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Abstract

Vision plays a central role for human perception and interpretation of the world. With the

beginning of the space age during late 1950s presented opportunities for remote sensing

of earth resources [1]. Multispectral sensors image the earth in a few strategic areas of

the electromagnetic spectrum using a small number of carefully chosen spectral bands

(typically 3 to 10) spread across the visible and infrared regions of the electromagnetic

spectrum. These bands are not contiguous and omit many wavelength ranges. The

ability of a sensor to distinguish between wavelength intervals in the bands describes

the spectral resolution. Higher the spectral resolution, narrower the wavelength range

for a band. The spectral resolution determines the materials discrimination ability of

the sensor. The high spectral resolution of multispectral imaging was found useful for

ground-cover classification, mineral exploration, and agricultural assessment to name a

few. In remote sensing, acquisition of image details helps accurate localization and correct

identification of minerals and vegetation, and hence better classification of the landmass.

The hardware in the remote sensing sensors limits the amount of detailed information

captured (i.e., spatial resolution) whenever the spectral width of the acquired image is

small. The size of the ground area expressed as meter ×meter represented by a single

pixel in an image defines the spatial resolution of the image. Smaller the ground area per

pixel means higher spatial resolution. It depends on the sensor design and the height of

the sensor above the ground. To increase the spatial resolution without affecting spectral

resolution, the sensor should have a small instantaneous field of view (IFOV). But this

reduces the signal power falling on the detector and hence signal to noise ratio is reduced.

One can increase signal to noise ratio by widening the bandwidth of the acquired spectral

band, but this reduces the spectral resolution of the image. Thus, there exists a trade-off

between spatial and spectral resolutions of remotely sensed images.

Multispectral images provide higher spectral resolution (of the order of 100 nanome-

ters) but they suffer from low spatial resolution. Improved versions of these early mul-

tispectral imaging sensors known as hyperspectral imager provide spectral width of 10

nanometers for each band of hyperspectral image (HSI). Having very high spectral res-

olution they provide ample spectral information to identify and differentiate spectrally

unique materials [1]. Hence, presently they are used in wide range of military and civilian
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applications that include target detection and tracking of objects, agriculture planning,

forest inventory, mineral exploration, and urban planning to mention a few. Similar to

the multispectral images hyperspectral images also suffer from low spatial resolution due

to very small spectral width. Many times it is not feasible to capture the spatially high-

resolution (HR) images due to the limitation in implementation such as requirement of

large memory, higher transmission bandwidth, high power requirement and higher cam-

era cost. Since HR imaging leads to better analysis, classification and interpretation one

may look for algorithmic approaches to obtain the HR images. Hence, we need to per-

form postprocessing of the hyperspectral images (HSIs) to increase their spatial resolution

and hence the image details, without affecting their spectral resolution. Super-resolution

enhancement refers to an algorithmic approach to increase the spatial resolution of a

low spatial resolution image by using either multiple low-resolution (LR) observations or

using a database of high and low-resolution images.

Many satellites like WorldView-1, 2, 3, SPOT, Landsat, Quickbird, Ikonos, etc. cap-

ture two different types of images, namely, the high spectral but low spatial resolution

multispectral (MS) images and high spatial but low spectral resolution registered panchro-

matic (PAN) image (auxiliary image). The reason behind configuring satellite sensors this

way is to reduce weight, cost, bandwidth and complexity of the satellite. In this thesis,

we develop different algorithms to enhance the spatial resolution of hyperspectral im-

ages. To start with, we first address the problem of enhancing the spatial resolution

of MS images by merging information from PAN image, called multiresolution fusion,

using two step approach. In the first step, the high-resolution edge details of the fused

multispectral image are learned in the form of an initial estimate using discrete wavelet

transform and compressive sensing (CS). We know that PAN and MS images are obtained

from the same geographical region with the difference that PAN image is acquired with

high spatial resolution. We assume panchromatic image and the multispectral bands are

in registered form. This results in high spatial correlation between the MS observation

and the coarser part of the PAN image. Our approach uses CS technique to obtain the

detailed wavelet coefficients of the MS image by assuming the same sparseness of MS

image with the coarser level, as well as detailed level of the PAN image. This way we

obtain initial estimate of the fused image. To better preserve spatial homogenity, in the

second step, we regularize it further to obtain the final solution. We restrict the solution
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space by using maximum a posteriori - Markov random field (MAP-MRF) approach that

imposes smoothness constraint on the fused image by using first order neighborhood for

MRF prior. We make use of the initial estimate to obtain the MRF parameter.

Hyperspectral images are used for the same purpose as do MS images, but they have

very high spectral dimensions that enables distinguishing the spectrally unique materials.

The statistical classification (clustering) methods often used with multispectral images

can also be applied to hyperspectral images by handling their high dimensionality [2]. Hy-

perspectral sensors like AVIRIS, Hyperion, HYMAP do not capture auxiliary HR image.

In such circumstances we cannot use fusion to increase the spatial resolution of HSI. Our

remaining three techniques discussed in this thesis deal with spatial resolution enhance-

ment of HSIs using the concept of super-resolution without making use of auxiliary HR

image (i.e. PAN image). The goal of super-resolution (SR) is to recover high-frequency

details lost during image acquisition process which in turn increases the number of pixels

in the input image. This is an inverse problem wherein the original high-resolution (HR)

image has to be retrieved from the observed low-resolution data. There are large number

of HR images which are consistent with the LR image. Hence, while solving such an

ill-posed inverse problem, knowing the forward model alone is not sufficient to obtain a

satisfactory solution. We need to add proper constrains by using priors to limit the solu-

tion space. This procedure to get a solution of the inversion problem in accordance with

the prior information is called regularization. Selection of appropriate model as the prior

information and use of regularization helps to obtain improved solution. In our work,

we have considered different kinds of priors in regularization in order to obtain improved

solution.

We make use of compressive sensing theory and estimated wavelet filter coefficients

to obtain SR results for HSIs. To reduce high computational load due to large number

of spectral bands of HSIs, we use principal component analysis (PCA) to reduce the

dimensions and work on reduced dimensional space to obtain SR results. In the first

method, we use CS based approach to obtain initial SR of the most informative PCA

image which represents highest spectral variance of the HSI. Here we use LR and HR raw

dictionaries having large number of atoms in the CS based framework. Using the sparsity

constraint, LR test patch is represented as a sparse linear combination of relevant LR

dictionary elements adaptively. Assumption of same sparsity to LR and HR images with
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respect to their dictionaries gives SR image as an approximate. The final SR solution

is obtained using a regularization in which AR prior model parameters are obtained

from the initial SR estimate obtained using CS. SR results of the other significant PCA

components are obtained using the same AR parameters and using the regularization

framework. While regularization, decimation process is modeled as an averaging process.

The decimation process modeled as the averaging process represents the aliased pixel

in the low-resolution image by averaging the corresponding pixels in the high-resolution

image. This means, the point spread function (PSF) of sensor considered is square and

is same for all spatial and spectral region. However, in practice PSF depends on several

factors like camera gain, zoom factor, and imaging hardware etc. This motivates us to

estimate the PSF i.e., the aliasing and then perform SR. Here our CS based approach is

further extended to obtain initial SR of all significant PCA components that represent

most of the spectral variance (98 %) of the HSI where the aliasing is estimated for all the

significant PCA components. Here we use jointly trained LR and HR dictionaries having

very less number of atoms (i.e. 1000) using training algorithm called K-singular value

decomposition (K-SVD). This is onetime and offline procedure. Regularization using our

new prior i.e., Gabor prior preserves various bandpass features in the final SR image. Also

the use of estimated entries of degradation matrix in the form of PSF represents imaging

hardware more effectively in image observation model. This leads to better solution of

final SR result.

Finally, we address learning based super-resolution in wavelet domain using estimated

wavelet filter coefficients. In this work, we estimate the PSF in the form of wavelet filter

coefficients to take care of the degradation between LR and HR images. Here we do not

consider spatially varying PSF, which is quite involved as this requires the estimation of

PSF at every pixel. However, the space invariant PSF is estimated for individual spectral

bands. The estimated filter coefficients are also used to learn high frequency details by

using the HR training images in wavelet domain. This gives us an initial estimate of SR

image for each HS band and they are used in deriving the sparse coefficients that are

used as priors. The final SR image is obtained using the sparsity based regularization

that also has the observation model constructed using the estimated filter coefficients.

Since the cost function is differentiable, a simple gradient descent optimization is used to

obtain final solution. We show the computational advantage of the proposed algorithm.
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Chapter 1

Introduction

Space exploration started during late 1950s that resulted in the need of acquiring earth

observations from the space in order to obtain useful information for managing the re-

sources. Earth imaging became a tool for managing these resources. Imaging the earth

using carefully selected filters having narrow spectral widths was found to greatly enhance

the ability to identify specific crops, plant species differentiation, study the atmosphere,

oceans, snow and cloud differentiation, the solid earth, the biosphere, and many more.

This defined the birth of multispectral imaging sensors with four number of spectral

bands (color filters), started with the first launch of Landsat satellite in 1972. Since

then many satellites carrying multispectral sensors are launched. Typically, multispec-

tral images consist of 3 to 10 noncontiguous spectral bands spread across the visible and

infrared regions of the electromagnetic spectrum, each band having typically width of

100 nanometer. This width of the band determines the spectral resolution of the sen-

sor. Higher the width lower is the spectral resolution and viceversa. Spectral resolution

of the sensor determines the materials/objects discrimination ability and higher spectral

resolution results in better discrimination of objects. Improved version of these early mul-

tispectral imaging sensor known as hyperspectral imager provides spectral width of the

order of 10 nanometers for each band. Having very high spectral resolution hyperspectral

images provide ample spectral information to identify and differentiate spectrally unique

materials [1].

1
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Figure 1.1: An illustration of the concept of imaging spectroscopy principle using hyper-
spectral image cube [3].

1.1 Principle of Hyperspectral Imaging

The materials comprising the various objects in a scene reflect, scatter, absorb, and

emit electromagnetic radiation in ways characteristic of their molecular composition and

their macroscopic scale and shape [3]. Hyperspectral sensors collect information in the

form of reflectance spectrum in hundreds of contiguous bands (generally with a spectral

range of 10 nm) simultaneously in the visible to mid infrared portion of the spectrum

0.4−2.5µm, forming a three dimensional (two spatial dimensions and one spectral dimen-

sion) image cube as shown in Figure 1.1. Each pixel in the resulting image is associated

with a complete spectral measurement of reflectance, called spectral signature [2], which

can be interpreted to identify the material/object present in the scene. The graphs

in the figure illustrate the spectral variation in reflectance for soil, water, and vegeta-

tion. They represent an evolution in technology from multispectral (MS) sensors, which

typically collect spectral information in only a few discrete, non contiguous bands [1].

Being spectrally overdetermined, they provide ample spectral information to identify and
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differentiate spectrally unique materials [1, 2]. Hence, they are used in wide range of

military and civilian applications that include target detection and tracking of objects,

precision agriculture (e.g. monitoring the types, health, moisture status and maturity of

crops), agriculture planning, forest inventory, mineral exploration, coastal management

(e.g. monitoring of phytoplanktons, pollution, bathymetry changes) and urban planning

to mention a few.

1.2 Image Resolution

The term resolution refers to the smallest amount of change in a measured value of

physical quantity that the instrument can detect. It is used to quantify the quality of

various physical instruments. The high-resolution of an instrument enables us to measure

the quantity with better precision. The resolution of an imaging spectrometer is classified

into different types as discussed below.

• Spatial resolution: An imaging spectrometer makes spectral measurements of many

small areas of the earth’s surface, each of which is represented as a pixel in the hy-

perspectral image. The size of the ground area in meter2 represented by a single

pixel defines the spatial resolution of the image. Spatial resolution depends on dif-

ferent factors such as instantaneous field of view (IFOV), lens optics, and the height

of the sensor above the earth’s surface. The instantaneous field of view (IFOV) of

the sensor is a measure of the ground area viewed by a single detector element

(pixel) at a given instant of time. NASA’s Airborne Visible/Infrared Imaging Spec-

trometer (AVIRIS), has a spatial resolution of 20 meter×meter often expressed as

20m when flown at its typical altitude of 20 kilometers, but it has a 4m resolution

when flown at an altitude of 4 kilometers indicating that a pixel covering 4m2 area

represents higher resolution when compared to a pixel with 20m2 area. High spa-

tial resolution allows us to capture fine details and the finer intensity transitions

across different directions. Low spatial resolution of the sensor shows blockiness

and increases the number of “mixed” pixels in the image. Mixed pixels present an

additional challenge to hyperspectral image (HSI) data exploitation because at low

spatial resolution their spectral signatures do not represent a single well-defined

material.
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• Spectral resolution: The ability of a sensor to distinguish between wavelength inter-

vals in the bands describes the spectral resolution. Higher the spectral resolution,

narrower the wavelength range for a band. For example, multispectral images have

bandwidths of 100nm while the width of hyperspectral images are significantly less

and they are of the order of 10nm. This indicates that HSI can resolve spectral fea-

tures more effectively than multispectral image (MSI) because of its higher spectral

resolution. High spectral resolution of hyperspectral images facilitates fine discrim-

ination between different materials and objects based on their spectral response in

each of the narrow bands.

• Radiometric resolution: Each pixel of a spectral band carry information of the

image intensity in the form of binary digits called “bits”. The reflected intensity

at any location in a real world scene may take real values. However, it is not

possible to represent these continuous range of real values in a digital computer or

processor. In practice this range is divided into a finite number of levels and the

intensity is quantized and the pixel value is assigned the nearest quantization level.

The radiometric resolution refers to the sensitivity of a sensor to the difference in

strength of the electromagnetic radiation signal and determines the smallest change

in intensity level that can be distinguished by the sensing system. The increase in

the brightness resolution requires more number of quantization levels and hence

more number of bits for each level. A binary image has two levels; black and white,

hence requires only one bit for each level. A gray scale image is usually quantized

using 256 gray levels with each level represented using 8 bits. Similarly, if each color

plane of an RGB image has 8 bits then at least 8 bits×3 bands = 24 bits are needed

for representing each pixel. Many multispectral sensors record data up to 8 bits in

size, while the hyperspectral sensor such as AVIRIS records data using 12 bits per

pixel per band. The consequences of increasing the quantization is the increase in

the sensitivity of the sensor to variations in the reflected signal, thereby allowing

more subtle reflectance differences from the scenes to be detected and recorded [4].

On the downside, this increases the storage space and bandwidth requirement of

the imager. The images taken by a remote sensing satellite is transmitted to earth

through telecommunication. The bandwidth of the telecommunication channel sets
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a limit to the data volume for a scene taken by the imaging system.

• Temporal resolution: The ability of the sensor to collect imagery of the same area of

the earth’s surface at different periods of time is one of the most important elements

for studying change detections over a period of time. Spectral characteristics of

features may change over time and these changes can be detected by collecting and

comparing multi-temporal imagery. For example, during the growing season, most

species of vegetation are in a continual state of change and our ability to monitor

those subtle changes using remote sensing depends on when and how frequently we

collect imagery. By imaging on a continuing basis at different times one can monitor

the changes that take place on the earth’s surface, whether they are naturally

occurring due to changes in vegetation cover, snow cover, or water status or due

to changes caused deliberately such as urban development or deforestation etc.

Temporal resolution is defined as the time interval between the acquired data for the

same location. When applied to remote sensing, this amount of time depends on the

orbital characteristics of the sensor platform as well as on the sensor characteristics.

The temporal resolution is high when the revisiting time is low and vice-versa.

Temporal resolution is usually expressed in days and is also dependent on the spatial

resolution of the sensor. The higher the spatial resolution, the lower the temporal

resolution is.

In this thesis, we address the problem of increasing the spatial resolution of given low

spatial resolution and high spectral resolution hyperspectral image. In the rest of the

thesis the term resolution is explicitly used to mean spatial resolution unless specified

otherwise.

1.3 Limitations of Optical Imaging Systems

There are variery of techniques used to generate hyperspectral imagery like (i) The scan-

ner (ii) Pushbroom, and (iii) Whiskbroom, a common one being the pushbroom imaging.

Pushbroom imaging system consists of linear detector array of the charge coupled device

(CCD) having number of detector elements. Each detector element projects an instan-

taneous field of view (IFOV) on the ground and receives photons from this IFOV. At
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any instant, a row of pixels are formed and as the detector array (sensors) flies along its

track, the row of pixels sweep along to generate a two dimensional image. Unfortunately,

because of technical constraints, satellite remote sensing systems can only offer the fol-

lowing relationship between spatial and spectral resolution i.e., a high spatial resolution

is associated with a low spectral resolution and vice-versa. All the reflected signals are

corrupted by noise caused due to electronic circuitry in the sensor as well as due to the

effects introduced during the transmission. To increase the spatial resolution the sensor

should have a small instantaneous field of view (IFOV). But, this reduces the number of

photons imparted to the CCD which reduces the strength of signal, while inherent noise

level remains constant. Hence the signal to noise ratio (SNR) is reduced and one has to

widen the sensor bandwidth for each band in order to improve SNR by allowing more

photons to enter into the sensor. Unfortunately, this reduces the spectral resolution of the

sensor and hence causes HSI sensor to capture images at lower spatial resolution. There

remains a trade-off between the spectral and the spatial resolutions of the HSI sensor [3].

An approach to increase the spatial resolution is to use sensors with smaller detector

size and use increased pixel density in the charge coupled device (CCD) through advanced

sensor fabrication techniques. However, this generates shot noise that severely degrades

the image quality and hence there exists a technical limitation with regard to pixel size

reduction [5]. In addition, the cost of manufacturing such a high-precision sensor is high.

Besides this, the reduced pixel size also decreases the number of photons arriving in a

fixed exposure time, reducing the SNR. More over, the increased number of pixels per

chip also increases the capacitance that results in higher noise levels and slower charge

transference speed. As a result of these effects the present day CCD technology has

reached the optimal level of spatial resolution, and the costs of increasing the resolution

further is very high. High temporal resolution of a sensor requires larger IFOV to reduce

the revisiting time which can be done by increasing the height of the sensor to increase

the field of view of sensor. But increasing IFOV results in reduced spatial resolution of

the sensor and viceversa. Thus, there is a kind of trade-off among spatial, spectral and,

temporal resolution of the imaging sensors. Considering all these limitations, we need to

perform postprocessing of the HSI in order to increase its spatial resolution.
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1.4 Increasing Spatial Resolution

Hyperspectral sensors acquire images having higher spectral resolution in hundreds of

bands. However, the common drawback of these sensors is relatively low spatial resolu-

tion, varying from few to tens of meters. In the process of capturing the HSI using a

digital image acquisition system, there is a natural loss of spatial resolution. In addition

to the optical imaging system as already discussed, there are many other phenomena that

add to low spatial resolution. They include atmospheric scattering, secondary illumina-

tion effects and noise occurring within the sensor or during transmission and insufficient

sensor density. The resulting low spatial resolution image has reduction in number of pix-

els which causes aliasing. However, in remote sensing, higher resolution image details are

useful in accurate localization and correct identification of minerals and vegetation, and

hence better classification of the landmass. Since HR imaging leads to better analysis,

classification and interpretation of the same area one may look for algorithmic approach

to obtain the HR images having larger number of pixels. Resolution improvement by

applying different digital signal processing techniques has been a topic of great interest

in remote sensing research community.

Fusion and super-resolution are the methods widely used to increase spatial resolution

of the remotely sensed images. Many sensing platforms are equipped to capture high

spectral and low spatial resolution hyperspectral or multispectral image, as well as low

spectral and high spatial resolution auxiliary image (i.e., panchromatic image). The

difference in spatial and spectral resolution of sensors (MS, HS, panchromatic) are due to

fundamental trade-off of spatial and spectral resolutions in the design of electro-optical

sensor systems. Using multiresolution fusion, information from the high spatial resolution

panchromatic (PAN) image (registered) is merged with HS or MS image. As a result fused

image with increased spatial resolution to that of PAN image is obtained and this has

the spectral resolution of HS or MS image. The main limitation of this approach is

the requirement of auxiliary image, which is not available at all time. Requirement of

registered HS and PAN image poses another major difficulty in fusion.

Another kind of approach to increase the spatial resolution of HSI is known as super-

resolution. The term “super-resolution” refers to such signal processing techniques that

reconstruct high spatial resolution image from one or more low-resolution images. The
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major objective of super-resolution techniques is to recover the high-frequency content

lost during image acquisition process, without introducing considerable spectral loss. In

effect, although the main concern of the super-resolution algorithms is to reconstruct high-

resolution images from undersampled low-resolution observations, it gives high quality im-

ages from blurred, noisy and downsampled images. The word “super” in super-resolution

represents the characteristics of the technique overcoming the inherent resolution limita-

tion of low-resolution imaging systems. The advantages of super-resolution approach are:

1) no need of auxiliary HR image, 2) no need of additional hardware for enhancing the

resolution, and 3) flexibility and reduced cost.

The super-resolution reconstruction problem is closely related to image restoration

problem. The goal of image restoration is to recover an image from degradations such as

blur and noise, and it does not increase the size of the image. Thus, for image restoration

problem, the size of the restored image is the same as that of the observed image while

it is different in image super-resolution depending on the decimation factor of the super-

resolved image. Image interpolation is another problem related to super-resolution. It

increases the size of image using a single low-resolution observation. Since the single image

does not provide non-redundant information, the quality of the interpolated images is very

much limited and the aliasing causes loss of details. Few of the interpolation methods

convolve image with a filter designed to boost high-frequency contents. The drawback of

such methods is that the noise is also amplified which degrades the quality. The quality

of an image interpolated from an aliased low-resolution image is inherently limited even

though the ideal sinc function is employed. The single image interpolation techniques

cannot recover the high-frequency components lost or degraded during low-resolution

sampling process. For this reason, image interpolation methods are not considered as

super-resolution techniques.

1.4.1 Dimensionality Reduction of HSI

The number of spectral bands associated with the remote sensing system is referred to

as its dimensionality. The main difficulty in processing hyperspectral images (HSIs) is

that the number of bands can vary from few tens to several hundreds. For example,

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral image (HSI)



1.4 Increasing Spatial Resolution 9

acquires 224 bands. Applying super-resolution technique to each band separately can

lead to a dramatic increase of computational time of the algorithm. Besides, it increases

the number of pixels stored and processed by the digital image processing system, leading

to unnecessary consumption of storage and processing resources of the system. Since

the hyperspectral bands are highly correlated they are inherently low-dimensional, we

need to reduce dimensionality of HSI. Many methods have been developed to tackle the

issue of higher dimensionality of HSIs. These methods can be grouped into two classes:

(i) Feature selection, and (ii) Feature extraction. Feature selection method selects a

sub-optimal subset of the original set of features while discarding the others. These

methods are due to combination of a search algorithm and a criteria function [6, 7]. The

search algorithm generates a subset of features and compares them on the basis of criteria

function to obtain the solution to feature selection. On the other hand, feature extraction

method reduce the dimensionality by mapping the feature space onto a new low-dimension

subspace. These methods are more effective in representing the information content in

a lower-dimensionality domain. The most common techniques to reduce the number of

bands are the minimum noise fraction (MNF) transform, where an operator calculates

a set of transformed features according to a signal-to-noise ratio optimization criterion,

principal component analysis (PCA), in which a set of uncorrelated transformed features

is generated and also independent component analysis (ICA), where a computational

method for separating a multivariate signal into additive subcomponents supposing the

mutual statistical independence of the non-Gaussian source signals is used [6]. These

methods perform the dimensionality reduction by retaining the components with the

highest information content. The components retained are uncorrelated and the observed

data is represented as linear combination of certain basis. In this thesis, we propose to

use principal component analysis (PCA), a standard tool for analysis of multivariate data

[8].

PCA identifies orthogonal axes for dimension reduction by performing an eigen de-

composition of the spectral covariance matrix of sample data. The magnitude of the

eigenvalues indicates the data variance along the component parallel to the associated

eigenvector. Hence, the effective dimensionality of the data depends on the eigenvalues.

We retain the first few eigen vectors corresponding to significant eigen values and high

dimensional data is projected on these eigen vectors which produces a new set of decor-



1.4 Increasing Spatial Resolution 10

related data oriented along the eigenvectors with higher eigen values and this results in

a lower-dimensional multivariate data that still conveys most of the energy in the orig-

inal data. This transformation incorporates most of the spectral variance of HSI data

in first few principal components. Since the number of eigen vectors retained is signifi-

cantly less compared to the total number of HSI bands, one cannot reconstruct original

hyperspectral image exactly by inverse PCA, thus causing information loss. However, it

is reasonable to assume that the spectral signature of the materials/objects of interest

is present in sufficient amount in reasonable number of spectral bands. Note that the

number of PCA components retained is application dependent and it can be increased at

the cost of computational speed, and information loss and the reconstruction error may

be made arbitrarily small in order to take care of accuracy.

1.4.2 Observation Model

In order to apply resolution enhancement algorithm, understanding of image acquisition

process is required. Remote sensing camera that acquires multispectral or hyperspectral

images consists of focusing lens, spectral filters, diffraction system, optical sensors, ana-

log to digital converter (ADC), processor chip, electronic circuits and other mechanical

subsystems. When the remote sensing image is captured, there is a limit to the spatial

resolution at the ground due to the pixel spacing along a scan line, the line separation, and

the overall optical magnification. Optical distortions such as insufficient sensor density,

defocus, warping caused by variation in the track of imaging system, and diffraction limit

add to degradation and reduction in spatial resolution. The observations may be blurred

due to causes like optical aberration, relative motion between camera and object, limited

shutter speed, and atmospheric turbulence. Furthermore, the images could be degraded

by various types of noise occurring within the sensors, ADC, electronic circuits, and dur-

ing transmission. To simulate all these effects for algorithm development and testing,

the observed low-resolution (LR) images are modeled as warped, blurred, downsampled,

and noisy version of corresponding HR image. In order to analyze the super-resolution

reconstruction problem, it is required to formulate a mathematical model that repre-

sents the image acquisition process. This model, known as observation or forward model,

relates the original high-resolution image to the observed low-resolution image(s). The
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Figure 1.2: Image formation model showing relationship between low-resolution image
and high-resolution image.

correct formulation of the observation model plays an important role in the success of any

super-resolution approach. The most commonly used forward models for super-resolution

reconstruction incorporate translation, blur, aliasing and noise in the formulation. Un-

fortunately, sensor point spread functions (blurring operators) are unknown, posing dif-

ficulty to construct a reliable observation model making super-resolution (SR) problem

more challenging. A typical forward model is shown in Figure 1.2. Our model do not

include motion or warping since we assume that the bands are registered.

1.4.3 Super-resolution: An Ill-posed Inverse Problem

The super-resolution algorithms attempt to enhance the spatial resolution of remotely

sensed image corrupted due to the limitations of the optical imaging system. SR algorithm

estimates high-resolution image from a single LR image or multiple LR images of the

same scene, which are aligned with subpixel accuracy. The fundamental constraint for

obtaining SR image is that the obtained SR image should result in the observed LR

image when used in the same observation model. Obtaining SR image from LR image

is an inverse problem since inverse operation has to be performed on the LR in order to

obtain the high-resolution image. A schematic representation of the inverse problem is

shown in Figure 1.3. The problem is ill-posed because we have more number of unknowns

than known. This makes it an ill-posed inverse problem. It is difficult to invert such a

forward model since there are multiple number of solutions possible. In other words,

there exist infinite high-resolution images which are consistent with the original data.

The forward model of high-resolution (HR) to low-resolution (LR) transformation can be

a linear or non-linear transform. Because of the simplicity and mathematical tractability
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Figure 1.3: Schematic representation of inverse problem. The forward model is a mathe-
matical description of the image degradation process. The inverse problem addresses the
issue of reconstructing the high-resolution image from the observation or observations.

the researchers in the area of SR often use a linear model. While solving an ill-posed

inverse problems, knowing the forward model alone is not sufficient to obtain better

solution. Some form of constraints on the solution space must be included to restrict

the solution space. In order to make the problem better posed i.e., to obtain better

solution the researchers in SR community have used regularization. The regularization

based approach solves the ill-posed inverse problems by making them better-posed using

the prior information about the super-resolved image that results in favorable solution.

1.5 Applications of Super-resolution

The need of high spatial resolution images is common in many imaging applications.

High-resolution images lead to better analysis, classification, and interpretation of the

images. High-resolution images are of importance in many applications like remote sens-

ing, medical diagnostics, forensic, surveillance, military information gathering, and many

more. Many applications require zooming of the specific area of interest in the image

wherein high-resolution becomes essential, e.g. satellite imaging, military surveillance,
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medical, and forensic applications. Long range target detection has been a military pri-

ority, especially for small targets such as enemy vehicles. Images taken by an aircraft

over a geographical area of interest provides the most up-to-date information about the

area. Accurate detection of targets is dependent on the spatial resolution of the images.

For example, if the target size is of 10 meter× 10 meter and spatial resolution of image

captured is itself 20 meter× 20 meter then the spectral response of target represented

by single pixel is mixed with other objects/materials in the vicinity of vehicle. In this

case, we obtain mixed pixel and it becomes necessary to perform subpixel target de-

tection. However, subpixel target detection is more challenging [9], and it is difficult

to conclude about the presence of vehicle. Now if the spatial resolution of the image

is 10 meter× 10 meter or better, then a pixel value represents the target information

and the target detection algorithm can determine the presence of target (vehicle) with a

greater accuracy. The medical field has long been a user of image processing technology.

Hyperspectral imaging has found application for the detection of the tissue and tumor

[10, 11], particularly useful in surgery, clinical procedures, medical evaluation, etc. The

images captured using a spectroscopy are enhanced using SR techniques which enables

the doctor to focus on the area of interest that helps in better diagnosis. Hyperspectral

imaging has also found applications in forensic science to detect different types of paint

and latent fingerprints on the surface. Super-resolving the areas of interest in such images

aids in the investigation process which leads to correct identification of a criminal.

In many applications where we are interested in saving the resources such as mem-

ory, bandwidth, power and cost, super-resolution techniques are very useful. In such

applications it may not be feasible to capture HR images from the imager. Consider a

hyperspectral imager mounted on the aircraft to monitor dynamic phenomena such as

vegetation cover, of a wide region on the earth. Use of high-resolution imagery helps

to study the dynamic behavior of vegetation. But, this may need installation of high

power and costly imager on the aircraft or satellite. The transmission of the large vol-

ume of data generated by this imager needs large transmission bandwidth and power.

Super-resolution techniques are very helpful in such a situation where one can employ a

low-cost sensor to capture the images at lower spatial resolution. This data can be trans-

mitted over the channel having limited bandwidth. Alternately, we can increase altitude

of satellite to cover wide areas which increases the IFOV. This results in reduction of
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the spatial resolution but the flight time to capture the image of the region of interest is

also reduced, thereby reducing time and cost of data collection. The data received at the

base station can be applied to a super-resolution technique to reconstruct high resolution

images. This method effectively produces HR image similar to that of the sensor platform

flown at lower height.

1.6 Contributions of the Thesis

Super-resolution is one of the most important techniques used in a remote sensing sys-

tem. The remotely sensed data having multiple bands can make use of either fusion or

super-resolution to improve the spatial resolution of hyperspectral images. Both these

techniques have been used under different circumstances. For fusion, onboard sensors are

required to capture high-resolution image of the same geographical area in addition to

the LR observation. That is approaches based on fusion techniques require registered HR

image, which may not be possible to capture many times. When the auxiliary HR image

is not available, super-resolution enhancement provides the necessary solution of increas-

ing the spatial resolution of the image. SR techniques enhance the spatial resolution

of a low spatial resolution image by using either multiple low-resolution (LR) observa-

tions or using a database of high and low-resolution images. Many of the approaches

based on multiple LR observations, extract non-redundant information from multiple ob-

servations that have subpixel shift between them. These approaches are very useful in

super-resolving images captured in the optics and they require accurate registration of

the observations. The quality of the super-resolved image is highly dependent on the

accuracy of registration. The task of accurate registration is very difficult and complex,

and is computationally intensive. In addition multiple LR images with sub-pixel shift are

not available many times. In this thesis, we first propose an approach for the multireso-

lution fusion for enhancing the spatial resolution of multispectral image. Subsequently, a

number of SR algorithms for enhancing the spatial resolution of hyperspectral data are

considered. Our fusion based approach needs auxiliary HR PAN image in registered form

while SR methods do not require auxiliary HR image and hence the registration is not

required. The contributions of this thesis are summarized as below.

• In recent years, compressive sensing (CS) theory [12] has attracted a great deal of
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attention in signal and image processing research community. Our fusion work in the

thesis is based on this. Given the LR MS image and a panchromatic image having

high spatial resolution, we use CS based approach in discrete wavelet transform

domain to fuse HR PAN image details and LR multispectral image of the same

geographical area thus obtaining what is known as multiresolution fusion or pan-

sharpening in remote sensing community. A two step approach is used to perform

fusion, assuming that LR and HR images are registered. These steps include: (i)

A CS based approach in wavelet domain to obtain the initial estimate, and (ii)

regularization using MAP-MRF approach to obtain final solution. In the first step,

the required edge details of the multispectral image to be fused are learned in the

form of an initial estimate using wavelet transform and compressive sensing. To do

this the PAN image is decomposed using discrete wavelet transform. Since both

the PAN and MS images cover the same area of the landmass it results in high

spatial correlation between the MS observation and the coarser part of the wavelet

transformed PAN image. Our approach uses patch based compressive sensing (CS)

technique to derive an initial estimate of fusion by first computing the sparseness of

observed MS patches and then using them for obtaining detail coefficients. Taking

the inverse discrete wavelet transform gives us the initial estimate of the fused

image. In the second step, we regularize the solution further to obtain improved

solution. A maximum a posteriori - Markov random field (MAP-MRF) approach

that imposes smoothness constraint on the fused image is used for regularization.

The MRF model parameter is obtained using the initial estimate. A simple gradient

descent approach is used to minimize the cost function. Experiments are conducted

on images captured by Landsat 7 satellite sensors. The quantitative and perceptual

comparison is carried out to evaluate the proposed technique w.r.t the recently

proposed image fusion techniques [13, 14].

• In many cases registered PAN image is not available especially in HSIs. Besides

this, HSI consists of hundreds of spectral bands (e.g., AVIRIS acquires 224 bands).

Considering these aspects, we propose a new technique for super-resolving hyper-

spectral bands using a training database and using CS based method. We first

reduce dimensionality of HSI by representing the HS observations of different wave-
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lengths, as weighted linear combination of a small number of basis image planes

(BIPs) using principal component analysis (PCA) [8]. Then, SR is performed on

the significant PCA components. This is advantageous since most of the informa-

tion is contained in few PCA images and super-resolving them do not degrade the

spatial characteristics of the SR image but reduces the computational burden. Our

approach uses LR and HR dictionaries formed using large number of raw images

obtained by random sampling of raw patches having similar properties in order to

obtain an approximation to SR by using CS framework. Since the approximation to

SR image is patch based, dependency among neighboring patches is not considered

while obtaining the initial solution. Hence further regularization is carried out in

order to obtain a better solution. We obtain the final solution using a regularization

framework in which the sparse coefficients obtained by CS and the autoregressive

(AR) parameters obtained from the initial SR estimate are used as the priors. Re-

maining significant PCA components are bicubically interpolated and regularized

using the AR parameters obtained from the most significant PCA component. In-

verse PCA on the SR of significant PCA components gives us the SR for the entire

hyperspectral cube. Experiments have been conducted on two different kinds of

hyperspectral images. First one consisting of 31 band natural HSI captured in

controlled laboratory environment and the other is real 224 band HSI captured by

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).

• Learned dictionary provides more compact representation of the signal compared to

raw dictionary which simply samples large number of patches. Use of learned dic-

tionary results in substantial reduction in computation while estimating the initial

approximation to SR. This motivates us to consider the use of learned dictionary in

our next work. Our CS based approach is further extended here to obtain a better

solution by learning initial SR estimates for each of the significant PCA components.

Unlike the previous approach, in this case we estimate decimation using the initial

SR estimate and use it while regularizing the solution. Here we use a new prior

called “Gabor prior” as a prior terms that imposes the condition that the degraded

SR image and initial SR image should possess the bandpass features close to that

of the LR test image and SR image, respectively. Experiments are conducted on
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two different kinds of HSI data sets having 31 bands and 224 bands, respectively.

Quantitative comparisons indicate that the proposed method enhances the spatial

details with minimum spectral distortions.

• Most of the research on SR of HSI assumes implicitly or explicitly that each LR

pixel in a band is obtained as a equally weighted sum of pixels of corresponding

HR pixels [15, 16]. That is the degradation consists of averaging of HR pixels. In

practice, PSF which represents the degradation between LR and HR images de-

pends on various factors such as fill factor of CCD array, camera gain, zoom factor,

imaging wavelength etc [17]. This results in spatially and spectrally varying PSF

of the degradation function. In our next work, we estimate the spectrally varying

PSF in the form of low-pass wavelet filter coefficients to take care of the degrada-

tion between LR and HR images. Our work do not consider spatially varying PSF,

which is quite involved as this requires the estimation of PSF at every pixel. We

estimate the space invariant PSF for individual spectral bands. Wavelet decom-

position on a set of HR training images is then used to learn the high-frequency

details that uses our estimated filter coefficients. The final SR image is obtained

using the sparsity based regularization that has the observation model consisting of

the estimated PSF corresponding to low-pass wavelet filter coefficients. Effective-

ness of the proposed method is tested by conducting experiments on three different

data sets: (i) Single band natural images (ii) Natural hyperspectral image acquired

in controlled laboratory environment, having 31 bands, and (iii) Remotely sensed

HSI (AVIRIS) having 224 bands. Visual and quantitative comparison show that

our method enhances spatial resolution of HSI without introducing considerable

spectral distortions.

1.7 Organization of the Thesis

In this thesis, we propose methods to increase spatial resolution of remote sensing (mul-

tispectral/hyperspectral) images using multiresolution fusion as well as super-resolution

based approaches. We use compressive sensing framework in these approaches. We pro-

pose a technique to estimate the decimation due to low-resolution sampling and use the

same in the forward model. Use of estimated wavelet filter coefficients in learning based
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super-resolution and observation model is also demonstrated. The super-resolution prob-

lems in our work is solved using regularization framework. We make use of priors such

as autoregressive (AR), Gabor and sparseness to obtain the final solution. Organization

of the thesis is as follows.

Many researchers have attempted to improve spatial resolution of hyperspectral im-

ages using different methodologies such as multiresolution fusion using auxiliary PAN or

MS image, super-resolution using multiple LR observations, single LR observation and,

spectral unmixing based approaches followed by super-resolution. Chapter 2 provides a

review of the existing spatial resolution enhancement approaches proposed in the remote

sensing literature.

In chapter 3, we propose a model based multiresolution fusion using registered PAN

image. We suggest a novel approach based on CS in the discrete wavelet transform

(DWT) domain for obtaining initial fused image. Use of regularization to obtain the

final fusion result using MAP-MRF framework is demonstrated. Model based algorithms

require knowledge of the imaging processes in order to formulate a model for spatial

analysis. Here we use a linear observation model.

We introduce a CS based approach to obtain the SR of primary (significant) principal

components of LR observations in chapter 4. Raw dictionaries constructed by using LR

and HR images are used in CS based approach to obtain close approximation to SR of the

first principal component. We reconstruct the final SR image using regularization where

we make use of autoregressive and sparsity based priors. The AR model parameters are

derived from the close approximation (initial estimate). Super-resolution of other primary

principal components is obtained without use of CS but using interpolation and making

use of the AR parameters of the first principal component.

Super-resolution technique using CS based approach is extended further to all pri-

mary PCA components in chapter 5. Here jointly trained LR and HR dictionaries are

used in CS based approach to obtain initial SR for each primary PCA component. Us-

ing initial approximation we estimate the degradation that also includes aliasing in the

image formation model. The problem of SR is solved once again by using regularization

framework. A new prior called Gabor prior which is based on Gabor filters is used to

preserve different frequency components in the final SR.

In chapter 6, we address the problem of super-resolution using wavelet based learning
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in which wavelet filter coefficients are estimated from the training database of hyperspec-

tral images. In this work, we estimate the PSF in the form of low-pass wavelet filter

coefficients to take care of the degradation between LR and HR images. Here also the

problem is solved using regularization in which we make use of sparsity based prior.

Finally, we summarize our work and conclude in chapter 7. We discuss the further

challenges and directions for future research.



Chapter 2

Literature Review

In practice, few satellite sensors capture high spatial resolution images (< 5m × 5m)

onboard. For example Quickbird satellite collects panchromatic (PAN) image of spa-

tial resolution 0.7m and four multispectral bands of 2.8m resolution. Recently launched

WorldV iew − 2 satellite carry an imaging instrument specifically designed to meet the

requirements of very high spatial resolution and more number of spectral bands. It pro-

vides PAN images of 0.46m, and eight multispectral bands having spatial resolution of

1.84m. Although it acquires high spatial resolution images, it fails to provide better dis-

crimination of many surface materials and environmentally relevant information due to

their limited spectral resolution. This limitation resulted in evolution of high spectral res-

olution senors known as the hyperspectral imaging spectrometers. Hyperspectral sensor

such as AVIRIS provides very large number of narrow spectral bands, but their spatial

resolution is limited. For airborne hyperspectral sensors such as AVIRIS, HYDICE, and

HyMap, the spatial resolution is dictated largely by the height of the aircraft [18]. As

the height increases the extent of coverage also increases but this decreases the spatial

resolution. At lower spatial resolutions, the averaging effect on the pixels degrades the

performance of spectral detection algorithm [19]. Due to hardware cost, fabrication limi-

tations, and trade-off between spectral and spatial resolutions it is expensive and difficult

to acquire the hyperspectral images with higher spatial resolution. Also it is difficult to

improve upon the current resolution level by using the approach of hardware modification.

Hence we need to perform post processing of the HSIs in order to improve the spatial

resolution. The magnification of an image captured with the current resolution level of

the sensors by using simple interpolation techniques introduces visible artifacts. Spatial

20
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resolution enhancement using algorithmic approach is a topic of great interest among

researchers [20, 21, 15, 22, 16, 23, 24, 25, 26, 27, 28]. The pioneer work on resolution en-

hancement was proposed in 1984 by Tsai and Huang [20]. They reconstructed HR image

from a set of aliased LR images. Since then various approaches for increasing spatial res-

olution of different kinds of imagery like single band natural image, multispectral image

and hyperspectral image have been proposed [29, 30, 31, 32, 21]. The approaches include:

deterministic and stochastic based regularization, nonuniform interpolation, projection

onto convex sets, iterative backprojection, adaptive filtering, multi-resolution fusion, and

learning based approaches. The difference among these approaches is based on the re-

construction method, observation model, processing domain used (frequency or spatial),

use of auxiliary information and so on. We categorize different resolution enhancement

methods of remotely sensed images into two main categories. They include the methods

which require registered auxiliary information of the same geographic area and, those

which do not require the same. The techniques based on auxiliary information use the

multiple LR observations with subpixel shifts or HR observation of the same geographic

area to extract spatial information for resolution enhancement of target images. The

techniques based on learning or compressive sensing do not require auxiliary information

of the same geographic area and they enhance the spatial resolution from single LR ob-

servation. In this case, only a single undersampled and degraded input image is available.

Here, the task of improving spatial resolution comprises of recovering the missing spatial

information using a database of high-resolution images which may not be of the same

geographical area.

2.1 Resolution Enhancement using Auxiliary Infor-

mation

Over the last three decades many researchers have attempted to solve the problem of

the spatial resolution enhancement of the HS images using auxiliary information. These

methods make use of additional information in the form of (i) multiple LR observations

[21, 33, 34, 5, 35], (ii) HR multispectral images [36, 22, 37, 38], and (iii) HR panchromatic

image [39, 15, 16, 23, 40, 28, 41, 38, 42]. Methods based on multiple LR observations
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are generally referred to as multiframe resolution enhancement methods. These methods

enhance resolution using several subsampled and subpixel shifted low-resolution images

of the desired geographic location, can be either obtained as a set of images captured over

different times by using a single imaging device, or taken at the same time with multiple

imaging devices. For example, the sensing system can be mounted on a moving platform

(e.g. aircraft), and the vibrations associated with the platform can be used to generate the

subpixel shifted images. Since, the observations have subpixel shifts and are aliased, the

available non-redundant information in each of these observations can be used to construct

a high-resolution image for the given low-resolution observation. These approaches mostly

comprised of two stages: (i) registration, and (ii) reconstruction [20, 43, 44, 33]. In the

registration stage, motions between observations are estimated with sub-pixel accuracy

[45, 46, 47, 48]. Reconstruction stage is based on an appropriate model that makes

HR image to undergo appropriate shifts, blur and downsampling operations, to generate

the corresponding LR images. Modeling of imaging process requires the knowledge of

blur and downsampling process which are often unknown. Few techniques perform blind

super-resolution enhancement in which the knowledge of blur is not required [49, 50].

Also the performance of motion based approaches are highly dependent on accuracy of

motion estimation or the registration which is a difficult task. Due to iterative nature of

these algorithms, computational cost is high. Towards this end algorithms with reduced

computational cost are also proposed in [51].

Wilson et al. [21] used multiple LR HSIs which are assumed to be registered. Here,

the solution space is restricted by using visual cue. In [33] a set-theoretic method i.e.,

projection onto convex sets (POCS) is used to combine the information from multiple LR

HSIs to obtain HR HSI. Another method proposed by Chan et al. [34] used multiangular

LR HSIs that are registered using thin plate spline nonrigid transform and reconstruct HR

HSI using Delaunay triangulation-based nonuniform interpolation method. A different

approach by Zhang et al. [5] uses a maximum a posteriori (MAP) based multi-frame SR

algorithm. They used principal component analysis in order to reduce the dimensionality

of the HSIs in order to reduce the timing complexity. Xu et al. [35] utilized MAP model to

integrate the complementary information available in multiple low-resolution images hav-

ing sub-pixel shifts. They reconstruct a classification map of higher resolution from the

multiple images having low-resolution. Using three different prior models namely Lapla-
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cian, total variation, and bilateral total variation they regularize the sub-pixel mapping

in order to improve the solution.

Few imaging devices like compact airborne spectrographic imager (CASI) and earth

observing-1 (EO-1) capture high spatial resolution multispectral images in addition to

hyperspectral images. Orbview-4 (warfighter) captures high-resolution PAN and MS

images in addition to hyperspectral images. Researchers have proposed methods for joint

processing of these images in order to obtain a fused hyperspectral image having spatial

resolution of the multispectral and spectral characteristics of the observed hyperspectral

images. The Landsat Thematic Mapper (TM) sensor acquires seven band multispectral

images. But the resolution of band 6 is low when compared to other bands. This difference

of resolutions causes difficulties in analyzing TM data, since band 6 has to be discarded

due to resolution mismatch. Nishii et al. [36] proposed a statistical approach based

on multivariate normal distribution to enhance the spatial resolution of band 6 using

remaining bands. They use global predictor for band 6 based on conditional distribution

to obtain the high-resolution raw image. Then using linear combination of high-resolution

data correction is applied to obtain final HR image. In a different approach Gomez et

al. [22] proposed the fusion of HS and MS images using the wavelet based method

in order to enhance resolution of HSI. The method reported in [37] by Eismann and

Hardie employs generalized MAP framework that makes use of stochastic mixing model to

obtain high-resolution HSI. Explicit spectral relationship between MS and HS image is not

required in this method. Recently, the approach proposed by Simoes et al. [38] performed

fusion of HSI and MSI as well as HSI and PAN in reduced dimensional subspace by

minimizing a convex objective function that has two quadratic data-fitting terms and an

edge-preserving term. Their data-fitting terms account for blur, downsampling, and noise.

A Total Variation based regularization aligns discontinuities across the reconstructed HR

hyperspectral bands.

Remote sensing imaging devices such as Australian resource information and environ-

mental satellite (ARIES), Naval earth map observer (NEMO), and Orbview-4 (Warfighter)

collect PAN image having the high spatial resolution and many spectral bands having

low spatial resolution. Various techniques have been proposed to increase the spatial res-

olution of hyperspectral images using the high-resolution PAN image. These algorithms

fuse the high frequency details of HR image into the LR HS image to enhance its spa-
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tial resolution. Zomet and Peleg [52] suggested multisensor SR by considering statistical

redundancy among the data of sensors. They use non-registered images captured by dif-

ferent sensors and the spatial resolution is improved by using a local photometric affine

alignment along the edges. Winter and Winter [15] replace first PCA component of LR

HSI with HR PAN image for resolution enhancement, but performance of this method

decreases when there is less correlation between the spectral responses of the PAN and

HSI images. First PCA component represents the intensity component, hence the re-

sulting HR HSI has only the spatial intensity variations. The disadvantage is that the

spectral characteristics are not better preserved. In addition to resolution enhancemnet

the authors in [15] also proposed a physical model based on linear mixing and used it to

sharpen HS imagery using high spatial resolution panchromatic (PAN) image. An alter-

native approach fuses the high-resolution PAN image to the HSIs and then computes a

mixture model based on the fused image [53]. Another algorithm proposed in [16] uses

MAP estimation method and exploits the use of localized correlations using spatially

varying statistical model to obtain HR HSIs using co-registered PAN image.

Eismann and Hardie described MAP formulation in conjunction with stochastic mix-

ing model (SMM) to restrict the solution space in order to obtain HSI with increased

spatial resolution in [23]. In [40] Capobianco et al. fused PAN data with Hyperion HSI

using two different linear injection models, namely single spatial detail (SSD) and the

band-dependent spatial detail (BDSD) models. In the SSD model same PAN image is

used to enhance all the bands of HSI data, while in BDSD model an optimum image detail

is extracted from the PAN image and the same is fused with the HSI, thereby giving more

accurate results than SSD model. A different approach in [28] performs fusion of PAN

image and HS images by considering minimum spectral angle distortion as a criterion.

This helps to reduce spectral distortion in HR HSIs. Bar et al. [41] combined spectral

and spatial analysis for detection and classification, respectively. In the detection stage

they use high spectral resolution HSIs to locate the target and in the classification stage

high spatial resolution PAN image is fused with low spatial resolution HSIs to reduce the

false alarms.

Spectral mixture analysis (SMA) is one of the soft-classification approaches which

models the total reflectance in a pixel as the linear combination of reflectance from each

endmember (material) using linear mixing model (LMM). It predicts the proportion of
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each endmember within each pixel using this model. A set of proportional images are

produced which gives subpixel information for each member. However, location of each

endmember in the mixed pixels is not decided by SMA. Super-resolution mapping predicts

the location of endmembers within a pixel based on proportional images produced using

SMA, so that the SR pixels corresponding to the similar kind of materials are placed in

the neighbourhood. Generally spectral mixture analysis (SMA) based techniques improve

spatial resolution without using auxiliary information. Few of the researchers utilized aux-

iliary information before performing either spectral mixture analysis or super-resolution

mapping to improve performance of their algorithms [54, 53, 55, 42]. These techniques

utilize auxiliary image hence they cannot be strictly classified as SMA methods. Gaecia

et al. [54] proposed a technique to enhance resolution of HSI using fusion and spectral

mixture analysis (SMA). They fuse detailed information of HR image into HS data to

obtain higher resolution of HSI and then use it in the linear mixing model. In [53] Win-

ter and Winter used a LMM based joint end-member determination and the unmixing

algorithm to combine HR PAN with LR HSI in order to create HR HSI. In a different

approach, Nguyen et al. [55] exploited the spectral information of multispectral image

and spatial information of HR panchromatic image. They first obtain proportion images

corresponding to endmembers. Then using fusion as an additional source of informa-

tion, super-resolution mapping is performed using the Hopfield neural network (HNN)

optimization. The method by Zhao et al. [42] proposed recently, combines SMA results

and spatial information of PAN image into the SR process using sparse regularization to

preserve edge sharpness and spectrum consistency in the super-resolved HSI.

A common limitation of the techniques based on auxiliary information is the re-

quirement of supplementary spatial information associated with test HSI. Besides this,

requirement of accurate co-registration of images to achieve acceptable results is also a

limiting factor of these methods.
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2.2 Resolution Enhancement without using Auxil-

iary Information

Availability of auxiliary information can be expensive or sometimes it may not be cap-

tured onboard. Hence many indirect approaches are proposed to increase spatial resolu-

tion of HSIs. In these techniques HSIs exploit the use of their own information content

and they are generally based on spectral mixture analysis (SMA) [56, 57, 58, 59, 60, 61,

62, 63, 64], and/or they use learning based approaches [65, 24, 26, 66, 67]. These methods

are also referred to as single frame super-resolution techniques since they make use of the

single LR observation as the acquired data while performing SR. Note that resolution

enhancement without using auxiliary data is severely underconstrained since we have the

limited information about the geographic area. However, it can be considered as a more

general approach because the resolution improvement can be achieved with out the use

of underlying groundtruth.

Hyperspectral images consist of pixel intensities that may be due mix of several ma-

terials because of their limited spatial resolution. The acquired pixels within an imagery

correspond to discretely sampled reflectance. These pixels are constituted as a result

of reflections from different targets hence are named as mixed pixels. The resultant re-

flectance constitutes the spectral reflectances for the separate component materials, each

weighted according to its relative abundance on the surface leading to linear mixing model

(LMM) for reflectance measurements. The linear mixture model has been used by many

researchers to analyze hyperspectral images [68, 69, 70, 71, 72, 73]. The model repre-

sents the image pixel intensities as linear combination of constituent spectra known as

endmembers. Additionally the abundances are constrained by non-negativity and sum

to one. The set of endmembers should include all material types present in the image.

Linear SMA involves finding the spectrally unique signatures of pure ground components

referred to as endmembers, and to obtain abundance map by expressing mixed pixels as

linear combinations of endmembers. Several algorithms have been proposed to extract

endmembers from hyperspectral data automatically, like pixel purity index (PPI) [69],

automated morphological endmember extraction (AMEE) [74], optical real-time adap-

tative spectral identification system (ORASIS) [70], N-finder algorithm (NFINDR) [72],

iterative error analysis (IEA) [73], etc. Plaza et al. have rigorously compared different
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endmember extraction algorithms using a unified framework in [75]. A variety of ap-

proaches based on spectral mixture analysis using LMM have been proposed to address

the problem of spatial resolution enhancement of HSIs. Brown et al. [58] estimate land-

cover components by sub-pixel processing using linear support vector machines (SVM).

Here, SVM automatically selects the relevant pure pixels and determines number of end-

members in the region of interest. These techniques provide more accurate representation

of landcovers than the original LR HSI. The advantage of SMA based methods is that

there is no need of auxiliary spatial information. They provide the abundances of the

endmembers within a pixel which is very useful in determining the presence of object of

subpixel scale in remote sensing applications. The accuracy of SMA is increased by using

accurate method for selecting pure endmember spectra using visual and semi-automated

approaches in [59] in order to obtain detailed view of their study area.

In SMA based subpixel processing the spatial dependencies of materials in mixed

pixels is not considered at subpixel level. Thus SMA based processing acts as an ini-

tial stage for the spatial resolution enhancement of HSIs. These methods do not exploit

spatial and spectral informations to their full capacity. Hence super-resolution mapping

(SRM) is performed to enhance the spatial resolution of the HSI by exploiting the spatial

dependency of pixels. Atkinson et al. [56] presented an algorithm for spatial resolution

enhancement using spectral mixture analysis followed by sub-pixel target mapping. High

resolution pixels are placed based on spatial correlation among them using a distance-

weighted function. In the algorithm proposed by [62] the spectral unmixing is first per-

formed to determine proportion of endmembers in each pixel. Subpixels are then located

by SR mapping performed either by simulated annealing or pixel swapping in unsuper-

vised way. However, the limitation of these kinds of algorithms is the requirement of high

computational load because of the large number of spectral bands of HSIs.

Some of the approaches perform super-resolution mapping using learning based meth-

ods like Hopfield neural network (HNN) [65, 55, 76] and backpropagation neural network

(BPNN) [24, 26, 66]. Here, given the remotely sense data, a set of training images is

used for learning the SR attributes. A method proposed by Gu et al. [24] first obtains

abundance map using linear spectral mixture analysis (LSMA). Then based on spatial

correlation of landcovers, SR mapping is performed using BPNN to enhance the spatial

resolution. They use LR training images to determine the parameters used in SRM and
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BPNN. In a similar work, Mianji et al. [26] used LR images and its downsampled versions

to train the BPNN in learning based SR. A mean filter is used as the downsampling oper-

ator and the super-resolution is performed by considering spatial correlation of different

materials present in the HSI. Here, they used test HSIs themselves as the training data

to achieve better coherence between the results of the enhanced and the original HSI.

In a different algorithm Zhao et al. [67] proposed example based super-resolution map-

ping that uses support vector regression. They do not use explicit formula to describe

prior information about subpixel spatial pattern, rather they learn the nonlinear relation-

ships between the coarse fractional pixels and corresponding labeled subpixels from the

best-matching high-resolution training data.

In recent years, sparse representations of signals have attracted a great deal of atten-

tion among signal and image processing researchers. Olshausen and Field [77] showed

that a natural image can be represented with a relatively small number of basis functions

chosen from over-complete set. Compared to methods based on orthonormal transforms

or direct time domain processing, sparse representation usually offers better alternate

for efficient signal modeling [78]. The use of sparsity for SR of single wideband natural

[79, 80, 81, 82, 83, 84] as well as multi-band remote sensing images [85, 86, 61] is ex-

plored by many researchers . CS based approaches use trained dictionaries of HR and

LR patches and assume same sparseness for LR and HR patches in order to obtain SR

image. Here, sparse coefficients for every LR patch are found using trained LR patch

dictionary, and these coefficients are used in generating the HR output. To eliminate

the need of searching for pure signatures in the input data and overcome limitations of

endmember extraction algorithms, Iordache et al. [86] proposed semisupervised approach

using linear SMA to unmix the pixels of LR observation. They represent the mixed pixels

as the linear combinations of a number of pure spectral signatures from publicly avail-

able library, using sparsity based l1-minimization algorithm to increase number of pixels,

thereby increasing resolution. Zhao et al. [61] utilize sparseness property of HS images

in spatial and spectral domains. They use the sparse representation and linear spectral

mixing model for obtaining the initial SR. To maintain spectral consistency regulariza-

tion based on linear spectral mixing model is performed in order to obtain final SR HSIs.

Their method is implemented on HS data directly without using dimensionality reduction

algorithm leading to high computational cost.
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Our proposed approaches in this thesis are based on learning, CS theory as well as

wavelets. Hence we also discuss few research works of SR of HSI using wavelet trans-

forms. There are considerable number of techniques in which wavelet decomposition is

used to increase the spatial resolution of remote sensing images [87, 22, 76, 27, 88]. These

methods are based on the decomposition of the image into multiple levels based on their

local frequency contents. The wavelet transform decomposes images into a number of new

images each having different spatial resolution. Need of the registered HR auxiliary infor-

mation is the main limitation of these methods. Besides, these methods use fixed wavelet

basis like Db4 in their implementation and they require accurate co-registration to achieve

acceptable results. Mertens et al. [76] proposed use of predicted wavelet coefficients to

obtain SR image. They learn relation between approximate and detail coefficients using

training data in neural network, without making any assumption about data distribution.

In a recent approach, Li et al. [88] characterized the wavelet coefficients by a mixed Gaus-

sian distribution and the dependencies between the coarser and the finer scale wavelet

coefficients were modeled as prior by using the universal hidden Markov model and the

problem was solved as an maximum a posteriori (MAP) framework. Recently, learning

based SR approaches for single wideband and multiband images have been explored by the

researchers to solve the super-resolution problem [89, 90, 91, 92, 93, 94, 95, 96, 26, 79, 97].

These methods use a database of HR images or LR-HR image pairs in order to learn the

high frequency details for SR.

Currently, spatial resolution enhancement of remote sensing images has become one of

important research areas and researchers use different approaches such as fusion, super-

resolution, or combination of both in order to obtain the enhanced HSI. Several research

articles including special issues [98, 99, 100, 101] have been published for multi-frame

resolution and single frame super-resolution for single wideband images. In addition many

books are published in the are of fusion of remotely sensed images [102, 103, 104, 105, 106]

and super-resolution techniques [107, 108, 109, 110].



Chapter 3

A Model Based Approach To

Multiresolution Fusion Using

Compressive Sensing Theory

Many remote sensing applications like urban-area monitoring, map updating, precision

farming, land use classification, and hazard monitoring require images with both high

spatial and high spectral resolution. Given technological limitations related to spatial

and spectral resolution of imaging sensors, MS images having high spectral resolution

are acquired with a larger IFOV i.e., lower spatial resolution than panchromatic images

having lower spectral resolution. Many of the earth observation satellites like Advanced

Land Imager (ALI), IKONOS, Indian Remote Sensing satellites (IRS), Landsat, Systeme

Probatoire d’ Observation de la Terre (SPOT), and recently launched Worldview-2 pro-

vide data consisting of a panchromatic channel of high spatial resolution and several

multispectral channels at a lower spatial resolution. Acquisition of panchromatic im-

age enables the accurate geometric analysis of materials and the MS channels provide

the spectral information, required for accurate discrimination between classes of different

ground materials. A combination of spatial features of high-resolution PAN image and

spectral features of MS can add valuable information in these applications. Image fusion

refers to the algorithmic approach to generate images with high spectral as well as spatial

resolution by combining high spatial resolution panchromatic (PAN) image with the high

spectral resolution multispectral (MS) images. An image obtained using a fusion tech-
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nique improves the interpretation of the image. An ideal fusion technique has to account

for the enhancement of high spatial resolution as well as minimization of the spectral

distortion.

Many researchers have investigated strategies for the fusion of multiresolution satellite

images. Among the existing multiresolution fusion techniques, the methods most widely

used are: intensity-hue-saturation (IHS)-based methods [111, 112], high-pass filter (HPF)

[113], principal component analysis [114], Brovey transform [115] and the wavelet-based

approach [116]. In these methods, first of all multispectral images are upscaled before

the fusion to the spatial resolution of the high-resolution PAN image using bicubic in-

terpolation. IHS based method is one of the most commonly used fusion techniques for

sharpening of the multispectral images. IHS fusion converts a color MS image from the

RGB space into the IHS color space which decomposes it to intensity and color compo-

nents. In the IHS space, spectral information is reflected on the hue and the saturation

while intensity change has little effect on the spectral information. The fusion is obtained

by replacing the intensity (I) component in IHS image by the PAN image and converting

the IHS back to RGB domain. In the high-pass filter (HPF) based fusion, a high-pass

filter kernel is used to filter the high-resolution PAN data. Subsequently HP filtered im-

age is added to each MS band by taking care of mean, standard deviation and spatial

resolution ratio. It gives acceptable results, but the edges are too much emphasized.

The PCA transform based fusion approach first obtains the principal components of the

multispectral bands where the first principal component contains the most information

(i.e. variance) of the MS image. After that, the first principle component is substituted

by the panchromatic image. Applying inverse PCA results in new RGB (Red, Green,

and Blue) bands of multispectral image having spatial resolution of PAN image. Being

statistical method it is sensitive to the area to be sharpened hence the fusion results may

vary depending on the selected MS image. Brovey transformation is due to the result

of combination of arithmetic operations and normalizes the spectral bands before they

are multiplied with the panchromatic image. The spectral properties, however, are usu-

ally not well preserved by this method. In a different approach based on multiresolution

fusion, wavelet transform is widely used due to its compactness, orthogonality and the

availability of directional information. In this method, a wavelet transform is applied to

the PAN image, resulting in a four components namely coarser, horizontal, vertical, and
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diagonal. Coarser component contains low-resolution information while remaining three

components have the spatial details. The LR coarser component is replaced by the MS

band and the process is repeated for all MS bands. Applying inverse wavelet transform

results in the fused MS image. More recent works on the multiresolution fusion can be

found in [117, 118]. Recently, the authors in [14] have proposed a learning based approach

for multiresolution fusion using contourlet based learning approach. Zhu et al. [119] have

proposed fusion using compressive sensing theory. They construct dictionary of LR-HR

pairs using MS image and PAN image and obtain sparse representation of image patches

by estimating sparse coefficients and finally reconstruct HR multispectral image.

In this chapter, we propose a new two step approach for multiresolution fusion in re-

motely sensed multispectral images. The edge details of the fused multispectral images are

learned using wavelet transform and compressive sensing. Given the registered panchro-

matic (PAN) image and a multispectral (MS) image, we first decompose the PAN image

using discrete wavelet transform. Compressive sensing (CS) technique is then applied to

derive an initial estimate of fusion by first computing the the sparseness of observed MS

patches and then using them for obtaining detail coefficients. Taking the inverse discrete

wavelet transform gives us the initial estimate of the fused image. In the second step, we

model the image acquisition process using a linear system and solve the fusion problem

by formulating it as a maximum a posteriori (MAP) framework that enforces smoothness

constraint on the fused image. The cost function consisting of a data fitting term and the

prior term is minimized using simple gradient optimization technique. The quantitative

and perceptual comparison is carried out to evaluate the proposed technique w.r.t the

recently proposed image fusion techniques.

3.1 Use of CS Theory for Initial Estimate

Compressive sensing presents a new approach in signal processing for sparse signal re-

covery [12] which directly measures a compressed representation of the signal. The key

assumption is that the most signals that arise in nature are sparse whose digital repre-

sentation requires few nonzero coefficients. CS exploits this sparsity, by allowing a digital

signal to be reconstructed using only few linear measurements when compared to the size

of the original signal. As long as the measurement matrix satisfies a Restricted Isometry
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Property (RIP), the exact signal recovery is possible from these measurements [120].

3.1.1 Compressive Sensing

Suppose x is an unknown digital image vector in RN that we want to acquire. Normally

this should require N pixels. But if we know apriori that x is compressible in certain

transform domain (e.g. wavelet, Fourier), then as per CS theory we can acquire x by mea-

suring only M linear projections rather than all N pixels. If these projections are properly

chosen (projection matrix or the measurement matrix satisfy the RIP), the size of M can

be smaller than N , the size of image. If the image is K sparse, random projection works

if M = O(Klog(N/K)) [121]. Mathematically, under the sparsity assumption, a signal

x ∈ RN , can be recovered by solving the l1-minimization using standard optimization

tool such as linear programming [122] i.e., the problem can be posed as

min
x∈RN

||x||l1subject to y = Dx,

where ||x||l1 =
N∑
i=1

|xi| (3.1)

In proposed approach, observation y ∈ RM is represented as a linear combination of

few number of elements of dictionary D using sparse vector x i.e., x has few number of

nonzero elements. The main component in the l1-minimization is the dictionary D. The

choice of dictionary is dependent on the application. In proposed approach we construct

the dictionaries from the empirical data and use them in finding initial estimate of fusion.

3.1.2 Finding Initial Estimate

We construct various dictionaries from PAN image and use them in CS based multiresolu-

tion approach to obtain initial estimate of fused image. Our method fuses high frequency

details from panchromatic image into the multispectral bands assuming that they are

registered. As a powerful multiresolution analysis tool, we use wavelet transform to ob-

tain high frequency details in the fused image without altering the spectral contents of

the multispectral images. Considering a spatial resolution difference of 2 between PAN

and MS images, the learning process can be explained as follows.

As shown in Figure 3.1, single level wavelet decomposition of panchromatic image
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(a) (b)

Figure 3.1: (a) MS Image of size M ×M , (b) Pwt: One level wavelet decomposition of
PAN image. Here I, II, III and IV quadrants represent the coarse, vertical, diagonal and
horizontal details each of size M ×M .

results in coarse coefficients in the top-left quadrant I, having the same dimension as that

of MS image. Remaining three quadrants (II-IV) show vertical, diagonal and horizontal

edge details, respectively. These edge details are used to obtain finer details of fused MS

image. We know that PAN and MS images are obtained from the same geographic region

with the difference that PAN image is acquired with high spatial resolution covering wide

spectral features. This results in high spatial correlation between the MS image and the

coarser coefficients of the PAN image. Hence patches of MS image can be well-represented

as a sparse linear-combination of coarse elements of the PAN image having high spectral

width. Since the finer details fused MS and PAN are similar, we make use of the same

sparseness in order to obtain the finer details of fused MS image. Thus our method fuses

fine details from PAN image to MS bands by deriving the sparseness of low-resolution

observation using the coarser part of PAN image and the same sparsity is used to obtain

the detail coefficients of the initial fused estimate. This reduces spectral distortion of the

fused image. The proposed algorithm to obtain initial fused image is described below.

Suppose we have the MS image of size M ×M , and the corresponding PAN image

of size qM × qM , where q is the resolution factor. Here, we describe the algorithm by

considering a value of q = 2.

1. Obtain one level wavelet decomposition of PAN image Pwt as shown in Figure 3.1(b).

2. For each 2 × 2 patch of MS image choose corresponding patches from all four

quadrants of Pwt. Arrange them in lexicographical order to form the vectors vMS,

vPA, vPV , vPH and vPD. Here, vMS corresponds to vector of size 4 × 1 formed

by using MS image, while vPA, vPV , vPH and vPD are the corresponding vectors
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Figure 3.2: Detailed understanding of CS based approach. Construction of dictionaries
DPA, DPV , DPH , and DPD from coarser, vertical, horizontal, and diagonal quadrants
of Pwt, respectively, each of size 4 × M2/4. Obtaining sparse vector x using coarser
dictionary, and use it to obtain diagonal details of fused image, assuming mean subtracted
DMS (hence y) and DPA (i.e. DMSm and DPAm).

formed by using the coarse, vertical, horizontal and diagonal quadrants of the PAN

image, as shown in Figure 3.2.

3. Create dictionaries DMS, DPA, DPV , DPH and DPD each of size 4×M2/4 using the

corresponding vectors formed in step 2. Construction of dictionaries DPA and DPD

are shown in Figure 3.2. Dictionaries DPV and DPH are constructed in a similar

way.

4. Find the mean subtracted dictionaries of MS image and the coarse quadrant of the

PAN image i.e.,

for j = 1 to M2/4

DMSm(:, j) = DMS(:, j)−mMS,

DPAm(:, j) = DPA(:, j)−mPA,

where DMSm and DPAm represent the mean subtracted dictionaries. Here, mMS

and mPA represent the mean of the MS and PAN image patches.



3.1 Use of CS Theory for Initial Estimate 36

5. Consider a mean subtracted vector y of MS test image taken from DMSm.

6. Now solve for sparse vector x using compressive sensing based l1-minimization prob-

lem found in [12] i.e.,

min
x∈RN

||x||l1 such that y = DPAmx

Here, x represents the sparseness vector of size N × 1, where N = M2/4. It gives

sparse representation of test patch y in terms of dictionary (DPAm) elements adap-

tively. Remember y and DPAm resembles observation vector and sensing matrix,

respectively of the compressive sensing theory.

7. Obtain the finer detailed patches of the MS image i.e., the patches of horizontal,

vertical and diagonal by using the sparsity vector x, found in step 6.

PH = DPHx; PV = DPV x; PD = DPDx

Convert these into a block of size 2×2. This indicates that the finer details of initial

fused MS image are obtained as a linear combination their respective dictionary

elements (also referred to as patches) where the sparseness obtained using LR MS

image is used. Steps 2-7 are explained graphically in Figure 3.2.

8. Create the fused decomposed patch

Fp = [PM , PV ;PH , PD],

where PM is the patch of MS image of size 2 × 2; PV , PD and PH are the patches

corresponding to vertical, diagonal and horizontal edges each of size 2× 2.

9. Repeat steps 6-8 for all elements of DMSm and append the MS patches and the

obtained finer detailed patches to Fp created in step 8 to their respective locations.

10. Take the inverse wavelet of derived initial estimate Fp of size 2M × 2M to obtain

the initial fused image Z.

These steps give us the initial fused image Z having size of 2M × 2M .
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3.2 Regularization

Since we are constructing the fused MS image by using patch based approach, the spatial

homogenity is not taken into account. Hence regularize it further to obtain the final

solution. We restrict the solution space for the fused image by using maximum a posteriori

- Markov random field (MAP-MRF) approach. The MAP-MRF approach requires data

fitting term. This can be done by considering an observation model that represents the

MS image formation.

3.2.1 Observation Model

Let Y be the observed MS image of the size M ×M pixels and Z be the fused high-

resolution (HR) image, then the forward model for the image formation can be written

as,

y = Dz + n, (3.2)

where y and z represent the lexicographically ordered vectors of size M2×1 and q2M2×1,

respectively. Here, n is the independent and identically distributed (i.i.d.) noise vector

with zero mean and variance σ2
n and has the same size as y. It is given by

P (n) =
1

(2πσ2
n)

M2

2

e
− 1

2σ2
n
n2

, (3.3)

where D is the downsampling matrix which takes care of aliasing caused due to down-

sampling. For an integer downsampling factor of q, the matrix D consists of q2 non-zero

elements along each row at appropriate locations [123].

D =
1

q2


1 1 . . . 1 0

1 1 . . . 1

... ... ...

0 1 1 . . . 1

 , (3.4)

Now our problem is to estimate fused z given y, which is an ill-posed inverse problem

and can be solved by using regularization methods.
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3.2.2 MRF Prior Model

The Markov Random Field (MRF) has emerged as a popular stochastic model for images

due to its ability to capture local dependencies. MRF provides a convenient and consistent

way of modeling context dependent entities. This is achieved through characterization

of mutual influence among such entities. The practical use of MRF models is largely

ascribed to the equivalence between the MRF and the Gibbs Random Fields (GRF). In

proposed approach we characterize the final fused image using the MRF model. It finds

out pixel intensity at current site using neighbourhood pixel intensities of that site and

not anything else. This is justified because the changes in intensities in a scene is gradual

and hence there is a local dependency.

Let Z be a random field over regular N×N lattice of sites L = {(i, j)|0 6 i, j 6 N−1}.

The equivalence between MRF and GRF is established in Hammersley-Clifford theorem,

hence we have

P (Z = z) =
1

Zz
e−U(z), (3.5)

where z is a realization of Z, Zz is the partition function given by Zz = Σze
−U(z) and U(z)

is the energy function given by U(z) =
∑

c∈Cz V
z
c (z). Here, Vc(z) denotes the potential

function of clique c and C is the set of all cliques. The lexicographically ordered fused

image z satisfying Gibbs density function is now written as,

P (z) =
1

Zz
exp{−

∑
c∈Cz

V z
c (z)}. (3.6)

3.2.3 MAP-MRF Formulation

We use MAP-MRF framework for regularization approach in order to obtain the final

fused image. The use of MAP estimation for fusion requires a suitable prior for the same.

A method of specifying MRF prior on fused image involves considering cliques c on a

neighborhood. By using first order neighborhood, the energy function corresponding to

the MRF prior for fused image can be written as,

∑
c∈C

Vc(z) = γ

N1∑
k=1

N2∑
l=1

[(zk,l − zk,l−1)
2 + (zk,l − zk−1,l)

2], (3.7)
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where γ represents the penalty for departure from smoothness in z. C is the set of all

cliques and Vc(z) is the clique potential. Here, the MRF parameter γ is estimated using

the initial fused image and this avoids the tuning of the parameter.

The MRF model on the fused image serves as the prior for the MAP estimation. The

MAP estimate of the high-resolution fused image comes about by an application of Bayes

theorem,

P (z|y) =
P (y|z)P (z)

P (y)
. (3.8)

The left hand side is known as the posterior distribution over z and y represents observed

data. Here, P (y) may be considered as a normalization constant. We apply this to our

problem. Given the LR observation y, the MAP estimate ẑ, using Bayesian rule, is given

by,

ẑ = argmax
z

P (z|y) = argmax
z

P (y|z)P (z). (3.9)

Taking the log of the posterior probability we can write,

ẑ = argmax
z

[
logP (y|z) + logP (z)

]
. (3.10)

Since n is independent. The above MAP formulation allows us to incorporate prior

knowledge about z for improving robustness during reconstruction. Using equations 3.2

and 3.3, we obtain

P (y|z) = P (n)|n=y−Dz =
1

(2πσ2
n)

M2

2

e
− ||y−Dz||

2

2σ2
n . (3.11)

Thus for MAP-MRF approach, the final cost function to be minimized can be expressed

as,

ẑ = argmin
z

[
‖ y−Dz ‖2

2σ2
n

+
∑
c∈C

Vc(z)

]
. (3.12)

Convexity of this cost function allows us to use the simple gradient descent optimization

technique, which quickly leads to the minima. Since the optimization process is itera-

tive the choice of initial solution fed to the optimization process determines the speed of

convergence. Use of the available fused approximation as an initial solution speed-up the

convergence. It may be mentioned here that we obtain initial fused approximation sepa-

rately for each of the MS observations and the optimization is carried out independently
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for every low-resolution MS band.

3.3 Experimental Results

In this section, we present the results of the proposed method for fusion. The experiments

are conducted on real images captured using Landsat-7 Enhanced Thematic Mapper

plus (ETM+) satellite. The original PAN image and the MS images are of size 512 ×

512 and 256 × 256 pixels, respectively with ground resolution of each pixel as 30m ×

30m and 15m × 15m, respectively. These are considered as ground truth. In order to

make the quantitative comparison, we downsampled both images by a factor of 2 and 4

and conducted the experiments using the downsampled versions. It is to be noted that

the resolution difference between the MS image and PAN image captured by Landsat-7

satellite is of 2. But to evaluate the performance of the proposed algorithm for the higher

resolution factor we conducted experiments by downsampling by a factor of 4 also. In

both cases, the size of the fused MS image is 256× 256. We compare the performance of

the proposed method with other methods on the basis of qualitative as well as quantitative

measures. Different quantitative measures used in our experiments are described in the

following section.

3.3.1 Quantitative Evaluation Measures

For quantifying the results of fusion we used correlation coefficient (CC), structural simi-

larity (SSIM), and mean squared error (MSE) as a evaluation index. These metrics have

been widely used in the multiresolution fusion techniques in order to measure the spatial

and spectral fidelity of the fused MS images. What follows is a brief review of these

measures.

1. Correlation Coefficient (CC) [124]: The correlation coefficient is the most popular

measure for checking spatial fidelity between the fused and the groundtruth (orig-

inal) MS image. It shows the similarity between the fused and the groundtruth

MS image band. CC between groundtruth and fused image bands F, F̂ ∈ RM×N is
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defined as

CC =

M∑
i=1

N∑
j=1

(Fi,j − F̄ )(F̂i,j − ¯̂
F )√√√√ M∑

i=1

N∑
j=1

(Fi,j − F̄ )2
M∑
i=1

N∑
j=1

(F̂i,j − ¯̂
F )2

, (3.13)

where Fi,j, F̂i,j are pixel values at location (i, j) of groundtruth and fused images

F and F̂ , respectively and F̄ ,
¯̂
F are the mean values. The CC has a value lying

between zero and one, with zero representing the lowest correlation.

2. Structural similarity (SSIM) [125] : The SSIM combines a comparison of luminance,

contrast, and structure. It is applied locally to 8× 8 square window. This window

is moved pixel-by-pixel over the entire image and the SSIM is calculated within the

window having range of 0 to 1. Values close to 1 show the highest correspondence

of fused image with the groundtruth image. SSIM between groundtruth (X) and

fused (Y ) image windows is defined as below

SSIM(X, Y ) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (3.14)

where µx and µy represent the mean intensities of X and Y , respectively, while

σx and σy represent the standard deviation of X and Y , respectively. Here, σxy is

the correlation between X and Y . The constant C1 is included to avoid instability

when µ2
x + µ2

y is very close to zero. Similarly, the constant C2 is included to avoid

instability when σ2
x +σ2

y is very close to zero. SSIM is averaged over all windows to

obtain average over entire fused image.

3. Mean squared error (MSE): It is a common measure to estimate the squared error

between two entities, measuring the ratio of the power within the error to the signal

power. It is given by [126]

MSE =

∑
i,j[Fi,j − F̂i,j]2∑

i,j[Fi,j]
2

, (3.15)

where Fi,j and F̂i,j represent the true HR (groundtruth) and the fused images,

respectively.
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(a) (b) (c) (d)

Figure 3.3: Fusion results of Band 2 for q = 2. (a) MS image of size 128 × 128, (b)
Approach in [127], (c) Approach in [14], and (d) Proposed approach.

(a) (b) (c) (d)

Figure 3.4: Fusion results of Band 2 for q = 4. (a) MS image of size 64×64, (b) Approach
in [127], (c) Approach in [14], and (d) Proposed approach.

Figure 3.3 show the results of fusion for Band-2 using different approaches. Table

3.1 shows the quantitative comparison using correlation coefficient, structural similar-

ity (SSIM) [125] and mean squared error (MSE) [127] for Band-2. We can see that

proposed approach gives better quantitative values as compared to other approaches. We

also observe perceptual improvement in the fused images obtained using the proposed

method. Method in [127] uses interpolation of MS image and [14] uses patch matching

criterion between MS image and coarse level of the PAN image to obtain initial estimate

of the fused image, while proposed approach uses sparsity coefficients to represent high

frequency details, which leads to better initial estimate compare to other methods. This

results in better regularized final fused image because results of regularization depends

on initial estimate also.
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Approach Approach Proposed
BAND 2 in in Approach

[127] [14]
Correlation coefficient

q = 2 0.9462 0.8473 0.9483
q = 4 0.8693 0.8244 0.8879

SSIM
q = 2 0.8989 0.8290 0.9396
q = 4 0.8529 0.8132 0.8736

MSE
q = 2 0.0068 0.0842 0.0061
q = 4 0.0169 0.0901 0.0108

Table 3.1: Performance comparison of band 2 for q = 2 and q = 4 in terms of correlation
coefficient, SSIM and MSE.

3.4 Conclusion

We have presented a new technique to recover the high spatial and high spectral resolu-

tion fused MS image using compressive sensing based learning and MAP-MRF approach.

Since the initial estimate is obtained using DWT and compressive sensing theory, the

suggested method gives finer details present in different directions with reduced spectral

distortion. We considered MRF model to enforce smoothness constraint while regular-

izing. True MRF parameter can be known only if the fused image is known. Since this

is not available, we make use of the close approximation of fusion (initial estimate) to

obtain the same. A simple approximation method called maximum pseudo likelihood is

used for estimating this parameter [128]. The quantitative results demonstrate that the

proposed technique yields better solution as compared to those obtained using the recent

approaches.

The proposed approach to increase spatial resolution of multispectral images uses aux-

iliary panchromatic image in registered form. The high frequency details in fusion result

are obtained from high spatial resolution panchromatic image. The proposed approach

recovers these high frequency details by exploiting the similarity in sparse representa-

tion of coarser resolution of PAN and observed MS image. Note that the accuracy of

results is also dependent on registration. Many times auxiliary high-resolution image is

not available onboard. Based on this discussion, one may conclude that spatial resolution

enhancement without using auxiliary information is difficult. Contrary to this, another
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alternative is to use a database of HR and LR training images unassociated with test

image to form the dictionaries and recover the finer details from them to enhance the

spatial resolution. In next chapter, we discuss the use of LR-HR dictionaries to increase

spatial resolution of hyperspectral data where the auxiliary data is seldom available.



Chapter 4

Super-Resolution of Hyperspectral

Images using Compressive Sensing

Framework

Over the past decade hyperspectral (HS) image analysis has turned into one of the most

powerful and growing technologies in the field of remote sensing. Hyperspectral sensors

collect information in the form of reflectance spectra in very narrow contiguous bands

simultaneously in the visible to mid infrared portion of the spectrum i.e., 0.4-2.5µm. They

represent an evolution in technology from multispectral sensors, which typically collect

spectral information in only a few discrete, noncontiguous bands [1]. In general HS images

have hundreds of spectral bands [129]. Being spectrally overdetermined, they provide

ample spectral information to identify and differentiate spectrally unique materials [2].

The high spectral resolution of hyperspectral sensors preserves important properties of the

spectrum and makes possible better discrimination of different materials on the ground

[1]. Hence they have been proven to be a powerful source for the monitoring of the Earth

surface and the atmosphere on global as well as local scales [130]. Nowadays, HS images

are widely used in wide range of military and defence applications which include target

detection and tracking of objects [131], agriculture planning [132], forest inventory [133],

and urban monitoring [134] to mention a few. These applications require high spectral

and high spatial resolution data for accurate determination of object properties.

In practice, few satellites have high spatial resolution ( < 5m× 5m ) sensors available

45
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onboard. For example Quickbird satellite collects panchromatic (PAN) image of spa-

tial resolution 0.7m and four multispectral bands of 2.8m resolution. Recently launched

WorldView−1 and WorldView−2 satellites carry an imaging instrument specifically de-

signed to meet the requirements of very high spatial resolution and more number of

spectral bands. WorldView−1 provides a single PAN image of half a meter resolution,

while WorldView−2 provides a high spatial resolution (0.46m) PAN image and eight spec-

tral bands having resolution of 1.84m. Although they have high spatial resolution data,

they do not provide better discrimination of many surface materials and environmen-

tally relevant information due to their limited spectral resolution. An improved space

borne hyperspectral sensors (e.g. Hyperion and Chiris) provides very large number of

narrow spectral bands, but their spatial resolution is very less (17− 34m). For airborne

hyperspectral sensors (e.g. AVIRIS, HYDICE, HyMap) the spatial resolution is dictated

largely by the height of the aircraft [18]. As the height increases the extent of coverage

also increases but this decreases the spatial resolution. At low spatial resolutions, the

averaging effect on the pixels degrades the performance of spectral detection algorithm,

which is used to identify the materials present in the scene [24]. Though the HS images

cover large area at fine spectral resolution, their spatial resolutions are often limited for

the use in various applications. Hence improving their resolution has a high payoff. This

chapter presents a novel approach for super-resolution (SR) of HS images using com-

pressive sensing (CS). Besides ill-posedness of SR problem, the main challenge in HS

super-resolution is to preserve spectral contents among all bands while increasing their

spatial resolutions.

In this work, given the hyperspectral (HS) images we first obtain an initial estimate

of the super-resolution on a reduced dimension HS data. The dimensionality reduction

is obtained by using principal component analysis (PCA). Our approach uses CS based

method to super-resolve the most informative PCA transformed image representing high-

est spectral variance (i.e. the first principal component). We make use of low and high

spatial resolution dictionaries of patches generated by random sampling of raw patches

of PCA transformed images that are generated using the training images of LR and HR

having similar statistical properties. Using the sparsity constraint, low-resolution test

patch is represented as a sparse linear combination of relevant dictionary elements. Fi-

nally, assuming that same sparseness holds for LR and corresponding HR patches an
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initial estimate of super-resolved PCA is obtained. Since SR is an ill-posed problem, we

obtain the final solution using a regularization framework considering the sparse coeffi-

cients obtained by the CS approach and the autoregressive (AR) parameters obtained

from the initial estimate. The SR for remaining PCA images is obtained by performing

bicubic interpolation and regularization, considering the same AR parameters which were

obtained from the initial SR estimate of first PCA component. Application of inverse

PCA results in SR of HSI bands in original spatial domain. Experiments are conducted

on two different kinds of HS images. Visual inspections and quantitative comparison

confirm the effectiveness of the proposed method.

4.1 Previous Work

Super-resolution enhancement refers to an algorithmic approach for increasing the spatial

details [135]. Many researchers have attempted to increase the spatial resolution of the

HS images by fusing the PAN image and the hyperspectral data [15, 16, 23, 40]. Win-

ter et al. [15] replaced first PCA component of LR hyperspectral image (HSI) with HR

PAN image for resolution enhancement, but performance of this method decreases when

correlation between the spectral response of the PAN and HSI decreases. First PCA

component represents the intensity component, hence the resulting HR HSI has only the

intensity variations at finer resolution. The main limitation of all this method is that

the spectral characteristics are not preserved. In a different approach Bar et al. in [41]

combined spectral and spatial analysis for detection and classification, respectively. In

the detection stage they used high spectral resolution HSI to locate the target and in the

classification stage high spatial resolution PAN image is fused with low spatial resolution

HSI to reduce the false alarms. The limitation of all these algorithms is that they require

the images to be registered. Besides this, many times high-resolution PAN imager is not

available onboard, hence auxiliary high-resolution image of the same geographic area is

not captured. In such circumstances our proposed method provides the solution of resolu-

tion enhancement. Recently, compressive sensing (CS) theory has drawn major attention

in various image processing applications [80, 136, 81, 82, 137, 138]. Compressive sensing

theory has many potential applications in signal and image processing applications. It

is primarily concerned with the recovery of a vector x that is sparse in some transform
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domain. In this work, we present a novel approach for super-resolution of HS images

from the perspective of CS which is not dependent on the registration of the different

HS images. Our method needs only HR and LR registered HS images of any compatible

scenery to create training dictionaries which is one time offline procedure.

4.2 Theoretical Background

In this work, we are using compressive sensing (CS) and principal component analysis

(PCA). Since compressive sensing has been discussed in chapter 3 section 3.1.1 we only

give the necessary details of CS and briefly discuss PCA here.

A fundamental ingredient to deploy CS theory in applications is the dictionary D in

equation 3.1 mentioned in section 3.1. There are three different ways to construct the

dictionaries [122]: (1) Preconstructed dictionaries, like wavelets [139], contourlets [140]

etc. They are generally used for “cartoon-like” images, assumed to be piecewise smooth

having smooth boundaries [141, 142]. (2) Tunable dictionaries, in which a basis or frame

is generated under the control of particular parameter (discrete or continuous): wavelet

packets [143] (parameter is time-frequency subdivision) or bandelettes [144] (parameter is

spatial position). (3) A training database of signal instances similar to those anticipated

in the application, and build an empirically learned dictionary [80]. Here the entries in

dictionary are chosen from the empirical data rather than from some theoretical model.

In proposed approach a training database of signal instances similar to those anticipated

in the application is used to build an empirically learned dictionary. Thus the entries in

dictionaries are chosen from the empirical data rather than from some theoretical model.

Validity of such dictionaries is examined by [80]. Such dictionary has the potential to

outperform commonly used predetermined dictionaries [145]. Such a dictionary can then

be used in the application as a fixed and redundant dictionary. In our application we

explore the third option.

4.2.1 Principal Component Analysis

Hyperspectral images are composed of large number of spectral bands (e.g., AVIRIS ac-

quires 224 bands). Hence, applying super-resolution technique to each band separately

is prohibitive because of time complexity. In addition individual band SR does not make
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use of the information present across the bands [33]. Information is present across these

bands in the form of spectral signatures and the identification of ground materials of

interest is based on their unique spectral signatures [1]. Besides the ill-posed nature of

SR problem, the HS image SR task becomes difficult since preservation of spectral corre-

lation combined with the SR is more challenging. The spectral content of HS images are

inherently low dimensional, hence this must be exploited. Principal component analysis

(PCA) plays a central role in the analysis of multivariate data [8].

Suppose we have a dataset of B hyperspectral bands with size of each band as M×M

pixels. Assume that F represents the pixel vector of size B × 1 along spectral dimension

of HS image. A set of principal components of dimension M2 × K are computed from

the first K eigen vectors E=[e1, e2, ...., eK]TB×K , which in turn is computed from the

covariance matrix Σ of size B ×B from the given data set

Σ =
1

M2 − 1

M2∑
i=1

(Fi−mF)(Fi−mF)T , (4.1)

where mF =
1

M2

M2∑
i=1

Fi.

Here mF is the vector representing average band intensity. Here the top K � B eigen

vectors corresponding to maximum eigenvalues contribute to maximum information of

HS observations and the remaining B −K eigen vectors cover very less information. By

projecting HS observations on these eigen vectors we obtain K number of primary PCA

components and B−K number of secondary PCA components each of dimension M×M .

The most obvious feature of the principal components is that the maximum spectral

variability of hyperspectral bands is contained in the first few principal components. Each

component has variability in decreasing order of magnitude. Percentage of variability

included in ith principal component is given by,

V ariability =
λi∑B
i=1 λi

, (4.2)

where λi is eigen value of the ith eigen vector. Since K is less than B, one cannot

reconstruct hyperspectral image exactly. However, the hyperspectral bands are highly

correlated, and hence only a small value of K suffices to reconstruct HS image to obtain
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Figure 4.1: Block diagram of HS image super-resolution.

the required details. Our algorithm works on K number of primary PCA components to

obtain super-resolution of HSI cube.

4.3 Block Diagram Description of the Proposed Method

Block diagram of the proposed approach is shown in Figure 4.1. In our approach, we

first represent the HS observations from different wavelengths, as a weighted linear com-

bination of small number of basis image planes (BIPs) using PCA transform described

in section 4.2.1. The super-resolution is applied on the reduced set of PCA transformed

images. To reduce computational burden of l1-minimization, we first apply the CS based

approach only to first PCA component to obtain initial SR estimate of PCA-I. Regular-

ization based on AR parameters and sparsity priors is performed on this image to obtain

the final SR PCA-I image. Remaining images corresponding to K principal components

are interpolated and regularized using AR parameters obtained from the same initial SR

image. In our work we have used K = 3. Here our assumption is that the AR parameters

learned from the initial SR PCA-I are valid for all K PCA images, as we are learning the

spatial dependence and not their explicit values. Applying inverse PCA on this set of SR

PCA images yields super-resolved HS image.
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4.3.1 Close Approximation to Super-resolution using CS

Here, a dictionary based approach is used on the first LR principal component to learn

the HR details. Training database of the same class is used to create a set of the HR

and LR patches, so that BIPs of PCA better represent the materials of interest. Thus

the choice of BIPs depends on the application. Note that dictionaries are not created

directly from all bands of HS image, instead first PCA transformed image is used.

Suppose LR HS image of size M ×M need to be super-resolved to a size of qM × qM ,

where q is the super-resolution factor. Due to similar statistical properties, HS test image

patches can be represented as a sparse linear combination of LR dictionary elements using

equation (3.1). The same sparsity holds good for the corresponding HR unknown image

[146]. Hence we can recover the HR image using the HR dictionary. The proposed

algorithm to obtain initial estimation of SR PCA-I image is described below.

1. Generate mean subtracted LR and HR training HS images of B bands with Lm =

[L1,L2, ..,LB] and Hm = [H1,H2, ..,HB], respectively. Here all bands of LR and

HR HS images are arranged lexicographically to convert them in vectors of size

M2 × 1 and q2M2 × 1, respectively.

2. Determine basis eigen vectors corresponding to LR and HR training HS images.

Retain basis eigen vectors eh and el corresponding to maximum spectral variability

of data (i.e., highest variance), each of size 1×B.

3. Create HR and LR transformed images BH and BL by projecting Hm and Lm on

their corresponding basis eigen vectors generated in step (2). BH = eh × HT
m;

BL = el × LTm; Convert BH and BL into matrices of size qM × qM and M ×M

respectively.

4. For each b× b patch of BL choose the corresponding patch from BH . Arrange them

in lexicographic order to form the vectors Vl and Vh of size b2 × 1 and q2b2 × 1,

respectively.

5. Repeat step (4) to create dictionariesDL andDH of size b2×M2/b2 and q2b2×M2/b2,

respectively.
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6. Project the mean subtracted LR hyperspectral test image on basis eigen vector el

and obtain the transformed LR test image Y of size M ×M .

7. Consider a patch of size b× b from the transformed LR test image Y, convert it in

lexicographic order to obtain a vector yp.

8. Solve CS based l1-minimization optimization problem

min||xp||1 such that yp = DL xp + e.

Here xp gives sparse representation of test patch yp in terms of LR dictionary (DL)

elements adaptively.

9. Obtain SR patch using ẑp = DH xp. This is SR patch in transform domain.

10. Repeat steps (7) to (9) for all patches of Y to obtain transform domain SR PCA-I

image Ẑ. Note that the spatial dependency still exists within the pixels of this

image. However, different PCA components of HS image are uncorrelated. Hence

there is no spatial dependency of pixels among different PCA components.

The above steps gives us the initial estimate of the SR PCA-I image Z having a size of

qM × qM . In our experiments, we considered patch size of b = 2 for q = 2. We used

a dictionary of 100000 raw patches. Here raw patches belonging to the same class were

used in our experiment.

4.3.2 Final Solution using Regularization

Since we are estimating the initial SR image using patch based approach, the spatial

correlation is not considered whenever there are discontinuities at the patch boundaries.

Hence we need to regularize it further to obtain a better solution by restricting the

solution space by using AR and sparsity priors. For regularization purpose one needs to

have data fitting term and regularization term. Hence we first model the image formation

in order to get the data fitting term.

Let Y be the PCA transformed LR HS image of size M × M and and Z be the

corresponding HR HS image of size qM × qM , then the model of image formation is

represented as:

y = Dz + n, (4.3)
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where y and z represent the lexicographically ordered vectors of size M2×1 and q2M2×1,

respectively with z representing the SR vector. D is the downsampling matrix taking care

of aliasing caused as a result of downsampling. For an integer downsampling factor of q,

matrix D consists of q2 non-zero elements along each row at appropriate locations. Here

n is the independent and identically distributed (i.i.d.) noise vector with zero mean and

variance σ2
n and has same size as that of y. In this model the LR intensity is the average

of the HR intensities over a neighborhood of q2 pixels corrupted with additive noise.

4.3.3 Estimation of Autoregressive Parameters

We consider learned super-resolved image as the initial estimate and regularize it further

to obtain the final solution. We characterize the statistical dependence of pixel values on

its neighbors, by using an AR model, where the pixel value at a location is expressed as

a linear combination of its neighborhood pixel values and an additive noise [13]. We use

initially estimated SR PCA-I image using CS approach as an AR model. Note that, PCA

components are mutually uncorrelated across bands but there exist spatial dependency

among the pixels in each of the PCA components. We estimate the AR parameters from

the PCA-I component and use them for other bands. We use a homogeneous AR model

and derive a set of parameters for entire SR image. Suppose z(s) is the gray level value

of the image pixel at location s = (i, j) in an N × N image, where i = 1, 2, ..., N and

j = 1, 2, ..., N . The AR model for z(i, j) can be expressed as [147]

z(i, j) =
∑
r∈Ns

Brz(s+ r) +
√
ρn(s) (4.4)

where Ns is the neighborhood of pixel s, r being a neighborhood index with r ∈ Ns, and ρ

are unknown parameters, n(.) is an independent and identically distributed noise sequence

with zero mean and unit variance; ρ is the variance of the white noise that generates the

spatial data for the given AR parameters. Here we use fifth order neighborhood as a

compromise between local and global texture representation, that requires to estimate a

total of eight AR model parameters Br using the iteration scheme given in [147]. We are

considering same neighborhood size around each pixel. The extracted AR parameters are

also used to regularize other PCA images.
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4.3.4 Regularization with Sparsity Coefficients and AR Param-

eters

Super-resolution is an ill-posed inverse problem. Prior information can enhance the qual-

ity of the solution considerably. Hence we obtain the final solution using regularization

framework. Sparse coefficients obtained during the CS framework and AR parameters

obtained from the initial super-resolved image are considered as prior informations. The

prior knowledge about sparsity coefficients is used in determining weightage of dictionary

atoms to represent HR patches. It provides the constraint of sparsity in final solution.

The AR parameters plays the role of maintaining the contextual constraint used to regu-

larize the solution. Using a data-fitting term, sparsity and AR prior terms, the final cost

function is written as

ε = ||y−Dz||2 + β‖ z−DHx ‖2 +
∑
i

∑
j

(
(z(i, j)−

∑
l,k∈Ns

Brz(i+ l, j + k)

)2

(4.5)

Here β represents the regularization parameter. The above cost function is convex. Hence

it can be minimized by using a simple optimization technique such as gradient descent. In

order to provide a good initial guess and to speedup the convergence, the result obtained

by CS based technique is used as the initial estimate for z.

4.4 Experiments and Results Analysis

In order to evaluate the performance of the proposed SR technique, experiments are

conducted on two different hyperspectral image data sets. The first data set is comprised

of 31 band reflectance image of natural scene, corresponding to wavelengths between

0.4µm and 0.7µm in steps of 10 nm all acquired under the direct sunlight in clear or

almost clear sky [149]. Here we used “Scene 5” of Hyperspectral images of natural

scenes 20021. The second data set is comprised of 224-band real hyperspectral image

of Moffett Field acquired by AVIRIS hyperspectral imaging system2. First dataset is

1http:// personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral images of natural scenes
02.html

2Aviris Free Data, Jet Propulsion Lab., California Inst.Tech., Pasadena,
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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(a) (b) (c)

(d) (e)

Figure 4.2: SR results on PCA-I of natural HS image for q = 2. (a) LR image of size
100×100, (b) Groundtruth of size 200×200, (c) Bicubic interpolation [148], (d) CS based
initial estimate, and (e) Proposed approach.

used for checking effectiveness of different steps of algorithm by visual comparison and

second dataset is used to test the performance using visual comparison as well as different

quantitative measures.

4.4.1 Quantitative Evaluation Measures

Detailed quantitative evaluation of spatial and spectral fidelity of super-resolved AVIRIS

hyperspectral image is performed using different measures such as correlation coefficient

(CC), spectral angle mapper (SAM), and erreur relative globale adimensionnelle de syn-

these (ERGAS). Note that these metrics are used by the multiresolution fusion researchers

in order to measure the spatial and spectral fidelity of the fused MS images. What follows

is a brief review of these measures.

1. Correlation Coefficient (CC) [124]: The correlation coefficient is the most popular
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measure for checking spatial fidelity between the SR and the original HSI. It shows

the similarity between the super-resolved and the groundtruth HSIs for each band.

CCk between two kth image bands F, F̂ ∈ RM×N is defined as

CCk =

M∑
i=1

N∑
j=1

(Fi,j − F̄ )(F̂i,j − ¯̂
F )√√√√ M∑

i=1

N∑
j=1

(Fi,j − F̄ )2
M∑
i=1

N∑
j=1

(F̂i,j − ¯̂
F )2

, (4.6)

where Fi,j, F̂i,j are pixel values at location (i, j) of groundtruth and super-resolved

images F and F̂ , respectively and F̄ ,
¯̂
F are the mean values. The CC has a value

lying between zero and one, with zero representing the lowest correlation. Since

we have a number of spectral images, we average the correlation coefficient values

computed over all the bands to obtain the CCavg i.e.,

CCavg =
1

B

B∑
k=1

CCk, (4.7)

where B is the total number of bands i.e. 141 in this experiment.

2. Spectral Angle Mapper (SAM): Since this measure is insensitive to variable gain

resulting from the topographic illumination effects [150], we have chosen it to mea-

sure spectral fidelity of super-resolved images. It is defined as the angle between

two vectors. Low value of SAM indicates less spectral distortions. Spectral angle

between ground truth and super-resolved image is defined as:

SAM(v, v̂) = arccos

(
v, v̂

||v||2.||v̂||2

)
, (4.8)

where v and v̂ are the pixel vectors of groundtruth and super-resolved image,

respectively.

For example for SR HSI with spatial size of 200×200 and spectral size of 141 bands

we obtain 200 × 200 = 40000 values for SAM indicating spectral fidelity between

groundtruth pixel and SR pixel along spectral dimension. These values are averaged

over the entire image band to get a global measure of spectral distortion of the

super-resolved image. Ideally this value has to be zero.
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3. Relative Dimensionless Global Error in Synthesis (ERGAS): This is an indicator of

the overall error in super-resolved HSI. The ERGAS value is defined as [151]

ERGAS = 100
h

l

√√√√ 1

B

B∑
k=1

(
RMSE(k)

µ(k)

)2

, (4.9)

where h/l is the ratio of number of pixels in HR and LR images i.e., r in our case.

RMSE(k) and µ(k) are the root mean squared error and mean of the kth band,

respectively. This value has to be small for better performance.

Both datasets have high spatial dimensions, hence specific regions are cropped from them

and experiments are carried out on these regions. For the purpose of quantifying the

results we consider original HS images as groundtruth and generated synthetic LR HS

images by applying downsampling by a factor of q = 2, in both the spatial directions of

HS data. We then applied SR algorithm to the synthetically generated LR HS images

and compared the results against the original HS image. We limit AVIRIS HSI data

in the wavelength range of 0.4µm and 1.79µm to conduct the simulation to reduce the

time complexity, as this will not make any significant difference in the results of our

proposed algorithm. After removing few bands having low signal to noise ratio (SNR),

141 bands from the original HS image of AVIRIS were super-resolved by a factor of

2. The band removal was based on visual inspection of the images. Effectiveness of

the proposed algorithm on the natural scene is presented in Figure 4.2. Note that, here

results are presented only on the PCA-I image instead of HS bands. Figures 4.2(a) and (b)

display the LR test image and the ground truth image, respectively. The result obtained

using bicubic interpolation is shown in Figure 4.2(c). To demonstrate the effectiveness of

proposed approach, here also we show the initial SR estimate obtained using CS based

approach in Figure 4.2(d) and final super-resolved PCA-I image in Figure 4.2(e). Figure

4.2(c) indicates that the borders of text and crossed lines appear blurred in the bicubic

interpolated image. Visual inspection of Figure 4.2 (d) shows that initial estimate of SR

PCA-I using CS based approach gives a quality, comparable to the groundtruth. Since the

neighborhood relations are not considered in patches while obtaining the initial estimate,

we observe shading of letters written on a ball and also observe little blockiness. Applying

regularization to initially estimated SR PCA-I helps to reduce this effect considerably as
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(a) (b) (c)

(d) (e)

Figure 4.3: SR results on AVIRIS HS Band 100 for q = 2. (a) LR image of size 100 ×
100, (b) Groundtruth of size 200 × 200, (c) Bicubic interpolation [148], (d) Iterative
backprojection method [152], and (e) Proposed approach.

shown in Figure 4.2(e), which is closer to the groundtruth. This shows effectiveness of

regularization in proposed algorithm.

In Figure 4.3 we display the SR results on band 100 of AVIRIS data. The LR test im-

age and the groundtruth image are displayed in Figures 4.3(a) and (b) respectively. High

resolution image obtained using bicubic interpolation [148] is shown in Figure 4.3(c). The

results obtained using iterative backprojection [152] and proposed approach are shown in

Figures 4.3(d) and (e), respectively. From Figure 4.3(c) we can see that high-resolution

image obtained using bicubic interpolation is blurred and the high frequency spatial de-

tails are not preserved. We can see in Figure 4.3(d) that pure white patches in LR image is

converted to grayish patches in SR image obtained using iterative backprojection method.

One can see that the SR image obtained using the proposed method displayed in Figure

4.3(e) compares well with the groundtruth. The proposed method provides better visual

quality compared to other approaches.
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In order to compare the results on quantitative basis we use score indices such as

correlation coefficient (CC) [124], relative dimensionless global error in synthesis (ER-

GAS) [151], and spectral angle mapper (SAM) [150]. These are generally used in the

multiresolution fusion techniques in order to measure the spatial and spectral fidelity of

the fused multispectral images. Since SAM measure is insensitive to variable gain that

results from the topographic illumination effects [150] we choose it for measuring the

spectral fidelity. Table 4.1 shows quantitative comparison among bicubic interpolation,

IBP and proposed approach. Results are listed for different amount of spectral variability

(I) retained after transformation. CC is averaged over all bands of HS image to obtain

a global measurement of spatial distortion and SAM is averaged over all pixels to yield

a global measurement of spectral distortion. As seen from the Table 4.1, our method

provides scores that are more closer to reference values compared to bicubic interpolation

and IBP. Lower value of ERGAS in the proposed method indicates less global distortion

in super-resolved HS image. CC for all the HS bands plotted in Figure 4.4 shows that

proposed method gives better spatial fidelity compared to bicubic interpolation and iter-

ative backprojection. The surface plots in Figures 4.5(a), (b), and (c) represent spectral

fidelity of each specific pixel in super-resolved HS images obtained using bicubic interpo-

lation, iterative backprojection, and proposed approach, respectively for q = 2. Bicubic

interpolation and iterative backprojection method give a maximum of 144.89 degree and

120.10 degree of SAM, while proposed method gives a maximum of 116.22 degree SAM

as seen from surface plots of Figures 4.5(a), (b), and (c) respectively. Lower values of

maximum as well as average SAM indicate that proposed method provides better spectral

fidelity.

Method q I CC SAM ERGAS
Bicubic [148] 2 98 0.886 5.117 7.446

IBP [152] 2 98 0.865 6.312 7.214
Proposed 2 98 0.902 4.863 7.065

Bicubic [148] 2 80 0.838 9.682 10.464
IBP [152] 2 80 0.830 10.153 10.125
Proposed 2 80 0.847 9.397 10.147
Reference 1.000 0.000 0.000

Table 4.1: Quantitative comparison of SR results on AVIRIS data for q = 2
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Figure 4.4: Plot showing detailed perfor-
mance of correlation coefficients for q = 2
of AVIRIS HS bands 1-141

(a) (b) (c)

Figure 4.5: Surface plots showing SAM of all pixels for q = 2 on AVIRIS data. (a) Bicubic
interpolation [148], (b) Iterative backprojection [152], and (c) Proposed approach.

The proposed method achieves higher spatial correlations indicated by the CC and

ERGAS, which are more closer to reference value. In IBP the choice of back-projection

filter is arbitrary and incorporation of prior information is difficult, which results in higher

spatial as well as spectral distortion in SR image compared to proposed approach. In the

proposed approach the use of regularization helps us to achieve better spectral fidelity in

terms of lesser value of SAM. As we increase the variability retained in PCA components,

spatial and spectral distortions are reduced considerably. Here we can extend the CS

based approach to all significant PCA components in order to improve the performance.
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4.5 Conclusion

We have presented a novel approach to recover the high spatial resolution and high

spectral resolution HS image using CS based learning and global AR prior model. The

advantages of the proposed technique are: 1) no need of supplementary spatial informa-

tion in registered form, 2) has high spatial fidelity and low spectral distortions, and 3)

once the low-resolution and high-resolution dictionaries are created from training dataset,

the HS images captured by a low-resolution sensor can be super-resolved. Quantitative

comparison of score indices show that our method enhances spatial information without

introducing significant spectral distortion.

It is necessary to point out that proposed approach is using CS based learning on

first PCA component only. Use of raw dictionary for CS based approach needs large

number of patches, which in turn increases computation time while obtaining initial SR

estimate. Another drawback is the use of an observation model which assumes that the LR

pixel intensity is the average of the corresponding HR pixels intensities i.e., we assumed

an averaging as degradation for all bands of hyperspectral image. In practice, many

factors like diffraction, shape, location, physical construction and electronic response of

the detectors contribute to the degradation (i.e., PSF) of any hyperspectral imager. Hence

the degradation considered in proposed approach is not optimum for all spectral bands.

It is typical for the degradation to degrade as distance from the center of the FOV is

increased. Hence a better way is to estimate degradation that can optimally represent

image formation for all spatial locations and spectral bands. But the spatially varying

PSF requires estimation of PSF at each observed pixel which is quite involved. The work

presented in the next chapter involves extension of CS based approach to multiple PCA

components instead of single one. Instead of raw dictionaries jointly trained dictionaries

that have few number of atoms are used. This reduces timings in initial estimates of

SR. Besides this, it estimates PSF for each spectral component separately to represent

optimum image observation model for each spectral band to obtain final SR results.



Chapter 5

Use of Learned Dictionaries and

Gabor Prior

In the work of previous chapter, significant PCA components are used to obtain super-

resolution of hyperspectral images. Due to large number of atoms in raw dictionaries of

LR-HR, the required computational time is very high in order to obtain initial SR estima-

tion. Hence in chapter 4 we restricted our CS based approach to obtain initial estimate

on first PCA component only. Besides this, we assumed degradation as an averaging

effect which is not true in practice. This chapter presents a novel approach to increase

the spatial resolution of HS images using the compressive sensing (CS) and a new prior

called “Gabor prior”. The novelty of the proposed approach lies in the use of : (i) jointly

learned CS dictionaries, (ii) estimated degradation matrix, and (iii) a new prior called

“Gabor prior” in order to super-resolve the significant PCA transformed images. Given

the hyperspectral images, we first represent the HS observations as linear combination

of small number of basis image planes (BIPs) using principal component analysis (PCA)

and the data of reduced dimension is used in our work. In order to obtain SR image for for

each HS band we first obtain the initial estimates of the super-resolution on this reduced

dimension. Since SR is an ill-posed problem, the final solution in PCA domain (SR PCA

components) is obtained by using a regularization framework. Similar to the previous

work, applying inverse PCA to significant SR PCA components results in super-resolved

hyperspectral bands in spatial domain. Experiments are conducted on two different HS

data sets namely 31-band natural hyperspectral image (HSI) collected under controlled

laboratory environments and 224-band real HS images collected by remote sensing sen-

62
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sor Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Visual inspections and

quantitative comparison confirm that our method enhances spatial information without

introducing significant spectral distortion.

5.1 Previous Work

Super-resolution enhancement refers to an algorithmic approach to overcome the inherent

spatial resolution limitation of imaging systems [153]. Tsai and Huang [20] were first to

propose the SR technique in frequency domain. They reconstructed HR image from a

set of aliased LR images. In the last three decades many researchers have attempted to

increase the spatial resolution of the HS images using auxiliary information in the form

of (i) multiple LR observations [21, 33, 154, 34, 5], (ii) HR multispectral images [22, 37],

and (iii) HR panchromatic image [15, 53, 16, 23, 40, 28, 41, 54]. These algorithms are

generally referred to as fusion algorithms.

Wilson et al. [21] used combination of multiple LR HSIs in order to obtain a subset

of HR images while maintaining the visual information necessary for human analysis.

They assume that LR HSIs are registered and are acquired from a single sensor or mul-

tiple sensors. To reduce the computations, [33] modeled HS image acquisition process as

weighted linear combinations of a small number of basis image planes. A set-theoretic

method is used to combine the information from multiple LR HSIs to obtain HR HSI.

Another method proposed by [34] used LR multiangular HSIs that are registered using

thin plate spline nonrigid transform to reconstruct HR HSI using Delaunay triangulation-

based nonuniform interpolation method. Zhang et al. [5] proposed a maximum a pos-

teriori (MAP) based multi-frame SR algorithm utilizing principal component analysis

in order to reduce the complexity. Gomez et al. [22] proposed the fusion between HS

and MS images using the wavelet based method. The method reported in [37] employs

generalized MAP approach that makes use of stochastic mixing model in order to ob-

tain high-resolution HSI. Explicit spectral relationship between MS and HS image is not

required in this method.

Many algorithms use HR panchromatic image to fuse details into the LR HS image to

enhance its the spatial resolution. Winter and Winter [15] replaces first PCA component

of LR HSI with HR PAN image for resolution enhancement, but performance of this
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method decreases when correlation between the spectral response of the PAN and HSI

decreases. First PCA component represents the intensity component, hence the resulting

HR HSI has only the intensity variations at finer resolution. The main limitation of

this method is that the spectral characteristics are not preserved. A different approach

presented by Hardie et al. [16] used MAP estimator for enhancing the spatial details using

co-registered PAN image to obtain enhanced HSI. The method allows for any number of

spectral bands in primary and auxiliary image. On a similar line Eismann and Hardie [23]

used MAP estimation framework combined with a stochastic mixing model (SMM) for

reconstructing subpixel spatial information. Here SMM is used to provide the constraint

in estimation of HR HSI. Capobianco et al. [40] fused PAN data with Hyperion HSI using

two different linear injection models, namely single spatial detail (SSD) and the band-

dependent spatial detail (BDSD) models. In the SSD model same PAN image is used to

enhance all the bands of HSI, while in BDSD model an optimum detail image is extracted

from the PAN data and the same is fused with the HSI, thus providing more accurate

results than SSD model. Garzelli et al. [28] proposed constraint spectral angle (CSA)

fusion to preserve spectral properties in HR HSI while increasing its spatial resolution.

A method proposed by Bar et al. in [41] extracts anomalies from LR HSI captured using

Compact army Spectral Sensor (COMPASS) and a subregion from the HR PAN image

is extracted to match each anomaly resulting in HR HSI. Few researchers have proposed

methods that use fusion as preparation stage and uses them in linear mixture model to

improve the performance of their algorithm [54, 53]. All these methods based on fusion of

HR MS or PAN data require accurate coregistration of LR HSI and HR image acquired

over the same area.

Availability of auxiliary information can be very expensive or sometimes impossible,

hence indirect approaches based on spectral mixture analysis and learning [24, 26, 60, 62],

and compressed sensing [61, 79] were proposed by the researchers. A method proposed

by Gu et al. [24] first obtains abundance map using linear spectral mixture analysis

(LSMA). Then based on spatial correlation of landcovers, learning based SR mapping

is performed by using back propagation neural network (BPNN) to enhance the spatial

resolution of HSI. Villa et al. In a different approach Mianji et al. [26] used LR test image

and its downsampled version to train the BPNN. They perform learning based SRM after

SMA by considering spatial correlation of different materials present in the HS image.
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Villa et al. [62] proposed the algorithm in which first the spectral unmixing is performed

to determine proportion of endmembers in each pixel, then subpixels are located by SR

mapping performed either by simulated annealing or pixel swapping in unsupervised way.

However, the limitation of these algorithms is the requirement of high computational load

because of large number of spectral bands of HSIs. In a method proposed by Zhao et al.

[61] used trained dictionaries created from different PAN images which are rich in edges

and texures. By utilizing the sparse representation and spectral regularization based on

linear mixing model (LMM) they obtained HR HSI. Here all bands are super-resolved

individually without applying dimensionality reduction, which increases computational

complexity of the algorithm.

In this chapter, we present a novel approach for super-resolution of HSIs that uses

CS theory and Gabor prior. The compressive sensing theory is used for obtaining a

close approximation to SR which in turn is used to obtain the final solution by using

regularization framework in which we use a new prior called “Gabor prior” which is

based on a bank of bandpass filters. Our method makes use of HR and LR registered

HS training images to create CS dictionaries corresponding to LR and HR data. This is

one time offline process. The training set consists of the HS data of an HR HSI sensor

that can also be used for capturing the LR data. One approach to super-resolve HSI is

to obtain SR for each spectral band separately. But this results in two major problems

(i) Due to hundreds of spectral bands computational load is increased manifold, (ii) HS

bands are highly correlated, hence considering each band independently do not exploit

the correlation among them explicitly which in turn results in changing the pure spatial

colors resulting in spectral distortion. Hence in this chapter, we first used principal

component analysis (PCA) to reduce the dimensionality of the HSI. Since most of the

information is contained in first few principal components, we apply SR reconstruction

to these few PCA components to obtain their HR counterparts, thereby greatly reducing

the computational complexity. Using CS based approach on this reduced set we obtain

an initial SR image. Since SR is an ill-posed problem, we improve the solution by using

regularization that uses a suitable prior. Our prior called “Gabor prior” consists of

outputs of bandpass filters which correspond to bandpass features of LR image and initial

SR estimate. Use of this prior restricts the solution space of final SR image. While

regularizing the solution, degradation matrix entries are not assumed to be fixed rather
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estimated from the initial SR image separately for significant PCA bands. Experimental

results are validated using 31-band natural HSI captured under controlled laboratory

environment and 224-band remotely sensed HSI. Experimental results show that our

method improves spatial resolution without introducing considerable spectral distortions.

Visual and quantitative comparison validates the effectiveness of proposed algorithm.

5.2 Block Diagram of the Proposed Algorithm

A block diagram showing the procedural flow of the proposed approach of CS based SR

of hyperspectral image is illustrated in Figure 5.1. Given LR test image and a training

database of LR-HR HS images, the proposed technique is implemented using the following

steps:

1. Reduce the dimensionality of the LR test HSI using PCA. We now have PCA

transformed LR primary images consisting of most of the information of HSI.

2. Apply CS based approach to primary PCA components to obtain initial SR images

in PCA domain.

3. Use the initial SR image to estimate the degradation matrix for each of the primary

PCA components obtained in step 2 that represents the observation model.

4. Regularize using Gabor priors and observation model estimated in step 3 to obtain

the final super-resolved images in PCA domain.

5. Apply inverse PCA to obtain final SR HSI in spatial domain.

The spectral content of HSIs are inherently low dimensional, hence we exploit it

by using PCA, a standard tool for analysis of multivariate data [8]. In our approach,

we first represent the HS observations from different wavelengths, as a weighted linear

combination of small number of basis image planes using principal component analysis

(PCA) transform. The first few principal components referred to as primary components

contain most of the information of HS observations and remaining PCA components

referred to as secondary components contain very less information. In our work we do not

consider secondary components as they represent very small portion of total information.
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The proposed super-resolution algorithm is applied on the reduced set of primary PCA

images to decrease computational burden of the algorithm.

In the next step, we need trained LR and HR dictionaries in CS based approach to

obtain initial SR estimate. LR and HR raw dictionaries of respective PCA components,

consisting larger number of atoms are generated using training database of LR and HR

hyperspectral images. These raw dictionaries of the PCA components are jointly trained

using K-singular value decomposition (K-SVD) algorithm [145], obtaining optimum num-

ber of atoms in each dictionary. We train a pair of dictionaries for each of the PCA band.

An initial SR is obtained by using these dictionaries in CS based reconstruction.

We assume linear image observation model for the proposed SR algorithm. The LR

image is modeled as the aliased and noisy version of the corresponding HR image. Using

initial SR PCA image and LR test PCA image, degradation matrix entries are estimated

for each PCA component. Estimated degradation matrices are used to further regularize

the initial solution.

Our method of obtaining initial SR estimate do not consider the contextual dependen-

cies among pixels as it is patch based. This results in artifacts in initial SR image around

the patch boundaries. Hence prior knowledge about HS imagery is utilized in order to

obtain better solution. Regularization based on Gabor prior is performed in order to

obtain final solution for each of the initial SR PCA components. A simple optimization

technique like gradient descent is used to minimize the cost function. This results in final

SR HSI in PCA domain. Applying inverse PCA transformation on primary SR PCA

components yields final super-resolved HS image.

5.3 Proposed Approach

5.3.1 Use of PCA and CS for Dimensionality Reduction and

Sparseness Estimation

Hyperspectral image consists of large number of spectral bands and the spectral content

of HS images are inherently low dimensional, hence this must be exploited. In this work,

we first use principal component analysis (PCA) on LR test image as well as on LR-HR

pairs of training HSIs to construct dictionaries. After learning these dictionaries using
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Figure 5.1: Detailed block diagram of proposed approach for HS image super-resolution
algorithm. Here blocks are not drawn as per scale. The size of LR HSI is M ×M × B,
primary PCA images are of size M ×M × K, secondary PCA images are of size M ×
M × (B −K), initial SR PCA and final SR PCA are of size rM × rM ×K, and SR HSI
is of size rM × rM ×B, where r is super-resolution factor.

K-SVD we use CS framework to obtain initial SR of all significant PCA components. In

chapter 4, we already discussed on PCA in section 4.2.1. Here it is discusses to maintain

continuity in discussion of present work.

Suppose we have a dataset of hyperspectral bands, represented by the matrix L =

[L1,L2, ....,LB]M2×B, where Li, i = 1, 2, ..., B is the ith hyperspectral band of size M ×M

arranged in lexicographical order and B is the total number of bands of HSI. A set of

eigen vectors E = [e1, e2, ...., eB]TB×B are computed from the covariance matrix,
∑

=∑B
i=1 (Li −mL)T (Li −mL), where mL is the average image intensity defined by mL =

1
B

∑B
i=1 Li. Here the top K � B eigen vectors corresponding to maximum eigenvalues

contribute to maximum information of HS observations and the remaining B −K eigen
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vectors cover very less information. By projecting HS observations on these eigen vectors

we obtain K number of primary PCA components and B − K number of secondary

PCA components each of dimension M × M . Here we use compressive sensing (CS)

framework which is already described in chapter 3 in section 3.1.1. In present work, we

use dictionaries constructed from the available empirical data as discussed in chapter 4

sections 4.2 and 4.3.1. The difference lies in the use of joint dictionary learning using

K-SVD algorithm on all raw dictionaries of significant PCA components.

5.3.2 Generating Trained Dictionaries

Learned dictionary provides more compact representation of the signal compared to raw

dictionary which simply samples large amount of patches. This results in substantial

reduction in computation while estimating the initial approximation to SR. CS based

approach used in our earlier work is further extended here by using joint learning of dic-

tionaries. Here the CS is applied on all the primary PCA bands and the initial estimates

are derived for each of the primary bands. We create a set of HR and corresponding set

of LR patches using a training database. Here we choose training images of the same

class so that basis vectors of PCA better represent the materials of interest. The choice

of basis vectors depends on the field of application. Note that dictionaries are not created

directly from all bands of HS image, rather we use primary PCA images corresponding

to maximum variability of HSI.

We first apply PCA on the training HR and LR HSIs and retain only primary PCA

components of HR and LR both, then work on the first three primary components to

obtain SR in PCA domain. We construct the joint dictionaries by randomly choosing raw

patches from the HR and corresponding LR PCA components. Considering a resolution

factor of r = 4, we select HR patch of size 8 × 8 (i.e. atom of 64 × 1 vector) and

corresponding LR patch of size 2 × 2 (i.e. atom of 4 × 1 vector). Appending the LR

to HR vector we obtain a joint vector of size 68 × 1. This way, we obtain a joint raw

dictionary for each PCA component, having large number of patches (100000). We now

have three dictionaries of raw patches corresponding to three primary components each

of size 68× 100000.

By assigning different weightages to HR and LR patches, two dictionaries in the high
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and low-resolution spaces are balanced while training to achieve better initial estimate.

These dictionaries were trained using K-SVD algorithm [145], obtaining optimum number

of atoms in each dictionary. During dictionary training, we keep arbitrary number of

atoms to represent each signal until a specific representation error is reached. It is to

be noted that this kind of dictionary learning reduces the reconstruction error while

obtaining the initial estimate. This way the number of atoms of joint dictionary are

reduced to 1000 and the size of each dictionary becomes 68 × 1000. From the joint

dictionary we separate out HR and LR trained dictionaries to obtain two dictionaries

each of size 64× 1000 and 4× 1000, respectively. Now we have HR and LR dictionaries

DHm and DLm, m = 1, .., K corresponding to K number of primary PCA components.

It is to be noted that dictionary training is one time and offline procedure. Using these

dictionaries and LR HSI test images as inputs, initial SR PCA estimates are generated

using CS based approach. Corresponding to each primary PCA component, we have a

pair of LR-HR dictionaries. These PCA dictionaries are used in CS based approach to

obtain initial SR estimates in PCA domain.

5.3.3 Initial Estimate of Super-resolution

Here we use dictionary based approach on the primary principal components to obtain the

initial SR estimates in PCA domain. Due to similar statistical properties, HS test image

patches can be represented as a sparse linear combination of LR dictionary elements using

equation (3.1). We assume that the same sparsity holds good for its corresponding HR

image which is unknown. Hence one may recover HR image using the HR dictionary.

Given LR HS test image cube L of size M ×M × B and trained dictionaries DHm

and DLm, m = 1, .., K, the proposed algorithm to obtain initial SR images (primary SR

PCA) of size rM × rM , where r is the super-resolution factor, is described below.

1. Generate mean subtracted LR HS test image Lms = [L1ms,L2ms, ..,LBms]M2×B,

where B is the total number of bands of HSI. Here all mean subtracted bands of LR

HS image are arranged lexicographically to convert them in vectors of size M2× 1.

2. Obtain basis eigen vectors of the covariance matrix C = [LTmsLms]B×B. Retain

primary basis eigen vectors elm,m = 1, ..., K, K � B corresponding to maximum

variability of data (i.e., highest variance), each of size 1 × B. The percentage of
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information retained in primary PCA components is given by

Information retained =

∑K
i=1 λi∑B
i=1 λi

∗ 100. (5.1)

3. Create LR transformed images Ym,m = 1, ..., K by projecting Lms on primary basis

eigen vectors generated in step 2

Ym = elm × LTms;

Ym is still a vector representing mth image. Compute Ym,m = 1, ..., K and obtain

matrix of size M×M for each test image. We now have K number of primary PCA

transformed test images each of size M ×M .

4. Consider a patch of size b× b from the transformed mth LR test image Ym. Convert

it into lexicographic order to obtain a vector y of size b2 × 1.

5. Solve CS based l1-minimization optimization problem i.e.,

min||x||1 such that y = DLm x.

Here x gives sparse representation of test patch y in terms of LR dictionary (DLm)

atoms.

6. Obtain SR patch using z = DHm x. This is the SR patch in the PCA transform

domain.

7. Repeat steps (4) to (6) for all patches of Ym to obtain transform domain HR image

Zm. The same procedure is repeated for other primary images that gives initial SR

approximation to all primary LR components. Note that the spatial dependency

still exists within the pixels of these transform domain SR images. However, dif-

ferent PCA components of HS image are uncorrelated. Hence there is no spatial

dependency of pixels among different PCA components.

Thus we obtain the initial estimate of the SR image for each test image having a size of

rM × rM . We considered patch size of b = 2 for r = 4. Note that the inverse PCA using

Zm,m = 1, 2, ..., K can be used to obtain super-resolved HSIs in the spatial domain.
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5.4 Final Solution using Regularization

Since we are estimating the initial SR image using patch based approach, the spatial cor-

relation is not considered, as the sparse representation of patches is done independently.

Hence we need to regularize it further to obtain a better solution. We restrict the solution

space for the SR image by using our proposed Gabor prior. For regularization purpose

one needs to have data fitting term and regularization term. Hence we first model the

image formation in order to get the data fitting term.

5.4.1 Observation Model

A linear image observation model is used to relate the desired HR image to the observed

LR image for decimation factor of r. Continuing with the transformed components the

observed LR HSIs are modeled as decimated and noisy versions of the corresponding HR

HSIs. Let Ym(m = 1, 2, ..., K) be the LR PCA image of mth PCA band of size M ×M

and and Zm be the corresponding HR PCA image of size rM × rM , then the model of

image formation is represented as:

ym = Dmzm + n, m = 1, 2, ...K, (5.2)

where ym and zm represent the lexicographically ordered vectors of size M2 × 1 and

r2M2×1, respectively with zm representing the SR vector to be estimated. Here n is the

independent and identically distributed (i.i.d.) noise vector with zero mean and variance

σ2
n and has the same size as that of y. Dm is the downsampling/decimation matrix taking

care of aliasing caused as a result of downsampling. For an integer downsampling factor

of r, matrix Dm consists of r2 non-zero elements along each row at appropriate locations.

It models the integration of light intensity that falls on the HR detectors of corresponding

spectral bands.

In most of the earlier research, either implicitly or explicitly the same degradation

matrix Dm with fixed entries is considered to construct degradation model for all bands

of the multispectral and HSIs [23, 13, 61]. This clearly means that LR pixel of any band

is considered as equally weighted sum of corresponding r2 HR pixels for all bands, i.e.,

the ideal squared response optical point spread function (PSF) is considered. Generally,
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the decimation matrix used to model aliased pixel intensities from the corresponding HR

pixels for a decimation factor of r, has the form [126]

Dm =
1

r2


1 1 . . . 1 0

1 1 . . . 1

... ... ...

0 1 1 . . . 1

 , (5.3)

In practice, many factors like diffraction, shape, location, physical construction and elec-

tronic response of the detectors, and the electronics of the amplifications contribute to

the PSF of any spaceborne radiometer. The effect of diffraction is significant at higher

wavelength in the HS imager. This results in spatially and spectrally varying PSF of

degradation function. For more details on this readers may refer to the [17].

In our work, we do not consider LR pixel as sum of equally weighted HR pixels,

rather we estimate the alias by estimating the entities of matrix Dm. For the estimation

of aliasing we need true HR image which is not available. Since we have availability of

initial estimate of SR image, we estimate decimation matrix Dm using the the available

LR PCA test component and initial SR PCA component. Then the form of decimation

matrix for mth LR-HR pair is modified as below

Dm =


dm1 dm2 . . . d

m
r2 0

dm1 dm2 . . . d
m
r2

... ... ...

0 dm1 dm2 . . . d
m
r2

 , (5.4)

where 0 < dmi < 1, i = 1, 2, ...r2 are unknown. Here we use a simple least squares approach

to estimate the decimation coefficients di. It is worth to mention that for each primary

PCA component we estimate the decimation matrix Dm i.e., different PSF is considered

for each primary spectral basis. Hence the estimated Dm matrix for each PCA component

is close to the true degradation of HSI, hence incorporation of this degradation model

leads to better solution.
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5.4.2 Regularization using Gabor Prior

Hyperspectral images contain various textured regions having different frequency con-

tents. Hence it is necessary that these frequency details are preserved in the SR image.

This can be achieved using a prior that incorporates the information about the details

at various frequencies. In computer vision community, a linear filter named Gabor filter,

is widely used for feature extraction at various bandpass frequencies. Frequencies and

orientation representation of this filter are similar to those of the human visual system

and they have been found very useful for texture representation and discrimination. This

motivates us to use Gabor prior for regularization in our work. The impulse response of

Gabor filter is given by [155]

G (p, q, f, θ, σp, σq) = e
− 1

2

„
p′2

σ2
p

+ q′2

σ2
q

«
cos(2πfp′), (5.5)

where (p, q) represents spatial coordinates, (p′, q′) = (pcosθ + qsinθ,−psinθ + qcosθ), σp

and σq are the spatial extent of the filter in p and q directions, respectively. Here f is the

center frequency of sinusoidal carrier wave, and θ is its orientation.

Using a data-fitting term, and Gabor prior terms, the final cost function to be mini-

mized for each PCA band image m = 1, 2, ..., K can be written as,

εm = ||ym −Dmzm||2 + λ1

Q∑
j=1

||Gjym −Gj(Dmzm)||2 + λ2

Q∑
j=1

||Gj ẑm −Gjzm||2, (5.6)

where ym is mth band of LR, Dm represents degradation matrix for mth band, estimated

using the LR and initial SR image. Here ẑm and zm are the SR images of mth band of

initial estimate and final estimate, respectively. Gj is jth Gabor filter matrix representing

the impulse response given in equation (5.5), and Q is the total number of filters in

the Gabor filter bank. λ1 and λ2 represent the weightages given to the second and third

term, respectively, chosen empirically. This way we obtain K number of primary SR PCA

components. It is to be noted that while solving the HSI SR problem degradation matrix

is usually considered as fixed entries for all spectral bands [13, 5]. However, in this work

a matrix with different entries is considered for all spectral bands. This way an optimum

linear observation model is considered for all primary bands. Our prior in second term

of equation (5.6) imposes the condition that degraded SR image should possess features
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similar to that of the LR test image when viewed at different frequencies. This means

we look for a solution i.e., SR image whose downsampled version has the same Gabor

features as that of LR input image when passed thorough the same Gabor filter bank.

This is illustrated in Figure 5.2. Similarly, final term in equation (5.6) indicates that

features of different frequency contents in final SR image should be identical to that of

initial SR estimate. Use of the available initial SR estimate as an initial solution speed-

up the convergence. Applying inverse PCA to all primary SR PCA images results in SR

hyperspectral image in spatial domain.

Figure 5.2: Gabor prior for SR image Zm. Here the output GjDmZm represents the image
details at a particular frequency band which have to match with the details of Ym when
it is passed through the same filter Gj. {Gj}, j = 1,. . . , Q represents a Gabor filter bank.

5.5 Experiments and Result Analysis

In this section, we show the effectiveness of the proposed method by conducting exper-

iments on two different data sets: (1) Natural hyperspectral images, and (2) Remotely

sensed HSIs (AVIRIS). The data sets used in the experiments constitute images with 31

and 224 spectral bands, respectively. Detailed analysis of the results is performed on 224

band AVIRIS HSI. We performed experimentations for r = 2 as well as for r = 4. Due

to the space constraint, we are demonstrating results only for the case of r = 4. For all

our experiments, the step size for gradient descent algorithm was chosen as 0.01. The

weightage to second and third terms were set as λ1 = 0.14 and λ2 = 0.17, respectively in

the regularization equation (5.6). These were chosen by trial-and-error procedure for all

experiments. Here, one can use a generalized cross-validation technique [156] to identify
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the optimum values of λ1 and λ2, but it is computationally expensive and it is specific to a

given image only. We show the visual as well as quantitative comparison for experiments

on both data sets. Different quantitative measures used in our experiments are described

in the following section.

5.5.1 Quantitative Evaluation Measures

For quantifying the results on 31-band natural HSI we used mean squared error (MSE) as

a preliminary evaluation index which is discussed in chapter 3 section 3.3.1 (see equation

3.15), where Fi,j and F̂i,j represent the true HR (groundtruth) and the SR images, respec-

tively. Detailed quantitative evaluation of spatial and spectral fidelity of super-resolved

hyperspectral images is performed using different measures such as correlation coefficient

(CC), erreur relative globale adimensionnelle de synthese (ERGAS), and Q2n. CC and

ERGAS are defined in chapter 4 section 4.4.1 (see equations 4.6, 4.7 and 4.9). What

follows is the description of Q2n.

Q2n [157] index is derived from the theory of hyper-complex numbers of 2n-ons (pro-

nunciation: two-to-the-any-ons) [158]. It takes into account the correlation, mean of each

spectral band, intra-band local variance, and the spectral angle. Both spectral and spa-

tial distortion metrics are encapsulated in this index. It takes a real value in the interval

0 to 1, with 1 being the best value. It is defined between kth super-resolved (F ) and

groundtruth (F̂ ) bands as:

Q2nk =
cov(F, F̂ )

σFσF̂
.

2||F̄ |||| ¯̂F ||
||F̄ ||2 + || ¯̂F ||2

.
2σFσF̂
σ2
F + σ2

F̂

, (5.7)

where k = 1, ..., B and cov(F, F̂ ) is the covariance between bands F and F̂ . σ2
F and σ2

F̂

are the variances of F and F̂ , respectively. Here we averaged Q2n over the all HSI bands

to get a global measure of spatial and spectral distortion of the super-resolved HSI i.e.,

Q2n =
1

B

B∑
k=1

Q2nk , (5.8)

where B is the total number of bands in hyperspectral image, which is 196 in our case.
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5.5.2 Experiments on Hyperspectral Images

The first set of our experiment consists of 31-band reflectance images of natural scene,

having spectral range of 400nm − 700nm all acquired under the direct sunlight in clear

or almost clear sky [149]. Our second HSI data set is comprised of 224 bands of AVIRIS

HSI cube 1. After discarding few bands having low signal to noise ratio (SNR), 196

bands were used for super-resolving by a factor of 2 and 4, respectively. The band

removal was based on visual inspection of the images. The above data sets have high

spatial dimensions and hence specific regions are cropped from them and experiments

are carried out on the cropped regions. Here, we do not have the true LR-HR pairs of

HSIs. Hence the low spatial resolution (LR) images were created from these cropped

images by using filtering and downsampling operations. The whole HSI cubes are used

to generate raw dictionaries by random selection of patches. Use of same cube to create

raw dictionaries ensures inclusion of large number of materials and objects of interest.

Note that we need LR-HR pairs to construct dictionaries. If these images are acquired

offline they can be utilized to form the pairs. One may also use the LR and HR images

of the same scene captured by using different sensors but after applying the radiometric

and geometric (registration) corrections. In order to evaluate the performance of our

approach using quantitative measures, we need the groundtruth images. Since these

images are not available, we consider original cropped HSIs of size 256 × 256 as ground

truths and generated the LR HSIs of size 128×128 and 64×64 by applying downsampling

operation by a factor of r = 2 and r = 4, respectively. The SR algorithm was then applied

on these LR HSIs. In order to restrict the maximum spatial frequency in the image we

use low pass filtering operation before downsampling. The low pass filtering operation

was performed and tested using Gaussian filter with standard deviation of 0.5. For this

purpose we used filter mask of size 5× 5. While performing joint training of dictionaries

weightages given to HR patches and LR patches were 0.65 and 0.35, respectively.

5.5.3 Experiments on 31-band Natural Hyperspectral Image

In this section, effectiveness of the proposed algorithm on the 31-band natural HSI is

evaluated. Here we use cropped region of “Scene 5” of hyperspectral images of natural

1Aviris Free Data, Jet Propulsion Lab., California Inst.Tech., Pasadena, http://aviris.
jpl.nasa.gov/html/aviris.freedata.html
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Experimental results on PCA-1 of 31-band natural HSI for r = 4. (a) LR
test image of size 64 × 64, (b) Ground truth of size 256 × 256, (c) Bicubic interpolation
[148], (d) Iterative backprojection method [152] (e) SR image using Yang et al. method
[79], and (f) SR image using the proposed approach.

scenes 2002 2 as test data. In this case we found that 99.4% of spectral variance is covered

by first three principal components. Hence we retained these three PCA components and

applied SR algorithm in our experiment. Figure 5.3 displays the results for the PCA-I

component. Figures 5.3(a) and (b) display the LR test image and the ground truth image

of size 64× 64 and 256× 256, respectively. The results obtained using different methods

are shown in Figures 5.3(c-f). Visual inspection of images in Figures 5.3(c-e) indicate

that the white borders of “D“ shape mounted on the box appear blurred in the bicubic

interpolated image, iterative backprojection (IBP), and the method proposed by Yang et

al. [79]. One can see in Figure 5.3(f) that the SR image obtained using the proposed

method compares well with the groundtruth. The white border of ”D“ shape is sharper

2http:// personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral images of natural scenes
02.html
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Table 5.1: Quantitative evaluation measures for SR of 31-band Natural hyperspectral
image using different techniques for r = 4

Quantitative
Measures

Bicubic
interpolation

[148]

Iterative
backprojection

[152]

Yang et
al. [79]

Proposed
approach

MSE-PCA-1 0.0072 0.0069 0.0065 0.0053
MSE-PCA-2 0.0388 0.0368 0.0563 0.0308
MSE-PCA-3 0.7487 0.6716 0.5940 0.5935
CCavg 0.9681 0.9806 0.9827 0.9857
ERGAS 6.6613 5.2086 4.9888 4.6388
Q2n 0.9643 0.9789 0.9796 0.9801

and closer to groundtruth. Similarly, the number ”60“ in the image appear more clear

in Figure 5.3(f) compared to others shown in Figures 5.3(c-e). Quantification of this

experiment is provided in Table 5.1. From the table we can see that the MSEs between

the true and the estimated SR PCA components are significantly less for the proposed

method. The use of CS based approach using learned dictionaries and regularization using

Gabor prior improves the results in our approach as evident from quantitative evaluation

measures such as CCavg, ERGAS, and Q2n. Note that the MSE is computed on PCA

bands directly while all other measures are computed on 31 bands after performing the

inverse PCA. These measures show that proposed approach better preserves spatial and

spectral fidelity in the super-resolved hyperspectral images.

5.5.4 Experiments on AVIRIS Hyperspectral Image

We now discuss the SR results for 224-band AVIRIS hyperspectral image. This data set

is comprised of 224-band real hyperspectral image of Moffett Field acquired by AVIRIS

hyperspectral imaging system. In this experiment, cropped region of an urban area in

Moffett Field is used as test data. This cropped region is specifically chosen to include

various bandpass components in the image to evaluate the performance of the proposed

method. The SR results on remotely sensed data acquired using AVIRIS hyperspectral

imager is shown with reduced dimension. Figures 5.4, 5.5 and 5.6 show the SR results

of first, second and third PCA bands, respectively. Quantitative results are listed for the

first three PCA bands that include 97.56% of spectral variance of HSI. Here the measures

listed in Table 5.2 are computed over 196 bands. Figures 5.4-5.6 (a) show the LR PCA

test images of size 64× 64 and the original PCA bands of size 256× 256 are displayed in
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Experimental results on PCA-I band of AVIRIS data for r = 4. (a) LR test
image of size 64× 64, (b) Ground truth of size 256× 256, (c) Bicubic interpolation [148],
(d) Iterative backprojection method [152], (e) SR image using Yang et al. method [79],
and (f) SR image using the proposed approach.

Figures 5.4-5.6 (b).

From Figures 5.4-5.6(c) we can see that when the PCA images are upsampled using

bicubic interpolation they become blurred and the high frequency spatial details are lost.

Roads and buildings are no longer visible in bicubic interpolated image in the PCA-I

and PCA-III results displayed in Figure 5.4(c) and Figure 5.6(c), respectively. One may

notice that bicubic interpolation in Figure 5.3(c) appears better than the result in Fig-

ure 5.4(c). This is because there is significant high frequency content in AVIRIS data

when compared to natural HSI displayed in Figure 5.3(c) and the interpolation fails to

preserve the high frequency details. This indicates that the interpolation techniques are

not suitable for solving the SR problem, hence they are not considered as SR techniques.

Quantitative comparisons for bicubic interpolation given in Table 5.1 and Table 5.2 fur-

ther proves this observation. SR result on PCA-I of IBP [152] shown in Figure 5.4(d)
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is less blurred compared to bicubic interpolated image but the overall contrast of the

image is not preserved by this method. Visibility of roads and buildings has improved

over bicubic interpolation in all super-resolved PCA components as seen from Figures

5.4-5.6(d). Borders of objects appear blurred in SR PCA images obtained using IBP

method (Figures 5.4-5.6(d)). Sparsity based SR results of [79] method shown in Figures

5.4-5.6(e) are visually better than bicubic interpolation and IBP method, but it fails to

preserve high frequency details as evident from top half portions of the images. As seen

from Figures 5.4-5.6(f), the use of compressed sensing and Gabor priors regularization

results has reduced artifacts and also takes care of preservation of different frequency

details. Sharpness of different objects such as roads and buildings has improved over all

other methods, particularly noticeable in PCA-I and PCA-II SR images shown in Figures

5.4(f) and 5.5(f), respectively. The visual quality of SR PCA images in Figures 5.4-5.6(f)

is closely matching with the groundtruth. We can see that the white patches visible in

LR PCA-1 observation appear grayish in Yang et al. [79] method (See Figure 5.4(e)),

but the result is improved in the proposed approach as seen from Figure 5.4(f). One can

clearly discriminate the road lines joining the top right (1
4

th
way down) to bottom left

corner of the image in Figure 5.4(f) indicating that edge details are well preserved in the

proposed approach.

As far as the quantitative comparison is concerned, it is clear from Table 5.2 that the

proposed method provides scores that are closer to the reference values shown in the same

table when compared to bicubic interpolation [148], IBP [152], and Yang et al. approach

[79]. Note that the quantitative measures CCavg and Q2n are averaged over the 196 HSI

bands. Lower value of ERGAS in the proposed method indicates lesser global distortion

in super-resolved HSI. Generally a value of ERGAS below 3 is believed to be an image

with good quality [124]. We see that when compared to other approaches CCavg and

Q2n are also better for the proposed method. Lower value of Q2n in Table 5.2 indicates

minimum spatial as well as spectral distortions by the proposed approach. To further

support the performance improvement using our approach, we show the plot of bands Vs

CC in Figure 5.7 for various methods. From the average CC value listed in Table 5.2 and

the plots in Figure 5.7, we can see that the proposed method better preserves the spatial

details.

In order to compare the performance in terms of spectral fidelity, we show the spectral
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reflectances of groundtruth and outputs of different SR algorithms at different regions.

We have chosen three different regions to show the performance of various algorithms

at different frequency bands. These regions include: (i) Uniform region (A) (very low

frequency) (ii) Smooth edge region (B) (mid range frequency), and (iii) High frequency

region (C) having sharp variation of texture. Spatial locations of these regions are shown

in Figure 5.8(a). Spectral reflectances of different SR methods for the selected regions A,

B and C in Figure 5.8(a) are shown in Figures 5.8(b), (c) and (d), respectively. Here the

spectral reflectance for each region is computed by using a 3 × 3 patch in every region

and computing the average reflectance. So, we have 3 vectors of 9 × 1 for each band

corresponding to three regions and there are total of 196 bands. The plots showing the

bands Vs spectral reflectance for various approaches including the original are shown

in Figures 5.8(b), (c) and (d). Separate plots are shown for each region. The average

computed over the bands is given in Table 3 for quantitative comparison. In Figure 5.8(a)

region A represents smooth region having no significant reflectance variations. One can

see from Figure 5.8(b) that the plots of all SR algorithms closely match that of the

groundtruth as far as the region A is concerned. This is also evident in Table 5.3 where

we can see that average spectral reflectances of bicubic interpolation, IBP, Yang et al., and

proposed approach are closer to groundtruth. This indicates that low frequency regions

are better preserved by most of the approaches. Region B has mid frequency content

and in this case IBP as well as Yang et al. approaches perform better in addition to

the proposed method. But, there is obvious deviation in bicubic interpolation as evident

from Table 5.3 entries for region B. We can see that average spectral reflectance of bicubic

interpolation is significantly deviating from the groundtruth when compared to IBP and

Yang et al. methods. Region C has sharp variations in texture, and in this case the

spectral reflectance plot of the proposed method is closer to groundtruth as evident from

Figure 5.8(d). From Table 5.3, one can see that although the approach by Yang et al.

[79] performs better than other two approaches, the proposed approach performs even

better.

Before we conclude we would like to compare performance of this method with the

previous method discussed in chapter 4. Since ERGAS represents the overall error in the

super-resolved image irrespective of resolution factor, we use the same for comparison.

From chapter 4 Table 4.1, one can see that the value of ERGAS is 7.065 in proposed
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Experimental results on PCA-II band of AVIRIS data for r = 4. (a) LR test
image of size 64× 64, (b) Ground truth of size 256× 256, (c) Bicubic interpolation [148],
(d) Iterative backprojection method [152], (e) SR image using Yang et al. method [79],
and (f) SR image using the proposed approach.

approach when we considered a resolution factor of 2, while it is 2.9725 (see Table 5.2) by

the approach proposed in this chapter, even though the resolution difference between LR

and SR is 4. This indicates reduced global distortion for the approach proposed in this

chapter. The use of learned dictionaries in compressive sensing based approach on all

significant components improves initial estimate in the present method when compared

to the use of raw dictionaries in chapter 4. Bicubic interpolation of remaining significant

components (except first one) cannot preserve high frequency details in the initial SR

estimate discussed in the previous chapter. The performance is further improved due to

the use of estimated entries of decimation matrix here, as well as use of Gabor prior. In

this approach, the trained dictionaries have the tendency to adapt to local structures of

the images, and the regularization based on Gabor prior preserves the spectral as well as

spatial information better.
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Experimental results on PCA-III band of AVIRIS data for r = 4. (a) LR test
image of size 64× 64, (b) Ground truth of size 256× 256, (c) Bicubic interpolation [148],
(d) Iterative backprojection method [152], (e) SR image using Yang et al. method [79],
and (f) SR image using the proposed approach.

5.6 Conclusion

We have presented SR algorithm for HSIs based on the compressed sensing theory in

which jointly learned dictionaries are used to obtain SR images in reduced dimension

space. We construct the raw dictionaries of LR and HR from a training database and

used K-SVD algorithm to obtain learned dictionaries for all primary PCA components.

Using learned dictionaries in CS based approach we obtain initial estimates of SR for

each primary PCA component in the PCA domain. High spatial resolution initial SR

images and the corresponding low-resolution observed images in PCA domain were used

to estimate the decimation. Subsequently, a regularization scheme is employed using

Gabor priors considering varying degradation or PSF in the spectral space. Gabor prior

was considered on downsampled as well as HR versions of initial estimates.
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Table 5.2: Quantitative evaluation metrics of AVIRIS SR for r = 4

CCavg ERGAS Q2n

Bicubic interpolation [148] 0.9163 5.2020 0.9074
IBP [152] 0.9509 3.9862 0.9451
Yang et al. [79] 0.9635 3.4362 0.9513
Proposed Approach 0.9807 2.9725 0.9681
Reference 1.0000 0.0000 1.0000

Figure 5.7: Correlation coefficient Vs band number for SR on AVIRIS data for r = 4

Table 5.3: Spectral reflectance (%) of 3 × 3 pixels averaged over 196 bands at different
region locations shown in Figure 5.8(a) of AVIRIS SR for r = 4

Region A Region B Region C
Bicubic interpolation [148] 81.2244 67.7482 58.9277
IBP [152] 82.3980 76.5466 66.7565
Yang et al. [79] 82.9710 86.1222 68.2510
Proposed Approach 85.2926 81.9088 72.9670
Ground truth 85.9464 82.9792 74.2430

The advantage of the proposed technique is that there is no need of auxiliary regis-

tered HR image or multiple LR observations of the same scene with subpixel shifts while

super-resolving. Use of Gabor prior in regularization preserves features at bandpass

spatial frequencies. Use of estimated entries of degradation matrices for all significant

PCA components represent the optimum PSF in regularization that aids in obtaining

better solution. Super-resolution results obtained using proposed method show better

preservation of spatial details over those obtained using raw dictionaries and averaged

PSF. Quantitative comparison of score indices show that our method enhances spatial

information without introducing significant spectral distortion.
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(a) (b)

(c) (d)

Figure 5.8: Spectral reflectance plots averaged over 3× 3 pixels, of groundtruth and SR
image obtained using different algorithms on AVIRIS data for r = 4. (a) Selected regions
shown using the band 100, (b) Spectral reflectance at region A, (c) Spectral reflectance
at region B, (d) Spectral reflectance at region C.

The proposed super-resolution technique uses learned dictionaries of LR and HR im-

ages to produce the initial super-resolved images in reduced dimensional space. It may

be noted here that we estimate degradation using the initial estimate of SR. It is to

be noted that degradation matrix entries considered here are non-overlapping and used

while obtaining final results of SR. In the next, chapter we consider the estimation of

degradation in the form of PSF representing the low-pass filtering by estimating filter

coefficients. The estimated wavelet filter coefficients are used to define the degradation

matrix with overlapping entries while obtaining initial as well as final super-resolved HSI.



Chapter 6

Super-Resolution using Optimum

Wavelet Filter Coefficients and

Sparsity Regularization

In the previous chapter we considered non overlapping degradation matix entries while

regularizing the solution. That means, the considered degradation matrix (PSF) of sensor

is depending only on the position of the detectors. In practice this is not true since the

aperture of the optical device is limited and it introduces diffraction. In this chapter a

new learning based approach for SR using the wavelet transform is proposed. The SR

algorithm is applied on the reduced dimension obtained by using the principal component

analysis (PCA). The novelty of our approach in this chapter lies in designing application

specific wavelet basis. We use low and high spatial resolution image pairs, consisting

of materials of interest, to estimate the wavelet filter coefficients (basis). An initial

estimate of SR is obtained by using these filter coefficients and by learning the high

frequency details in the wavelet domain. The final solution is obtained using a sparsity

based regularization framework in which image degradation and the sparseness of SR

are estimated using the estimated low pass filter coefficients and the initial SR estimate,

respectively. The advantage of the proposed algorithm lies in (1) the use of estimated

filter coefficients to represent an optimal PSF to model image degradation process, (2) use

of sparsity prior to preserve neighborhood dependencies in SR image, and (3) avoiding the

use of registered images while learning the initial estimate. Experiments are conducted

87
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on HSI of natural scene as well as on real HSI collected by Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS). Visual inspection and quantitative comparison confirm

that our method enhances spatial resolution without introducing considerable spectral

distortion.

6.1 Related Work

The problem of SR has been attempted by many researchers since early 1980. Tsai and

Huang [20] were the first to suggest resolution improvement of an image using several

downsampled noise free images of the same scene. There are many ways to improve spatial

resolution of hyperspectral images (HSIs) such as SR reconstruction using a few low-

resolution images [33, 34, 5], pan-sharpening fusion using coincident HR image (e.g. PAN)

followed by super-resolution mapping (SRM) [159, 55], SRM after spectral unmixing [24,

26, 60], wavelet based methods [22, 87, 27], etc. Depending on the number of LR images

involved, the SR method is called multi-frame [33, 34, 5] or single-frame SR [159, 55, 24,

26, 60]. Multi-frame based SR methods use subpixel shifted LR observations of the same

scene to obtain SR results, while single-frame approaches learn the detail information from

image database that has large number of HR (high-resolution) or LR (Low resolution)

and HR training images. An accurate registration of the low-resolution images is critical

in multi-frame SR since the method is based on exploiting the non-redundancy available

in the subpixel shifted LR observations. When working using remotely sensed images,

many times it is difficult to obtain subpixel shifted LR observations of the same scene,

specifically for highly dynamic scenes. Therefore, in remote sensing single-frame SR image

mapping has become a popular area of research.

Several SR techniques have been proposed based on single-frame super-resolution

mapping (SRM) techniques [159, 55, 24, 26, 60]. SRM based techniques exploit the spatial

information by making use of coincident HR image (e.g. PAN image) [159, 55] or unmixing

model that describes the spatial distribution of the contents of mixed pixels [24, 26, 60].

An algorithm proposed by Foody in [159] uses a simple regression based approach to

enhance the spatial resolution of LR HSI using coincident HR image. Improved result is

obtained by using an SR mapping technique in which location of landcover classes are

predicted by fitting class membership contours that results in reducing the blockiness
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in final SR output. The main limitation of this algorithm is the need of secondary HR

image coincident with LR test image. Nguyen et al. [55] used fused image as an additional

source of information for SRM using a Hopfield neural network (HNN). Need of secondary

HR coincident image is the limitation of this algorithm as well. Besides this, algorithms

based on HNN require higher computational time. In a different approach Gu et al.

[24] proposed an SR algorithm that uses an indirect approach based on spectral mixture

analysis (SMA) and the learning based SRM is performed by using backpropagation

neural network (BPNN). A set of HR training images unassociated with test image are

used for training the BPNN. An advantage of this method is that no supplementary source

of information associated with LR test image is required. In a similar work, Mianji et al.

[26] used LR and its downsampled version to train the BPNN. Then learning based SRM

is performed after SMA by considering spatial correlation of different materials present

in the HSI. Villa et al. [60] used spatial regularization by simulated annealing to perform

SRM which is performed after coarse classification using support vector machine and

SMA steps.

There are considerable number of techniques in which wavelet decomposition is used

to increase the spatial resolution of remote sensing images [22, 87, 27]. These methods

are based on the decomposition of the image into multiple levels based on their local fre-

quency contents. The wavelet transform decomposes images into a number of new images

each having different spatial resolution. Need of the coincident HR auxiliary information

is the main limitation of these methods. Besides, all these methods use fixed wavelet ba-

sis like Db4 in their implementation and they require accurate co-registration to achieve

acceptable results. Mertens et al. [76] proposed use of predicted wavelet coefficients to

obtain SR image. They learn relation between approximate and detail coefficients using

training data in neural network, without making any assumption about data distribution.

In a recent approach, Li et al. [88] characterized the wavelet coefficients by a mixed Gaus-

sian distribution and the dependencies between the coarser and the finer scale wavelet

coefficients were modeled as prior by using the universal hidden Markov model and the

problem was solved as an maximum a posteriori (MAP) framework. Recently, learning

based SR approaches for single wideband and multiband images have been explored by the

researchers to solve the super-resolution problem [89, 90, 91, 92, 93, 94, 95, 96, 26, 79, 97]

in which high frequency details are obtained using the training data. These methods
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use a database of HR images or LR-HR image pairs in order to learn the high frequency

details for SR. Use of sparsity as a prior for regularization of ill-posed problems has been

validated by many researchers [80, 81, 82, 84, 79, 61].

Most of the earlier research on SR of HSI assumes implicitly or explicitly that each

LR pixel of individual spectral band is obtained as a equally weighted sum of pixels of

corresponding HR spectral band, and they are perfectly aligned with HR pixels. This

means, the point spread function (PSF) of sensor is same over the entire spatial and

spectral region, depending only on the position of the detectors. But, in practice, PSF

depends on various factors of hyperspectral imager such as fill factor of CCD array, camera

gain, zoom factor, imaging wavelength etc. [17]. The effect of diffraction is significant

at higher wavelength in a hyperspectral imager. This results in spatially and spectrally

varying PSF of the degradation function.

In this chapter, we address the problem of single-frame image super-resolution using

learning based approach in wavelet domain, where we obtain high frequency contents from

HR training images unassociated with test image. This eliminates the need of registration

while obtaining these frequencies. Novelty of our approach lies in estimating the wavelet

filter coefficients that takes care of spectrally varying PSF. Here we are not considering

spatially varying PSF, which is quite involved as this requires the estimation of PSF at

every pixel. The estimated filter coefficients are then used to learn high frequency details

in a given band in wavelet domain, obtaining an initial estimate of SR image. The final

SR image is obtained using the sparsity based regularization that has the observation

model constructed using the estimated filter coefficients.

For the estimation of optimum wavelet filter coefficients, LR-HR pairs of HSIs referred

to as the training images can be created in two different ways:

1. by changing the configurations of the hyperspectral imager. For example, optically

varying the width of the observed target strip projected onto the sensor’s slit fa-

cilitates manipulation of the spatial resolution of the system independent of the

spectral resolution of the system [160].

2. by changing the height of the platform since the spatial resolution of HSI depends

on the platform height. For example, a typical mission, mounting AVIRIS on a

NASA aircraft (ER-2), produces a spatial resolution of about 20 meters, but it can
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be improved to 5 meters by flying at lower altitudes.

It has to be noted here that acquiring the HR data and LR data is a one time and offline

operation. Once a database is created, the LR images captured by hyperspectral imager

can be super-resolved using our approach. This is greatly beneficial, as one can capture

low spatial resolution HSIs (even though it is capable of capturing HR HSIs) and reduce

the memory, transmission bandwidth and power requirements. One may transmit the LR

HSIs from the satellites and aircrafts and obtain super-resolved HSIs at the receiver end

by using the available database as training images. In order to reduce the computational

complexity due to the use of large data base, we use PCA and work with first few principal

components only. In our work, filter coefficients are estimated for each of the reduced

set of PCA bands. Use of estimated filter coefficients in learning the initial SR as well as

in the degradation model incorporates wavelength dependent i.e. spectrally varying PSF

while estimating the SR image. Efficacy of the proposed method is tested by conducting

experiments on three different data sets, namely single band natural images, a 31-band

hyperspectral image of a natural scene captured under controlled illumination and a 224

band AVIRIS remotely sensed data. The results of proposed approach are compared with

bicubic interpolation technique [148], learning based SR method of Jiji et al. [161] that

uses fixed basis wavelet coefficients Db4, and two recently published SR methods that

are based on sparse representation [79, 61].

6.2 Block Diagram Description of the Proposed Ap-

proach

The proposed technique of learning based super-resolution of HSI is illustrated in Figure

6.1. Given LR test image and a database of LR-HR HSIs, the proposed technique is

implemented using the following steps

1. Form a training database of registered low-resolution and high-resolution HSIs.

2. Reduce dimensionality of the HSIs using PCA. We now have PCA transformed

LR-HR images.

3. Estimate the optimum wavelet filter coefficients using a database created in step 2.
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Figure 6.1: Detailed block diagram of proposed approach for HSI super-resolution

4. Use the estimated filter coefficients and obtain the initial estimate of SR using the

wavelet transform based learning. Additional HR HSIs are used while learning the

initial SR estimate.

5. Use regularization to obtain the final super-resolved image in PCA domain and

subsequently the super-resolved HSI is obtained after inverse PCA.

To estimate wavelet filter coefficients to be used in learning high frequency details in

step 4, we first need to create database of registered LR-HR pairs of HSIs (which contains

materials of interest in sufficient amount) using any one of the approach described in

section I. In practice if it is not feasible to capture LR-HR pairs from the imager, one

may use only the HR training images and LR images are obtained by simulation. Here we

assume that we have access to HR training images to learn the detail information. In case
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of nonavailability of LR-HR pairs one can choose an indirect approach to estimate the

optimum wavelet filter coefficients from the available training images at one resolution.

For example, one can obtain point spread function of the imager, using one of the methods

described in [162]. The estimated PSF may then be used to generate the LR images and

the resulting LR-HR pairs can be used to estimate wavelet filter coefficients.

Hyperspectral images are composed of large number of spectral bands (e.g., AVIRIS

acquires 224 bands). Applying super-resolution technique to each band separately is pro-

hibitive because of high time complexity. Since the spectral content of HSIs are inherently

low dimensional, it can be exploited by using PCA, a standard tool for analysis of multi-

variate data [8]. Hence, we first apply dimensionality reduction on LR and HR training

images having B bands in each LR-HR training set using PCA. This transformation in-

corporates most of the spectral variability of HSI data in first few principal components.

We retain only the first κ significant eigen vectors of spectral covariance matrix, corre-

sponding to significant eigen values. Since the number of eigen vectors retained is much

less compared to the total number of HSI bands (B), one cannot reconstruct original

hyperspectral image exactly by inverse PCA, thus causing information loss. However, it

is reasonable to assume that the spectral signature of the materials/objects of interest is

present in sufficient amount in reasonable number of spectral bands. Note that the num-

ber of PCA components retained (κ) is application dependent and it can be increased at

the cost of computational speed, and information loss and the reconstruction error may

be made arbitrarily small in order to take care of classification accuracy.

The database of LR-HR images in PCA domain can now be used in wavelet based

learning to obtain an initial estimate of SR HSI. However, while using discrete wavelet

transform (DWT) it is not a good idea to use the conventional basis such as Haar,

Daubechies or Coiflet as they are not optimized over the class of images. This motivates

us to estimate the wavelet filter coefficients before learning the initial SR estimate. Using

the registered LR-HR PCA data sets of training images, optimum filter coefficients are

estimated for each PCA band individually. Thus we obtain a total of κ sets of wavelet filter

coefficients for PCA bands 1 to κ. These coefficients are then used in wavelet transform

based learning to obtain the initial SR estimate for the κ test (LR) HSIs which are also

in the PCA domain. These filter coefficients are also used to define the PSF/degradation

in the observation model that is used in regularization to obtain the final SR image.
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To this end our method for SR uses adaptive wavelet basis which is optimized for a

group of HSIs. One may note that there is no need of registration while learning initial

SR estimate as we use only the HR database while obtaining the initial SR estimate. This

gives us freedom to include additional HR training HSIs in the database (i.e., N+1 to Q)

after the dimensionality reduction as shown in Figure 6.1. This inclusion would enhance

the accuracy of initial SR estimate. Applying inverse DWT gives us SR initial estimates

of LR HSIs in PCA domain. To avoid confusion, we use the word “SR” for algorithmic

output only (e.g. initial SR, final SR in Figure 6.1), elsewhere we use the word “HR”.

Our method of obtaining initial SR estimate do not consider the contextual depen-

dencies among pixels as it is patch based. This results in artifacts in initial SR image

around the patch boundaries. Hence prior knowledge about HSI is utilized in order to

obtain better solution. Regularization based on sparsity as prior is performed in order

to obtain final solution for each PCA components. As shown in Figure 6.1, observation

model and the sparse coefficients are used in regularization. Observation/degradation

model is constructed for each LR image using the already estimated κ sets of estimated

filter coefficients. A patch based approach is obtaining the sparse coefficients using the

initially estimated SR PCA components and they represent the dependence of an SR

patch on its nearby patches. Note that though the individual PCA bands are uncor-

related, spatial dependency exists within the pixels of PCA image [163]. Our final cost

function being differentiable, a simple optimization technique like gradient descent is used

to minimize the same. This results in final SR HSI in the PCA domain. Applying inverse

PCA transformation results in super-resolved HSI.

6.3 Estimation of Wavelet Filter Coefficients

For the last two decades discrete wavelet transform has become one of the most important

tools in the field of image processing. Many researchers have attempted to increase spatial

resolution of natural [161, 164, 165, 166] as well as remotely sensed images [87, 22, 124, 27]

using DWT . The limitation of these algorithms is the use of a specific type of wavelet

transform where the basis is fixed. That is, they use known filter coefficients and hence

do not guarantee the optimum performance. In contrast, in the proposed approach, we

derive optimal filter coefficients which are then used in learning the initial SR estimate.
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A number of general conditions and unbounded degrees of freedom can be used to adapt

wavelets to a desired signal processing application. Here DWT basis coefficients are not

explicitly specified, instead they are computed from the signal (images in our work) itself

by computing the impulse response coefficients of a particular wavelet filter. As already

mentioned this is done on the reduced set, i.e. after performing PCA.

To start with, a database of N pairs of LR and HR HSIs is created, generating κ

LR-HR pairs of principal components. We choose LR-HR database of HSIs to represent

materials and objects of interest. The estimation of wavelet filter coefficients is carried

out for each PCA component separately. We first take the wavelet transform of HR PCA

images of training pairs and perform one level and two level wavelet decomposition for

the magnification factor of 2 and 4, respectively. To estimate wavelet filter coefficients,

we use the fact that the coarser part of wavelet transformed HR PCA image should be

close to the LR PCA image in the mean squared sense. This has to be true for all LR-HR

pairs in the database as shown in Figure 6.1. If these coefficients are used for initial

estimate learning, it represents a better approximation to the SR.

Although numerous wavelet basis are available, there exist difficulty in finding opti-

mal length wavelet filter basis for image super-resolution application. The discrete Haar

wavelet transform having filter length of 2 for low pass (LP) and high pass (HP) has the

advantage of having smaller filter length and simpler to compute, but it is not continu-

ous, resulting in introduction of blockiness in the learned SR image. Hence we need to

use higher order filter with overlapping response to make it continuous, which helps to

preserve continuity in SR image. But, increase in the filter length adds to computational

burden with no significant improvement in the performance. As a compromise between

computational burden and the performance, we have chosen a design length of 4 for the

wavelet filter to suite our requirement in SR algorithm and use the necessary conditions

to obtain the optimal coefficients. In [167] Daubechies described a family of filters for

wavelet transform (WT) computation. For details of WT one may refer to [167, 168].

Here we describe the procedure to estimate the wavelet filter coefficients for one of the

PCA bands of HSI. The same procedure is repeated for all κ bands. For example, if there

are 3 significant PCA bands corresponding to κ = 3, then we will have 3 sets of LP as

well as HP filter coefficients.

We now explain the mathematical theory for finding our filter coefficients in terms
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of a single coefficient and describe how this coefficient can be estimated from the data.

Consider an LR PCA image having size of M ×M and corresponding HR PCA image be

of size 2M × 2M giving a resolution difference of q = 2. We write a system of equations

that must be solved to find low pass wavelet filter coefficients l = (l0, l1, l2, l3). The high

pass filter coefficients h0, ..., h3 can then be determined from l0, ..., l3. Considering 1-D

case, the wavelet transformation of vector of length 2M is given by

Transformed vector = W2M × Input vector, (6.1)

where W2M is the wavelet transformation matrix given by

W2M =



l3 l2 l1 l0 0 0 · · · 0 0

0 0 l3 l2 l1 l0 · · · 0 0
...

...
...

...
...

...
. . .

...
...

l1 l0 0 0 0 0 · · · l3 l2

h3 h2 h1 h0 0 0 · · · 0 0

0 0 h3 h2 h1 h0 · · · 0 0
...

...
...

...
...

...
. . .

...
...

h1 h0 0 0 0 0 · · · h3 h2


2M×2M.

The upper half of rows in W2M matrix perform the low pass filtering operation and

generate coarser part of the signal and the lower half performs high pass filtering operation

and generates finer details of the signal. Now consider

W2M =
[
L
H

]
, (6.2)

where L and H are low pass and high pass filter matrices, each of size M × 2M . Con-

sidering the fact that the two-dimensional DWT is separable, 2-D transform Wt can be

performed in two steps, each of which involves a one-dimensional transform operation.
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We can find wavelet transform of 2-D image I of size 2M × 2M as

Wt = W2MIW
T
2M

=
LILT LIHT

HILT HIHT
. (6.3)

Considering left to right multiplication in equation (6.3), it first computes one dimensional

transform along columns of image I (i.e. W2MI) and then computes one dimensional

transform along rows of image W2MI to obtain Wt. This results in the coarser version

of image I as block LILT , of size M × M and the vertical, horizontal and diagonal

details of the image I are contained in blocks LIHT , HILT , and HIHT respectively,

each of size M × M . To derive the filter coefficients, we consider LILT and design a

transformation matrix W2M , which has the desired filter coefficients. W2M is designed as

follows. Considering the orthonormality constraints we have

3∑
n=0

l2n = 1, (6.4)

where l0l2 + l1l3 = 0. (6.5)

Taking the discrete time Fourier transform (DTFT) of the sequence ln, n = 0, 1, 2, 3 gives

us

H(ω) =
3∑

n=0

lne
jnω. (6.6)

Now for low pass response, H(ω) = 1 at ω = 0 and it is 0 at ω = π. Using this in equation

(6.6) we obtain,

H(0) =
3∑

n=0

ln = 1 and (6.7)

H(π) =
3∑

n=0

(−1)nln = 0. (6.8)

But equation (6.7) violets distance preserving property of orthogonal matrices [169]. To
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satisfy orthonormality conditions and the low pass condition we must have,

3∑
n=0

ln = ±
√

2 and (6.9)

to satisfy equation (6.5) we must have

[l2, l3]
T = c[−l1, l0]T for c 6= 0. (6.10)

Equation (6.10) in conjunction with equation (6.8) leads to

l1 =
1− c
1 + c

l0 for c 6= −1. (6.11)

Using equations (6.4), (6.10) and (6.11) we obtain the following set of equations.

l0 =
1 + c√

2(1 + c2)
l1 =

1− c√
2(1 + c2)

l2 = − c(1− c)√
2(1 + c2)

l3 =
c(1 + c)√
2(1 + c2)

. (6.12)

Since c can be any real value except -1, we endup with infinite number of solutions. A

unique solution for the coefficient c is obtained by solving the following optimization

problem. Let Ym1,n1 be the LR PCA image in the training set and Bm1,n1 be the coarser

resolution version of the HR PCA images (i.e. LILT in equation (6.3)), where m1, n1 =

1, 2, ...,M indicate spatial locations. There are N such LR - HR pairs. We formulate the

minimization problem as

ε = arg min
∀c

N∑
P=1

M∑
m1=1

M∑
n1=1

(Y
(P )
m1,n1 −B

(P )
m1,n1)

2, (6.13)

where Y (P ) is the P th low-resolution PCA training image and B(P ) is the coarser part

of the wavelet transformed HR PCA training image number P. Here Y
(P )
m1,n1 is known

and B
(P )
m1,n1 can be expressed in terms of c. Equation (6.13) is convex, hence simple

optimization technique like gradient descent can be used to find optimum value of c,

which in turn can be used to determine optimum l0, ..., l3 (see equation (6.12)). Note

that in equation (6.13) Bm1,n1 is obtained as 2D convolution of each 4 × 4 block of HR
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image with L = [l0, l1, l2, l3] i.e.,

Bm1,n1 = l23Im,n + l2l3Im,n+1 + l1l3Im,n+2 + l0l3Im,n+3 + l3l2Im+1,n + l22Im+1,n+1

+ l1l2Im+1,n+2 + l0l2Im+1,n+3 + l1l3Im+2,n + l1l2Im+2,n+1 + l21Im+2,n+2

+ l0l1Im+2,n+3 + l0l3Im+3,n + l0l2Im+3,n+1 + l0l1Im+3,n+2 + l20Im+3,n+3, (6.14)

where m = 2× (m1− 1) + 1 and n = 2× (n1− 1) + 1.

Here Im,n represents the intensity of the HR PCA image pixel at (m,n). For a resolution

factor of 4, the above equation can equivalently represented as a convolution of low pass

filter coefficients with HR image block of size 16 × 16, resulting in a total of 256 terms

in the right hand side (RHS) of equation (6.14). The high pass filter coefficients can now

be obtained, to satisfy orthonormality condition of matrix W2M , as

h0 = l3; h1 = −l2; h2 = l1; h3 = −l0. (6.15)

It may be noted that the derived LP filter coefficients from equation (6.13) are optimal

in the mean squared sense i.e. they minimize the square of the error between the LR and

coarser part of the wavelet transformed HR PCA images. Therefore, the corresponding

high pass filter should yield better edge details in the SR image. These estimated filter

coefficients are used in learning the initial SR PCA estimate as well as in constructing

the degradation model.

6.4 Learning Initial SR Estimate

The richness of the texture in the real-world images is difficult to derive analytically.

Hence learning based approaches work well while obtaining the missing high frequency

details. Use of learning based approaches for super-resolving natural as well as remotely

sensed images is considered by many of the researchers [89, 90, 91, 92, 93, 94, 95, 96,

26, 137, 97]. In our approach, once the filter coefficients are estimated, our next task is

to learn the high frequency details in terms of detail coefficients. The estimated filter

coefficients are used in obtaining the detail wavelet coefficients, by taking the wavelet

transform of the test image and the training images using these coefficients. This would
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(a) (b)

Figure 6.2: Illustration of learning of detail wavelet coefficients for q = 2 using a database
of HR PCA images. (a) Two level wavelet decomposition of test PCA image (LR ob-
servation). Dotted lines show wavelet coefficients to be learned. (b) Three level wavelet
decomposition of HR PCA training images.

minimize the error while learning that may result when using the known basis. Our

learning uses only HR HSI in training database as opposed to LR-HR image pairs used by

few researchers [161, 165]. For learning purposes, the detail wavelet coefficients are learned

for a decimation factor of q = 2 and q = 4, respectively. Considering a decimation factor

2, we use two level and three level wavelet decomposition for the test and training images,

respectively. Figure 6.2 shows the block schematic for learning of wavelet coefficients for

one of the test image for q = 2. Note that the test and training images are in the PCA

domain. Figure 6.2(a) shows the subbands 0 to V I of the LR test image, while the dotted

lines show subbands V II−IX that have to be learned. Subband 0 represents the coarser

part of the DWT transformed image and subbands I − III and IV − V I represent

the vertical, horizontal, and diagonal details. Figure 6.2(b) shows three level wavelet
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decomposition of HR training images having subbands 0(r) − IX(r), r = 1, 2, ..., Q. Here

subbands I−III, IV −V I, and V II−IX represent the vertical, horizontal, and diagonal

details in level 3, 2 and 1, respectively. To learn the wavelet coefficients for subbands

V II of LR test image, we compare the coefficients in subbands I and IV of the LR test

image with that in subbands I(r) and IV (r), r = 1, 2, ..., Q of the HR training images

and obtain best match coefficient from subbands V II(r) of a training image. Similarly,

we learn wavelet coefficients for subbands V III and IX of LR test image. Learning

procedure is described in detail as below.

Consider an LR test image of size M ×M pixels. The corresponding HR image is

of size 2M × 2M pixels giving a resolution difference of 2. We have a total of Q HR

training images. In order to learn the wavelet coefficients we exploit the idea of zero tree

concept, i.e. in a multiresolution system, every coefficient at a given scale can be related

to a set of coefficients at the next coarser scale of similar orientation [170]. Using this

idea we follow the minimum mean squared error between the known DWT coefficients of

test and training images to learn the unknown detail wavelet coefficients. Suppose φ(i, j)

is the wavelet coefficients at location (i, j) in subband 0, where 0 ≤ i, j < M/4 of the LR

test image. Corresponding detail coefficients in subbands I, II, and III are at locations

φ(i, j +M/4), φ(i+M/4, j), and φ(i+M/4, j +M/4), respectively and the coefficients

in subband IV, V, and V I correspond to blocks of size 2× 2 {φ(p, q+M/2)p=2i+1,q=2j+1
p=2i,q=2j },

{φ(p+M/2, q)p=2i+1,q=2j+1
p=2i,q=2j }, and {φ(p+M/2, q+M/2)p=2i+1,q=2j+1

p=2i,q=2j }, respectively. These

coefficients of I−V I are used in learning the missing 4×4 blocks in subbands V II−IX.

For a pixel at (i, j) in the test image at subband 0 following minimization is carried out

to pick the missing block of size 4× 4 in subband V II that gives us the horizontal edge

details.

ε = arg min
∀l,m,r

[
φI(i, j +M/4)− φ(r)

I (l,m+M/4)
]2

+

[
2i+1∑
p=2i

2j+1∑
q=2j

φIV (p, q +M/2)−
2l+1∑
l1=2l

2m+1∑
m1=2m

φ
(r)
IV (l1,m1 +M/2)

]2

, (6.16)

where r = 1, ..., Q, and 0 ≤ l,m < M/4, and φ
(r)
I and φ

(r)
IV denote the wavelet coefficients

for the rth training image at Ist and IV th subbands. The corresponding wavelet detail

coefficients from the subband V II of HR training image are copied into the subband V II
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of the test image. This is repeated for every location in the subbands. In this way we

obtain

φV II(s, t1)s=i1,t=j1s=4i,t=4j := φ
(r)
V II(sn, tn)sn=4l+3,tn=4m+3+M

sn=4l,tn=4m+M (6.17)

where t1 = t+M , i1 = 4i+3, and j1 = 4j+3. This way we endup learning the unknown

(missing) wavelet coefficients in subbands V II of LR test image. To find the vertical and

diagonal details, subscripts of φ are changed to (II and V ) and (III and V I), respectively,

in place of (I and IV ), in addition to appropriate displacement of pixel indices by M/4

or M/2 in equation (6.16). Similarly, subscripts of φ are changed to V III and IX with

appropriate displacement of pixel indices by M in equation (6.17). Essentially we are

searching for the best matching horizontal, vertical and diagonal detail coefficient blocks

separately. By applying inverse wavelet transformation to this learned image gives the

initial SR estimate. Similar procedure is used on all PCA images to obtain the initial SR

estimate for every test image in PCA domain. If the error (ε) is quite large, it signifies

that the 4× 4 patch does not have its corresponding HR representation in database. To

avoid such spurious learning, we consider the DWT coefficients only when the error (ε)

is less than a chosen threshold. The goodness of the learning depends on how extensive

is the training data set. Our database consists of sufficiently large data set in order to

avoid large errors.

6.5 Final Solution using Regularization

In the DWT based learning process, the detail coefficients are learned from the training

set using block based approach. Thus, spatial correlation is not considered while learning

these coefficients. Since we choose the high frequency components of each 4 × 4 region

independently as per the best fit, corresponding SR image lacks any spatial context

dependency which may cause an unwanted abrupt variation across the 8× 8 blocks when

we consider a resolution factor q = 2. This necessitates further refinement of the initial

estimate to obtain a better solution by using the prior information about the solution. A

better solution can be obtained by formulating the problem in regularization framework.

For regularization purpose one needs to have a data fitting term and a regularization
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term. Hence we first model the image formation in order to obtain the data fitting term.

6.5.1 Observation Model

Let Yβ, (β = 1, 2, ..., κ), be the PCA transformed LR HSI test image of size M ×M and

and Zβ be the corresponding SR PCA image of size qM × qM . Assuming a linear model,

for image formation, the LR observation yβ can be expressed as

yβ = Aβzβ + nβ, (6.18)

where yβ and zβ represent the lexicographically ordered vectors of size M2 × 1 and

q2M2 × 1 respectively, with zβ representing the SR vector. Aβ is the degradation matrix

of size M2× q2M2 that takes care of degradation that includes aliasing caused as a result

of downsampling. Generally, the degradation matrix used to obtain the aliased pixel

intensities from the HR pixels has the form as mentioned in [126] that has q2 non-zero

entries in every row having values of 1/q2. Before we move on, we would like to point

out that in the earlier research works on SR, matrix with fixed entries [126] was used as

a degradation model for all bands of the multispectral and HSIs [23, 13, 25, 61]. This

means, an LR pixel is the average of light intensity that falls on the HR pixels assuming

that the entire area of a pixel is acting as the light sensing area and fill factor for the

CCD array is unity for all spectral bands. In practice this is not true, and incorporation

of improved degradation model leads to better solution.

In our approach, we use the estimated LP wavelet filter coefficients l0, ..., l3 to con-

struct the degradation matrix Aβ. Instead of considering LR pixel as the averaging of HR

pixels, we represent it as a linear combination of HR pixels i.e., zβ weighted appropriately

by using the estimated low pass filter coefficients. In this case for an integer factor of

q, matrix Aβ consists of q4 non-zero elements along each row at appropriate locations.

For a resolution factor of q = 2 the values and locations of each element are determined

from equation (6.14), where Im,n and Bm1,n1 in equation(6.14) correspond to Zβ and Yβ,

respectively in equation (6.18). Thus, the LR intensity represents the weighted average

of the HR intensities over a neighborhood of q4 pixels corrupted with additive noise.

Here the noise nβ is the independent and identically distributed (i.i.d.) vector with zero

mean and variance σ2
n and has same size as that of yβ. It is important to note that
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we estimate LP wavelet filter coefficients for each PCA image separately and hence we

are using degradation operator optimized for each band. Doing so, makes the estimated

entries of matrix Aβ closer to the true values for the chosen model. Since the obtained

filter coefficients represent the close approximation to SR. Besides, the model has overlap

of HR pixels, horizontally and vertically as seen from equation (6.14). This relaxes the

assumption that LR HSI is strictly defined by the specific detector area only.

6.5.2 Sparsity as a Prior

Super-resolution is an ill-posed inverse problem. There are infinite number of solutions

to equation (6.18). Hence selection of appropriate model as the prior information and

use of regularization helps to obtain better solution. In the field of image processing and

computer vision Markov random field (MRF) is the most general model for including the

prior information. But the use of MRF often tend to make the solution smooth. This

is because MRF is defined on the basis of local dependencies. In recent years, sparse

representations of signals have attracted a great deal of attention in signal and image

processing researchers. Olshausen and Field [77] proved that a natural image can be

represented with a relatively small number of basis functions chosen from over-complete

descriptor sets. Compared to methods based on orthonormal transforms or direct time

domain processing, sparse representation usually offers better alternate for efficient signal

modeling [78]. This motivates us to use sparsity based regularization. The use of sparsity

as a prior for SR is explored by many researchers [79, 80, 81, 82]. They use trained

dictionaries of HR and LR patches and assume same sparsity for LR and HR patches in

order to obtain SR image. Here, sparse coefficients for each LR patch are found using

trained LR patch dictionary, and these coefficients are used in generating the HR output.

One may use sparsity constraint by directly imposing the condition that the solution

should be sparse [80]. In such cases we need to know the sparseness of SR or it has to be

learned using dictionary training. In our work we do not require any kind of dictionary

training since we are using the dictionary constructed from the initial estimate itself. The

sparsity in our work is imposed in a different way as follows.

In our work the sparseness is represented by the weights of the SR patches when a

particular SR patch is represented as a linear combination of other patches. Since our
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objective is to preserve spatial correlation, we consider that a patch in SR can be repre-

sented as a sparse linear combination of the other patches, mostly nearby. By imposing

the condition that final solution should have the same sparseness as the groundtruth,

we obtain an SR solution that preserves the spatial dependencies. But to know the true

sparse coefficients we need the groundtruth which is not available since it has to be esti-

mated. However, we do have the close approximation to SR in the form of initial estimate

and we have made use of the same in obtaining the necessary sparse coefficients.

Suppose, D̂Hp ∈ Rn×Krepresents an over-complete dictionary of K atoms (K �

n) formed by considering the patches/blocks in the initially estimated SR PCA image

represented as vectors. Let xp ∈ RK be the sparse approximation over this dictionary.

The atoms represent the lexicographically ordered patches in the initial estimate. Then

a measurement vector ẑp ∈ Rn, a patch of initial estimate, can be represented as a linear

combination of a few atoms from the dictionary D̂Hp i.e., sparse linear combination of

other patches in the image. Thus, ẑp can be written as ẑp = D̂Hpxp, where xp has very

few nonzero entries i.e. xp is sparse. Note that D̂Hp has column vectors excluding the

patch under consideration i.e. ẑp. Given ẑp and D̂Hp , xp can be obtained by solving the

l1 minimization using standard optimization tool such as linear programming, by posing

the problem as

min
xp∈RK

||xp||l1subject to ẑp = D̂Hpxp, (6.19)

where ||xp||l1 =
K∑
i=1

|xpi|.

Using the above formulation we find the sparse coefficients for every patch of initial

estimate in terms of other patches in the image, for the considered PCA band. To do

this, the initial estimate is divided into patches of size 10× 10 and sparse coefficients are

found for each patch, in terms of dictionary atoms (100×1) formed from the same image

excluding the patch under consideration. For example if our initial estimate has a size of

128×128 then each atom is of size 100×1 and there are 169−1 = 168 atoms in dictionary.

For simplicity, the example is given for non-overlapped patches, though the overlap is

considered while estimating the sparseness and hence final SR. We exploit the fact that the

pixel intensities do not vary much within a local neighborhood i.e., neighboring patches
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are correlated, exploiting the contextual dependency. In order to remove unwanted abrupt

variations across the patches of SR image, we considered patches overlapped horizontally

and vertically by 2 pixel rows and columns, respectively while forming the dictionary.

Thus all but boundary patches of the image are overlapped with 8 neighboring patches

while the boundary patches are overlapped by 5 or 3 neighboring patches depending on

whether they belong to border or corner. This results in maintaining spatial dependencies

among patches. As an example, for an image sizing of 128 × 128, we obtain a total of

K + 1 = 256 patches each of size 100× 1. Border pixels of last two rows and columns are

reflected in order to meet the size requirement of patches.

6.5.3 Regularization with Sparsity Coefficients

Considering one of the PCA bands, regularization is carried out as follows. Sparse coeffi-

cients obtained for every patch from the initial SR image serve as weights for the final SR

image which is now estimated as the unknown atoms of a dictionary. The regularization

is obtained using a patch based approach which provides the constraint of sparsity in the

final solution. Using a data-fitting term, and sparsity prior term, the cost function for a

single patch of PCA band β can be written as,

εβ = argmin
∀zp

||yp − Apzp||2
2 + λ||yp − ApDHpxp||22, (6.20)

where yp is the LR test patch, xp is sparse coefficient vector which is already estimated,

zp is the SR patch to be estimated, Ap is degradation matrix taking care of aliasing.

Here DHp is the dictionary of SR atoms that has to be estimated and λ represents the

weightage given to the sparsity term, chosen empirically. Considering overlapped SR

patches, equation (6.20) is constructed for each patch and the final cost consists of sum

of these. Note that for an LR test patch of size 4×4 (i.e. 16×1) we consider HR patch size

of 10×10 (i.e. 100×1), instead of 8×8. This is because of the consideration of overlapped

patches while constructing dictionary. This results in maintaining correlatedness among

SR patches while avoiding abrupt variations at patch boundaries as mentioned in section

6.5.2.

For an image size of 128 × 128, with a patch size of 10 × 10 (vector of 100 × 1)

having overlapping of 2 pixels in horizontal and vertical directions, we have 16 patches
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in each direction, giving us a total of 256 patches. Then the dictionary DHp will be of

size 100 × 255 and the degradation matrix Ap is of 16 × 100. Here Ap consists of q4

non-zero elements along each row, whose values and locations are determined using the

estimated low pass wavelet filter coefficients for each PCA band separately as per the

equation (6.14), where Im,n represents Zβ and Bm1,n1 corresponds to Yβ. Note that all

the patches are processed simultaneously in order to obtain the final solution.

The above cost function is convex. Hence it can be minimized using a simple opti-

mization technique like gradient descent. In order to provide good initial guess and to

speedup the convergence, the learned initial estimate is used as initialization. It may

be noted that since we are regularizing the PCA transformed images, we expect a bet-

ter spectral consistency in final solution. Inverse PCA gives us the SR image in spatial

domain.

Before we proceed to the discussion on experimental results, we briefly explain the

number of comparisons required in learning the initial estimate in our approach as this

step adds to overall computational complexity of our approach. Proposed approach is

divided into three steps: (i) estimation of optimum wavelet filter coefficients (ii) learning

high frequency wavelet coefficients in order to obtain the initial estimate, and (iii) regu-

larization. Estimation of wavelet filter coefficients is one time offline procedure, hence we

have not considered it in complexity analysis. Regularization was carried out by using

the available code [171], so we do not include it in this discussion. However, we discuss in

detail the number of computations required for learning the high frequency wavelet coeffi-

cients, since it involves significant number of comparisons. It involves finding the number

of comparisons required to obtain the detail wavelet coefficients when using a database of

Q HR training images. For a test image of size M ×M we decompose the same into W

levels of wavelet transform, resulting in 3W subbands corresponding to horizontal (H),

vertical (V), and diagonal (D) details and one subband having the coarser information.

We need to learn detail coefficients for each of the coefficients in the coarse subband.

For each of the coefficients in this subband, the best matching coefficients at finer level

in the training database can be searched by comparing
∑u=W−1

u=0 22u coefficients within

each of the detail subbands. Considering subband corresponding to horizontal details,

we search for the best matching wavelet coefficients in the entire horizontal subband of

all the HR training images. The size of the subband at W th level is M/2W ×M/2W and
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it consists of (M/2W )2 coefficients. These coefficients are compared with corresponding

horizontal coefficients at all locations ((M/2W )2) in each of the HR training images (Q)

in the database. Thus, the number of comparisons required for learning horizontal de-

tails is Q(M/2W )4
∑u=W−1

u=0 22u. Similar comparisons are used to find detail coefficients

of vertical and diagonal subbands. Hence the total number of comparisons required for

learning all detail coefficients amounts to 3Q(M/2W )4
∑u=W−1

u=0 22u. In our experiment of

the single band image, we use two level decomposition (W=2) of the test image of size

64× 64 and learn detail coefficients using the database of 100 training images (Q=100).

In this case, the number of comparisons required are 3× 100× (64/22)4 × (20 + 22). We

would like to mention here that, although this involves significant number of comparisons

of 98.304× 104, it will not cause computational burden in our case due to the use of high

performance computer and because of the process being non iterative.

6.6 Experiments and Result Analysis

In this section we show the effectiveness of the proposed method by conducting experi-

ments on different data sets. Experiments are carried out on : (1) Single band natural

images (2) Natural hyperspectral images, and (3) Remotely sensed HSIs (AVIRIS). Due

to the lack of availability of the true LR-HR pairs of hyperspectral images, as a simple

sanity check, the proposed SR approach is first tested on a single but wide band natu-

ral images. Data for this experiment include three sets of size 64 × 64, 128 × 128 and

256 × 256, captured by computer controlled camera. These data sets are used to test

the effectiveness of our method in estimating the wavelet filter coefficients and learning

of the high frequency details. The data sets used in the experiments on hyperspectral

data constitute images with 31 and 224 spectral bands, respectively. Detailed analysis of

the results is performed on 224 band AVIRIS HSI. We performed experimentations for

q = 2 as well as for q = 4. Due to the space constraint, we are demonstrating results

only for the case of q = 4. For all our experiments, the step size for gradient descent

algorithm was chosen as 0.01. The weightage to sparsity term was set as λ = 0.23 in the

regularization equation (6.20) through a trial-and-error procedure for all experiments.

Here, one can use a generalized cross-validation technique [156] to identify the optimum

value of λ, but it is computationally expensive and it is specific to a given image only.
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(a) (b) (c)
Set 1

(a) (b) (c)
Set 2

(a) (b) (c)
Set 3

(a) (b) (c)
Set 4

Figure 6.3: Randomly selected training image sets from the database. (a) LR images
64× 64, (b) HR images 128× 128 (for q = 2), and (c) HR images 256× 256 (for q = 4)

We show the visual as well as quantitative comparison for experiments on all the three

data sets. For quantifying the results on single band and 31 band natural HSI we used

mean squared error (MSE) as a preliminary evaluation index. Definition of this measure

is given in chapter 3 section 3.3.1 (see equation 3.15). For remotely sensed hyperspectral

data, detailed quantitative evaluation of spatial and spectral fidelity is performed using

different measures such as erreur relative globale adimensionnelle de synthese (ERGAS),

spectral angle mapper (SAM), and Q2n. Brief review of ERGAS and SAM is given in

chapter 4 section 4.4.1 (see equations 4.9 and 4.8), while that of Q2n is given in chapter

5 section 5.5.1 (see equation 5.7 and 5.8).

Table 6.1: Performance comparison showing importance of initial estimate on single
band “Ganapati” image for q = 4 in terms of MSE between groundtruth and initial SR,
and groundtruth and final SR

Estimate Bicubic
interpolation as

initial SR

Learned SR as
initial SR

Initial SR 0.0063 0.0046
Final SR 0.0055 0.0032
Reference 0.0000 0.0000
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: SR results for q = 4 showing importance of initial estimate. (a) LR image of
size 64×64, (b) Ground truth image of size 256×256, (c) Bicubic interpolated image, (d)
Learned SR image using estimated wavelet filter, (e) Regularization result when using
bicubic interpolated image as initial SR estimate, and (f) Regularization result when
using learned SR image as initial SR estimate (Proposed approach)

6.6.1 Experiments on Single band Natural Images

Here we used LR-HR grayscale image pairs captured by varying the optical zoom setting

of a simple low cost camera. PCA is not used in this experiment as all the images

correspond to single band only. Our database consist of LR images of size 64 × 64 and

the HR images of size 128× 128 and 256× 256, respectively. An LR image of size 64× 64

available in the database is used as a test image and the HR images in the database are

used to obtain SR for q = 2 and q = 4, respectively. Note that the true HR of test image is

not used in the experiments. They are used for computing the quantitative measure and

for visual comparison only. Our database consist of 100 images of different scenes each

having three different resolutions, that include indoor as well as outdoor scenes captured

at different times. This results in a total of 100 × 3 = 300 images in the database. All

the scenes are real world images captured by a computer controlled camera. To capture

these images, a stable and isolated physical setup was used. Images were captured by

triggering the camera using MATLAB program. The time difference of less than one
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Table 6.2: Estimation of wavelet filter coefficients and comparison of MSE between true
LR and reconstructed coarser images for single band images

Image q Estimated c MSE using Db4
coefficients [161]

MSE using the
derived filter
coefficients

Car 2 0.13 0.0099 0.0077
Text 2 0.22 0.0087 0.0081
Car 4 −0.01 0.0023 0.0015
Text 4 0.02 0.0039 0.0024

Table 6.3: Mean squared error comparison for SR results on single band images for q = 4

Image Bicubic in-
terpolation
[148]

Yang et al.
[79]

Initial SR
(Db4) Jiji
et al. [161]

Initial
SR (Pro-
posed)

Car 0.0079 0.0064 0.0067 0.0058
Text 0.0097 0.0078 0.0088 0.0074

millisecond was kept between two successive triggers. Mean correction was applied on

the captured images to compensate for the illumination variations.

Figure 6.3 shows randomly selected training images in the database. First of all, to

demonstrate the effectiveness of initial SR estimate in obtaining the final SR, we show

the regularization results obtained by using two different images as initial SR estimates.

Figure 6.4(a) and (b) show LR and groundtruth images of Lord “Ganapati”. Figure 6.4(c)

shows the upsampled image obtained using the bicubic interpolation while Figure 6.4(d)

displays learned initial SR estimate obtained using the proposed approach. When we use

the bicubically interpolated image as initial SR estimate to learn the sparsity coefficients

and perform regularization we obtain the image shown in Figure 6.4(e). Similarly use

of Figure 6.4(d) as the initial SR estimate (which is more closer to groundtruth image)

in regularization, we obtain the result shown in Figure 6.4(f). Comparing the images in

Figure 6.4(e) and (f), it is clearly observed that the SR image of the proposed method

has better details when compared to SR with bicubic interpolated image used as initial

estimate. We can see that the ψ shape on the forehead of “Ganapati” is clearly visible

in Figure 6.4(f) when compared to that shown in Figure 6.4(e). This may be because of

better sparseness obtained using the proposed approach for initial estimate. The benefit

of using the learning in SR is also evident from the MSE values listed in Table 6.1.

Observe that MSE is closer to reference value of 0, when we use the learned SR image as
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initial estimate when compared to the bicubic interpolation.

Now, we analyze the results on the usefulness of filter coefficients estimation. For

estimating the filter coefficients we make use of images shown in Figure 6.3 (a) and (b)

for q = 2 and use images in Figure 6.3 (a) and (c) for q = 4. We selected 10 LR-HR

image pairs having similar kinds of edge and texture details to estimate the wavelet

filter coefficients. Table 6.2 shows the estimated values of c for Car and Text images for

q = 2 and 4, respectively. Note that c gives us the optimum values of LP and HP filter

coefficients as in equations (6.12) and (6.15), respectively. The MSE between the true

LR and the coarser part reconstructed using the estimated wavelet filter coefficients and

the standard Db4 wavelet for q = 2 and q = 4 are also given in Table 6.2. From this

table we can see that as the resolution factor is changed the values of estimated filter

coefficients are also changing and they are also dependent on the image. The MSE for

the estimated filter coefficients is less when compared to using the fixed filter coefficients,

indicating that estimating the filter coefficients has the advantage.

Finally, we discuss the results on SR for natural images. Figure 6.5 shows the SR

results for the experimentation on Car and Text images, respectively for a resolution

factor of 4. Figures 6.5(a) and (b) show the LR test images, and groundtruth images,

respectively. Images displayed in Figure in 6.5(c) correspond to those expanded using

bicubic interpolation. Figure 6.5(d) shows SR images obtained using Yang et al. method

[79]. To show the effectiveness of estimated wavelet filter coefficients when compared to

fixed Db4 wavelet, we show the initial SR obtained, using Jiji et al. [161] in Figure 6.5(e)

and that obtained using the proposed method in Figure 6.5(f). We mention here that

learning based method proposed by Jiji et al. [161] uses initial SR obtained using the

fixed wavelet basis.

It can be observed that the fading appears in spokes of the wheel in image of Figure

6.5(c) and the blockiness is also visible in the spokes in Figures 6.5(d) and (e). The initial

SR obtained using estimated wavelet filter coefficients compares well with the groundtruth

as can be observed from Figure 6.5(f). Spreading and blockiness of characters are reduced

considerably in the initial SR estimate of proposed approach. This is expected since

we learn the wavelet filter coefficients as well as the high frequency details. Note that

the artifacts are significantly reduced in the SR images of Figure 6.5(f) which shows

the effectiveness of estimated wavelets. The quantitative comparison of these results is
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shown in Table 6.3. It is clearly observed that the MSE between the true and the SR

using the estimated wavelet in proposed method is significantly less when compared to

bicubic interpolation, Yang et al. method [79], and initial SR obtained using fixed basis

Db4 wavelet in Jiji et al. method [161].

Table 6.4: Effect of different PSFs on estimation of wavelet filter coefficients for 31-band
Natural hyperspectral image for q = 4 (Here κ = 3)

Band Filtering
kernel
used

Estimated
c

MSE using Db4
coefficients [161]

MSE using
estimated
coefficients

PCA-1 NN −0.22 0.0014 0.0012
PCA-2 NN −0.17 0.0053 0.0044
PCA-3 NN −0.18 0.0254 0.0230
PCA-1 Gaussian* −0.37 0.0020 0.0012
PCA-2 Gaussian* −0.29 0.0033 0.0031
PCA-3 Gaussian* −0.32 0.0124 0.0117
PCA-1 Gaussian** −0.19 0.0025 0.0017
PCA-2 Gaussian** −0.15 0.0222 0.0199
PCA-3 Gaussian** −0.17 0.0351 0.0295
PCA-1 Motion1 −0.20 0.0034 0.0030
PCA-2 Motion1 −0.23 0.0912 0.0901
PCA-3 Motion1 −0.19 0.0773 0.0741
PCA-1 Motion2 −0.26 0.0021 0.0016
PCA-2 Motion2 −0.24 0.0686 0.0674
PCA-3 Motion2 −0.29 0.0595 0.0561

* Std.
deviation

0.5

**Std.
deviation

0.8

1No rotation 230 Degree
rotation

6.6.2 Experiments on Hyperspectral Data Sets

For hyperspectral images, the experiments are conducted on two different data sets. The

first set consists of 31-band reflectance images of natural scene, having spectral range of

400nm− 700nm all acquired under the direct sunlight in clear or almost clear sky [149].

HSI cubes available in [172] and [173] are used in this experiment. Cropped region of

“Scene 5” of hyperspectral images of natural scenes 2002 [172] is used as test data. Our

second HSI data set is comprised of 224-bands of AVIRIS HSI cubes available in [174].

In this case cropped region of an urban area in Moffett Field is used as test data. After

discarding few bands having low signal to noise ratio (SNR), 196 bands were used for

super-resolving by a factor of 2 and 4, respectively. The band removal was based on
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Table 6.5: Quantitative evaluation measures for SR of 31-band Natural hyperspectral
image using different techniques for q = 4

Quantitative
Measures

Bicubic
interpolation

[148]

Jiji et al.
[161]

Zhao et al.
[61]

Yang et al.
[79]

Proposed
approach

MSE-PCA-1 0.0085 0.0067 0.0071 0.0069 0.0019
MSE-PCA-2 0.0116 0.0098 0.0126 0.0128 0.0029
MSE-PCA-3 0.0429 0.0102 0.0122 0.0196 0.0055
ERGAS 3.7358 2.7877 3.4723 4.3172 2.4568
SAM(Deg) 6.3577 4.9012 4.8340 6.0791 4.6200
Q2n 0.9610 0.9774 0.9662 0.9679 0.9810

visual inspection of the images. Care was taken to include bands having spectral range

in accordance to that of the test image while creating training data.

The above data sets have high spatial dimensions and hence specific regions are

cropped from them and experiments are carried out on the cropped regions. Here, we do

not have the true LR-HR pairs of HSIs. Hence the low spatial resolution (LR) images

were created from these cropped images by using filtering and downsampling operations.

Remaining regions of original as well as other HSI cubes are used to generate training

data sets. We used 5 sets of generated LR-HR training pairs cropped from the same HSI

cube excluding the test image cube for estimating the filter coefficients. Use of same cube

to create training LR-HR pairs ensures inclusion of large number of materials and objects

of interest. Additional 15 HR training HSIs were included while estimating the initial

HR for both the experiments on HSIs. These images are different for natural HSI and

AVIRIS HSI. In order to evaluate the performance of our approach using quantitative

measures, we need the groundtruth images. Since these images are not available, we

consider original cropped HSIs of size 256× 256 as ground truths and generated the LR

HSIs of size 128 × 128 and 64 × 64 by applying downsampling operation by a factor of

q = 2 and q = 4, respectively. The SR algorithm was then applied on these LR HSIs.

Each set in our training database has one LR image, an HR image with q = 2 and

an HR image with q = 4. In order to restrict the maximum spatial frequency in the

image we use low pass filtering operation before downsampling. The low pass filtering

operation was performed and tested using five different kernels namely, nearest neighbor

(NN), Gaussian filter with standard deviations of 0.5 and 0.8, horizontal motion blur

(5 pixels) with no rotation, and with 30 degree rotation. For this purpose we used filter
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masks of size 5×5. Table 6.4 shows the estimated values of c and LR reconstruction error

(i.e., error between true LR and LR obtained using the filter coefficients derived from c)

for PCA bands 1 to 3 for 5 different masks for the 31-band natural HSI. We can see that

as we change the filter mask, the estimated filter coefficients also change, thus making

it clear that the degradation operation plays significant role while super-resolving. One

can see that the values of MSE are significantly reduced when using the estimated filter

coefficients. Low value of MSE shows that the use of estimated filter coefficients for SR

purposes is better since in general the imaging operation may be modeled in different

ways.

Table 6.6: Quantitative evaluation metrics of AVIRIS SR for q = 4

ERGAS SAM (Deg) Q2n

Bicubic interpolation [148] 4.9550 8.3634 0.9367
Jiji et al. [161] 2.8108 6.9554 0.9734
Zhao et al. [61] 4.8694 7.2628 0.9438
Yang et al. [79] 3.1952 7.8997 0.9665
Proposed approach 2.5349 6.5849 0.9773
Reference 0.0000 0.0000 1.0000

We next consider the visual and quantitative assessment of SR using the hyperspectral

images. Since Gaussian filter was performing better in terms of MSE, we used it prior

to downsampling operation in order to generate LR hyperspectral images. Results of the

proposed algorithm on 31-band natural HSI is presented in Figure 6.6 for q = 4. After

taking the PCA we retained 3 images corresponding to the principal components with

highest variance and applied the SR algorithm on them. Figure 6.6 displays the results for

the PCA-I. Figure 6.6(a) and (b) display the LR test image and the ground truth image,

respectively. The SR results obtained using different methods are shown in Figures 6.6(c-

g). SR obtained using sparsity based regularization of the proposed approach shown in

Figure 6.6(g) has sharper borders of white colored table on the top left corner. Visual

inspection of images in Figures 6.6(c-f) indicate that these borders appear blurred in

the bicubic interpolated image, SR image using Jiji et al. method [161], Zhao et al.

method [61] and the method proposed by Yang et al. [79]. One can see that the SR

image obtained using the proposed method displayed in Figure 6.6(g) compares well with

the groundtruth. The letters in the text written on the ball are more clear in Figure

6.6(g). The method proposed by Zhao et al.[61] does not use dimensionality reduction
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algorithm such as PCA. Hence to display the results, PCA is applied on the SR result and

the first three PCA components are retained for comparison purpose only. Quantitative

comparisons for this experiment are given in Table 6.5. From the table we can see that

the MSEs between the true and the estimated SR PCA components are significantly

less for the proposed method. The use of estimated filter coefficients and regularization

improves the results in our approach as evident from quantitative evaluation measures

such as ERGAS, SAM and Q2n. These measures show that proposed approach better

preserves spatial and spectral fidelity in the super-resolved images.

In Figure 6.7 the SR results on remotely sensed data acquired using AVIRIS hyper-

spectral imager is shown for a specific band 100. Results are listed for the first 3 PCA

bands that include 99.3% of spectral variability of HSI. Figure 6.7(a) shows the LR test

image and the original HSI band is displayed in Figure 6.7(b). From Figure 6.7(c) we can

see that bicubic interpolation blurs the image when upsampled and the high frequency

spatial details are lost. One may notice that bicubic interpolation in Figure 6.6(c) ap-

pears better than the result in Figure 6.7(c). This is because there is significant high

frequency content in AVIRIS data when compared to natural HSI displayed in Figure

6.6 and the interpolation fails to preserve the high frequency details indicating that the

interpolation techniques are not suitable for solving the SR problem. Quantitative com-

parisons given in Table 6.5 and Table 6.6 further proves this observation. Result of Zhao

et al.[61] shown in Figure 6.7(e) is less blurred compared to bicubic interpolated image

but it shows artifacts and has loss of high frequency details. Jiji et al. [161] approach

results in improved visual quality than the interpolation and the method proposed by

Zhao et al.[61], but the overall contrast of the image is not preserved as seen from Figure

6.7(d). Sparsity based SR result of Yang et al. [79] method shown in Figure 6.7(f) is

visually better than SR obtained using Zhao et al. [61] (see Figure 6.7(e)), but it fails to

preserve high frequency details as evident from vertical lines in the middle region of the

image.

As seen from Figure 6.7(g), the use of estimated filter coefficients and sparsity regular-

ization results in reduced artifacts and also takes care of preservation of high frequency

details. It gives better visual quality closely resembling the groundtruth. We can see

that the white patches visible in LR observation appear grayish in Jiji et al. method (See

Figure 6.7(d)), but the result is improved in the proposed approach. One can clearly
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discriminate the vertical lines appearing in the mid region of the image in Figure 6.7(g)

indicating that edge details are very well preserved in the proposed approach.

As far as the quantitative comparison is concerned, it is clear from Table 6.6 that the

proposed method provides scores that are closer to the reference values when compared to

bicubic interpolation [148], Jiji et al. method [161], Zhao et al. approach [61] and Yang

et al. approach [79]. Lower value of ERGAS in the proposed method indicates lesser

global distortion in super-resolved HSI. Generally a value of ERGAS below 3 is believed

to be an image with good quality [124]. We see that when compared to other approaches

the remaining measures such as SAM, Q2n are better for the proposed method. Lower

value of Q2n in Table 6.6 indicates minimum spatial as well as spectral distortions by

the proposed approach. To further support the performance improvement in terms of

spectral fidelity using our approach, we show the SAM error plot in Figure 6.8. The plot

depicts the total count of pixels in super-resolved image having specific degree of spectral

angle error. We can see that when compared to other methods, the proposed approach

has maximum number of pixels having spectral distortion less than 5 degrees. Also the

number of pixels having spectral error more than 27 degrees is quite less. Lower values

for SAM indicate that the proposed method provides better spectral fidelity.

We would like to point out that compared to the SR method discussed in previous

chapters, here the use of estimated wavelet filter coefficients in initial estimate as well as in

the decimation matrix entries improves the performance of proposed method. It is to be

noted that in the present method we use point spread function (PSF)/degradation with

overlapping entries, while in previous method non-overlapping entries were considered

to define PSF. Improvement in the performance of this approach is evident from the

quantitative measure ERGAS given in Table 6.6 and Table 5.2. The value of ERGAS is

2.5349 for the approach proposed in this chapter while it is 2.9725 for the approach based

on learned dictionaries and Gabor priors as discussed in chapter 5. We also found that as

far as other quantitative measures are concerned the proposed approach performs better.

Thus this method outperforms the other previous methods of super-resolution discussed

in this thesis.

Finally, we discuss about the timing complexity of our method considering a resolution

factor of 4 for SR of HSIs. All algorithms were implemented using MATLAB 7.0 on

Intel(R) Core(TM) i3 CPU M380 having operating frequency of 2.53 GHz. Comparisons
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of the running time of all the methods for different input images is given in Tabel 6.7 for

each experiment. First two rows correspond to computation times of single band images,

while third and fourth rows correspond to 31-band and 196-band HSIs. It is to be noted

that in Zhao et al. [61] approach spectral regularization step is suitable only for HSI,

hence experiments are not performed on Car and Text images and corresponding entities

in Table 6.7 are left blank. For the proposed method, the time required for estimating the

filter coefficients was 15 seconds which is a one time offline procedure. The time taken

for detail coefficients learning i.e., initial SR estimate was only 4 seconds. Note that as

already explained in section 6.5, this step involved significant number of comparisons and

the use of high speed processor reduced the computing burden. Finally, regularization and

inverse PCA was done in 27 seconds. Thus the total time required was about 46 seconds

to obtain the final SR image as indicated in the table. From the table we see that time

taken for SR of 31-band and 196-band HSIs is significantly higher than that of car and

text images. This is because here the total time corresponds to super-resolution of more

than one image. The difference in computation time for 31-band and 196-band HSIs in

the proposed approach is due to the execution time difference in PCA and inverse PCA.

We see that the execution time of bicubic interpolation is much less when compared

to other methods. Unfortunately, interpolation fails to retain high frequency details,

hence it is not considered as SR technique. Time complexity to estimate SR image in

Jiji et al. [161] approach is several hours. This is because the cost function used in

their regularization is non-differentiable and hence the use of simulated annealing for

cost minimization increases the time complexity. But the time for obtaining the initial

estimate in their approach is less when compared to our approach because they do not

estimate the filter coefficients. The method proposed by Zhao et al. [61] and Yang et

al. [79] are quite expensive in terms of time requirements since the dictionary learning

employed in both these approaches takes few hours. Besides, the method of Zhao et

al. [61] super-resolve each band separately without using any dimensionality reduction.

Hence, time complexity increases as the number of bands increases. For AVIRIS HSI their

algorithm takes several hours. This is because the use of sparsity based regularization

which is computationally expensive adds to their computational complexity. Another

reason for increase in time is due to regularization done separately on each band. However,

in the proposed approach computation of sparse coefficients is one time operation and
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Table 6.7: Computational time in seconds of different algorithms for LR image size 64×64
and q = 4

Image Bicubic in-
terpolation

[148]

Jiji et al.
[161]

Yang et al.
[79]

Zhao et al.
[61]

Proposed
approach

Car 0.4087 3813.7965 199.2996 −− 19.6112
Text 0.4048 3913.8527 204.1095 −− 18.5480

Natural HSI
(31-band)

1.3288 11440.1020 628.0139 30130.5742 40.2350

AVIRIS HSI
(196-band)

8.1160 11647.9102 750.3732 191487.6880 46.3458

training of dictionary is also not required. In conclusion, for the proposed approach,

spatial and spectral fidelity is better preserved with reduced time complexity. Further

improvement in the speed can be achieved by implementing the algorithm using C or

C++ using optimized code.

6.7 Conclusion

We have presented an SR approach for hyperspectral images based on the design of an

adaptive wavelet basis. We estimate the wavelet filter coefficients using a database and

use them in our learning based super-resolution. The decimation matrix entries for each

significant spectral band is represented in terms of estimated low-pass wavelet filter coef-

ficients. Use of sparsity based regularization and the use of optimum degradation matix

results in improved quality of super-resolved image when compared to other approaches.

The advantage of the proposed technique is that there is no need of registration while

learning. Quantitative comparison of score indices indicates that our method enhances

spatial information without introducing significant spectral distortions. Experimental

results show that the proposed approach outperforms other methods in terms reconstruc-

tion quality and computational complexity.

Adaptive wavelet basis will have positive impact on the subsequent hyperspectral

image processing applications where high spatial and spectral resolution is desirable. We

conclude that the wavelet basis can be tailored to take care of the variability in sensor

characteristics. Our future work involves the incorporation of spectral mixing models in

order to improve the estimation of filter coefficients and hence the SR.
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(a) (b) (c)

(d) (e) (f)
Car

(a) (b) (c)

(d) (e) (f)
Text

Figure 6.5: Experimental results on single band images for q = 4. (a) LR test image of
size 64× 64, (b) Ground truth of size 256× 256, (c) Bicubic interpolation [148], (d) SR
image using Yang et al. method [79], (e) Initial SR image using Db4 wavelet [161], and
(f) Initial SR estimate using proposed approach
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6.6: Experimental results on PCA-1 of 31-band natural HSI for q = 4. (a) LR
test image of size 64 × 64, (b) Ground truth of size 256 × 256, (c) Bicubic interpolation
[148], (d) SR image using Jiji et al. method [161], (e) SR image using Zhao et al. method
[61], (f) SR image using Yang et al. method [79], and (g) SR image using the proposed
approach.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6.7: Experimental results on 100th band of AVIRIS data for q = 4. (a) LR test
image of size 64× 64, (b) Ground truth of size 256× 256, (c) Bicubic interpolation [148],
(d) SR image using Jiji et al. method [161], (e) SR image using Zhao et al. method
[61], (f) SR image using Yang et al. method [79], and (g) SR image using the proposed
approach.

Figure 6.8: Spectral angle error for AVIRIS HSI for q = 4.



Chapter 7

Conclusion and Future Research

Work

7.1 Conclusion

In this thesis, we have addressed the problems of multiresolution fusion and super-

resolution (SR) to increase the spatial resolution of multispectral and hyperspectral im-

ages, respectively. Approach based on multiresolution fusion needs auxiliary HR panchro-

matic (PAN) image in registered form, while SR based approaches do not need auxiliary

information. We first enhanced spatial resolution of multispectral images using multires-

olution fusion in compressive sensing framework. This approach uses registered HR PAN

image of the same geographic area as the auxiliary information. We next consider the

super-resolution techniques based on single observation without using auxiliary informa-

tion and registration. However, it is not possible to extract additional non-redundant

information for resolution enhancement by using a single observation. Hence, explore dif-

ferent options for obtaining the additional information. We know that it is very difficult to

capture the richness of textures in hyperspectral images analytically. This has motivated

us to use empirical data rather than theoretical model in order to obtain non-redundant

information for the super-resolution of hyperspectral image. Since hyperspectral images

have high dimensions, we first perform dimensionality reduction using principal com-

ponent analysis and then apply super-resolution algorithms on the reduced set. After

performing SR in transform domain, inverse transform gives us SR for the entire hyper-

123



7.1 Conclusion 124

spectral cube. Our approaches are based on CS, in which sparse representation of the

image plays significant role to obtain the super-resolution. In compressive sensing based

approaches, we obtain sparse representation of LR observations in terms of LR dictio-

nary entries, and applying the same sparseness on HR we obtain the SR. In our work

we used dictionaries derived using different approaches. We first considered raw LR-HR

dictionaries of most informative PCA component having large number of atoms. Then

we used jointly optimized LR-HR dictionaries of PCA components representing most of

the spectral variance of the hyperspectral images having very few atoms. We also solved

the problem of super-resolution using wavelet based learning in which adaptive wavelets

are designed from the given HS image itself. The inrverse problem of obtaining SR was

solved using regularization approach in which the forward process of image formation

is represented using a linear model. Different kinds of point spread functions to repre-

sent the degradation were considered in the image formation model and priors such as

autoregressive, sparsity and Gabor were considered for regularizing the solution.

To begin with, we first considered the spatial resolution enhancement of the mul-

tispectral (MS) images using the available panchromatic image. This is referred to as

multiresolution fusion or pansharpening and the fusion of the MS and PAN images is

obtained in two steps. In the first step, we used wavelet to decompose panchromatic

image to make the size of its coarser part same as that of MS image. A CS based method

was used to obtain the missing detail coefficients. Assuming same sparseness for LR and

HR MS images, the HR details in the fused image are obtained as the linear combination

of the HR atoms of Pan image. The inverse-discrete wavelet transform (IDWT) of the

learned image is considered as an initial estimate to fused image. In the second step, reg-

ularization using maximum a posteriori - Markov random field (MAP-MRF) approach is

used to obtain final fused image. Here MRF model parameter was estimated from initial

estimate of fusion. Experiments conducted on simulated and real data indicate superior

performance of our approach.

Subsequently in this thesis, we present problems of increasing spatial resolution of

hyperspectral images without using auxiliary high-resolution image. Hyperspectral im-

ages have very large number of spectral bands, hence we first reduced dimensionality of

HSIs using principal component analysis (PCA) and worked in reduced dimensional space

i.e. we used PCA components for SR. We create LR-HR raw dictionaries by randomly
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choosing large number of small blocks (patches) from PCA-I component i.e. first PCA

component of training images. Applying CS based approach to first PCA component

results in initial SR estimate. Assuming that the pixel intensity in the image is a lin-

ear combinations of the intensities of its neighboring pixels, a better solution to SR is

obtained by using the autoregressive and sparsity prior models on the high-resolution

hyperspectral image. Remaining principal components were bicubically interpolated and

further improved using autoregressive prior model. Use of autoregressiveness as a prior

model improves the solution as well as reduces computational burden. Here we considered

the degradation matrix as the average of non-overlapping blocks by considering each LR

pixel as sum of equally weightaged corresponding HR pixels in a block. Applying inverse

PCA results in SR HSI in spatial domain. Experiments were conducted on real hyper-

spectral images. Visual inspections and quantitative comparison confirm the effectiveness

of proposed method.

Compressive sensing (CS) based approach was further extended to include all signifi-

cant PCA components to cover most of the spectral information of hyperspectral image.

Here LR and HR raw dictionaries of significant principal components (PCA) having large

variance and having large number of atoms were jointly trained using K-SVD algorithm

to reduce the dictionary size considerably. Initial SR of principal components in PCA

domain are obtained by using the optimized dictionaries using the CS framework. In this

case we used a new prior while regularizing the solution. This prior termed as ”Gabor

prior” was used to obtain solution for each of the SR PCA components. Instead of con-

sidering the ideal square point spread function (PSF) (i.e. averaging) we estimate the

degradation matrix separately for each of the initial SR PCA images that gives us better

model to represent the degradation between LR and HR images. Visual inspections and

quantitative comparison with various other methods confirmed enhancement of spatial

information without introducing significant spectral distortion.

Finally, we proposed a learning based approach for SR using wavelet transform based

method. Both the low pass and high pass wavelet filter coefficients of the chosen wavelet

are estimated from the data itself. Tailored wavelets were then used in learning the miss-

ing high frequency details i.e., edges in horizontal, vertical, and diagonal by making use

of a database of HR images. Use of tailored wavelets while learning improved the initial

SR estimate over fixed basis. These estimated wavelet filter coefficients were also used in
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obtaining the degradation in the image formation model which was then used in getting

the final SR image. The refinement of the initial estimate is done by using the spar-

sity based prior in regularization framework which takes care of contextual dependencies.

The final cost function being convex was minimized using gradient descent optimization

technique. Experiments were conducted on three different kinds of datasets including

HSIs captured in controlled laboratory environment as well as on remotely captured real

HSIs. The results show that the proposed approach offers significant performance as well

as computational advantages over the other methods.

Before we end the conclusion it may be of interest to mention the following points

regarding the reasons for use of initial estimate in our works. We assume that the initial

estimate represents close approximation to the final fused/super-resolution (SR) image.

Note that though, it can be considered as closer to the final solution one cannot accept

it as the final solution. This is because the problem of fusion/SR is ill-posed and a

solution space of initial estimate without regularization is larger when compared to that

obtained after regularization. However, one may still consider the initial estimate to

represent the global characteristics such as edge details, spatial dependencies etc. of the

final solution. In addition to this, we often require an accurate estimate of input-output

relationship where the output is not known. In such situations it is reasonable to derive

an initial estimate of the output from the given data and use the same for finding the

transformation. Due to these reasons we derive an initial estimate and use it for obtaining

an improved solution.

7.2 Future Research Work

Improving spatial resolution of hyperspectral images requires additional information in

the form of multiple observations, HR auxiliary image, or a large database that has high-

resolution images. Unfortunately, there do not exist an universal solution to improve

spatial resolution of hyperspectral images. Most of the spatial resolution enhancement

techniques for HSIs suffer from the limitations such as higher dimensionality, need of

auxiliary image of the same geographic area, need for registration, high computational

complexity, need for large training database, etc. Although significant amount of work

has been carried out in the area of SR of hyperspectral images, there is still enough scope
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for improvement. In this section, we discuss the directions for future research work in

obtaining high spatial resolution hyperspectral images.

• We have proposed the super-resolution using wavelet transform based learning in

which we have derived wavelet filter coefficients using the LR-HR hyperspectral

training database. However limitations of wavelets is that they represent limited

directions. In addition 2-D wavelets do not perform well when there are edges along

counters. The hyperspectral images consists of intrinsic geometric structures with

edges located along smooth curves as well. The contourlet transform is capable

of capturing high frequency information oriented at various directions in multi-

ple scales with flexible aspect ratios. Hence, one can design adaptive contourlet

transform from the database, and can use it for learning the fine details from the

database of HR images.

• In wavelet learning based approach as a compromise between performance and

computational load we have chosen a filter length of 4. We can estimate optimum

length of the filter to design wavelets using training database and can use them

while learning the high frequency details.

• We considered space invariant blur while constructing image observation model. In

practice, point spread function of hyperspectral imager depends on various factors

such as fill factor of CCD array, camera gain, zoom factor, imaging wavelength

etc. The effect of diffraction is significant at higher wavelength in a hyperspectral

imager. This results in spatially and spectrally varying point spread function (PSF).

Thus one may consider PSF which varies spatially as well as spectrally. In order to

incorporate spatially varying PSF one has to estimate the PSF at every pixel.

• In our work we considered a linear image formation model. One may consider

more general non-linear model and also relax the assumption on independent and

identically distributed noise.

• Most of the work on SR uses iterative methods to arrive at the final solution. Hence

real time implementation becomes a difficult task. One may consider future works

that result in closed form solutions with reduced computational cost.
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