Pan image

is subjected to four levels of contourlet decomposition (see Fig. 4.2(c)). Considering

both the computation complexity and the need for capturing the high frequency details,

we use eight directional filters at the third level and sixteen at the fourth level while

decomposing the Pan image. One may also compute the dominant directions of the

initial estimate and use adaptive contourlet based approach in order to learn the edge

details [162]. However, due to adaptive property computational complexity is increased

much. We restrain from doing it in our approach as finding the dominant directions

itself can be considered as a significant work and we wish to consider it in our future

work. Similar to the MS image, the sub-band 0 represents the coarsest sub-band in

Fig. 4.2(c), while the sub-bands I − IV and V − V III correspond to first and second

level decompositions, respectively. The sub-bands IX − XV I and XV II − XXXII

correspond to third and fourth level decompositions of Pan image. In Fig. 4.2(b), we

show the four level contourlet decomposition of the initial estimate to be obtained using

Pan and MS image decompositions. In the LR MS image, lower frequencies are intact

while high frequencies are missing. These missing frequencies can be obtained from the

Pan data by using our learning approach. In order to do this, the low frequency details

are duplicated in the initial estimate from the sub-bands 0 − V III of the MS image

contourlet decomposition. The missing high frequency details i.e., CT coefficients of level

3 and 4 which is shown as the shaded area in Fig. 4.2(b), are obtained by copying the

contourlet transform coefficients of the Pan image that correspond to the third and fourth

levels (sub-bands IX −XXXII) of the initial estimate. If we denote the sub-band 0 of

MS image contourlet transform decomposition as Ψ
MS

0, then one can describe the learning

process as follows. The sub-bands 0 − V III of the initial estimate are copied from the

sub-bands 0− V III of the contourlet decomposition of the MS image. i.e.,

Ψ
INT.

i := Ψ
MS

i, i = 0, I, II, . . . , V III. (4.1)

In above equation (4.1), Ψ
INT.

i denotes the ith sub-band of initial estimate for the given

MS band image. The sub-bands IX −XXXII of Pan image contourlet decomposition
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are copied into the corresponding sub-bands of the initial estimate. i.e.,

Ψ
INT.

i := Ψ
PAN

i, i = IX,X,XI, . . . , XXXII. (4.2)

Here, Ψ
PAN

i is the ith sub-band of Pan image contourlet decomposition. Once the con-

tourlet coefficients of the initial estimate are obtained, the inverse contourlet transform

is taken to obtain initial estimate in spatial domain. This process is repeated for all the

MS image bands. It is worth to mention here that it is not possible to obtain the true

edge details of final fused image. Hence one has to look for those edge details that better

approximate the edges in the final solution. Since the CT/NSCT gives better directional

details it is reasonable to assume that the edges in the initial estimate correspond to true

edges. A Canny edge detector is then used to obtain the edges from this initial estimate.

Here, One may argue on the selection of the Canny edge filter for edge preservation.

However, it is well known that the Canny edge detector represents an optimum edge de-

tector and it performs better under noisy conditions. Also, it minimizes number of false

edges due to number of reasons [163,164]. In order to set a proper threshold value while

extracting the edges from the initial estimate using the Canny edge detector, we first

extract the edges of the given Pan image in which a proper threshold is selected to get

the edges. The same threshold is then used on the initial estimate. Note that performing

edge operation on the Pan is an offline operation.

4.4 Forward Model and Degradation Estimation

Since we cast our problem in a restoration framework, solving such a problem needs a

forward model that represents the image formation process. Let l be the number of low-

resolution MS images Ym (m = 1, 2, . . . l), each captured with a different spectral band,

of size M ×M and Zm be the corresponding fused HR MS image of size qM × qM , where

q is the decimation factor representing the spatial resolution difference between the LR

and HR fused images. The forward model for the image formation can be written as,

ym = Amzm + nm, m = 1, 2, . . . l. (4.3)
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In above equation (4.3), ym and zm represent the lexicographically ordered vectors of size

M2×1 and q2M2×1, respectively. Am is the degradation matrix of size M2×q2M2, which

accounts for aliasing and blur. In equation (4.3), nm is the independent and identically

distributed (i.i.d.) noise vector with zero mean and variance σ2
nm and has same size as

ym. The multivariate noise probability density of nm is given by

P (nm) =
1

(2πσ2
nm)

M2

2

e
− 1

2σ2nm
nTmnm

. (4.4)

Now the problem can be stated as follows. Estimate fused image zm given ym. This

is clearly an ill-posed inverse problem and needs additional constraint in the form of

regularization prior to solve it. In order to obtain the solution by regularization one

has to know Am. However, this is unknown since we do not have the fused MS image.

Since, we already know the approximation (initial estimate) to fused image, we use it for

estimating Am. One may write Am as,

Am = DmHm, m = 1, 2, . . . l. (4.5)

where Dm is the decimation matrix of size M2 × q2M2 and Hm is the blur matrix of size

q2M2 × q2M2 which is assumed to be space invariant. While solving the fusion problem

Hm is usually considered as an identity matrix [103]. However, in this work a non-identity

blur matrix is assumed. When one assumes aliasing as the averaging of appropriate HR

pixels then for a decimation factor of q the corresponding decimation/aliasing matrix can

be written as [165]

Dm =
1

q2


1 1 . . . 1 0

1 1 . . . 1

. . .

0 1 1 . . . 1

 . (4.6)

In our work we consider decimation which has a different form for Dm as given in equation

(4.7) below. By considering the LR pixel as linear combination of q2 HR pixels with
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appropriate weights, we choose Dm as,

Dm =


am1 am2 . . . a

m
q2 0

am1 am2 . . . a
m
q2

. . .

0 am1 am2 . . . a
m
q2

 , (4.7)

where |ai| ≤ 1, i = 1, 2, . . . q2. Note that equation (4.7) replaces averaging effect (equal

weights) as given in equation (4.6) by unequal weights. This matrix using unequal weights

models the distortion caused due to aliasing that happens because of undersampling of

MS image. It is of interest to compare the fusion results obtained using equation (4.7)

and equation (4.6) and it is discussed in the experimental section for q = 4. By assuming

a space invariant blur, the blur matrix Hm has the form

Hm =


Hm

0 Hm
qM2−1 Hm

qM2−2 . . . Hm
1

Hm
1 Hm

0 Hm
qM2−1 . . . Hm

2

. . . . . . .

Hm
qM2−1 Hm

qM2−2 Hm
qM2−3 . . . Hm

0

 , (4.8)

where m=1,2, . . ., l and each Hj can be written as,

Hm
j =


hmj,0 hmj,q−1 hmj,q−2 . . . hmj,1

hmj,1 hmj,0 hmj,q−1 . . . hmj,2

. . . . . . .

hmj,q−1 hmj,q−2 hmj,q−3 . . . hmj,0

 . (4.9)

Here h.,. are the values of the point spread function (PSF) for blur. Since we consider a

space invariant blur, Hm is block circulant. The multiplication of Dm and Hm results in

the Am matrix which is given by

Am =


Am1 Am2 . . . Amq2M2−1 Amq2M2

Amq2M2−q+1 . . . Am1 Am2 . . . Amq2M2−q

. . . . .

. . . . . . . . . Am1 . . . . . .

 . (4.10)
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For M = 2 and q = 2 the Am matrix has size of 4× 16 and can be written as,

Am =


Am1 Am2 Am3 Am4 Am5 Am6 Am7 Am8 Am9 Am10 Am11 Am12 Am13 Am14 Am15 Am16

Am15 Am16 Am1 Am2 Am3 Am4 Am5 Am6 Am7 Am8 Am9 Am10 Am11 Am12 Am13 Am14

Am9 Am10 Am11 Am12 Am13 Am14 Am15 Am16 Am1 Am2 Am3 Am4 Am5 Am6 Am7 Am8

Am7 Am8 Am9 Am10 Am11 Am12 Am13 Am14 Am15 Am16 Am1 Am2 Am3 Am4 Am5 Am6

 .

(4.11)

We estimate the entries in equation (4.10) using the available LR MS image and initial

HR estimate image. A minimum norm approach has been used for the estimation of

Am. In literature various algorithms are available to estimate the same however we

use the technique given in [166] which is computationally very efficient compared to

other methods. Inclusion of non-identity blur matrix leads to under determinant set of

equations. It is worth to mention here that we are not assuming the known entries for Dm

and Hm matrices, instead estimate them from the given data i.e., using LR observation

and the initial estimate (Z0
m). Many researchers consider an identity matrix for blur

which is not true in practice. Hence the estimated Am matrix as done in our approach is

closer to the true degradation.

4.5 MRF Prior Model

In order to obtain a regularized estimate of the high-resolution fused image, we define

an appropriate prior term using MRF modeling. MRF provides a convenient and logical

approach to model context dependent entities such as pixel intensities, depth of the

object, and other spatially correlated features [167]. Recently, conditional random fields

(CRFs) are being used as priors in solving many of the problems in the image processing

applications. Though, it is a good idea to use CRF on fused MS image that depends

on the LR resolution MS image, it is difficult to obtain true dependency between them.

Also when we model an entity using CRF the parameter estimation requires the use of

computationally taxing partition function [168]. Hence, in this work we prefer to use an

MRF model which do not require the LR observations for parameter estimation. Also

the computational complexity is reduced additionally by the use of homogeneous MRF

where a single MRF parameter is estimated. An MRF prior for the unknown fused HR

image can be described by using a energy function U expressed as Gibbsian density given
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by

P (zm) =
1

Zmθ
e−U(zm), (4.12)

where zm is the fused HR image to be estimated and Zmθ is partition function. One can

choose U as a quadratic form with a single global parameter, assuming that the images

are globally smooth. A method of specifying MRF prior involves considering the pair

wise cliques c on a neighborhood and imposing a quadratic cost which is function of

finite difference approximations of the first order derivative at each pixel location. This

constitutes a homogeneous and non edge preserving smoothness prior. By using first

order neighborhood, the energy function corresponding to the MRF prior can be written

as,

U(zm) =
∑
c∈C

Vc(zm) = γm

qM∑
k=1

qM∑
l=1

[(Zm(k,l) − Zm(k,l−1))
2 + (Zm(k,l) − Zm(k−1,l))

2],(4.13)

where γm represents the MRF parameter that indicates the penalty for departure from

smoothness in zm. C is the set of all cliques. The MRF parameter γm is known if the

fused image is known. In our work, since the initial estimate is already available, we

make use of the same to estimate γm. We use maximum pseudo likelihood for estimating

it [167].

It is worth to mention few points on the various fusion techniques proposed using

the discontinuity preserving priors. In order to obtain the better fusion, researchers

have used different types of discontinuity preserving priors. In these techniques the

resulting cost function may be convex or non-convex. When the cost function is non-

convex the computationally taxing optimization techniques are required to obtain the

final solution [159, 160, 169]. A Huber-MRF is an edge preserving prior and it is convex.

So it could be a good choice for edge preservation which allows us to minimize the cost

function by using gradient descent technique [107, 170]. However, the performance of

this prior is highly dependent on selection of the threshold used in defining the prior.

Also, the use of single threshold cannot take care of preserving the edges having different

gradients present in the image. The estimation of this threshold is a very challenging

task and it is image dependant. In our approach we avoid using such threshold based

edge preservation.
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Similar to the Huber prior one may argue to use total variation (TV) [109] or non

local total variation (NLTV) [116, 117] as the discontinuity preserving prior for the edge

preservation. The TV prior was first proposed by Rudin et. al. [109] that has L1 norm

in the regularization term. Although this results in edge preservation, the computational

complexity is increased due to the non-differentiability of term with L1 norm. The diffi-

culty of non-differentiability can be avoided by the small perturbation in the prior [109].

However, it results in the modification of the original cost function and hence it causes

the deviation in the required solution [119]. In addition to this, the final output also

depends on the value of regularization parameter. Various methods are proposed in the

literature to estimate this regularization parameter [120–124] which are either computa-

tionally expensive or yield approximate solution. It is interesting to note that though

there are various approaches proposed in the literature to minimize the cost function

using the TV prior, close form solution does not exist for the cost function with TV

prior [125]. Unlike the TV prior which utilizes same weights to its neighbors, NLTV prior

incorporates the nonlocal interaction among the neighboring pixels and computes the

weights accordingly. In order to obtain the better solution using NLTV regularization,

the accuracy of this weight function is very important. Researchers often use a reference

image with features similar to the original image to estimate the weight function since

original image is unavailable [126]. The NLTV prior also suffers with the drawbacks such

as the selection of the size of patch for computing the weight function and window size for

computing the image gradients which are set empirically [126]. Besides this the NLTV

regularization algorithms designed for a particular penalty are often not applicable to

other functionals [127]. Thus, although TV and NLTV regularization may give better

fusion results, they suffer from the high computational complexity [128] and implemen-

tations issues. Due to these reasons we have resorted to a very simple approach of edge

preserving fusion approach. The edges in the final fused image in the proposed method

are obtained by extracting them from an initial estimate which itself is dependent on

the given high resolution data i.e., Pan image. The extracted edges are preserved in the

final fused image by retaining the edges corresponding to initial estimate and by applying

MRF regularization on homogenous regions only. This gives the advantage in terms of

using gradient based techniques for optimization and preserving the edges in the final

solution.
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4.6 MAP Estimation and Optimization Process

4.6.1 MAP Estimation

The MRF model on the fused image serves as the prior for the MAP estimation in which

the prior parameter is already known. The data fitting term contains the degradation ma-

trix estimated using the initial estimate. In order to use maximum a posteriori estimation

to HR fused image, we need to obtain the estimate as

ẑm = argmax
zm P (zm/ym). (4.14)

Using the Bayes’ rule we can write,

ẑm = argmax
zm

P (ym/zm)P (zm)

P (ym)
. (4.15)

While maximizing over all zm, denominator in equation (4.15) becomes a constant. Hence

we can write

ẑm = argmax
zm P (ym/zm)P (zm). (4.16)

Now taking the log we get,

ẑm = argmax
zm [logP (ym/zm) + logP (zm)]. (4.17)

Finally, using equation (4.3) and equation (4.13), we can write

ẑm = argmin
zm [E(zm)], (4.18)

where E(zm) is the final cost function to be minimized and can be expressed as

E(zm) =
‖ ym − Amzm ‖2

2σ2
nm

+
∑
c∈C

Vc(zm). (4.19)

In equation (4.19), the first term ensures the fidelity of the final solution to the observed

data through the image formation process and it is called the data term. The second

term is the smoothness prior.
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4.6.2 Optimization Process

Since the cost function given in equation (4.19) is convex, it can be minimized using a

simple gradient based technique, which quickly leads to the minima. The gradient of this

cost is given by differentiating it with respect to zm as

∇E(zm) = −2ATm(ym − Amzm)/2σ2
nm + 2γmĝm, (4.20)

where the first term corresponds to differentiation of the data term, while ĝm vector

constructed after differentiating
∑

c∈C Vc(zm) at every location. The differentiation with

respect to Zm(i, j) of the second term at a (i, j) location is given by

Ĝm(i, j) = 2[4Zm(i,j) − Zm(i,j−1) − Zm(i,j+1) − Zm(i−1,j) − Zm(i+1,j)]. (4.21)

Note that ∇E(zm) is a vector of size q2M2× 1. The complete gradient descent optimiza-

tion process is depicted in algorithm 4.1. The value of αm decides the rate of convergence.

Note that a smaller value of the step size αm will lead to slower convergence and for the

larger value the algorithm may not converge. This makes us to use a varying step size

αnm and the same is estimated using the method given in [170] as

αnm =
[∇E(znm)]T∇E(znm)

[∇E(znm)]T (ATmAm/2σ
2
nm + γm∇2ĝm)∇E(znm)

. (4.22)

Since the optimization process is iterative the choice of initial guess fed to the optimization

process determines the speed of convergence. Use of the available initial estimate as an

initial solution speed-up the convergence. Note that we obtain initial estimate separately

for each of the MS observations and the optimization is carried out independently for

every LR MS observation. We mention here again that in order to preserve the edges in

the final solution we detect the edges from the initial estimate with the help of Canny

edge detector and we do not perform the optimization on those edge pixels. In other

words the edges in the final fused image correspond to the already learned edges in the

initial estimate.
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Algorithm 4.1: Gradient descent technique

Data: LR MS image (ym), initial estimate obtained using NSCT/CT (z0
m), Am

and γm
Result: Fused MS image (ẑm)
foreach LR MS image ym,m = 1, 2, . . . , l do

set n = 0;
repeat

find gradient with respect to znm of cost function given in equation (4.19)
using equation (4.20);
estimate the step size αnm using equation (4.22);
perform zn+1

m = znm − αnm(∇E(znm)), where αnm is the step size of nth

iteration;
n = n+ 1;

until ||z
n
m−z

n−1
m ||2

||zn−1
m ||2 ≤ 10−06 ;

set ẑm = zn−1
m ;

end

Table 4.1: Details of experimentation setup

Degraded dataset Un-degraded datset
Image size: MS 64× 64 256× 256

Pan 256× 256 1024× 1024
Fused image size 256× 256 1024× 1024

Data format Same as original data format
Downsampling Every 4× 4 pixels of original Not required

operation (q = 4) images are averaged to get
corresponding single

pixel in downsampled image
Image format for display 24 bits RGB format

of results
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4.7 Experimental Results

In this section, we present results of the proposed method for fusion. The fusion results

using CT as well as NSCT are discussed and the comparison is shown with various state

of the art approaches. In addition to fusion experiments conducted on both the degraded

and un-degraded (original) images, we have also conducted experiments to show the effect

of estimated decimation matrix entries (equation (4.7)) over the average one (equation

(4.6)) and the effect of estimated MRF parameter on the fusion results. In order to show

effectiveness of the proposed approach, we have conducted experiments on three sets of

real images captured using Ikonos-2, Quickbird and Worldview-2 satellites. The detailed

information of these satellites data are given in Table 3.1. The spatial resolution difference

between the Pan and MS images is 4 for the images captured using these satellites.

We performed experiments for a resolution difference of 2 as well as 4. Our approach

for spatial resolution 2 outperforms when compared to other methods. Due to space

constraints, we are demonstrating results for spatial resolution of 4 only. In Table 4.1 we

show the details of setup used for degraded and un-degraded datasets. In all experiments,

we use the “9 − 7” Laplacian pyramid (LP) filter bank based CT/NSCT as proposed

in [171]. Along with this LP filter bank we use “pkva” and “dmaxflat7” directional filter

banks for CT and NSCT decomposition, respectively [81, 172]. In order to compare the

performance of proposed approach using CT/NSCT transform with the wavelet transform

based approach we conducted the experiments where wavelet transform is used instead

of CT/NSCT to obtain initial estimate. The experiments are conducted using MRF

prior with first as well as second order neighborhood systems. The performance of the

proposed method is compared with other approaches on the basis of quality of images

in terms of perceptual as well as quantitative measures. These measures are computed

using the fused MS and the original MS images. In order to make the availability of

original for the quantitative comparison, the experiments are conducted on degraded

images by using down sampling operation (q = 4) on both Pan and MS images. The

following quantitative measures are used for performance evaluation for those experiments

conducted on degraded images.

1. The CC is given in equation (3.23) and it is widely used by the fusion community. It

finds the correlation between original MS band and fused MS band. Higher values
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of CC indicates high spectral and spatial quality of the fused images.

2. Recently, Zhang et al. [173] have proposed a new image quality assessment called

feature-similarity (FSIM). The FSIM is based on the value of phase congruency

(PC) and gradient magnitude (GM) of a local structure. The high value of PC

indicates highly informative features. To find the FSIM between two images f and

f̂ , first the PC and the GM values for all pixels are computed as given in [173].

Using the phase congruency and the gradient magnitude, the similarity measures

between f and f̂ are calculated as

SPC(i, j) =
2PCf (i, j) · PCf̂ (i, j) + T1

PC2
f (i, j) + PC2

f̂
(i, j) + T1

, (4.23)

and

SG(i, j) =
2Gf (i, j) ·Gf̂ (i, j) + T2

G2
f (i, j) +G2

f̂
(i, j) + T2

, (4.24)

where T1 and T2 represent small positive constants. PCf , PCf̂ and Gf , Gf̂ represent

the phase congruency and the gradient magnitude of f and f̂ , respectively. Then,

the SPC(i, j) and the SG(i, j) are multiplied to get the similarity SL(i, j) i.e.,

SL(i, j) = SPC(i, j) · SG(i, j). (4.25)

Finally, the FSIM is computed as [173]:

FSIM =

∑
i,j∈Ω SL(i, j) · PCm(i, j)∑

i,j∈Ω PCm(i, j)
. (4.26)

Here Ω represents the entire image region in spatial domain and PCm(i, j) =

max(PCf (i, j), PCf̂ (i, j)). The range of FSIM is 0 to 1 and a higher value repre-

sents better performance.

3. The definition of RMSE is given in equation (3.24). It is the average MSE computed

over all the fused MS bands. Low value of RMSE indicates minimum difference

between original and fused image.

4. The erreur relative globale adimensionnelle de synthse (ERGAS) defined in equa-

tion (3.25) gives the global spatial quality in fused image. Ideal value of ERGAS is
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zero.

5. Spectral information divergence (SID) [174] measures the information divergence

between the probability distributions generated by the fused MS and original MS

image. It gives the spectral variability of a single mixed pixel from a probabilistic

point of view. Smaller SID value indicates better fused image.

6. A universal image quality index (Qavg) is defined in equation (3.26). It models

distortion as a combination of three different factors: loss of correlation, luminance

distortion and contrast distortion. The highest value of (Qavg) is 1 and it indicates

that the fused image is same as the original image.

Among the above measures, CC, RMSE, ERGAS, SID and Qavg correspond to the spectral

distortion [37,60,86] while FSIM gives the spatial fidelity of the fused image.

In addition to experiments of degraded images, the performance of the proposed

method is also verified by conducting the experiments on the un-degraded (original)

datasets. In this experiment the reference fused image is not available for quantitative

comparison and hence we use following measures in which reference image is not required.

1. The quality with no reference (QNR) is given in equation (3.27). The ideal value

of this measure is 1 means that the fused image is same as original MS image. This

measure is calculated using spatial distortion (Ds) and spectral distortion (Dλ).

2. The spatial distortion (Ds) defined in equation (3.28) gives the spatial detail by

comparing the MS and fused images with Pan image. It’s ideal value is 0.

3. The spectral distortion (Dλ) tells the spectral distortion present in the fused image

in comparison with original MS image and it’s ideal value is 0. Equation (3.29)

defines the Dλ.

In following subsections 4.7.1 and 4.7.2, we show the effect of decimation matrix co-

efficients and MRF parameter on fusion, respectively. The fusion results of degraded

datasets obtained for different satellites are depicted in subsection 4.7.3 to 4.7.5. In sub-

section 4.7.6, we describe the fusion results obtained for un-degraded datsets. Finally,

the computation time involved for different fusion methods is presented in 5.6.5.
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Worldview-2 (band-7)

Ikonos-2 (band-3)
(a) (b) (c)

Figure 4.3: Experimental results to show the effect of decimation matrix with equal
and unequal weights (q = 4). The first and second row consist fusion results for images
captured using Worldview-2 (band-7) and Ikonos-2 (band-3) satellite sensors, respectively.
(a) The downsampled LR MS image. The size of LR MS image is 64 × 64. Fused MS
images of size 256× 256 with (b) equal weights and (c) unequal weights. The zoomed-in
version of small area shown with white color border in (c) are displayed at bottom right
corner in (b, c).

4.7.1 Result on Effect of Decimation Matrix Coefficients

Before proceeding to discussing the fusion results using our proposed method based on

CT and NSCT we first show the effect of decimation matrix on MS image fusion with

unequal weights (equation (4.7)) and equal weights (equation (4.6)) by conducting the

experiments on the degraded version images captured by two different satellites. Due to

space constraint we display only results of band-7 and band-3 of Worldview-2 and Ikonos-

2 satellites, respectively. The matrix with unequal weights were obtained by formulating

the problem as minimization of ||ym − Dmz0
m||2 with respect to sparse entries in Dm,

where z0
m in the initial estimate derived from NSCT based learning. The locations of these

entries correspond to those used for averaging (i.e., those locations where Dm entries were
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Table 4.2: Quantitative measures for fused MS images shown in Fig. 4.3. Here values in
boldface indicate better performance.

Image Measure Decimation matrix with equal weights Decimation matrix with unequal weights
Worldview-2 MSE 0.0478 0.0394
(band-7) PSNR (in dB) 27.2941 30.4381
Ikonos-2 MSE 0.0491 0.0411
(band-3) PSNR (in dB) 25.9345 28.8621

having equal values). The unequal weights of the Dm are then obtained using least squares

method. The final cost function given in equation (4.19) is then minimized by replacing

Am with Dm in order to obtain the fused image. The fusion results using equal and

unequal weights are depicted in Fig. 4.3. In Fig. 4.3(a), we display the low resolution MS

images. The fusion results with equal and unequal weights are displayed in Fig. 4.3(b)

and Fig. 4.3(c), respectively. For better visualization we also display the zoomed-in

version of a small area at bottom right corner in the fused images. Looking at these fused

images we can observe that the results with unequal weights have reduced the blurring

effect when compared to those of equal weights. One can also see the improvement in

quantitative measures as given in Table 4.2. This Table shows the mean squared error

(MSE) and the peak signal to noise ratio (PSNR) calculated between original and fused

MS images. The results shown in Fig. 4.3 confirms that the use of decimation matrix with

unequal weights (equation (4.7)) results in better fusion performance when compared to

that obtained using equal weights (equation (4.6)). Note that in this experiment, the

blur matrix is considered as an identity. However, in our work we take care of blurring

as well as the aliasing by including the non-identity blur matrix and use the estimated

degradation matrix (Am) entries instead of Dm.

4.7.2 Effect of MRF parameter γm on Fusion

In the proposed approach, first the initial estimate image is obtained using the CT/NSCT

transform, MS and Pan images. The final fused image is obtained by casting the problem

in a regularization framework and solving the same by using MAP-MRF approach. In

our regularization we use an MRF smoothness prior given in equation (4.13). Here,

γm represents the MRF parameter. It serves as a weight that appropriately penalizes

the departure from smoothness in the fused image and its value depends on the entity

modeled as MRF. Since the fused image is modeled as MRF and same is unavailable,
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true value of the MRF parameter is not known. However, since we have the initial

estimate which represents close approximation to the final fused image, it can be used to

estimate the MRF parameter. If this parameter is not estimated one may set it empirically

however doing this increases the computational cost. Since the MRF parameter acts as

regularizing parameter, it is interesting to see the effect of the same on the solution i.e.

the fused image. In order to investigate the effect of γm on the solution, we conducted an

experiment on band-1 of degraded Quickbird dataset [156] using the proposed approach

in which different values of γ1 are chosen manually. The results of this experiment are

displayed in Fig. 4.4 for different choices of γ1. Fig. 4.4(a-c) show the fused images

with three different values of γ1. Comparing the images displayed in Fig. 4.4(a-c), we

observe that the fused image shown in Fig. 4.4(a) is smoothed out due to higher value

of γ1 = 0.1. The fused image in Fig. 4.4(b) looks a bit better when compared to Fig.

4.4(a) but edges are not preserved well. Although the fused image of Fig. 4.4(c) has

minimum smoothness and has prominent edge details, it looks noisy. This is because of

the reduction in weightage (γ1 = 0.001) for the prior term in equation (4.19). In this case

the final solution relies heavily on the first term (data term) in equation (4.19) forcing it

to become noisy since it corresponds to least squares estimation with much less emphasis

on prior. In Fig. 4.4(d) we display the fused image with estimated MRF parameter (γ1)

but without using the edge details extracted from the Canny edge detector. What we

observe here is the loss of edge details. The entire image appears smooth since the edge

regions are also included while minimizing the cost function. In Fig. 4.4(e) we display the

fused image with estimated γ1 but with edge pixels corresponding to those of the initial

estimate which are estimated using the Canny edge detector. Thus we see that the Fig.

4.4(e) has better preservation of homogenous and heterogenous regions when compared

to other results displayed in Fig. 4.4(a-d).

4.7.3 Fusion Results for Degraded Dataset: Ikonos-2

The Ikonos-2 satellite has one Pan and four MS images (band-1 to band-4) with the

spatial resolution of 1m×1m and 4m×4m, respectively. These images were downloaded

from the Internet [154], which has images of urban as well as non-urban areas. All these

images correspond to Mount Wellington area near Hobart Tasmania. They were captured
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(a) γ1 = 0.1 (b) γ1 = 0.01 (c) γ1 = 0.001 (d) γ1 = 0.0063 (e) γ1 = 0.0063

Figure 4.4: Effect of γ1 on fusion result obtained for degraded Quickbird (band-1) satellite
image. (a-c) Fused images with manually selected value of γ1, fused MS images with
estimated γ1 (d) without using Canny edge detector and (e) with Canny edge detector.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.5: LR test MS images obtained by downsampling the original MS images cap-
tured using different satellite sensors. The size of each LR test MS image is 64× 64. The
downsampled MS images for (a, b) Ikonos-2 satellite with color composition of bands-3,
2, 1 and bands-4, 3, 2 respectively, (c, d, e) Quickbird satellite with color composition
of bands-3, 2, 1 and bands-4, 3, 2 corresponding to area around Boulder city, USA and
bands-3, 2, 1 corresponding to Sundarban, India respectively and (d, e) Worlodview-2
satellite with color composition of bands-5, 3, 2 and bands-7, 5, 3, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.6: MS fusion results for downsampled Ikonos-2 satellite images consisting of non-
urban area shown as color composite of bands-3, 2 and 1 (q = 4). Fused images obtained
using (a) temporal Fourier transform (TFT) based approach [175], (b) approach in [87],
(c) approach in [86], (d) approach in [103], (e) adaptive IHS approach [37], (f) AWLP [60],
(g) proposed approach using CT and (h) proposed approach using NSCT. (i) Original
MS image. The magnified image for a small square region with a green border shown in
(i) is displayed at the bottom right corner of all the images.

on 22nd February 2003 and have radiometric resolution of 11-bits. The original Pan and

MS images are of size 12124× 13148 and 3031× 3287, respectively. For experimentation,

we prepared two datasets from these images by using cropping operation. These cropped
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images are then coregistered. Our dataset used for experimentation consists of a Pan

image and MS images of size 1024 × 1024 and 256 × 256, respectively. We downsample

them by a factor of 4 and conduct the experiments using the degraded Pan and MS

images of size 256 × 256 and 64 × 64, respectively. The radiometric resolution is kept

same as the original for these images. Experiments are conducted on the available data

without any preprocessing such as converting it into 8-bits or linear stretching etc. MRF

parameters are estimated separately for each band using the corresponding initial esti-

mate. The estimated value of MRF parameter γ1 for band-1 is 0.00257. As mentioned

earlier the experiments were conducted on first and second neighborhood MRF priors.

From the results, we observed that using both these neighborhoods resulted in almost

the same MSE and also visually similar results. However, with the use of second order

neighborhood, the convergence speed was faster when compared to first order neighbor-

hood. Similar observation was noticed in [176]. Here, the results are shown with second

order neighborhood only. With the varying step size value in the gradient descent the

convergence is obtained in less than 20 iterations which is fast compared to the fixed step

size value.

The results are shown separately for images containing non-urban and urban area.

In order to accommodate experiments on all the three sets of images, we show the fused

results for non-urban area using bands 3, 2 and 1 while the results on urban area are

shown using the bands 4, 3 and 2. The downsampled LR MS images for different satellites

are displayed separately in Fig. 4.5 in which Fig. 4.5(a) and Fig. 4.5(b) correspond to LR

MS images for Ikonos-2 satellite. The fusion results for the two cases are shown as color

composites in Fig. 4.6 and Fig. 4.7, respectively and the comparison is shown with various

state of the art fusion approaches. In both the figures, the magnified portion is shown

at the bottom-right corner on each of the fused images. Fig. 4.6(a) and Fig. 4.7(a) show

the fused images obtained using temporal Fourier transform (TFT) [175] method. The

results obtained using the approach based on NSCT [87] are displayed in Fig. 4.6(b) and

Fig. 4.7(b), respectively. In Fig. 4.6(c) and Fig. 4.7(c), we show the fused images for the

approach in [86]. We also display the fusion results obtained using [103] in Fig. 4.6(d) and

Fig. 4.7(d). Fig. 4.6(e) and Fig. 4.7(e) show the fusion obtained using the adaptive IHS

method [37]. The MS fusion images using AWLP method [60] are shown in Fig. 4.6(f) and

Fig. 4.7(f). It may be mentioned here that we choose these methods for comparison since
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Table 4.3: Quantitative measures for fused MS images shown in Fig. 4.6. Here boldface
indicate values closer to the ideal.

Measure Image Ideal TFT Approach Approach Approach Adaptive AWLP Proposed Proposed
value method in in in IHS method using using

[175] [87] [86] [103] [37] [60] CT NSCT
Band 1(B) 1 0.8042 0.8672 0.8403 0.8404 0.9093 0.8469 0.9232 0.9250

CC Band 2(G) 1 0.8814 0.8868 0.8630 0.8597 0.9211 0.9324 0.9557 0.9489
Band 3(R) 1 0.9385 0.8994 0.8929 0.8837 0.9655 0.9596 0.9628 0.9633

Band 4(NIR) 1 0.9519 0.9565 0.9312 0.9259 0.9646 0.9673 0.9782 0.9719
Band 1(B) 1 0.8304 0.9269 0.8977 0.8907 0.9438 0.8809 0.9550 0.9574

FSIM Band 2(G) 1 0.9104 0.9171 0.8577 0.8735 0.9536 0.9322 0.9621 0.9673
Band 3(R) 1 0.9349 0.9160 0.8397 0.8476 0.9513 0.9500 0.9525 0.9530

Band 4(NIR) 1 0.8881 0.8977 0.7629 0.7924 0.8749 0.9171 0.9173 0.9230
RMSE Band 1-4 0 9.08 4.53 5.08 9.55 3.48 3.81 3.07 3.01
ERGAS Band 1-4 0 7.57 4.16 4.59 6.52 3.12 3.28 2.88 2.83
SID Band 1-4 0 0.0530 0.0075 0.0386 0.0840 0.0394 0.0386 0.0061 0.0057
Qavg Band 1-4 1 0.4989 0.9008 0.8960 0.5303 0.9003 0.8962 0.9104 0.9146

they perform the fusion using the edge details in Pan image which is in similar line with

the proposed method. Finally, the results of the proposed approach using CT and NSCT

are depicted in Fig. 4.6(g, h) and Fig. 4.7(g, h), respectively. For visual comparison we

display the original MS images in Fig. 4.6(i) and Fig. 4.7(i), respectively.

Looking at the results displayed in Fig. 4.6 for non-urban area the following points

can be noticed. One can see that fused image using TFT method (see Fig. 4.6(a))

although shows improvement in spatial information it has spectral distortions. This can

be seen in the magnified region in which the artifacts are clearly visible. The approaches

based on NSCT [86, 87] (Fig. 4.6(b) and Fig. 4.6(c)) fail in both spectral and spatial

information preservation. Similarly, we can observe the poor enhancement of details in

Fig. 4.6(d) [103]. Further, the AWLP approach [60] (Fig. 4.6(f)) preserves the spectral

details but the improvement of spatial details is lacking. This may be because of the non

usage of prior information. Although the adaptive IHS method (see Fig. 4.6(e)) gives

better fused image perceptually the results of the proposed approach shown in Fig. 4.6(g,

h) are better both in terms of perception and quantitative measures. We can see from

the magnified details that in the proposed method the area nearer to the sea have better

preservation of spatial details when compared to the same in Fig. 4.6(a-f). Here, we can

also observe that the proposed approach with NSCT (Fig. 4.6(h)) has less spatial and

color distortion and also appears closer to original MS image (Fig. 4.6(i)) when compared

to the result using CT (Fig. 4.6(g)). The quantitative comparison using all 4 bands for

non-urban area (Fig. 4.6) is given in Table 4.3 that also has the ideal value for each

measure as the reference. The values marked in boldface indicate that their value is
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closer to the ideal. It is clearly observed that the proposed method has better CC when

compared to all other methods except for band 3. For this band though the CC value for

the proposed method is less, it is still closer to the adaptive IHS technique [37] which has

the highest value. The FSIM measure is based on phase congruency (PC), and is highest

when there is significant pixel intensity difference between neighboring pixels. Hence a

higher value of this indicates that the edges are well preserved. From the Table 4.3, one

can observe that the proposed method with the NSCT has the high value of FSIM when

compared to other approaches. The other spatial measures such as RMSE and ERGAS

are also indicated in Table 4.3. As expected for these measures the proposed approach

shows better performance when compared to all the other approaches. The SID measure

which indicates the spectral distortion present in the image is better when compared to

other methods. The Qavg which quantifies spatial as well as the spectral details is also

highest for the proposed method. From the Table 4.3, we can say that the proposed

method using CT and NSCT performs better in terms of quantitative measures when

compared to other methods except for correlation coefficient which is marginally less

than adaptive IHS approach for band 3. However, we can see that fusion using adaptive

IHS is visually poor when compared to the proposed method.

Similar observations can be made for Fig. 4.7 which has urban area. Here also we

display the magnified portion separately as seen at the bottom right corner. We see that

all other approaches except the AWLP method [60] show inferiority in terms of visual

perception when compared with our approach. But looking at the magnified portion

which consists of the areas around large building one can say that preservation of spatial

details in the proposed approach are better when compared to AWLP approach [60].

A careful observation shows that distinguishing a region such as the one shown in the

magnified area from the other regions is more easier in the proposed methods, indicating

better preservation of spectral features. Interestingly, one can also see that the artifacts

are less dominant in Fig. 4.7(h) indicating that NSCT performs better due to non sub-

sampling property. The quantitative comparison for the results on urban area is shown

in Table 4.4. As indicated the proposed method performs better in terms of quantita-

tive measures when compared to other approaches. We see from the Table 4.4 that the

CC measures for both CT and NSCT are better among all other approaches. Similarly,

we can see the improvement in the FSIM for the proposed method when compared to
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7: MS fusion results for degraded dataset of urban area images captured using
Ikonos-2 satellite shown as color composite of bands-4, 3 and 2 (q = 4). Fused images
obtained using (a) TFT based approach [175], (b) approach in [87], (c) approach in [86],
(d) approach in [103], (e) adaptive IHS approach [37], (f) AWLP [60], (g) proposed
approach using CT and (h) proposed approach using NSCT. (i) Original MS image. The
magnified image for a small square region with a green border shown in (i) is displayed
at the bottom right corner of all the images.

other methods and the values of RMSE and ERGAS are closer to the ideal value. The

measures that show the spectral details preservation i.e., SID and Qavg are also better

when compared to other methods. We mention here that the use of NSCT improves the
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Table 4.4: Quantitative measures for fused MS images result shown in Fig. 4.7. Here
boldface indicate values closer to the ideal.

Measure Image Ideal TFT Approach Approach Approach Adaptive AWLP Proposed Proposed
value method in in in IHS method using using

[175] [87] [86] [103] [37] [60] CT NSCT
Band 1(B) 1 0.8892 0.8359 0.8107 0.8121 0.9405 0.9323 0.9406 0.9441

CC Band 2(G) 1 0.9215 0.8553 0.7988 0.8009 0.9487 0.9380 0.9543 0.9543
Band 3(R) 1 0.9415 0.8702 0.7860 0.7890 0.9493 0.9322 0.9498 0.9497

Band 4(NIR) 1 0.8787 0.8589 0.7121 0.7155 0.9016 0.8925 0.9032 0.9200
Band 1(B) 1 0.8303 0.8568 0.7611 0.7893 0.9043 0.9115 0.9155 0.9083

FSIM Band 2(G) 1 0.9118 0.8496 0.7203 0.7728 0.8860 0.9083 0.9255 0.9294
Band 3(R) 1 0.9324 0.8607 0.7131 0.7736 0.8760 0.8972 0.9394 0.9320

Band 4(NIR) 1 0.9049 0.8035 0.6618 0.7572 0.8228 0.8719 0.9091 0.9164
RMSE Band 1-4 0 11.65 12.99 14.02 15.19 9.56 9.49 9.04 7.87
ERGAS Band 1-4 0 5.44 6.07 6.52 6.27 4.46 4.42 4.25 3.69
SID Band 1-4 0 0.0257 0.0144 0.0182 0.0312 0.0145 0.0139 0.0125 0.0116
Qavg Band 1-4 1 0.4945 0.7135 0.7390 0.7276 0.7558 0.7454 0.7582 0.7695

RMSE and ERGAS when compared to CT method, however this improvement is not

significant for other measures. From the results displayed in Fig. 4.6 and Fig. 4.7 and the

quantitative measures shown in Table 4.3 and Table 4.4, we can see that the proposed

method performs well in terms of both perceptual as well as quantitative assessment for

the results on images of Ikonos-2 satellite.

4.7.4 Fusion Results for Degraded Dataset: Quickbird

We now consider images captured using Quickbird satellite, which provides Pan and

MS images with spatial resolutions of 0.6m× 0.6m and 2.4m× 2.4m, respectively. These

images were downloaded from the website [155]. This satellite data covers an area around

Boulder city, USA. These images were captured on 4th July, 2005 and their radiometric

resolution is of 8-bit. The Pan and MS images were of size 3312 × 3260 and 828 × 815,

respectively. After cropping operation, the Pan image has the size of 1024 × 1024 and

the MS images have size of 256 × 256. Their LR versions i.e., the downsampled images

are of size 256× 256 and 64× 64, respectively. The results for this experiment are shown

in Fig. 4.8 and Fig. 4.9, respectively. In Fig. 4.8, we show the fusion results with color

composite of bands-3, 2 and 1 covering the forest area, while Fig. 4.9 shows the fused

images with color composite of bands-4, 3 and 2 and this consists of semi-urban area. The

LR MS images are shown in Fig. 4.5(c) and Fig. 4.5(d). The fused images obtained for all

other approaches except the proposed method are shown in Fig. 4.8(a-f) and Fig. 4.9(a-

f). In Fig. 4.8(g, h) and Fig. 4.9(g, h) we show the results obtained using the proposed
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.8: MS fusion results for degraded dataset of forest area captured using Quickbird
satellite shown as color composite of bands-3, 2 and 1 (q = 4). Fused images obtained
using (a) TFT based approach [175], (b) approach in [87], (c) approach in [86], (d)
approach in [103], (e) adaptive IHS approach [37], (f) AWLP [60], (g) proposed approach
using CT and (h) proposed approach using NSCT. (i) Original MS image. The magnified
image for a small square region with a green border shown in (i) is displayed at the top
right corner of all the images.

method using CT and NSCT. Finally, we display the original MS images in Fig. 4.8(i)

and Fig. 4.9(i). For better visual clarity, we also show the magnified regions in all the

fused images.



4.7 Experimental Results 96

Similar to the experiments on Ikonos-2 images, here also we observe better preserva-

tion of spatial details in Fig. 4.8(a) but with spectral distortion. The results shown in

Fig. 4.8(b-d), do not show comparable performance with the result of proposed method.

The MS fused images shown in Fig. 4.8(e) and Fig. 4.8(f) using the adaptive IHS and

AWLP show the improvement in spectral information but they lack in preserving the

spatial content. From the magnified region consisting of road and tree areas one can see

that the proposed approach using NSCT (see Fig. 4.8(h)) has better spatial and spectral

contents when compared to AWLP [60] as well as adaptive IHS method [37]. A closer look

indicates that the proposed approach using NSCT has better edge details and also tex-

ture is close to original MS image when compared to AWLP and adaptive IHS methods.

Similar observations can be made from the images displayed in Fig. 4.9, where the im-

provement in the proposed method is evident in the magnified region. In Fig. 4.9(g, h), we

can compare the performance of the proposed method using CT and NSCT. It is clearly

visible that the proposed approach using NSCT performs better in terms of preservation

of spatial details as well as in terms of spectral enhancement compared to the method

using CT. In conjunction with the results shown in Fig. 4.8 and Fig. 4.9, the quantitative

comparisons are given in Table 4.5 and Table 4.6, respectively. Following comments can

be made by observing the values given in the two Tables. Looking at Table 4.5, the values

of CC for the proposed CT and NSCT methods are better when compared to all the other

approaches. Also, all the other measures except FSIM for band 4 and ERGAS computed

using bands 1 − 4 are closer to their ideal for the proposed approach when compared

to other approaches. These two measures are better for AWLP method [60]. Similar

observations can be made from Table 4.6, in which except for SID measure our proposed

fusion approach performs better when compare to other approaches. This indicates that

barring few bands, the performance of the proposed approach is better when compared

to other methods. As expected edge enhancement is poor for the AWLP approach since

it is based on WT which has limited directionality. From the fusion results displayed in

Fig. 4.8 and 4.9 and the quantitative measures shown in Tables we may conclude that

the proposed algorithm performs better even on Quickbird images.

In continuation with above experiments on Quickbird images, we also experimented

on the images downloaded from the link [156]. These images cover an area of Sundarban,

India and radiometric resolution of these image is of 11-bits. The Pan and MS images
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Table 4.5: Quantitative measures for fused MS images result shown in Fig. 4.8. Here
boldface indicate values closer to the ideal.

Measure Image Ideal TFT Approach Approach Approach Adaptive AWLP Proposed Proposed
value method in in in IHS method using using

[175] [87] [86] [103] [37] [60] CT NSCT
Band 1(B) 1 0.7152 0.7223 0.8829 0.8794 0.9274 0.8835 0.9375 0.9381

CC Band 2(G) 1 0.7854 0.7552 0.8819 0.8786 0.9408 0.9312 0.9458 0.9465
Band 3(R) 1 0.7417 0.7387 0.8871 0.8817 0.9313 0.9266 0.9318 0.9401

Band 4(NIR) 1 0.7901 0.7308 0.8235 0.8282 0.9101 0.9116 0.9150 0.9223
Band 1(B) 1 0.7581 0.8831 0.8695 0.8235 0.9332 0.9217 0.9390 0.9136

FSIM Band 2(G) 1 0.8463 0.8526 0.7895 0.8398 0.8845 0.8870 0.8945 0.9017
Band 3(R) 1 0.8270 0.8467 0.8041 0.8253 0.8698 0.8798 0.8874 0.8934

Band 4(NIR) 1 0.8263 0.7515 0.6792 0.7864 0.8098 0.9025 0.8735 0.8765
RMSE Band 1-4 0 10.49 14.85 7.40 13.21 5.83 5.54 5.48 5.56
ERGAS Band 1-4 0 6.58 6.76 3.85 5.26 3.08 3.01 3.04 3.21
SID Band 1-4 0 0.1051 0.0574 0.0308 0.0492 0.0259 0.0252 0.0236 0.0233
Qavg Band 1-4 1 0.8786 0.8053 0.9483 0.7536 0.9463 0.9470 0.9492 0.9575

Table 4.6: Quantitative measures for fused MS images result shown in Fig. 4.9. Here
boldface indicate values closer to the ideal.

Measure Image Ideal TFT Approach Approach Approach Adaptive AWLP Proposed Proposed
value method in in in IHS method using using

[175] [87] [86] [103] [37] [60] CT NSCT
Band 1(B) 1 0.6621 0.6814 0.8676 0.8565 0.9162 0.9169 0.9151 0.9278

CC Band 2(G) 1 0.7022 0.7061 0.8613 0.8518 0.9270 0.9210 0.9324 0.9149
Band 3(R) 1 0.6507 0.6852 0.8631 0.8559 0.9189 0.9133 0.9303 0.9313

Band 4(NIR) 1 0.6195 0.5609 0.6966 0.7952 0.8746 0.8751 0.8766 0.8820
Band 1(B) 1 0.7463 0.8242 0.8323 0.8514 0.8856 0.8892 0.8849 0.8901

FSIM Band 2(G) 1 0.7933 0.7976 0.7690 0.7862 0.8519 0.8533 0.8559 0.8590
Band 3(R) 1 0.7860 0.8011 0.7848 0.8119 0.8488 0.8437 0.8505 0.8511

Band 4(NIR) 1 0.7589 0.6586 0.6966 0.7617 0.7709 0.8378 0.8414 0.8451
RMSE Band 1-4 0 17.87 17.44 12.43 18.93 10.32 9.61 6.82 6.64
ERGAS Band 1-4 0 8.91 8.20 5.62 8.72 4.35 4.39 2.88 2.81
SID Band 1-4 0 0.2038 0.1088 0.0507 0.1904 0.0686 0.0318 0.0490 0.0514
Qavg Band 1-4 1 0.7678 0.7924 0.8981 0.7130 0.9042 0.9011 0.9067 0.9090
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.9: MS fusion results for downsampled Quickbird satellite images consisting of
semi-urban area shown as color composite of bands-4, 3 and 2 (q = 4). Fused images
obtained using (a) TFT based approach [175], (b) approach in [87], (c) approach in [86],
(d) approach in [103], (e) adaptive IHS approach [37], (f) AWLP [60], (g) proposed
approach using CT and (h) proposed approach using NSCT. (i) Original MS image. The
magnified image for a small square region with a green border shown in (i) is displayed
at the bottom left corner of all the images.

are of size 16384 × 16384 and 4096 × 4096, respectively. The test images were prepared

by cropping and co-registering these images and the experiments were conducted on

degraded as well as on un-degraded images. The results of experiments conducted on
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Table 4.7: Quantitative measures for fused MS images result shown in Fig. 4.10. Here
boldface indicate values closer to the ideal.

Measure Image Ideal TFT Approach Approach Approach Adaptive AWLP Proposed Proposed
value method in in in IHS method using using

[175] [87] [86] [103] [37] [60] CT NSCT
Band 1(B) 1 0.5466 0.5756 0.9250 0.9099 0.9137 0.9002 0.9244 0.9256

CC Band 2(G) 1 0.5505 0.5309 0.9208 0.9071 0.9304 0.9316 9220 0.9363
Band 3(R) 1 0.4581 0.5159 0.9225 0.9146 0.9251 0.9380 9165 0.9389

Band 4(NIR) 1 0.9182 0.5091 0.8967 0.8816 0.9759 0.9614 0.9578 0.9742
Band 1(B) 1 0.6792 0.7236 0.7730 0.7858 0.8052 0.8076 0.8129 0.8417

FSIM Band 2(G) 1 0.7446 0.7559 0.7568 0.7492 0.8485 0.8457 0.8390 0.8509
Band 3(R) 1 0.6972 0.7241 0.7541 0.7392 0.8160 0.8333 0.8577 0.8501

Band 4(NIR) 1 0.8108 0.7156 0.7023 0.6074 0.8976 0.9079 0.8763 0.9183
RMSE Band 1-4 0 19.90 20.01 20.90 21.63 17.47 16.76 14.67 14.02
ERGAS Band 1-4 0 9.89 8.05 5.78 7.12 5.25 5.01 5.76 4.95
SID Band 1-4 0 0.4381 0.4370 0.0320 0.1119 0.0686 0.0381 0.0431 0.0378
Qavg Band 1-4 1 0.6936 0.5381 0.7930 0.5377 0.8034 0.8827 0.8571 0.8901

degraded images are displayed in Fig. 4.10 and the quantitative comparison for the same

is depicted in Table 4.7. One can see that the results of temporary Fourier transform

(TFT) [175] and NSCT based [87] methods are very poor. Also, results of the approaches

proposed in both [86] and [103] (see Fig. 4.10(c, d)) appear blurred indicating spatial

and spectral distortions. We display the results of adaptive IHS and AWLP methods in

Fig. 4.10(e) and Fig. 4.10(f), respectively and they appear perceptually similar to fused

results of the proposed method using CT and NSCT shown in Fig. 4.10(g, h). We may

see that the spectral improvement of the proposed method is similar to adaptive IHS and

AWLP methods. However, we observe that both these methods lack in preserving the

spatial information when compared to the proposed method which is visible in magnified

region that show clear edge details for the proposed approach. We include the original

MS image in Fig. 4.10(i). The quantitative comparison is presented in Table 4.7 where

the proposed method performs better for all the measures. Before we proceed for next

experiment, we would like to mention the following points related to this experiment. In

the fusion results shown in Fig. 4.10 for the degraded dataset of color composite of bands-

3, 2 and 1, the original band-1 MS image acquired from the satellite lacks sharpness. The

down sampling operation further degrades it. Hence we notice spectral distortions in the

results of this experiment. However, we see that in the proposed method though there

exists spectral distortion, it still performs better in terms of the preservation of edge

regions and spectral content as seen from the quantitative measures.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.10: MS fusion results for degraded dataset of semi-urban area of Sundarban,
India captured using Quickbird satellite shown as color composite of bands-3, 2 and 1
(q = 4). Fused images obtained using (a) TFT based approach [175], (b) approach in [87],
(c) approach in [86], (d) approach in [103], (e) adaptive IHS approach [37], (f) AWLP [60],
(g) proposed approach using CT and (h) proposed approach using NSCT. (i) Original
MS image. The magnified image for a small square region with a green border shown in
(i) is displayed at the bottom left corner of all the images.

4.7.5 Fusion Results for Degraded Dataset: Worldview-2

Finally, we conduct the experiments on the images captured using Worldview-2 satellite

sensor which has more than four MS images and also provides images with higher spatial
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.11: MS fusion results for degraded dataset of urban area image captured using
Worldview-2 satellite shown as color composite of bands-5, 3 and 2 (q = 4). Fused
images obtained using (a) TFT based approach [175], (b) approach in [87], (c) approach
in [86], (d) approach in [103], (e) adaptive IHS approach [37], (f) AWLP [60], (g) proposed
approach using CT and (h) proposed approach using NSCT. (i) Original MS image. The
magnified image for a small square region with a green border shown in (i) is displayed
at the top right corner of all the images.

resolution compared to other satellites. This satellite captures a Pan image and eight MS

images with spatial resolution of 0.5m×0.5m and 2m×2m, respectively. The images used

in this experiment are downloaded from [157] and they cover urban and semi urban areas
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of San Francisco, USA. These images were captured on 9th October, 2011 and have 11-bits

of radiometric resolution. Here, also we use the images with same radiometric resolution

without using any correction such as contrast stretching. The dataset consisting of Pan

image of size 1024× 1024 pixels and the MS images of size 256× 256 pixels were used for

experiments. The results are shown in Fig. 4.11 and Fig. 4.12, respectively. In Fig. 4.11 we

display the fused images with color composite of bands-5, 3 and 2 and this has the urban

area. The results in Fig. 4.12, showing semi-urban area are displayed by choosing color

composite of bands-7, 5 and 3. The degraded LR MS images of urban and semi urban

areas are shown in Fig. 4.5(e) and in Fig. 4.5(f), respectively. In Figs. 4.11 and 4.12 we

display the fusion results obtained using various approaches along with their original MS

images. Similar to previous two experiments here also we display the magnified portions

of a region. The results of the proposed approach are shown in Figs. (4.11, 4.12)(g,

h). Once again, looking at the images in Fig. 4.11 we see that the proposed method

preserves high frequency edge details better when compared to other approaches. In the

image showing urban area we select a region consisting of a house surrounded by trees

for viewing it as magnified. From the magnified regions displayed in Fig. 4.11, we can

see that spatial details in the tree and the color of the house are better preserved for the

proposed method using NSCT when compared to all other methods. These details appear

blurred for the AWLP method [60]. For adaptive IHS method [37] the same region has

poor preservation of edges. Similarly, in Fig. 4.12 too one can observe the enhancement

of spatial details for the proposed method when compared to the other approaches. Once

again looking at the magnified portion we can see that texture preservation is better for

the proposed approach based on NSCT. Here, one may notice blur in the fusion results

obtained using methods in [87], [86], [103] (Fig. 4.12(b-d)). In Fig. 4.12(b) we display

the result of fusion method [87] which has significant blur. This is due to the lesser

correlatedness between MS and Pan images which yields the saturated fused image when

using the method of [87]. Since the method proposed in [86] (Fig. 4.12(c)) is based on

similar concept it also results in blur. The result of fusion approach proposed in [103] is

displayed in Fig. 4.12(d) which uses the IGMRF parameters. Since it requires accurate

registration of Pan and MS images in order to obtain the better fused image a small error

in registration leads to degradation of edge/non edge regions in the fused image which is

clearly visible as a distortion in Fig. 4.12(d).
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Table 4.8: Quantitative measures for fused MS images result shown in Fig. 4.11. Here
boldface indicate values closer to the ideal.

Measure Image Ideal TFT Approach Approach Approach Adaptive AWLP Proposed Proposed
value method in in in IHS method using using

[175] [87] [86] [103] [37] [60] CT NSCT
Band 2(B) 1 0.8340 0.8395 0.7781 0.7811 0.9194 0.8955 0.9254 0.9260

CC Band 3(G) 1 0.8800 0.8574 0.7769 0.7786 0.9367 0.9105 0.9386 0.9412
Band 5(R) 1 0.8778 0.8632 0.8176 0.8164 0.9461 0.9314 0.9501 0.9489

Band 7(NIR) 1 0.8113 0.5223 0.7861 0.7816 0.8747 0.8829 0.8828 0.8866
Band 2(B) 1 0.8262 0.7916 0.6975 0.7054 0.8527 0.8440 0.8540 0.8650

FSIM Band 3(G) 1 0.8659 0.8151 0.6824 0.6700 0.8749 0.8621 0.8909 0.8949
Band 5(R) 1 0.7908 0.8124 0.6825 0.6839 0.8514 0.8584 0.8785 0.8786

Band 7(NIR) 1 0.7169 0.6123 0.6490 0.6186 0.7790 0.7805 0.7873 0.7826
RMSE Bands 2,3,5,7 0 27.26 35.11 31.13 39.73 22.32 21.72 21.10 21.30
ERGAS Bands 2,3,5,7 0 10.23 12.56 12.08 11.35 8.36 8.18 7.88 7.58
SID Bands 2,3,5,7 0 0.7670 0.2816 0.2709 0.2614 0.2541 0.2554 0.2511 0.3047
Qavg Bands 2,3,5,7 1 0.5141 0.5625 0.6644 0.5588 0.6795 0.6788 0.6819 0.6837

Table 4.9: Quantitative measures for fused MS images result shown in Fig. 4.12. Here
boldface indicate values closer to the ideal.

Measure Image Ideal TFT Approach Approach Approach Adaptive AWLP Proposed Proposed
value method in in in IHS method using using

[175] [87] [86] [103] [37] [60] CT NSCT
Band 2(B) 1 0.7482 0.8286 0.8824 0.8852 0.9345 0.9329 0.9336 0.9378

CC Band 3(G) 1 0.9013 0.8322 0.8944 0.8932 0.9677 0.9553 0.9746 0.9754
Band 5(R) 1 0.7687 0.8265 0.8777 0.8789 0.9427 0.9363 0.9291 0.9387

Band 7(NIR) 1 0.8898 0.7228 0.8896 0.8845 0.9319 0.9317 0.9347 0.9377
Band 2(B) 1 0.7861 0.7846 0.7946 0.7761 0.8336 0.8357 0.8402 0.8460

FSIM Band 3(G) 1 0.8721 0.7979 0.7800 0.7577 0.9200 0.8937 0.9227 0.9186
Band 5(R) 1 0.7694 0.7546 0.7573 0.7203 0.8401 0.8424 0.8440 0.8364

Band 7(NIR) 1 0.6912 0.7407 0.6823 0.6843 0.7661 0.8393 0.7698 0.7716
RMSE Bands 2,3,5,7 0 25.62 29.40 22.38 28.85 17.40 15.69 14.82 14.52
ERGAS Bands 2,3,5,7 0 14.59 18.32 12.02 13.37 8.70 8.55 6.88 6.69
SID Bands 2,3,5,7 0 1.5759 0.4488 0.4542 0.5746 0.4892 0.4388 0.4100 0.4110
Qavg Bands 2,3,5,7 1 0.7517 0.4780 0.6581 0.6104 0.8374 0.8480 0.8505 0.8485

The quantitative comparisons for the same experiments of urban and semi urban im-

ages are displayed in Table 4.8 and Table 4.9, respectively. As can be seen from Table 4.8

that all the quantitative measures are better for the proposed methods. However, in

Table 4.9, the CC measure of band 5 for adaptive IHS [37] shows minor improvement

and the FSIM value for band 7 is better for AWLP method [60] when compared to the

proposed approach. Except CC and FSIM measures the proposed method using CT and

NSCT perform better for other measures. Thus, one can say that the our approach works

well for Worldview-2 satellite images too.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.12: MS fusion results for degraded dataset of semi-urban area images captured
using Worldview-2 satellite shown as color composite of bands-7, 5 and 3 (q = 4). Fused
images obtained using (a) TFT based approach [175], (b) approach in [87], (c)approach
in [86], (d) approach in [103], (e) adaptive IHS approach [37], (f) AWLP [60], (g) proposed
approach using CT and (h) proposed approach using NSCT. (i) Original MS image. The
magnified image for a small square region with a green border shown in (i) is displayed
at the bottom right corner of all the images.
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4.7.6 Fusion Results for Un-degraded (original) Datasets: Ikonos-

2, Quickbird and Worldview-2

The potential of the proposed method is also checked by conducting the experiments

on un-degraded (original) MS and Pan images. The same datasets consisting of images

from Ikonos-2 [154], Quickbird [156] and Worldview-2 [157] satellites were used here.

Unlike the previous experiments in this case, Pan and MS images are not downsampled

which results in the size of them as 1024 × 1024 and 256 × 256, respectively. Similar

to degraded dataset experiments, the radiometric resolution is not altered. The original

MS images are displayed in Fig. 4.13. The fused MS images of various approaches

along with proposed method for all the datasets are displayed in the Fig. 4.14 to Fig.

4.16. Fig. 4.14 shows the fusion results for images of Ikonos-2 satellite having semi-

urban area while Fig. 4.15 and Fig. 4.16 correspond to results on urban area images

captured using Quickbird and Worldview-2 satellites. The size of the fused MS image is

1024× 1024. The performance of the proposed approach is compared with the methods

used in the earlier experimentations on degraded images. Here, we also include the

results of Brovey method [22] along with other approaches. The results of TFT based

method [175], approach in [86], method in [103], adaptive IHS [37], AWLP [60] and

Brovey method [22] are shown in Fig. 4.14(a-f) to Fig. 4.16(a-f). The results of the

proposed approach based on CT and NSCT transforms are depicted in Fig. 4.14(h, i) to

Fig. 4.16(h, i) for the three datasets. Due to space constraints we have not compared our

results with NSCT based fusion method [87]. In order to compare the fusion performance

of using CT/NSCT for initial estimate over the use of wavelet transform for the same, we

also conducted the experiments to obtain the fused MS image using wavelet transform

based initial estimate. Here we use “db3” wavelet in order to obtain the initial estimate.

This initial estimate is used in the regularized framework to obtain the final fused image.

The fused images obtained with this initial estimate are displayed in Fig. 4.14(g) to Fig.

4.16(g). In all these results we also include the zoomed-in versions of a small portion

of the image for better visual comparison. The quantitative comparison is presented

in Table 4.10 for all the un-degraded images where the quality index with no reference

(QNR) [158] is used which does not require the reference image. The definition of QNR

involves two terms: spectral distortion (Dλ) and spatial distortion (Ds). These measures
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along with their ideal values are displayed in the Table 4.10. The boldface value in the

table indicates that the value is best among the methods.

The following observations can be made by looking at the results displayed in Fig. 4.14

to Fig. 4.16. The fused images obtained using TFT method [175], approach in [86] and

method in [103] show high spectral and spatial distortions. The other methods such as

adaptive IHS [37], AWLP [60] and Brovey [22] show improvement in spectral and spatial

details. In the results of Ikonos-2 dataset which is displayed in Fig. 4.14 one may see that

the performance of the proposed method is comparable to those in [22, 37, 60] methods.

However a close observation of these results indicate a small improvement in spatial details

in the result of proposed method when compared to the other methods. The spectral

content of the proposed method looks almost similar to other state of the art methods

showing better preservation of colors. The quantitative performance for this experiment

is listed in Table 4.10 in which the values of QNR and spectral distortion Dλ are better

for the proposed NSCT based fusion approach and the spatial distortion factor Ds is

better for Brovey method. But one can see that the difference between the values of Ds

for the proposed and Brovey methods is insignificant. The performance of the proposed

method is improved in the results of Quickbird and Worldview-2 satellites displayed in

Fig. 4.15 and Fig. 4.16, respectively. In Fig. 4.15 we can see that the use of adaptive

IHS method (Fig. 4.15(d)) causes color artifacts as well as spatial distortions. Similarly,

black spots are visible in the result of adaptive IHS method for Worldview-2 satellite image

(Fig. 4.16(d)). The results of AWLP method displayed in Fig. 4.15(e) and 4.16(e) show

improvement in spectral and spatial details when compared to adaptive IHS method.

However, the spectral distortion and the loss of edges details are less in the proposed

method (see Fig. 4.15(i) and Fig. 4.16(i)) when compared to the results of AWLP

method (Fig. 4.15(e) and Fig. 4.16(e)). The fusion results of Brovey method are shown

in Fig. 4.15(f) and Fig. 4.16(f) for Quickbird and Worldview-2 datasets, respectively. In

the result of Worldveiw-2 dataset (Fig. 4.16(f)) color artifacts are visible when compared

to the result of the proposed method using NSCT displayed in Fig. 4.16(i). Thus, we

observe that the performance of the proposed method in terms of perceptual quality is

better when compared to the other approaches. Similar to the visual performance, the

quantitative analysis (see Table 4.10) also shows better performance for the proposed

method using NSCT when compared to all others. From these results on un-degraded
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(a) (b) (c)

Figure 4.13: Un-degraded (original) MS images captured using different satellite sensors.
The size of each MS image is 256×256. The MS images for (a) Ikonos-2 satellite with color
composition of bands-3, 2, 1, (b) Quickbird satellite with color composition of bands-3,
2, 1 and (c) Worlodview-2 satellite with color composition of bands-7, 5, 3.

Table 4.10: Quantitative measures for fused MS image results shown in Fig. 4.15 to
Fig. 4.16 for un-degraded datasets. Here boldface indicate values closer to the ideal.

Dataset Measure Ideal TFT Approach Approach Adaptive AWLP Brovey Proposed Proposed
value method in in IHS method method using using

[175] [86] [103] [37] [60] [22] CT NSCT
Ikonos-2 QNR 1 0.5772 0.4804 0.4305 0.6521 0.6662 0.6617 0.6664 0.6772
(Fig. 4.14) Dλ 0 0.2639 0.2726 0.2658 0.1848 0.1653 0.1751 0.1683 0.1543

Ds 0 0.2159 0.3396 0.4137 0.2001 0.2017 0.1979 0.1988 0.1992
Quickbird QNR 1 0.5430 0.5581 0.5524 0.6176 0.6125 0.5955 0.6217 0.6256
(Fig. 4.15) Dλ 0 0.2726 0.2190 0.2251 0.1825 0.1919 0.2006 0.1845 0.1811

Ds 0 0.2535 0.2854 0.2871 0.2445 0.2420 0.2551 0.2376 0.2360
World- QNR 1 0.5629 0.5200 0.5635 0.5852 0.5929 0.5859 0.6002 0.6080
view-2 Dλ 0 0.2302 0.2298 0.1914 0.1769 0.1804 0.1996 0.1720 0.1716
(Fig. 4.16) Ds 0 0.2688 0.3249 0.3031 0.2890 0.2766 0.2680 0.2751 0.2660

datasets and quantitative comparison one may conclude that the proposed method has

better spectral and spatial details when compared to other state of the art methods. It is

important to note that the fused image has significant spatial and color distortions if we

choose the wavelet transform instead of CT/NSCT for obtaining the initial estimate. In

Fig. 4.14(g) to Fig. 4.16(g), we display these fused images which have blockiness effect as

well as color distortion. This may be due to the limited directionality property of wavelet

transforms. We mention here that we conducted the experiments using degraded and

un-degraded datasets having different resolutions with different types of regions and the

obtained results using proposed method were better when compared to the state of the

art approaches. Thus we conclude that our fusion method performs better on exhaustive

dataset.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.14: MS fusion results for un-degraded dataset consisting of semi-urban area
captured using Ikonos-2 satellite shown as color composite of bands-3, 2 and 1 (q = 4).
Fused images obtained using (a) TFT based approach [175], (b) approach in [86], (c)
approach in [103], (d) adaptive IHS approach [37], (e) AWLP [60], (f) Brovey method [22],
(g) Wavelet based initial estimate, (h) proposed approach using CT and (i) proposed
approach using NSCT. The magnified image for a small square region with a green border
shown in (i) is displayed at the bottom left corner of all the images.

4.7.7 Spectral distortion at edge pixels

Since our approach is based on extracting the edges from the initial estimate and incor-

porating them in the final fused image it would be of interest to check spectral distortion
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.15: MS fusion results for un-degraded dataset consisting of urban area captured
using Quickbird satellite shown as color composite of bands-3, 2 and 1 (q = 4). Fused
images obtained using (a) TFT based approach [175], (b) approach in [86], (c) approach in
[103], (d) adaptive IHS approach [37], (e) AWLP [60], (f) Brovey method [22], (g) Wavelet
based initial estimate, (h) proposed approach using CT and (i) proposed approach using
NSCT. The magnified image for a small square region with a green border shown in (i)
is displayed at the bottom left corner of all the images.

caused due to this. In order to check same we compute the spectral distortion measures

on edge pixels. It is of interest to mention here that if a sudden change in color occurs

over a region it also results in spatial intensity change in the fused image [177]. So the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.16: MS fusion results for un-degraded dataset consisting of urban area captured
using Worldview-2 satellite shown as color composite of bands-7, 5 and 3 (q = 4). Fused
images obtained using (a) TFT based approach [175], (b) approach in [86], (c) approach in
[103], (d) adaptive IHS approach [37], (e) AWLP [60], (f) Brovey method [22], (g) Wavelet
based initial estimate, (h) proposed approach using CT and (i) proposed approach using
NSCT. The magnified image for a small square region with a green border shown in (i)
is displayed at the bottom left corner of all the images.

quantitative measures such as CC and Dλ computed on the fused image pixels are useful

in evaluating the performance of the fusion method over the edge regions. Ideally the

values of both CC and Dλ must be 1 and 0, respectively which indicates that the fused



4.7 Experimental Results 111

edges are same as the original image.

Both CC and Dλ measures are computed over the edge pixels of the selected regions

of Fig. 4.6-4.12 and they are displayed in Table 4.11 for degraded case. In Fig. 4.6

& 4.7, we observe that the zoomed-in portions of selected regions of non-urban and

urban area acquired using Ikonos-2 satellite have the significant spectral details. One

can observe that the proposed method has lower values of CC and Dλ when compared

to other methods. The spectral distortion measures computed for the results shown in

Fig. 4.8-4.10 correspond to the results of Quickbird satellite. In this also, the values of

the spectral distortion measures are better for the proposed method. It is important to

note that although Fig. 4.10 has the spectral distortion in all the methods, the proposed

method still works better for this dataset. In the images of Worldview-2 satellite we have

chosen a region which has significant spectral change (see Fig. 4.11 & 4.12). Similar to

earlier experiments of Ikonos-2 and Quickbird, here also the proposed method has lowest

spectral distortion which is clearly indicated by the values shown in Table 4.11. One can

see from the results displayed in Fig. 4.12(b) that the fusion result of [87] appears highly

distorted. This is also reflected in the values of CC and Dλ in Table 4.11 with a high

value of Dλ and significantly low values for CC.

Similar to the degraded dataset experiments, we have also performed the quantitative

analysis on edge pixels for the results of un-degraded datasets. In this case since the

original MS image is not available we compute Dλ only since it does not require the

original image. These values of Dλ are displayed in Table 4.12 for the results shown in

Fig. 4.14-4.16. From the zoomed-in images displayed in these figures one can visually

observe that the proposed fusion method has better preservation of the spectral details.

This observation is also reflected by having lowest values of Dλ for the proposed method

when compared to the other fusion techniques. This quantitative analysis performed on

degraded and un-degraded dataset also clarifies that the fusion techniques based on the

multi-resolution analysis (MRA) are proven to be effective against the spectral distortions

when compared to other fusion methods which is also valid for the proposed method since

it is based on CT/NSCT.
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Table 4.11: Spectral distortion measures computed on edge pixels of selected regions
shown in Fig. 4.6 to Fig. 4.12 for degraded datasets. Here, boldface indicate values closer
to the ideal.

Dataset Mea- Band TFT Approach Approach Approach Adaptive AWLP Proposed Proposed
sure method in in in IHS method using using

[175] [87] [86] [103] [37] [60] CT NSCT
Ikonos-2 Band 1 0.8170 0.8464 0.8084 0.8173 0.9164 0.9253 0.9236 0.9372
(Fig. 4.6) CC Band 2 0.8579 0.8200 0.8632 0.8516 0.9245 0.9372 0.9406 0.9453

Band 3 0.8878 0.8756 0.8989 0.8425 0.9515 0.9626 0.9570 0.9679
Dλ Band 1-3 0.2549 0.2107 0.2204 0.2088 0.1484 0.1366 0.1120 0.0983

Ikonos-2 Band 2 0.9351 0.8445 0.7952 0.8109 0.9556 0.9559 0.9660 0.9699
(Fig. 4.7) CC Band 3 0.9514 0.8846 0.7851 0.7906 0.9553 0.9610 0.9676 0.9717

Band 4 0.8602 0.8601 0.7254 0.7299 0.9252 0.9269 0.9162 0.9343
Dλ Band 2-4 0.2813 0.2513 0.2389 0.2647 0.1976 0.1890 0.1941 0.1856

Quickbird Band 1 0.7032 0.7181 0.8966 0.8575 0.9112 0.9116 0.9271 0.9251
(Fig. 4.8) CC Band 2 0.7773 0.7472 0.8760 0.8663 0.9368 0.9284 0.9339 0.9416

Band 3 0.7303 0.7486 0.8861 0.8526 0.9345 0.9303 0.9410 0.9471
Dλ Band 1-3 0.2459 0.2366 0.2504 0.2524 0.1582 0.1486 0.1363 0.1238

Quickbird Band 2 0.6928 0.6865 0.8592 0.8471 0.9352 0.9280 0.9373 0.9469
(Fig. 4.9) CC Band 3 0.6740 0.6608 0.8595 0.8419 0.9020 0.9111 0.9415 0.9458

Band 4 0.6042 0.5516 0.7061 0.8076 0.8915 0.9011 0.9134 0.9180
Dλ Band 2-4 0.5248 0.3479 0.2655 0.1967 0.1261 0.1344 0.1243 0.1121

Quickbird Band 1 0.5322 0.5856 0.8900 0.8768 0.9203 0.9103 0.9165 0.9308
(Fig. 4.10) CC Band 2 0.5670 0.5281 0.9077 0.8932 0.9288 0.9335 0.9356 0.9413

Band 3 0.4647 0.4911 0.9126 0.8994 0.9370 0.9385 0.9255 0.9397
Dλ Band 1-3 0.2624 0.2154 0.2290 0.2116 0.1620 0.1670 0.1546 0.1489

Worldview-2 Band 2 0.8641 0.8318 0.8038 0.8048 0.9218 0.9114 0.9331 0.9439
(Fig. 4.11) CC Band 3 0.9146 0.8857 0.7988 0.7838 0.9412 0.9333 0.9475 0.9522

Band 5 0.8745 0.8919 0.7870 0.7894 0.9346 0.9270 0.9387 0.9393
Dλ Band 2,3,5 0.2198 0.2203 0.2045 0.2153 0.1533 0.1538 0.1499 0.1415

Worldview-2 Band 3 0.8914 0.8228 0.8629 0.8973 0.9511 0.9489 0.9553 0.9607
(Fig. 4.12) CC Band 5 0.7820 0.7658 0.8593 0.8657 0.9433 0.9323 0.9497 0.9546

Band 7 0.8527 0.6945 0.8810 0.8820 0.9286 0.9280 0.9325 0.9360
Dλ Band 3,5,7 0.2151 0.5996 0.2436 0.2525 0.1301 0.1346 0.1206 0.1145

Table 4.12: Spectral distortion measure computed on edge pixels of selected regions
results shown in Fig. 4.14 to Fig. 4.16 for un-degraded datasets. Here, boldface indicate
values closer to the ideal.

Dataset Mea- Band TFT Approach Approach Adaptive AWLP Brovey Proposed Proposed
sure method in in IHS method method using using

[175] [86] [103] [37] [60] [22] CT NSCT
Ikonos-2 Dλ Band 1-3 0.2384 0.2263 0.2408 0.1596 0.1588 0.1657 0.1516 0.1415
(Fig. 4.14)
Quickbird Dλ Band 1-3 0.2237 0.1928 0.1943 0.1365 0.1358 0.1309 0.1246 0.1224
(Fig. 4.15)
Worldview-2 Dλ Band 3,5,7 0.2451 0.2667 0.2637 0.1645 0.1595 0.1895 0.1419 0.1394
(Fig. 4.16)

Table 4.13: Average computation time involved for different fusion approaches

Average computation time to obtain single fused band (in seconds)
Experiment TFT Approach Approach Adaptive AWLP Brovey Proposed Proposed
on method in in IHS method method using using

[175] [86] [103] [37] [60] [22] CT NSCT
Degraded dataset 0.5075 56.4426 1.9721 0.7892 0.3263 0.3464 1.3934 3.5403
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4.7.8 Computational Time

Finally, here are the points that correspond to computational expenses of different fusion

approaches. All these methods have been implemented in Matlab 7.6 installed on Intel

core 2 Duo processor with 2.4 GHz, 4 GB memory. In Table 5.5 we display the average

computation time to obtain single fused image for degraded dataset using different fusion

methods. Here, TFT, Adaptive IHS, AWLP and Brovey methods have less computa-

tional time. However, the fusion method in [86] takes more time due the computation of

PCA and cross correlation coefficient. The average time to run the proposed CT based

algorithm is about 1.4 seconds while it is slightly more (3.5 seconds) for NSCT based ap-

proach. This computation time is bit more compared to the non-regularizing techniques

such as TFT, AWLP and Brovey. However due to the regularization frame work of the

proposed approach, the advantages in terms of preservation of edge and color details

are possible at the cost of slight increment in the computational time. In the proposed

method, much of time is needed in obtaining contourlet decomposition at different levels

as it is implemented in Matlab. But it can be reduced drastically if algorithm is imple-

mented using C language and executed on a machine with graphical processing unit. Note

that our approach do not add to time complexity when compared to the method of fusion

involving CT/NSCT [86], since the proposed approach does not involve training database.

Even we avoid using computationally expensive methods such as simulated annealing for

preserving the edges. Much of the computational burden is reduced due to the use of

simple optimization method and the use of estimated MRF parameter while optimizing

the cost function. Use of estimated MRF parameter avoids trial & error based selection

of the parameter during optimization and hence reduces the computational burden.

4.8 Conclusion

We have presented a new technique for multi-resolution image fusion using contourlet

based learning and MRF prior. In the proposed method we first obtain the initial high

resolution MS image by the available Pan image and the test MS image. Since the initial

estimate has high spatial and spectral resolutions it is used to obtain the degradation

between fused MS and test MS image where the blur is assumed to be a non-identity

matrix. We cast the fusion problem in restoration framework and obtain the final solution
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by using regularization framework. The final cost function is obtained using the MAP-

MRF approach where MRF smoothness prior is used to regularize the solution. The edge

details in the final fused image are obtained by applying Canny edge detector on the

initial estimate. This gives us the advantage of preservation of edges in the final solution

without using discontinuity preserving prior. The MRF parameter is also estimated

using the initial estimate image which is used during optimization. The potential of

the proposed fusion method is demonstrated by conducting experiments on the datasets

acquired using various satellites. These datasets have the pixels corresponding to different

regions of ground scene. Along with the qualitative analysis, we also show the quantitative

performance by computing various measures. Since the final solution is obtained using

Canny edge detector and smoothness MRF prior, the proposed method not only recovers

the finer details with minimum spectral distortion it also avoids the use of computationally

expensive optimization technique. The perceptual and the quantitative analysis show

that the proposed technique yields better solution when compared to the state of the art

approaches. In this chapter the initial estimate was obtained using Pan data. In the next

chapter, we derive the initial estimate using the LR MS image itself. We also propose

the use of a new prior based on the Gabor filter.



Chapter 5

Regularized Pan-sharpening based

on Self-similarity and Gabor Prior

We address the fusion problem based on the concept of self similarity and a Gabor prior.

In chapter 4, degradation matrix entries were estimated by modeling the relationship

between the Pan derived initial estimate of the fused MS image and the LR MS image

which may be inaccurate as the estimate depends on the low spectral resolution Pan data.

If the initial fused estimate is derived using the available LR MS image only, then the

transformation between the estimated high resolution fused image (initial estimate) and

the LR MS image would be more accurate. This makes the estimated degradation matrix

to better represent the aliasing. In that case we are required to obtain the initial estimate

using only the available LR MS image as the true fused image is not available. Here,

we use the property of natural images that the probability of availability of redundant

information in the image and it’s downsampled versions is high [178]. We exploit this self

similarity concept along with CS theory in order to obtain the initial estimate of fused

image. Finally, in order to preserve the spatial details and obtain a better estimate of

fused image, we solve the pan-sharpening or multi-resolution image fusion problem in a

regularization framework by making use of a new prior called Gabor prior.

5.1 Related Work

Li and Yang [129] have applied the theory of compressed sensing (CS) to obtain fusion

for remotely sensed images. In this method, a dictionary is prepared from the sample

115
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images having high spatial resolution. They obtain fused image as the linear combination

of HR patches available in dictionary. The performance of this method depends on the

availability of the high resolution MS images that have spectral components similar to

that of the test image. Considering this limitation, the authors in [130, 131] propose

to construct an overcomplete joint dictionary from available MS and Pan images and

extract the most relevant spectral and spatial information using the l1 minimization.

They consider the MS image as the decimation of the original high resolution MS image

and take the Pan as the linear combination of all bands of the high resolution MS images.

On a similar line the authors in [132] use a dictionary constructed using the Pan image and

its downsampled LR version and obtain the fusion by exploring the sparse representation

of HR/LR multi-spectral image patches. In [133], authors used the CS framework with

dictionary patches learned from the initial high resolution MS image obtained using

AWLP method [60]. They obtain the final fused image using a trained dictionary obtained

from K-singular value decomposition (K-SVD). Authors in [134] create the over-complete

dictionary with basis functions of different transforms such as discrete cosine transform

(DCT), wavelets, curvelets and ridgelets and the best bases for MS and Pan images are

obtained with convex optimization. The final fused MS image is obtained by merging

best bases coefficients of Pan and corresponding MS band as per values of the local

information parameter.

The draw back of all these CS based fusion approaches is that the dictionary is

constructed either using a database or by the use of MS and Pan images. The use

of database requires the availability of high resolution MS images having characteristics

similar to the test image and the use of Pan data suffers from the disadvantage of using

lower spectral resolution images for dictionary construction. In the present work, we

propose a model based pan-sharpening method using a new concept called self-similarity

and a new prior referred to as Gabor prior. The self-similarity is based on the concept

of the probability of occurrence of same or similar patches within and across the scale

of image [178]. Literature shows that on an average 23% best match patches (exactly

same patches) are available across the image for a downsampling factor (q) of 2 [178].

After obtaining the similar patches across the scale of LR MS image and obtaining their

corresponding HR patches, the HR patches for which matches are not found are obtained

by using the CS theory that uses the dictionaries constructed from the already found LR-
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HR patches. This constitutes the initial pan-sharpened image estimate in our approach.

The same is used in estimating the degradation between LR and unknown pan-sharpened

images. A regularization frame work is then used to obtain the final solution in which

the Gabor prior is used to extract the bandpass details from the Pan image to embed it

into the final pan-sharpened image. Our regularization terms include the Gabor prior as

well as the MRF smoothness prior that maintains spatial smoothness in terms of patch

continuity in the final pan-sharpened image. The MRF parameter is estimated using the

initial estimate. The final cost function is convex which allows us to use gradient based

optimization technique for minimization. It is worth to mention that in this chapter

we use the concept of the self-similarity in order to find the best matched patches in

the image itself which is different from the term“learning used in the pattern recognition

community or machine learning community. Note that learning in the pattern recognition

corresponds to estimating of the parameters by training the network for a given training

data set. Such training and the parameter estimation are not used in our work. In

our work the meaning of learning is to get the high resolution patch by using the LR

image patch matching. We use the LR MS image patch matching to learn the HR patch.

In this process the complexity is much less when compared learning as used in pattern

recognition community [179].

The proposed approach has the following advantages which makes it different from

the other CS and regularization based pan-sharpening approaches.

• Instead of using Pan and MS images, only the LR MS image is used to obtain the

initial estimate which results in better degradation estimation between the LR and

HR images.

• Spatial details in the final pan-sharpened image are better preserved due to the use

of Gabor prior which not only extracts the high frequency edge details from Pan

image, but the features at different bandpass frequency bands are also extracted

from the Pan image.

• Use of homogeneous MRF prior keeps the patch continuity and hence spatial details

in the final pan-sharpened image are better preserved.
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Figure 5.1: Block schematic of the proposed pan-sharpening method for fusing an mth MS
and the Pan images. Here LR and HR correspond to low resolution and high resolution,
respectively.

5.2 Block Schematic of the Proposed Method

The block schematic to obtain the pan-sharpened MS image Zm for the mth low resolution

MS is shown in Fig. 5.1. As shown in this figure, first the initial HR approximation to

pan-sharpened image (initial estimate) is obtained using the LR MS image by making use

of the concept of self-similarity and the theory of CS. Assuming that the initial estimate

is close to the final pan-sharpened image we then obtain the patch wise degradation

between the pan-sharpened image and LR MS image by using the initial estimate. This

degradation matrix estimated for each patch are then used in the data fitting term of

the final cost function. With an MAP framework, the final cost function consists of

prior terms along with the data fitting term. Here, we use Gabor prior that extracts the

bandpass details from the Pan image. We also use MRF prior to maintain continuity

between patches. The MRF parameter is estimated using the initial estimate. Gradient

descent optimization technique is then used to obtain the final pan-sharpened image.

5.3 Initial HR Approximation

In the proposed method we obtain an initial HR approximation (initial estimate) which

is used in obtaining the degradation between LR and HR patches and to obtain the

MRF parameter. The initial approximation is obtained using the LR MS image itself
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Figure 5.2: The statistics for number of matched LR-HR patch pairs using the images of
different satellites for q = 2 and 4.

by using the concept of self-similarity and compressive sensing. This concept is based

on the observation that the same or similar spatial information is repeated within or

across the coarser resolution of the images [178]. The recurrence of patches in the same

image or its coarser resolution is called self-similarity. This means that depending on

the resolution difference, the HR patches are available in the given LR MS image itself.

In [178] authors used this observation to obtain the super-resolution (SR) of LR image.

Here, they first construct the LR cascade consisting of different coarser resolutions of the

given image. They search for the similar patches available in the LR cascade and use them

to estimate the SR of the given image. For the unmatched LR patch, interpolation is used

to obtain the corresponding HR patch in the final SR image. Due to the interpolation

of unmatched LR patches, this approach [178] suffers from the spatial distortions. In

the proposed method we use the concept of self-similarity to find the same or similar

patches in the coarser resolution of the given LR MS image. Unlike [178], matched LR-

HR patches are found using only the coarser resolution of the given LR MS image, thus

avoiding construction of the LR cascade. The unmatched patches are estimated using

the compressive sensing (CS) framework which are interpolated in [178].

In order to investigate the possible number of matched LR-HR pairs in different types

of satellite images we carried out the statistics for downsampling factor (q) of 2 and

4. To do this, we conducted an experiment on different images captured using various
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satellites such as Ikonos-2, Quickbird and Worldview-2. Here, we use 50 MS images each

of size 256 × 256 for every satellite. The coarser resolution images for q = 2 and q = 4

are obtained using Gaussian blurring and downsampling operation. In each band of MS

image, we consider a LR patch of size w×w (here w = 5) and this patch is searched in its

coarser resolution image. The approximate nearest neighborhood (ANN) [180] is used to

find the same patch using the sum of squared difference (SSD) distance criteria resulting

in LR-LR match. The threshold value for SSD is set to be 0 for all the datasets. Since

the resolution difference is known, the corresponding qw× qw matched HR patch can be

easily located in the LR MS band and this results in LR-HR matched pair. In order to

explain this consider the resolution difference of 2. We then have two images of the MS

band having the size of 256× 256 and 128× 128 pixels, respectively. If a w×w patch in

MS image of size 256× 256 is matched (similar) to a patch centered at a location (l,m)

in its coarser resolution of size 128 × 128, then the patch of size 2w × 2w centered at

(2l, 2m) in the MS image of size 256 × 256 corresponds to matched HR patch giving a

matched LR-HR patch pair. We repeat this procedure for all the non overlapping patches

and obtain the matched LR-HR patch pairs in the given band. We then calculate the

percentage of LR-HR matched patch pairs by using the total number of available and

matched LR-HR patch pairs for that band. This experiment is performed for all the 50

images of that particular satellite to obtain the different number of matched LR-HR patch

pairs and we compute the average value in order to display the statistics. This statistics

is presented in Fig. 5.2 for q = 2 as well as for q = 4. For example, for Ikonos-2 images,

out of total patches of 63504 we obtained 22.03%(≈ 13990) and 5.28%(≈ 3354) matched

LR-HR patch pairs for q = 2 and 4, respectively. It is worth to mention that since there

are more patches marched for q = 2 than for q = 4, we use the coarser resolution image

of q = 2 only while finding the matches. Hence in order to obtain the initial estimates

for our MS bands where q is 4, we repeat the procedure for q = 2. We can see that on

an average the number of matched LR-HR patch pairs for q = 2 and 4 are 22% and 5%,

respectively.

In order to reconstruct the initial HR image, we need the matched HR patch for every

LR patch. Since the unmatched LR-LR patches do not result in HR patches they have

to be estimated. We use CS framework for this. The CS theory described in [181–183]
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demonstrates the recovery of sparse vector. A vector x in Rℵ can be represented as

x = Ψv, (5.1)

where Ψ is an ℵ × ℵ basis matrix and v is ℵ × 1 column vector of weighting coefficients.

If the vector v has L nonzero elements i.e., x is L sparse in Ψ domain, then only L

basis vectors are required to form to the vector. In CS theory a measurement vector u is

generated from x as

u = Φx, (5.2)

where Φ is a measurement matrix of size κ× ℵ with κ < ℵ. Substituting from equation

(5.1) we get,

u = ΦΨv = Θv, (5.3)

where Θ is an κ × ℵ matrix and allows reconstruction of v (and hence x). Note that v

has dimension of ℵ×1, but has only L nonzero coefficients. The recovery algorithm aims

to find the sparse v subject to u = Θv. This can be solved using `1 minimization by

posing the problem as [181],

min ‖ v ‖1 subject to u = Θv, (5.4)

where ‖ · ‖1 represents `1 minimization. Equation (5.4) recovers exactly L sparse compo-

nents of the v and can be converted to linear programming (LP) of basis pursuit [181,182]

with computational complexity of O(ℵ3).

In Fig. 5.3, we illustrate this concept of self-similarity. Fig. 5.3(a) displays the LR

MS image (I0) of Quickbird satellite shown with color composition of bands 3, 2 and 1.

The coarser resolution (I−1) for downsampling factor (q) 2 of the same image is displayed

in Fig. 5.3(b). Consider a patch P0 of size w × w which is marked with green border

in I0. We can observe in the Fig. 5.3(b) that the same or similar patch is also available

in its coarser image I−1 as P−1 which is also marked with green border. Since these

two patches form LR-LR match, parent HR patch (R0) of P−1 (marked with blue color

border in Fig. 5.3(a) ) of size qw × qw is available in the LR MS image itself forming

the corresponding LR-HR matched pair i.e., P0 and R0 constitute LR-HR matched pair.

Note that R0 represents the matched HR patch for P0. As already discussed the ANN
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Corresponding

HR Patches
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Figure 5.3: Patch recurrence for LR MS image into its coarser resolution image. (a) LR
MS image, I0 and (b) coarser resolution of (a), I−1. Here, patches shown with green
border are the matched LR patch pairs and corresponding to these matched pairs HR
patches are shown with blue border in (a).

can be used to find the patch match in the LR and its coarser versions and hence its HR

patch can be found from the LR image. To find the initial approximation, all the available

LR-HR matched pairs are found by considering non overlapping patches in the LR MS

image. We then construct two separate dictionaries using these LR and HR pairs. Let

Nbest be the number of matched patch pairs in the given LR MS image and corresponding

to this DLR and DHR be the LR and HR dictionaries of size w2×Nbest and q2w2×Nbest,

respectively. Here, w2 × 1 and q2w2 × 1 correspond to size of lexicographically ordered

LR and HR patch pixels, respectively. The unmatched HR patches are obtained using

CS framework as depicted in Fig. 5.4. Given an LR patch for which no HR match is

available and the LR dictionary DLR, we can estimate the sparse coefficient vector v

using l1 minimization. This is represented in Fig. 5.4(a). Assuming that both the LR

and HR patches have the same sparseness, the estimated sparse vector can be utilized

to compute the unknown HR patch as displayed in Fig. 5.4(b). Repeating this for all

those LR patches for which no HR matches are available, we obtain LR-HR matched



5.4 Image Formation Model and Degradation Estimation 123

[] [ ]... []
Un-matched LR 

Patch
Dictionary of LR Patches

(DLR)
Sparse vector

   

=
[w2x1] [w2xNbest]

[Nbestx1]

(v)

[] [ ].. []
HR 

Patch
 Dictionary of HR patches

(DHR)
Sparse vector   

=
[q2w2x1] [q2w2xNbest]

[Nbestx1]

(v)

.

(a) (b)

Figure 5.4: (a) CS framework to obtain the spare coefficient vector v for unmatched LR
patch. (b) The corresponding HR patch estimated using dictionary of HR patches (DHR)
and the spare vector v in (a). Here the CS framework is depicted for q = 2.

pairs for the complete image. Placing these HR patches at their corresponding locations

results in the initial approximation image. It is important to note that as the number

of matched LR patches are significant, the quality of initial estimate would be better

since we compute the unmatched LR-HR patches using the linear sparse combination of

matched LR-HR patches. The procedure is repeated to obtain initial estimate separately

for each LR MS image.

5.4 Image Formation Model and Degradation Esti-

mation

In the proposed method, the LR MS image is modeled as blurred and noisy version of

the true MS image. This linear image formation model for the ith patch of mth LR MS

image of size N1 ×N2 can be written as,

ymi = Ami zmi + nmi , m = 1, 2, . . . , l, i = 1, 2, . . . , N. (5.5)

In equation (5.5), l represents the number of bands in LR MS image and N is the total

number of patches each of size w × w in the LR MS image Y . The ymi and zmi are the

lexicographically ordered vectors of ith patch for mth LR MS and unknown pan-sharpened

MS images, respectively. The nmi is the corresponding noise vector which is assumed to be

as independent and identical distribution (iid) Gaussian with zero mean and unit variance.
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The degradation matrix for ith patch of mth LR MS image is given by Ami . However, this

is unknown since we do not have the pan-sharpened MS image. Since, we already know

the approximation to pan-sharpened image (initial estimate), we use it for estimating

Ami . One may write Ami as,

Ami = Dm
i H

m
i , m = 1, 2, . . . l. (5.6)

where Dm
i is the decimation matrix of size w2 × q2w2 and Hm

i is the blur matrix of size

q2w2×q2w2 which is assumed to be space invariant. By considering the LR pixel as linear

combination of q2 HR pixels with appropriate weights, we choose Dm
i as,

Dm
i =


ami1 a

m
i2 . . . a

m
iq2 0 0

0 ami1 a
m
i2 . . . a

m
iq2 0

. . .

0 0 ami1 a
m
i2 . . . a

m
iq2

 . (5.7)

Also, the space invariant blur matrix Hm
i has the form

Hm
i =


Hm
i0 Hm

iqM2−1 Hm
iqM2−2 . . . Hm

i1

Hm
i1 Hm

i0 Hm
iqM2−1 . . . Hm

i2

. . . . . . .

Hm
iqM2−1 Hm

iqM2−2 Hm
iqM2−3 . . . Hm

i0

 , (5.8)

where m = 1, 2, . . ., l and each Hij can be written as,

Hm
ij =


hmij,0 hmij,q−1 hmij,q−2 . . . hmij,1

hmij,1 hmij,0 hmij,q−1 . . . hmij,2

. . . . . . .

hmij,q−1 hmij,q−2 hmij,q−3 . . . hmij,0

 . (5.9)

Here h.,. are the values of the point spread function (PSF) for blur. Since we consider a

space invariant blur, Hm
i is block circulant. The multiplication of Dm

i and Hm
i results in
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the Ami matrix which is given by

Ami =


Ami1 Ami2 . . . Amiq2M2−1 Amiq2M2

Amiq2M2−q+1 . . . Ami1 Ami2 . . . Amiq2M2−q

. . . . .

. . . . . . . . . Ami1 . . . . . .

 . (5.10)

For w = 2 and q = 2 the Ami matrix has size of 4× 16 and can be written as,

Ami =


Ami1 Ami2 Ami3 Ami4 Ami5 Ami6 Ami7 Ami8 Ami9 Ami10 Ami11 Ami12 Ami13 Ami14 Ami15 Ami16

Ami15 Ami16 Ami1 Ami2 Ami3 Ami4 Ami5 Ami6 Ami7 Ami8 Ami9 Ami10 Ami11 Ami12 Ami13 Ami14

Ami9 Ami10 Ami11 Ami12 Ami13 Ami14 Ami15 Ami16 Ami1 Ami2 Ami3 Ami4 Ami5 Ami6 Ami7 Ami8

Ami7 Ami8 Ami9 Ami10 Ami11 Ami12 Ami13 Ami14 Ami15 Ami16 Ami1 Ami2 Ami3 Ami4 Ami5 Ami6

 .

(5.11)

We estimate the entries in equation (5.10) using the ith matched LR-HR patch pair.

Inclusion of non-identity blur matrix leads to under determinant set of equations and

hence it cannot be solved by using pseudo inverse. We use a minimum norm approach for

estimating Ami for all i and m. Here degradation matrix consists of decimation and blur

matrices which means that our model takes care of both aliasing due to downsampling

as well as blur. It is worth to say that since the initial estimate is obtained by using LR

MS image only avoiding the use of available Pan image, our approach results in better

degradation matrix entries.

5.5 Regularization using Gabor and MRF Priors

As discussed in the previous section, the initial estimate is obtained by using LR MS

image only without using the Pan image. Due to this the spectral details are intact

in the initial estimate since MS image has high spectral resolution and it results in

better degradation estimation. The factor that contributes for avoiding the spectral

distortion in the initial estimate is due to the reconstruction of this initial HR estimate

using the patches from the same MS observation. Pan-sharpening problem formulated in

equation (5.5) is ill-posed which requires regularization in order to obtain a final solution.

To regularize the solution we need suitable prior that preserves the spatial features at

various frequencies. We also need to take care of the spatial dependencies in the final pan-

sharpened image. In the literature many researcher have used various edge preserving
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priors for pan-sharpening. However, these priors are suitable for preserving the high

frequency content only. Also, they are computationally inefficient since they use costly

optimization techniques in order to obtain the final solution. One may use Gabor filter

which is a linear filter used to extract the band pass details present in the signal/image

at various frequencies and orientations. Since the Pan image has high spatial resolution,

these details can be extracted from the Pan image and can be used as prior in order

to improve the final solution. Gabor filter has been used for texture representation and

synthesis in the computer vision community [184,185]. The impulse response of 2D Gabor

filter can be obtained by modulating a 2D sinusoidal using 2D Gaussian function as,

g(x, y, f, θ, σx, σy) = e
− 1

2
(x
′2

σ2x
+ y′2

σ2y
)
cos(2πfx′), (5.12)

where (x, y) denotes the spatial coordinates and (x′, y′)=(x cos(θ)+ySIN (θ),−xSIN (θ)+

y cos(θ)) represents the rotated (x, y) coordinates with angle θ. σx and σy are the vari-

ances in x and y directions for Gaussian kernel and f represents the frequency of the

sinusoid. Gabor filter given in equation (5.12) describes the band pass filter with varying

frequency f and orientation θ.

The use of Gabor prior in the proposed approach is illustrated in Fig. 5.5. It consists

of the Gabor filter bank having different frequencies and orientations. The Pan and

unknown pan-sharpened images (to be estimated) are passed through this filter bank.

Since Gabor filter extracts the bandpass features, the outputs of the filter bank for Pan

and unknown pan-sharpened correspond to the features extracted at different frequencies

and orientations. In Fig. 5.5(a) and Fig. 5.5(b), we display the Gabor filter bank outputs

when an ith patch of the Pan and pan-sharpened images are applied as input to the filter

bank. Here R represents the number of filters in the Gabor filter bank. Using this set

up for prior, we seek for such a pan-sharpened image which when pass through Gabor

filter bank has the band pass details similar to that the available in the Pan image (see

Fig. 5.5(b)).

Along with the Gabor prior which takes care of preserving the spatial details in the

final pan-sharpened image, we also use Markov random field (MRF) prior that preserves

the patch continuity. Since our approach is based on patch based learning, the final

output may result in blockiness which can be taken care by using MRF as smoothness
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Figure 5.5: Illustration of Gabor prior. The outputs of Gabor filter bank when input is
the ith patch of (a) Pan image and (b) unknown pan-sharpened image.

prior. The MRF gives the spatial contextual dependency among the neighboring pixels

and same can be used to preserve the continuity in the final pan-sharpened image. By

using first order neighborhood, the MRF prior can be written as,

∑
c∈C

Vc(z
m) = γm

qN1∑
k=1

qN2∑
l=1

[(Zm
k,l − Zm

k,l−1)2 + (Zm
k,l − Zm

k−1,l)
2], (5.13)

where γm represents the MRF parameter that indicates the penalty for departure from

smoothness in zm. C is the set of all cliques. The parameter γm should be estimated

using the pan-sharpened image. However, this is unknown and it has to be estimated.

In our work, since the initial estimate is already available, we make use of the same to

estimate γm. We use the method of maximum pseudo likelihood for estimating it [167].

Note that in equation (5.13), Zm represents the entire image rather than a patch.

Using MAP-MRF regularization framework one can obtain the final cost function as

ẑm = argmin
zm

[
N∑
i=1

(
‖ ymi − Ami zmi ‖2 +

R∑
j=1

‖ Gjpi −Gjz
m
i ‖2

)
+
∑
c∈C

Vc(z
m)

]
, (5.14)

where, Ami corresponds to the estimated degradation between the ith low resolution MS

image patch and the corresponding pan-sharpened patch. Here, N represents the total

number of patches in the LR MS image which is also the number of patches in the

pan-sharpened image. R denotes the total number of Gabor filters in the filter bank.
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The second and third terms in equation (5.14) are Gabor and MRF smoothness priors,

respectively. In the second term Gj represents a Gabor filter operator that corresponds to

jth filter impulse response. pi denotes the ith patch of the Pan image. This cost function

is convex and hence can be minimized by using simple optimization technique such as

gradient descent in order to obtain the final solution. It is worth to mention here that

the minimization of first and second terms in equation (5.14) is performed patch wise,

however the minimization of the last term in the same equation is carried out on the

entire image.

5.6 Experimental Results

The effectiveness of the proposed pan-sharpening approach is verified by conducting

the experiments on datasets of the different satellites such as Quickbird, Ikonos-2 and

Worldview-2. The spatial resolution difference between Pan and MS images captured

by using these satellites is 4. We conducted the experiments on degraded as well as

on un-degraded (original) images. Details of the datasets used for experimentation are

given in Table 3.1. The data for the experiments were prepared from the original MS

and Pan images using cropping operation. The original MS and Pan images are cropped

appropriately to obtain the images of size 256 × 256 and 1024 × 1024, respectively and

these cropped images are used in all our experiments. These datasets are co-registered

before conducting the experiment. It is worth to mention here that we use the datasets

with the original radiometric resolution without doing any pre-processing such as contrast

stretching. The performance of the proposed fusion method is compared with the other

state of the art pan-sharpening techniques namely fast IHS (FIHS) [33] and adaptive IHS

(AIHS) [37], AWLP [60], sparseFI [132] and Li et. al [129]. The quantitative analysis on

the experiments of degraded dataset is performed by calculating the different measures

such as correlation coefficient (CC) [29], erreur relative global adimensionnelle de synthse

(ERGAS) [186], average quality index (QAV G) [187], root mean square error (RMSE) [29]

and the spectral angle mapper (SAM) [188]. In the case of un-degraded experiments the

quality with no reference (QNR) [158] is computed which does not require the reference

image. The QNR [158] measure is a combination of the spectral and spatial distortions

which are represented by Dλ and Ds, respectively.
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Table 5.1: Gabor filter parameters.

Parameters Ikonos-2 Quickbird Worldview-2
Frequencies 0.025, 1.5 0.015, 1.15 0.035, 1.50

Orientations (in degree) 0, 45, 90, 145 0, 35, 95, 105 0, 25, 85, 145

5.6.1 Experimental Set-up

In order to perform the experiments on the degraded dataset we pass the original Pan

and MS images through Gaussian filtering with different Nyquist cutoff frequencies and

downsampling operation [189]. The downsampling factor (decimation) is chosen as q = 4

since the spatial resolution difference between MS and Pan images is 4. Thus the size

of degraded MS and Pan images are 64 × 64 and 256 × 256, respectively. However, for

un-degraded experiments they remain same as the original size of MS and Pan image. We

use a patch size (w) of 5× 5 while obtaining the initial estimate. In order to obtain the

unmatched HR patches we use the `1 minimization using `1 MAGIC toolbox provided by

Justin Romberg [190]. In the Gabor filter bank we use 8 filters having different frequencies

and orientations. These parameters for the experimentations on various types of satellite

images are listed in Table 5.1 which are chosen empirically based on the quality of the

pan-sharpened image. We experimented with more number of filters in the bank, however

the improvement in the final pan-sharpened images were not very significant. The step

size for gradient descent optimization is kept as 0.01 for all the experiments.

5.6.2 Experimental Results on Degraded and Un-degraded Ikonos-

2 Datasets

The first experiment is conducted on the degraded and un-degraded images of Ikonos-2

satellite. Details of the data captured using this satellite can be found in Table 3.1.

The images in this dataset consists of the urban area of Mount Wellington nearer Hobart

Tasmania and the pan-sharpening results of the same are displayed using the color compo-

sition of 4, 3 and 2 bands. The results obtained using different state of the art approaches

in addition to the proposed approach are displayed in Fig. 5.6 and Fig. 5.7 for degraded

and un-degraded images, respectively. The degraded MS and Pan images are displayed in

Fig. 5.6(a) and Fig. 5.6(b), respectively and their originals i.e., the un-degraded images are

displayed in Fig. 5.7(a) and Fig. 5.7(b), respectively. The pan-sharpened results of FIHS
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.6: Results of pan-sharpening on degraded dataset of Ikonos-2 satellite consisting
of urban area shown as color composite of bands-4, 3 and 2 (q = 4). (a) LR MS image
of the size 64× 64 upsampled to the size of Pan image. (b) Pan image of size 256× 256.
Pan-sharpened images obtained using (c) fast IHS (FIHS) approach [33], (d) AIHS [37],
(e) AWLP [60], (f) Brovey method [22], (g) sparseFI [132], (h) Li et. al [129] and (i)
proposed approach. (j) Original MS image. The magnified image of a small square region
with a green border shown in (j) is displayed at the bottom left corner of all the images.

method [33] on degraded and original data are depicted in Fig. 5.6(c) and Fig. 5.7(c),

respectively. In Fig. 5.6(d) and Fig. 5.7(d), we display the results of AIHS method [37].

The pan-sharpening results of AWLP [60] and Brovey [22] methods are displayed in

Fig. 5.6(e) and Fig. 5.6(f) for the degraded dataset while the results of these methods for

the original dataset are displayed in Fig. 5.7(e) and Fig. 5.7(f), respectively. Since our

approach is based on CS, comparison is also shown with the other CS based techniques

such as sparseFI [132] and Li et. al [129]. The pan-sharpened results obtained using these

methods for degraded dataset are displayed in Fig. 5.6(g) and Fig. 5.6(h), respectively

and the same for the original dataset are displayed in Fig. 5.7(g) and Fig. 5.7(h). In

Fig. 5.6(i) and Fig. 5.7(i) we display the results of the proposed pan-sharpening approach

using the degraded and un-degraded datasets, respectively. The original image is avail-

able for the experiment on degraded data and the same is displayed in the Fig. 5.6(j).

In order to have better visual comparison among the results we also display the enlarged

version of a small area marked with green border in Fig. 5.6(j) and Fig. 5.7(i). This is

shown in each of the images at the bottom left corner. The quantitative measures of this

experiment using the degraded dataset are summarized in Table 5.2. For the experiment
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Table 5.2: Quantitative measures for Ikonos-2 imagery shown in Fig. 5.6 and Fig. 5.7.
Here, boldface values indicate the value is better amongst the other methods.

Dataset Measure FIHS [33] AIHS [37] AWLP [60] Brovey [22] sparseFI [132] Li et. al [129] Proposed
CC(1) Band 1 0.8729 0.9148 0.8693 0.8781 0.8059 0.8654 0.9245

Band 2 0.9305 0.9346 0.9156 0.9283 0.7933 0.8997 0.9370
Band 3 0.9394 0.9393 0.9309 0.9434 0.7782 0.8995 0.9575

Degraded Band 4 0.9484 0.8908 0.8988 0.9153 0.7466 0.8590 0.9676
(Fig. 5.6) ERGAS(0) 7.0320 4.4546 5.2946 5.0216 6.3824 4.9275 4.0861

QAVG(1) 0.8082 0.7028 0.6897 0.6983 0.6909 0.5843 0.8042
RMSE(0) 18.0100 8.9372 10.6475 11.5493 12.6856 9.7400 7.4933
SAM(0) 5.9656 5.9377 5.7666 5.7753 5.9351 7.1801 5.5847

Un-degraded Ds(0) 0.4163 0.4044 0.3824 0.2228 0.3674 0.1783 0.1210
(Fig. 5.7) Dλ(0) 0.2353 0.1326 0.2769 0.0865 0.1284 0.0773 0.0710

QNR(1) 0.4462 0.5166 0.4465 0.7098 0.5512 0.7580 0.8165

on un-degraded dataset the reference pan-sharpened image is not available and hence the

quantitative evaluation is carried out with the help of QNR index which is included in

the same Table 5.2. The boldface values in the table indicate that the value is better

amongst the other methods. Also, in Table 5.2 we display the ideal value of different

measures in the bracket.

Following points can be observed from the results on the degraded and un-degraded

datasets of Ikonos-2 satellite. In the FIHS [33] and AIHS [37] methods, the extracted

high frequency details from the Pan image are injected in the upsampled MS image. One

can see from Fig. 5.6(c) and Fig. 5.7(c) that due to the appropriate weighting factors

used in the FIHS approach [33], color information is better preserved in addition to the

preservation of spatial details. This weighting factor is calculated using the spectral

response functions of the Ikonos-2 satellite sensor. The results of AIHS method [37] (see

Fig. 5.6(d) and Fig. 5.7(d)) lack in the preservation of color details when compared to

other approaches. We observe that although the images displayed in Fig. 5.6(e) and

Fig. 5.6(f) corresponding to AWLP [60] and Brovey [22] methods indicate enhancement

in terms of spatial details, the spectral contents are not well preserved. One can compare

the magnified regions of FIHS [33], AWLP [60] and the proposed methods displayed in

Fig. 5.6(c, e, i) for the degraded datset and observe that the preservation of the spectral

details such as the colors of trees along with the edge features of houses are better in

the result of the proposed method when compared to that of FIHS [33] and AWLP [60].

Both the pan-sharpening results based on the CS theory displayed in Fig. 5.6(g, h) and

Fig. 5.7(g, h) do not perform well as far as the preservation of the spatial details are

concerned. They also show color saturation. This effect can be clearly seen in the

magnified regions. Visual comparison of different approaches indicate that AIHS [37],
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Figure 5.7: Results of pan-sharpening on un-degraded (original) dataset of Ikonos-2 satel-
lite consisting of urban area shown as color composite of bands-4, 3 and 2 (q = 4). (a)
Original MS image of size 256 × 256 upsampled to the size of Pan image. (b) Original
Pan image of size 1024× 1024. Pan-sharpened images obtained using (c) FIHS [33], (d)
AIHS [37], (e) AWLP [60], (f) Brovey [22], (g) sparseFI [132], (h) Li et. al [129] and (i)
proposed approach. The magnified image of a small square region with a green border
shown in (i) is displayed at the bottom left corner of all the images.
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Brovey [22], sparseFI [132] and LI et. al [129] methods do not preserve the spatial details

better when compared to the methods of FIHS [33] and AWLP [60]. The high frequency

details in FIHS [33], AWLP [60] and the proposed approaches look similar to that of the

Pan image (see Fig. 5.6(b) and Fig. 5.7(b)). We can also observe that in the magnified

region of the proposed method in the result of un-degraded dataset (see Fig. 5.7(i)) the

shape of the vehicles on the roads are similar to that of the Pan image shown in Fig. 5.7(b)

indicating spatial resolution enhancement for the proposed approach.

Quantitative measures for this experiment are shown in Table 5.2. When we compare

the quantitative measures of the proposed approach with the other methods, we can

see that the proposed method shows better performance except for the QAV G index

indicating that the spatial as well as spectral features are better preserved in the proposed

method. Although the value of QAV G is higher for FIHS method [33] when compared

to our approach, the difference between these two values is not significant. Since the

original pan-sharpened image is unavailable in the experiment on un-degraded data, the

performance in this case is tested in terms of QNR measure and the same is shown in

Table 5.2 where the spectral distortion (Ds) and spatial distortion (Dλ) are lowest for the

proposed method. One can conclude from the experiments on degraded and un-degraded

images of Ikonos-2 satellite that the preservation of the spatial and spectral details in the

proposed method is better when compared to other approaches.

5.6.3 Experimental Results on Degraded and Un-degraded Quick-

bird Datasets

Here, we describe the results obtained using the degraded and original datasets of Quick-

bird satellite. Table 3.1 lists the different details of the data captured using this satellite.

Similar to the previous experiment on Ikonos-2 satellite, the results of degraded and

un-degraded datasets for Quickbird satellite are displayed in Fig. 5.8 and Fig. 5.9, re-

spectively. Here, experiments are conducted on the dataset consisting of semi-urban

area of Sundarban, India and the results are displayed using the color composition of

bands 3, 2 and 1. Use of different color composition than the Ikonos-2, helps us in test-

ing the performance of our approach over various spectral bands. The degraded and

original set of test images (MS and Pan) are displayed in Fig. 5.8(a, b) and Fig. 5.9(a,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.8: Results of pan-sharpening on degraded dataset of Quickbird satellite consist-
ing of semi-urban area shown as color composite of bands-3, 2 and 1 (q = 4). (a) LR
MS image of size 64 × 64 upsampled to the size of Pan image. (b) Pan image of size
256× 256. Pan-sharpened images obtained using (c) FIHS approach [33], (d) AIHS [37],
(e) AWLP [60], (f) Brovey method [22], (g) sparseFI [132], (h) Li et. al [129] and (i)
proposed approach. (j) Original MS image. The magnified region of a small square region
shown with a green border in (j) is displayed at the bottom left corner of all the images.

b), respectively. In Fig. 5.8(c-h) we display the pan-sharpening results using FIHS [33],

AIHS [37], AWLP [60], Brovey [22], sparseFI [132] and Li et. al [129] approaches on

the degraded dataset. The results of these pan-sharpening techniques for un-degraded

dataset are shown in Fig. 5.9(c-h). Finally, in Fig. 5.8(i) and Fig. 5.9(i) we display the

pan-sharpening results for the proposed method for degraded and un-degraded datasets,

respectively. The quantitative evaluation corresponding to these experiments are listed

in the Table 5.3. In each of these results displayed in Fig. 5.8 and Fig. 5.9, we also

display the zoomed-in version of a small square area on the bottom left corner and are

marked with green border. It corresponds to small square region shown in Fig. 5.8(j) and

Fig. 5.9(i) consisting of the roof area of stadium.

Looking at the results of degraded dataset in Fig. 5.8, one can make the following

observations. The FIHS method [33] fails in preserving both the spatial and spectral con-

tents (see Fig. 5.8(c)). The result due to AIHS technique [37] improves the spatial details

but the color distortion is clearly seen in the magnified region displayed in Fig. 5.8(d).

The result of AWLP method [60] shown in Fig. 5.8(e) has lesser extent of color and spatial

distortions. However, by comparing the zoomed-in versions of the results of AWLP [60]
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and the proposed methods displayed in Fig. 5.8(e) and Fig. 5.8(i), respectively, we can

clearly see that the proposed method has better preservation of spectral features in addi-

tion to the preservation of the edge details when compared to that of AWLP method [60].

Similar to FIHS method [33], the result of Brovey method [22] (Fig. 5.8(f)) also suffers

from color distortion. The sparseFI pan-sharpening technique [132] shown in Fig. 5.8(g)

has significant loss of spatial and spectral details. The other CS based pan-sharpening

method i.e., Li et. al. approach [129] which is displayed in Fig. 5.8(h) has improved the

spectral content. However, one can see that the preservation of high frequency details

using this method is very poor when compared to the proposed method. By comparing

the zoomed-in images of AWLP [60], Li et. al. [129] and the proposed methods (see

Fig. 5.8(e, h, i)) we may conclude that the spectral attributes such as the blue and white

color stripes appear distorted in the results of AWLP [60] and Li et. al. [129] methods

when compared to the result of the proposed method. Also the proposed approach has

better preservation of spatial features such as the different segments in the roof area of

the stadium when compared to the other approaches.

Similar to degraded dataset the potential of the proposed method is also evaluated by

comparing it with the results of un-degraded images and this is shown in Fig. 5.9. Looking

at the magnified regions of the various approaches we can say that pan-sharpened images

of FIHS method [33] and Brovey technique [22] displayed in Fig. 5.9(c) and Fig. 5.9(f),

respectively have comparatively higher spectral distortions than other methods. The

result of AIHS method [37] suffers in preserving both the spatial and spectral details. The

blockiness effect can be clearly seen in the result of this method displayed in Fig. 5.9(d).

The CS based methods, sparseFI [132] and Li at. al. [129] are displayed in Fig. 5.9(g, h)

and both these approaches fail to output better pan-sharpened images when compared to

that of proposed method (Fig. 5.9(i)). On comparing the magnified images of AWLP [60]

and the proposed methods displayed in Fig. 5.9(e) and Fig. 5.9(i), respectively one can see

that each region in the roof top are well separated in the result of the proposed method

(see Fig. 5.9(i)). Similar to the degraded experiment here also we can conclude that

the proposed method has better perceptual performance when compared to the other

approaches. The pan-sharpened result of the proposed method has less color distortion

with significant improvement in edge features.

The quantitative comparison shown in Table 5.3 indicates that the proposed approach
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Table 5.3: Quantitative measures for Quickbird imagery shown in Fig. 5.8 and Fig. 5.9.
Here, boldface values indicate the value is better amongst the other methods.

Dataset Measure FIHS [33] AIHS [37] AWLP [60] Brovey [22] sparseFI [132] Li et. al [129] Proposed
CC(1) Band 1 0.7066 0.9384 0.9396 0.8538 0.9205 0.9572 0.9463

Band 2 0.8461 0.9649 0.9498 0.9271 0.9301 0.9813 0.9716
Band 3 0.8057 0.9139 0.9445 0.9246 0.9255 0.9654 0.9722

Degraded Band 4 0.7764 0.9671 0.9542 0.8247 0.9321 0.9751 0.9788
(Fig. 5.8) ERGAS(0) 57.3926 5.0335 4.8138 71.4647 5.6189 3.9499 3.7549

QAVG(1) 0.6448 0.8564 0.8729 0.3433 0.8597 0.7795 0.8871
RMSE(0) 72.2450 18.4657 17.8102 79.2845 20.6792 13.7457 10.7645
SAM(0) 18.5125 5.6591 4.7019 4.1529 5.0594 6.2890 4.1169

Un-degraded Ds(0) 0.3636 0.3145 0.2245 0.6477 0.1775 0.2298 0.2148
(Fig. 5.9) Dλ(0) 0.5169 0.1650 0.1704 0.2337 0.1961 0.0620 0.0480

QNR(1) 0.3074 0.5723 0.6432 0.2699 0.6611 0.7224 0.7474

performs better in terms of quantitative measures as well, showing better values for all

the measures except for the values of CC for bands 1 and 2. The CC measure for these

two bands are slightly better for Li et. al. [129]. Over all, the spectral and spatial fidelity

indices are better in the results of the proposed method when compared to other pan-

sharpening techniques. One may arrive at following conclusions from the displayed results

and the quantitative assessment. Due to the Gabor filter which extracts the bandpas de-

tails present at different regions, the proposed method exhibits better preservation of

spatial features. Estimation of initial HR approximation using the self-similarity and CS

theory improves the performance of the proposed method in obtaining accurate degrada-

tion matrix between the LR and HR images and this in effect leads to better final output.

5.6.4 Experimental Results on Degraded and Un-degraded Worldview-

2 Datasets

Finally, we explain the results on the degraded and un-degraded images of Worldview-2

satellite. This satellite provides the MS and Pan images with the highest spatial resolution

among the other satellites as indicated in Table 3.1 which also shows the other details of

the data captured using this satellite. Similar to the earlier experimentations here also

we compare the results of various state of the art pan-sharpening techniques with that

obtained using the proposed method for degraded and un-degraded datasets and these

results are shown as color composite for bands 7, 5 and 3 in Fig. 5.10 and Fig. 5.11,

respectively. We display the pan-sharpening results along with the display of MS and

Pan images. A magnified region is also displayed in all these images as done in the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.9: Results of pan-sharpening on un-degraded dataset of Quickbird satellite con-
sisting of semi-urban area shown as color composite of bands-3, 2 and 1 (q = 4). (a)
Original MS image of size 256 × 256 upsampled to the size of Pan image. (b) Original
Pan image of size 1024× 1024. Pan-sharpened images obtained using (c) FIHS [33], (d)
AIHS [37], (e) AWLP [60], (f) Brovey [22], (g) sparseFI [132], (h) Li et. al [129] and (i)
proposed approach. The magnified image of a small square region with a green border
shown in (i) is displayed at the bottom left corner of all the images.
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experiments on Ikonos-2 and Quickbird satellites. The quantitative measures of the these

results have been listed in Table 5.4.

Looking at the results of FIHS approach [33] displayed in Fig. 5.10(c) and Fig. 5.11(c)

for degraded and un-degraded datasets we observe the spectral distortions in these re-

sults. Similarly, the pan-sharpening results of Brovey method [22] (see Fig. 5.10(f) and

Fig. 5.11(f)) also lack in preserving the color details. Comparing the results of AIHS [37]

and AWLP [60] methods for degraded dataset displayed in Fig. 5.10(d) and Fig. 5.10(e),

respectively we may say that AWLP [60] has better spatial features with lesser spec-

tral distortions when compared to the result of AIHS method [37]. This observation is

also true for un-degraded dataset which is evident by comparing their results displayed

in Fig. 5.11(d, e). However, comparing the result of AWLP [60] shown in Fig.5.10(e)

with that of the proposed method which is displayed in Fig. 5.10(i) we notice that in

the proposed method, various regions in the urban area have textures comparable to the

original MS image displayed in Fig. 5.10(j). The same conclusion holds for the results

of un-degraded dataset displayed in Fig. 5.11(e, i). Similar to the earlier experiments,

the results of sparseFI approach [132] suffers from blockiness effect (see Fig. 5.10(g) and

Fig. 5.11(g)). The results of the other CS based approach for pan-sharpening i.e., the

approach proposed by Li et. al. [129] displayed in Fig. 5.10(h) and Fig. 5.11(h) and

show better preservation of the color details. However, one can see that the result of the

proposed method (Fig. 5.10(i) and Fig. 5.11(i)) show significant improvement in spatial

details with reduced color distortion when compared to that of Li et. al. approach [129].

In the results using the degraded dataset we highlight the few objects consisting of

buildings, roads, trees, etc., by showing this region magnified. Comparing the zoomed-in

regions of all the results we can conclude that the edge features of buildings and the color

of trees are better preserved in the result of the proposed method (see Fig. 5.10(i)) when

compared to the results of other state of the art methods such as AWLP [60] (Fig. 5.10(e))

and Li et. al. [129] (Fig. 5.10(h)). Similarly, from the results of the un-degraded dataset

depicted in Fig. 5.11 we observe that the proposed method shows significant improvement

when compared to the other pan-sharpening techniques. The quantitative assessment for

these results listed in Table 5.4 shows that the performance of the proposed method for

the degraded dataset is better in terms of every measure except that the CC for band 7 is

better for the method proposed by Li et. al. [129]. However, we can see that the difference
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.10: Results of pan-sharpening on degraded dataset of Worldview-2 satellite
consisting of urban area shown as color composite of bands-7, 5 and 3 (q = 4). (a) LR
MS image of size 64 × 64 upsampled to the size of Pan image. (b) Pan image of size
256× 256. Pan-sharpened images obtained using (c) FIHS approach [33], (d) AIHS [37],
(e) AWLP [60], (f) Brovey method [22], (g) sparseFI [132], (h) Li et. al [129] and (i)
proposed approach. (j) Original MS image. The magnified region of a small square region
shown with a green border in (j) is displayed at the bottom left corner of all the images.

between the values of CC index between Li et. al. [129] and the proposed method is not

very significant. Visual comparison of Li et. al. [129] and the proposed methods show that

the proposed method performs better in preserving both spatial as well as color details.

Note that the pan-sharpening result of Li et. al. [129] approach depends on the dictionary

which is constructed using the databases of original samples of MS and Pan images. For

the case of un-degraded dataset, the spectral distortion (Dλ) for the proposed method is

smaller when compared to all the other methods. The spatial distortion (Ds) and QNR

index are slightly better for the approach of Li et. al. [129]. Looking at the displayed

results and the quantitative measures obtained using the dataset of three satellites one

may conclude that the pan-sharpened image obtained using the proposed method results

in better preservation of edge features, object shapes and colors in the scene.

5.6.5 Computation Complexity

The proposed approach and all the other pan-sharpening methods have been implemented

using Matlab 7.6 installed on Intel i3 processor with 2.4 GHz, 4 GB memory. In order

to calculate the computation time for pan-sharpening of individual band we compute
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.11: Results of pan-sharpening on un-degraded dataset of Worldview-2 satellite
consisting of urban area shown as color composite of bands-7, 5 and 3 (q = 4). (a)
Original MS image of size 256 × 256 upsampled to the size of Pan image. (b) Original
Pan image of size 1024× 1024. Pan-sharpened images obtained using (c) FIHS [33], (d)
AIHS [37], (e) AWLP [60], (f) Brovey [22], (g) sparseFI [132], (h) Li et. al [129] and (i)
proposed approach. The magnified image of a small square region with a green border
shown in (i) is displayed at the bottom right corner of all the images.
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Table 5.4: Quantitative measures for Worldview-2 imagery shown in Fig. 5.10 and
Fig. 5.11. Here, boldface values indicate the value is better amongst the other meth-
ods.

Dataset Measure FIHS [33] AIHS [37] AWLP [60] Brovey [22] sparseFI [132] Li et. al [129] Proposed
CC(1) Band 2 0.8829 0.9220 0.9061 0.9182 0.5526 0.9292 0.9309

Band 3 0.9238 0.9277 0.9092 0.9352 0.5642 0.9485 0.9552
Band 5 0.9201 0.8600 0.9145 0.9351 0.6120 0.9623 0.9679

Degraded Band 7 0.8948 0.8968 0.9033 0.8875 0.7365 0.9593 0.9569
(Fig. 5.10) ERGAS(0) 22.5893 9.9920 9.5293 22.0300 17.7815 7.2197 6.1249

QAVG(1) 0.6468 0.6187 0.6016 0.5674 0.3538 0.7869 0.8541
RMSE(0) 32.5583 23.2829 22.2374 35.5597 42.8931 17.4373 16.0521
SAM(0) 16.2389 11.8724 11.1375 12.4531 13.5631 8.9023 7.2100

Un-degraded Ds(0) 0.3068 0.4723 0.2748 0.3028 0.3487 0.0256 0.1552
(Fig. 5.11) Dλ(0) 0.3339 0.1264 0.1537 0.1789 0.2298 0.1781 0.0959

QNR(1) 0.4616 0.4609 0.6136 0.5723 0.4939 0.8008 0.7637

the total time required for all the bands and then use the average time as the time for

pan-sharpening of single band. The average computation time for each method is listed

in the Table 5.5. Following observations can be made by looking at the timing given in

Table 5.5. Since the CS based methods i.e, sparseFI [132] and Li et. al. [129] depend on

the construction of the dictionary and the use of optimization methods, they take more

time when compared to the other pan-sharpening methods such as FIHS [33], AIHS [37],

AWLP [60] and Brovey [22]. From the table it is clear that the proposed approach takes

higher execution time when compared to the other approaches excluding the approach

of Li et. al. [129] which has highest computational time. Increase in computation time

for the proposed method is due to the estimation of initial HR approximation and also

due to the time for performing regularization using iterative optimization technique.

The methods proposed in [22, 33, 37, 60] are not iterative. Note that though they are

computationally efficient their results suffer from the effect of aliasing. However, our

approach considers the aliasing effect by using a suitable model for degradation. Since

the pan-sharpening is an ill-posed problem, it is advantageous to use a degradation model

in order to obtain better solution which is done in the proposed method by estimating

the degradation between LR and HR MS images. Regularization using a new prior based

on Gabor filtering also adds to improving the solution. Although the time complexity of

the proposed approach is higher when compared to non iterative approaches, it has lesser

distortions in both spatial and spectral contents. One can speed up the processing time

of the proposed method by implementing the optimized code on the graphical processing

unit (GPU). The fastest pan-sharpening approach is the FIHS method [33] which gives

comparable results only for the Ikonos-2 dataset. Note that the execution time of Li et.
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Table 5.5: Average computation time involved for different pan-sharpening approaches.

Experiment Average computation time to obtain single pan-sharpening band (in seconds)
FIHS [33] AIHS [37] AWLP [60] Brovey [22] sparseFI [132] Li et. al. [129] Proposed

Degraded dataset 0.32 0.79 0.33 0.35 60.58 150.45 122.39

al. [129] is highest. This is due to the construction of the dictionary from the original

MS and Pan images and also due to the use of computationally taxing optimization such

as basis pursuit to obtain the pan-sharpened image. The time taken by our approach is

not only less than the approach by Li et. al., it performs better in terms of qualitative

as well as quantitative comparison.

5.7 Comparison of Different Proposed Fusion Ap-

proaches

Here, we compare the results of different fusion approaches proposed in this thesis. In

this chapter we have proposed the model based fusion approach using the concept of self-

similarity and Gabor prior. The fusion results of this approach are compared with the

other model based approach proposed in chapter 4 as well as with the results obtained

using edge preserving filters proposed in chapter 3. Although we have used different

datasets for comparison of fusion results here we illustrate the comparison with the images

acquired using Quickbird satellite where the spatial resolution difference between Pan and

MS images is 4. In Fig. 5.12 and Fig. 5.13 we show the results with the color composition

of 3, 2 and 1 bands obtained using different fusion methods for degraded and un-degraded

datasets, respectively. The quantitative evaluation is performed by computing different

measures and the same is displayed in Table 5.6.

Similar to the previous experiments here also we display the upsampled MS image for

the experiments of degraded and un-degraded dataset in Fig. 5.12(a) and Fig. 5.13(a),

respectively. The Pan images for the same are displayed in Fig. 5.12(b) and Fig. 5.13(b).

In chapter 3, we have proposed two fusion approaches based on details extractions using

multi-stage guided filter (MGF) and difference of Gaussians (DoGs). The results of

these approaches are displayed in Fig. 5.12(c, d) and Fig. 5.13(c, d) for degraded and

un-degraded datasets, respectively. In Fig. 5.12(e) and Fig. 5.13(e) we depict the pan-
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(a) (b) (c)

(d) (e) (f)

Figure 5.12: Results of pan-sharpening on degraded dataset of Quickbird satellite con-
sisting of semi-urban area shown as color composite of bands-3, 2 and 1 (q = 4). (a) LR
MS image of size 64 × 64 upsampled to the size of Pan image. (b) Pan image of size
256× 256. Fusion results obtained using (c) MGF, (d) DoGs, (e) model based approach
using NSCT and (f) model based approach using the concept of self-similarity and Gabor
prior. The magnified region of a small square region shown with a green border in (f) is
displayed at the bottom left corner of all the images.

sharpening results for degraded and un-degraded dataset obtained using the model based

approach described in chapter 4 which uses NSCT to obtain the initial HR approximation.

Finally, the fusion results of model based approach using the concept of self-similarity and

Gabor prior are displayed in Fig. 5.12(f) and Fig. 5.13(f) for degraded and un-degraded

cases, respectively. One may observe the following points while looking at the results

displayed in Fig. 5.12 and Fig. 5.13.

One may see that the fused images displayed in Fig. 5.12(c, d) and Fig. 5.13(c, d) ob-

tained using edge preserving filters preserve the spatial details of the Pan image although

the spectral fidelity is lacking due to the upsampling of MS image. By looking at the

zoomed-in images of degraded dataset (see Fig. 5.12(c, d)) we can see that spectral details

of blue colors are blurred. Similarly, the performance of proposed fusion techniques based

on edge preserving filters for the un-degraded case looks inferior when compared to same

with other proposed fusion methods using model based approaches. In the model based

approaches we avoid making use of the upsampling of MS image while fusing and we use

the initial HR approximation before the final fused image is obtained. The use of initial
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Table 5.6: Quantitative measures for Quickbird imagery shown in Fig. 5.12 and Fig. 5.13.
Here, boldface values indicate the value is better amongst the other methods.

Dataset Measure Proposed fusion approaches using
MGF DoGs model based method model based method

using NSCT using self-similarity and Gabor prior
CC(1) Band 1 0.9410 0.9390 0.9501 0.9463

Band 2 0.9541 0.9631 0.9639 0.9716
Band 3 0.9477 0.9444 0.9596 0.9722

Degraded Band 4 0.9600 0.9530 0.9690 0.9788
(Fig. 5.12) ERGAS(0) 4.8071 4.7810 3.9048 3.7549

QAVG(1) 0.8858 0.8860 0.8911 0.8871
RMSE(0) 12.9022 13.2090 11.8926 10.7645
SAM(0) 4.6980 4.6821 4.5210 4.1169

Un-degraded Ds(0) 0.2189 0.2290 0.2160 0.2148
(Fig. 5.13) Dλ(0) 0.1629 0.1687 0.1020 0.0480

QNR(1) 0.6538 0.6509 0.7040 0.7474

estimate in these proposed fusion methods is to estimate the degradation between LR MS

and fused MS images. The MRF parameter is also estimated using this initial estimate.

The first model based approach is described in chapter 4 which uses the directional trans-

forms such as CT and NSCT to obtain the initial estimate. The pan-sharpening results

obtained using this model based approach are displayed in Fig. 5.12(e) and Fig. 5.13(e)

for degraded and un-degraded cases. We can see here that the improvement in terms

of features such as colors of stadium roof and boundary of various targets appear sharp

when compared to that of fusion results obtained using edge preserving filters. This is

due to the estimation of the degradation caused by the downsampling of LR MS image

which is possible with the help of initial estimate. However such estimation is missing in

the case of proposed fusion approaches using edge preserving filters.

In the second model based proposed fusion approach we chiefly use the given LR MS

observation to derive the initial HR approximation using the concepts of self-similarity

and CS. Also, the patchwise estimation of coefficients of degradation matrix in this ap-

proach yield the better values of degradation matrix when compared to same with the

other model based fusion approach. In addition to this, the proposed fusion method

also uses the prior based on Gabor filter in order to extract the details from the Pan

image. Fig. 5.12(f) and Fig. 5.13(f) show the performance of the this fusion technique

for degraded and un-degraded cases, respectively. Here, one can compare these results

with that of model based fusion method using NSCT and observe that fusion based on

self-similarity and Gabor prior outperforms when compared to fusion using NSCT. The

enhancement in the quality of the fused images is due to better patchwise estimation of

degradation matrix and Gabor prior which extracts the bandpass details from the Pan
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(a) (b) (c)

(d) (e) (f)

Figure 5.13: Results of pan-sharpening on un-degraded dataset of Quickbird satellite
consisting of semi-urban area shown as color composite of bands-3, 2 and 1 (q = 4). (a)
LR MS image of size 256×256 upsampled to the size of Pan image. (b) Pan image of size
1024×1024. Fusion results obtained using (c) MGF, (d) DoGs, (e) model based approach
using NSCT and (f) model based approach using the concept of self-similarity and Gabor
prior. The magnified region of a small square region shown with a green border in (f) is
displayed at the bottom left corner of all the images.

image. Looking at the results displayed in Fig. 5.12 & Fig. 5.13 and the quantitative

measures given in Table 5.6 we can conclude that the performance of the proposed fusion

methods using model based approach is better when compared to same with the edge

preserving filters.

It is of interest to note the computational efficiency of these fusion approaches. Ta-

ble 5.7 lists the computation time to obtain the fused image using the fusion approaches

proposed in this thesis. Here, one can see that the computation complexity for the fu-

sion approach using edge preserving filters i.e., MGF and DoGs is less when compared

to other proposed model based approaches. This is because fusion approaches based on

edge preserving filters are non-iterative and hence they are computationally less intensive.
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Table 5.7: Average computation time involved for different fusion approaches.

Experiment Average computation time to obtain single pan-sharpening band (in seconds)
Proposed pan-sharpening algorithm using

MGF DoGs Model based approach using NSCT Model based approach using self-similarity
(Chapter 3) (Chapter 3) (Chapter 4) (Chapter 5)

Degraded 1.23 0.20 3.54 122.39
dataset

However, these approaches i.e., using MGF and DoGs based methods do not consider the

effect of aliasing while fusing to obtain the final fused image. In the model based ap-

proaches, we consider the aliasing effect by using a suitable model for degradation. Here,

we use the initial HR approximation which is used to estimate the degradation between

LR MS and final fused image. This initial HR approximation is also used to estimate the

regularization parameter in the final cost function. Although the time complexity of the

proposed fusion techniques using model based approach is higher when compared to that

of the fusion approaches based on edge preserving filters, it has less distortions in spatial

and spectral details. For example, the computational complexity of the pan-sharpening

approach based on self-similarity and CS is highest. However, the fused images obtained

using this approach are better when compared to the other proposed fusion approaches.

One can note that the computation time complexity of the model based fusion approaches

can be decreased by implementing the optimized code run on a GPU.

5.8 Conclusion

We have proposed a novel pan-sharpening method using the concept of self-similarity

and Gabor prior. We cast the pan-sharpening problem in a restoration framework and

obtain the final solution by regularizing the cost function. A new Gabor prior is proposed

in order to extract the bandpass features from the Pan image. The final cost function

is optimized using simple gradient based optimization technique. The potential of the

proposed fusion method has been verified by conducting the experiments on both the

degraded and un-degraded images captured by using the different satellite images such

as Ikonos-2, Quickbird and Worldview-2. Quantitative evaluation of our results involves

the traditional as well as new quality indices. From the pan-sharpened image and the

measures one can conclude that the proposed method has better preservation of color

and edge information when compared to the other techniques.



Chapter 6

Conclusions and Future Research

Work

6.1 Conclusions

Remote sensing satellites capture the data in the form of images which are processed and

utilized in various applications such as land area classification, map updating, whether

forecast, urban planning, etc. However, due to the constraints on the hardware of the

sensors and the available transmission bandwidth of the transponder, many commercial

satellites provide the earth information by capturing images which have complementary

characteristics. In this thesis, we have addressed the problem of multi-resolution image

fusion. Here, the low spatial resolution MS image and high spatial resolution Pan image

are combined to obtain a single fused image which has both high spectral and spatial

resolutions. We seek for the fused image which has spectral resolution of MS image and

spatial resolution of the Pan image. Although the MS and Pan images capture the same

geographical area, the complement nature of these images in terms of the spatial and

spectral resolutions give rise to variation in the two images. Because of this when we fuse

the given images by using direct pixel intensity values, the resultant fused data suffers

from the spatial as well as spectral distortions. Another important issue in the problem

of multi-resolution image fusion is the registration of MS and Pan images. Accurate

registration is a different task and in this thesis we use the registered data. Here, we

present the conclusions which are drawn based on the different proposed methods for

147
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pan-sharpening/image fusion.

We began our work by proposing two new fusion techniques based on the edge pre-

serving filters. The Pan image has high frequency details that can be extracted with the

help of edge preserving filter. These extracted details are injected into the upsampled

MS image. In our work, we use two edge preserving filters namely the guided filter and

difference of Gaussians (DoGs) in order to extract the required details present in the

Pan image. The extension of the guided filter in the form of multistage is introduced

which effectively extracts the details from Pan and MS images. Similarly, the concept of

DoGs is used to extract the high frequency features from the Pan image. The potential

of the proposed methods were evaluated by conducting the experiments on the original

as well as degraded datasets captured using various satellites. The results were compared

with the state of the art methods. In addition to the qualitative evaluation we have

also checked the quantitative performance of the proposed approaches by calculating the

traditional measures as well as a new measure called quality with no reference (QNR).

The main drawback of the edge preservation based fusion techniques is the use of

upsampling of MS image and performing fusion without using the regularization. The

use of upsampling on the test image introduces distortion in the fused image due to

aliasing. Hence our next two approaches avoid using interpolated image directly and

these methods are based on using a model for image formation. Here, the given low

resolution MS image is modeled as aliased, blurred and noisy version of the unknown

high resolution MS image i.e. it represents the degraded version of fused image. Since

this is an ill-posed problem it requires suitable regularization in order to obtain the better

solution.

In the first model based approach, we obtain an initial HR approximation (initial es-

timate) with the help of directional transforms such as sub-sampled and non sub-sampled

contourlet transforms. Use of these transforms are due to their desirable properties such

as anisotropy, directionality etc. Since the edge features in an image occur with the dif-

ferent directions and also along the smooth contours the limited directional transform

such as wavelet fails to capture those features. Using CT and NSCT transforms, the

high frequency details present in the Pan image are extracted in the transform domain to

obtain the initial HR approximation separately. The estimated initial estimate was used

in obtaining the transformation between LR and HR MS images by estimating the degra-
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dation matrix. An MAP-MRF regularization framework was finally used to obtain the

final solution where we model the unknown high resolution MS image as an MRF. Here,

the initial estimate was also used in estimating the MRF parameter which avoids the use

of empirically chosen parameter as done in many of the MRF based techniques. The final

cost function being convex, a simple gradient based optimization was used to minimize

the same. The edges in the final fused image were preserved by extracting the edges of the

initial estimate using Canny edge operator and hence the optimization was restricted on

the non edge pixels only. The proposed method preserves fine details present in different

directions with minimum spectral distortion. The experimental results demonstrate that

the proposed technique yields better solution as compared to those obtained using the

recent state of the art approaches.

Our next model based fusion approach uses the concept of self-similarity and CS

theory. Motivation behind using the concept of self-similarity is the use of redundant

details present at the different resolutions of an image. Here, the initial estimate was

obtained with the help of self-similarity and CS theory. It is important to note in this case,

only the LR MS image was used in obtaining the initial approximation. This resulted in

accurate estimate of degradation matrix since we avoid the use of low spectral resolution

Pan image. The degradation matrix is estimated on the LR-HR patch pairs instead of

the entire image. The pan-sharpening problem is cast as a restoration framework and the

final solution is obtained by using regularization. A new Gabor prior was proposed in

order to extract the high frequency details from the Pan image. The final cost function

was minimized using the gradient descent optimization. To show the effectiveness of the

proposed approach we conducted experiments on the datasets acquired from the different

satellites and the results are compared with the other state of the art methods. From the

results and the measures we conclude that the proposed method gives the pan-sharpened

images with better preservation of color and edge regions when compared to the state of

the art approach.

Before we end the conclusion it may be of interest to mention the following points

regarding the use of initial estimate in our works. We assume that the initial estimate

represents close approximation to the final fused. Note that though, it can be considered

as closer to the fused image one cannot accept it as the final solution. This is because the

problem of fusion is ill-posed and a solution space of initial estimate without regularization
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is larger when compared to that obtained after regularization. However, one may still

consider the initial estimate to represent the global characteristics such as edge details,

spatial dependencies etc., of the final solution. In addition to this, we often require an

accurate estimate of input-output relationship where the output is not known. In such

situations it is reasonable to derive an initial estimate of the output from the given data

and use the same for finding the transformation. Due to these reasons we derive an initial

estimate and use it for obtaining an improved solution.

6.2 Future Research Work

In multi-resolution image fusion, the captured data in the form of MS and Pan images by

the satellites are used to obtain single fused image with high spatial and spectral resolu-

tions. Most of the fusion techniques suffer from the drawbacks such as poor preservation

of spectral details, insufficient injection of spatial details, registration error and compu-

tational complexity. In this thesis we have addressed the fusion problem using the model

based approach and also using the methods based on details injection into the MS image.

In the model based approach, we model the given LR MS image as degraded versions of

the unknown fused MS image. Since this is an ill-posed inverse problem, regularization

is required to obtain the better fused image. We model the true MS image as MRF and

use the smoothness prior in the final cost function. In addition to MRF prior, we also

use the Gabor prior in order to obtain the high frequency details from the Pan image.

However, there is still scope for improving the quality of the final fused image. In this

section we describe the future directions for the work carried out in this thesis.

• One of the limitations of many fusion techniques including the proposed approach is

the requirement of registration of given MS and Pan images. Since the MS and Pan

images are captured by two different sensors there are always chances of registration

error. Also, due to the motion of the satellite in its orbital path a slight time

difference in capturing the MS and Pan data leads to acquiring images of different

geographical area and it results in the registration error. In the proposed fusion

methods we assumed that the given MS and Pan data were co-registered. However,

it is always an interest of the fusion community to overcome this limitation. One

can extend the fusion work proposed in this thesis in order to remove this limitation.
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• In this thesis, we have proposed pan-sharpening techniques in which the extracted

details from the Pan image using the different edge preserving filters are injected

into the upsampled MS image with the appropriate scaling factor. This scale factor

accounts for the proportionate detail injection of the Pan image which was calcu-

lated using the intensity values of the MS images. Literature on satellite imaging

indicates that there is a considerable difference between the spectral response of the

MS and Pan sensors. For example in the dataset of Ikonos-2 satellite, the spectral

response of the Pan sensor covers the NIR spectral band completely. However, the

blue spectral band is not complete under the spectral response of Pan sensor. Also,

the spectral response function of the Pan sensor goes beyond the range of blue

band. This difference in spectral characteristic of the two sensors i.e., MS and Pan

affects the fused data in terms of spectral or spatial distortions. One can add this

observation of spectral response of the two different sensors in order to calculate the

scaling factor. The scaling factor based on the spectral response can inject accurate

details into the MS image and it leads to better fused image. Apart from this the

interpolation in the MS image leads to aliasing effect. It would be of interest to

look into this as well while injecting the details into the MS image.

• In the proposed model based fusion approach we estimated the degradation that

occurs due to the downsampling and blur in the MS image. In order to do this we

require the original fused MS image. In such situations we use the close approxi-

mation to the final fused (initial HR approximation). In order to get the accurate

values of degradation matrix coefficients we require the initial HR approximation

as close as possible to the true high resolution MS image. Because of the different

desirable properties of the directional transforms such as CT and NSCT we used

them in our work to obtain the initial HR approximation of the final fused image.

These transforms decompose the images using the bases that yield edges along the

smooth contour as well. We decompose the MS and Pan images using CT and

NSCT with limited number of levels. It would be of interest to increase the number

of decomposition levels making them adaptive to the details present in the image

without considerably increasing the time complexity. One can use adaptive direc-

tional transforms which fulfil this objective. Use of adaptive directional transform
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may increase the complexity of the method. However it can be reduced by using the

present day modern high computing processors such as graphical processing unit.

• While using the regularization framework, we have modeled the unknown fused MS

image as an MRF and smoothness constraint was used as the prior term in the final

cost function. We used Canny edge detector in order to preserve the edges into the

final fused image. This gave us the advantages of reduced complexity with edge

preservation without using discontinuity preserving priors in the final cost function.

However, one can use the edge preserving prior such as MRF with line fields to

preserve the edges in the final fused image. The resulting cost function may lead

to the non-convex function which cannot be minimized by computationally efficient

gradient based optimization techniques. But one may try using graph cuts or

grab cuts in order to minimize such non-convex cost functions. These optimization

technique are computationally less complex and they yield a solution closer to the

optimum.

• The linear image formation model for LR MS image has been used in the proposed

model based approach. This model gives the simplicity in the form of mathematical

framework in order to find the solution. In the proposed method we have estimated

the degradation between LR MS and fused images using a linear image formation

model. The degradation consists of the decimation along with blur. In order to

add the blur as the non-identity matrix we use the space invariant blur that results

in the simpler structure of final degradation matrix. The better solution of the

final fused image can be obtained by using the space variant blur instead of the

space invariant. The patchwise use of space variant blur matrix may serve as more

accurate model for the image formation and the same can be used to obtain the

final fused image in order to get a better fusion.

• We use a model based approach to obtain a final fused image where initial estimate

has been obtained with MS and Pan images both or only with MS image. In

both the cases we use the linear image formation model to obtain the final fused

image. However, it is interesting to model the image formation chain including

relations between MS bands, Pan, and an ideal HR MS image, Bayesian inference

and these could be applied to extract the optimal matrices while marginalizing over
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the unknown HR MS image, yielding an iterative, but more rigorous approach.
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