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Abstract

Digital reconstruction of ruined historic monuments and heritage sites can help in

visualizing how these may have existed in the past. Also, such a process requires

no physical alteration to the existing monuments. This facilitates in avoiding their

further accidental damage. A digitally reconstructed heritage site in the form of

an immersive walkthrough can serve as a delightful tool for both educational and

entertainment purpose.

This thesis presents novel approaches for auto-inpainting that involves image

inpainting as well as automatic detection of cracks and other damaged regions for

inpainting in heritage monuments. As a by-product of one of our inpainting tech-

niques, we are also able to perform resolution enhancement i.e. super-resolution.

The purpose is to obtain the digitally reconstructed monuments having enhanced

resolution, where the digital reconstruction is performed by automatically de-

tecting and inpainting the damaged regions. The resulting images can serve as

an input to immersive walkthrough systems. In our first inpainting approach,

we propose an iterative exemplar based method that fills the missing pixels by

making use of parameters of an autoregressive (AR) model. These parameters

represent the pixel-neighborhood relationship. Considering a set of candidate ex-

emplars, we estimate the parameters of the AR model using the non-negatively

constrained least squares (NNLS) method.

In our second inpainting approach, we propose a unified framework to per-

form simultaneous inpainting and super-resolution. Here, we construct dictionar-

ies of image-representative low and high resolution patch pairs from the known

regions in the test image and its coarser resolution. Inpainting of the missing

pixels is performed using exemplars found by comparing patch details at a finer
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resolution, where self-learning is used to obtain the finer resolution patches by

making use of the constructed dictionaries. The obtained finer resolution patches

represent the super-resolved patches in the missing regions. Advantage of our

approach when compared to other exemplar based inpainting techniques are (a)

additional constraint in the form of finer resolution matching results in better in-

painting and (b) inpainting is obtained not only in the given spatial resolution but

also at higher resolution leading to super-resolution inpainting.

In practice, inpainting techniques perform filling of the missing pixels in known

regions i.e., they rely on the user to manually select the regions to be inpainted.

This is also the case with our two inpainting methods briefly discussed above. To

avoid human interaction i.e., manual selection of region to be inpainted, we pro-

pose auto-inpainting techniques wherein the missing regions to be inpainted are

not known but are automatically detected prior to inpainting. First, we propose

a novel method that detects and inpaints the visually dominant damage regions

viz. eyes, nose and lips in facial images of statues. A bilateral symmetry based

method is used to identify the eye, nose and lip regions. We then use texton

features extracted from each of these regions in a multi-resolution framework to

characterize both the damaged and non-damaged regions. For classification, the

texton features are matched with those extracted offline from a training set con-

sisting of true damaged and non-damaged regions. If the region is found to be

damaged, the best matching non-damaged region from the training set is used to

inpaint the identified region using an existing inpainting method.

Having proposed an auto-inpainting technique for facial regions in statues,

we proceed to auto-inpainting the non-facial regions in heritage monuments by

proposing three techniques for detecting and inpainting cracks. Here, we initially

propose a simple pixel based approach that uses order-statistics and density based

filters for the detection of cracks. We then propose a patch based approach for

crack detection by making use of singular value decomposition (SVD) for patch

comparison. Further, we propose another effective and more accurate crack de-

tection method based on comparison of patches using a measure derived from

the edit distance, which is a popular string metric used in the area of text mining.
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We extend this crack detection approach to perform inpainting of video frames by

making use of the scale invariant feature transform (SIFT) and homography. Here,

we consider the camera movement to be unconstrained while capturing video of

the heritage site, since such videos are typically captured by novices, hobbyists

and tourists. Finally, we provide the temporal consistency measure to quantify

the quality of the inpainted video.

Keywords:

Inpainting; super-resolution; cultural heritage; digital reconstruction; textons; crack

detection; order-statics; SVD; edit distance; SIFT; homography; video quality.
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CHAPTER 1

Introduction

Historic monuments and heritage sites across the world are important sources of

knowledge which introduce us to our cultural history, depicting the evolution of

humankind. They not only represent irreplaceable assets that signify the culture

and civilization of the past, but also portray masterpieces of accomplishments that

symbolize the human potential. Such places serve as excellent tourist attractions

and can contribute significantly to a nation’s gross domestic product as tourism

is of great economic importance to many industries. It is for this reason many

organizations and government agencies globally have been taking keen interest

towards safeguarding and preserving the heritage sites.

Over the centuries, the heritage sites have witnessed a number of natural

calamities and sabotage resulting in their present ruined condition. A not very

distant example is that of the infamous destruction of the Buddhas of Bamiyan in

Afghanistan by the Taliban as reported in [8, 55]. Fearing the risk of further dam-

age by visitors, access to many heritage sites is now restricted. One such example

is that of the mandapa with musical pillars in the Vithala temple at Hampi in India,

where the visitors are not allowed to touch and experience the chimes resounding

from the musical pillars. In order to preserve the heritage sites, one may think

of their physical renovation. However, the renovation may not only pose dan-

ger to the undamaged monuments, but may also fail to mimic the skillful historic

work. Alternatively, it would be interesting to digitally reconstruct the heritage

sites since such a process avoids physical contact to the monuments. The digi-

tally reconstructed heritage site in the form of an immersive walkthrough system

may then provide an unrestricted access for viewing the monuments in their en-
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tirety. This would not only serve as a source for entertainment, but will be a

delightful tool for imparting knowledge of history in the form of immersive sto-

rytelling. Also, in today’s world, with the availability of better computing and

storage facilities, preservation of the digitally reconstructed monuments is inex-

pensive. The digital reconstruction of the heritage sites also facilitates the creation

of virtual tours, immersive walkthroughs and mixed-reality systems using digi-

tized 3D models. The Virtual Asukakyo project [134] is one such example which

digitally restored the ancient capital of Asuka-Kyo in Japan and provided a mixed

reality experience to the visitors.

Reconstruction and creation of immersive walkthrough systems using digi-

tized 3D models involves the processing of inputs captured using various acqui-

sition systems viz. laser scanners, multiple photographs for dense reconstruction,

etc. Since laser scanners are expensive and usually provide only depth informa-

tion, one can estimate the same with the help of a large number of photographs

(wherein color information is already available) using the technique proposed in

[46]. However, in either of the acquisition systems, self-occlusion or difficulty in

capturing the scene / object from a particular viewpoint may exist and greater

details may not be captured. This results in holes in the captured / estimated 3D

surface as well as missing out the high-resolution (HR) details. The holes can be

filled up using Poisson surface reconstruction method proposed in [71]. However,

in this case the reconstructed surface is over-smoothened and again the HR details

are lost.

One can overcome the above problem by filling the missing regions in the cap-

tured photographs before estimating the 3D surface. Also, the reconstructed sur-

face retaining the HR details may be obtained by using resolution enhanced ver-

sion of the photographs. While inpainting can be used to digitally fill or repair the

entire damaged region in the photographed scene, the HR details can be obtained

using super-resolution. Particularly, when heritage monuments are to be digitally

preserved, one needs to bear in mind the desire of viewers to view the monu-

ments in their undamaged form and their excitement for observing fine details of

the skillful historic work. By digitally correcting any damaged regions by means
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of inpainting and enhancing their resolution using super-resolution, the viewers

can be provided with an enhanced visual experience. Thus, the creation of immer-

sive walkthrough systems or digital reconstruction of invaluable artwork consists

of image inpainting and super-resolution as the preliminary steps.

The process of selecting the regions to be inpainted is usually subjective. One

user may want some region of the image to be modified, while another user may

want to modify another region in the same image. Hence, for an inpainting al-

gorithm, the regions to be inpainted are usually selected manually. However,

when looking at heritage monuments there is a consensus to view these in their

undamaged form. Here, one would crave that the damaged dominant facial re-

gions in statues and cracked regions, which diminish the monument’s attractive-

ness, are automatically detected and corrected in a seamless manner. The exact

selected area may vary for different users if the selection of damaged regions in

photographs of monuments is done manually. Also, the process of selecting the

damaged regions is an enervating task. This necessitates an exploration for a tech-

nique that can automatically detect the damage to dominant facial regions in stat-

ues and cracked regions in images of monuments, which is a critical and challeng-

ing problem for the success of digital reconstruction of heritage sites [29, 34, 35].

An automatic detection of these damaged regions will also facilitate the inpaint-

ing to be performed on-the-fly for creating efficient immersive navigation/digital

walk-through systems.

This thesis presents novel approaches for auto-inpainting by proposing tech-

niques for image inpainting and automatic detection of cracks & other damaged

regions for inpainting in heritage monuments. One of our inpainting approaches

also performs simultaneous super-resolution for obtaining higher spatial resolu-

tion photographs of the repaired monuments. The resulting images and videos

can then serve as an input for 3D surface estimation and eventually for creating

immersive walkthrough systems. In what follows, we provide a quick introduc-

tion to inpainting and super-resolution followed by a summary of the contents.
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1.1 What is inpainting?

Image inpainting is the process of restoring or modifying the image contents im-

perceptibly. Given an image and a region of interest (ROI) in it, the task of an

inpainting process is to fill the pixels in this region, in such a way that either the

original content is restored or the region is visually plausible in the context of the

image. Image inpainting can be used for a number of applications that require

automatic restoration or retouching of some region of a photograph. In fact, the

term inpainting is derived from the art of restoring damaged images in museums

by professional restorers [9]. Although restoration and inpainting are used inter-

changeably, inpainting can be considered as a superset of restoration. In general,

restoration refers to undoing of degradation, while inpainting also allows creating

special effects such as removing / adding objects.

Pixels in the missing region (i.e. the ROI) can be filled either by gradually

propagating information from outside the boundary of the ROI or by making use

of cues from similar patches. Based on these filling strategies, the existing inpaint-

ing methods can be categorized into two important groups viz. (a) methods us-

ing level lines and solving partial differential equations (PDEs) and (b) exemplar

based techniques. Among these, the exemplar based methods are more popular

as processing of similar patches well synthesizes the texture inside the missing

regions.

Inpainting is often performed in a semi-automatic manner, in the sense that

regions to be inpainted are required to be manually selected by the users. Blind

inpainting is one of the categories of techniques that do not require any user-

interaction for providing the regions to be inpainted. In fact, the techniques under

this category perform inpainting without apriori knowledge or detection of the

missing pixels. However, they assume the input image to be a noisy observation

and perform image recovery by considering all the image pixels to be corrupted

by various noise or degradation models. The blind inpainting methods are used

when there exists difficulty in selecting the corrupted (i.e. missing) pixels. One

may note that the blind inpainting techniques perform well when the missing pix-
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els are not localized but randomly spread across the complete image. Moreover,

the inpainted regions appear blurred and they fail to recover the texture in large

missing regions. Another problem due to the blind nature of such techniques is

that the known pixel values also get modified.

A different category of techniques that also facilitate the automatic detection

of the regions to be inpainted, is known as auto-inpainting. The techniques under

this category are developed for digital repair in specialized applications by per-

forming automatic detection and may or may not follow with an implicit method

for inpainting the detected regions. Once the regions are automatically detected,

it is possible to fill the missing pixels in these regions using a generic inpainting

technique. Thus, such methods can avoid the need of manually supplying the

regions to be inpainted. Also, unlike blind inpainting the advantage here is that

these techniques fill only the detected missing pixels without modifying values of

the known pixels.

In this thesis, we also address the problem of super-resolution i.e. resolution

enhancement in addition to auto-inpainting since one of the proposed inpainting

techniques performs simultaneous super-resolution. Towards this end, a brief

introduction to super-resolution is provided in the following section.

1.2 What is super-resolution?

As already discussed, both inpainting and super-resolution are useful in appli-

cations involving immersive navigation. Solving of these problems has been at-

tempted separately by researchers. However, part of our work also involves car-

rying out these operations simultaneously towards providing a unified solution.

In this section, we discuss what super-resolution (SR) is, and provide brief details

of the major categories of existing SR techniques.

While inpainting is used to fill the missing pixels in the given image, super-

resolution (SR) is performed in order to obtain an upsampled version that pre-

serves the high frequency details. A digital image is generated by spatially sam-

pling the continuous scene acquired using an image sensor. If the sampling fre-
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quency is low, it introduces distortion due to aliasing in the high frequency com-

ponents. In addition to aliasing, the sensor point spread function (PSF) and cam-

era motion resulting in optical blurring also degrade the quality of the generated

image. Super-resolution refers to an algorithmic approach to obtain a high spatial

resolution image from one or more low-resolution (LR) observations, thereby re-

covering the high frequencies and removing the degradations that arise due to the

capture of an image using a camera with low spatial resolution. In effect, the SR

process minimizes the aliasing and blurring. In other words, the super-resolved

image resembles the true image captured using a HR camera.

Based on the cue used, the existing super-resolution approaches can be classi-

fied into two major categories viz. motion-based techniques and motion-free ap-

proaches. Motion-based techniques use the relative motion between low resolu-

tion observations as a cue in estimating the high resolution image, while motion-

free techniques use cues such as blur, zoom, and shading. The later methods

do not require observations with relative motion among them. Some researchers

have also attempted to solve the super-resolution reconstruction problem with-

out considering any specific cue, but by using a set of training images in order to

learn the required information for resolution enhancement. A comparative survey

of the motion-based and motion-free SR techniques can be found in the works by

Chaudhuri [21], Chaudhuri and Joshi [22], Park et al. [108].

Super-resolution techniques may also be classified depending on the use of

the number of distinct observations of an object / scene viz. classical multi-image

SR and example-based SR. Here, the techniques that estimate the HR image us-

ing multiple LR images of same scene, fall under the classical multi-image SR

category. On the other hand, in the example-based SR techniques, the relation

between LR-HR patches is learned from a database containing pairs of LR-HR

images or from the given image itself. The advantage with example-based SR

methods is that these are capable to provide results with high magnification fac-

tors. This is unlike the classical multi-image SR approaches which have a limita-

tion on the amount of magnification (approximately twice the input image size)

that can be achieved.
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1.3 Thesis contributions

Having provided a brief introduction to both inpainting and super-resolution, we

now summarize the important contributions of this thesis, the details of which are

discussed in the subsequent chapters. We also highlight how these contributions

are different from other works.

While image processing and computer vision have been active areas of re-

search and used in different applications, few researchers have attempted the use

of image processing techniques in the digital preservation of heritage sites. The

book by MacDonald [92] describes the process of digitalization for cultural her-

itage and provides information about the required hardware and software setup,

acquisition of images for 2D and 3D rendering along with related case studies.

Likewise, the preservation of original objects at the heritage site or in museums

as well as creating their imaged replica in digital form is discussed by Munshi

and Chaudhuri [98]. Here, the authors also discuss the issues involved in digi-

tal content and community building for archiving and global sharing of heritage

resources. In this thesis, we instead address the other aspect of digitizing the cul-

tural heritage viz. reconstruction and recovery of details in the lost or deteriorated

regions in the photographs of the monuments, which is not addressed in any of

the books mentioned above.

Algorithms to digitally detect and restore typical damages that photographs

suffer such as foxing, water blotches, fading and glass cracks are discussed in

[129]. They aim to undo any damage to the photograph itself rather than digitally

repairing the imaged physical object. On the contrary, this thesis contributes by

providing methods for object completion rather than image restoration i.e. our

proposed methods perform digital repair of damaged regions and cracks in the

photographed monuments, in order to restore the missing details in a heritage

scene. Thus, unlike other approaches, the proposed methods detect and repair

the defect in the physical object being photographed and not to the photograph

itself.

To begin with, we propose two novel inpainting techniques based on the user

7



supplied regions to be inpainted. Unlike the recent user assisted interactive in-

painting, methods proposed in Ghorai et al. [50], Purkait and Chanda [116] that

may require special imaging conditions, our proposed methods require no spe-

cial imaging conditions and aim to perform the digital repair of the photographed

physical object / scene. We make use of the artistic details available in the given

image itself for completion of the missing regions. By doing so, we are able to

imitate the creative expressions of the artists which could be in the form of brush

strokes in mural paintings or carvings in petroglyphs and sculptures. One of our

proposed methods not only inpaints the given image but also creates the missing

details in its higher resolution i.e. super-resolution inpainting. This is particu-

larly suited for digitizing the cultural heritage since both, the inpainting and the

super-resolution, are performed simultaneously by the proposed method.

In order to fully automate the inpainting process we also explore techniques

for automatic detection of the damaged regions. The exisitng method for detec-

tion of defects proposed by Amano [4] works well for detecting computer gener-

ated superimposed characters having uniform pattern. A method for pavement

crack detection using tensor voting proposed by Zou et al. [160] is heavily de-

pendent on the accuracy of generation of crack-pixel binary map. The method

proposed by Cornelis et al. [24] is suitable only for the detection of fine cracks

that appear on paintings. Apart from the inpainting techniques, in this thesis we

also discuss methods particularly tailored for automatic detection of damaged re-

gions in facial images of statues and cracks in heritage scenes, which to the best

of our knowledge have not been attempted previously. Our first auto-inpainting

method detects the visually dominant eye, nose and lip regions in statues and

then identifies which of these are damaged. We next discuss techniques for de-

tecting cracks and the detected regions are inpainted to obtain the reconstructed

view of the photographed monument / scene.

We also extend our work on crack detection to perform auto-inpainting in

videos. The video inpainting method proposed in [111] requires the users to man-

ually specify the objects or regions that are to be inpainted. Also, many constraints

are placed on the camera movement. Our proposed method for video-inpainting
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can detect and inpaint cracks without constraining the movement of the camera.

Thus the method is completely automated and needs no human interaction. This

can be particularly useful for performing on-the-fly digital reconstruction of dam-

aged regions when tourists capture the heritage monuments using their handheld

video capturing devices.

To summarize, we have addressed the problem of auto-inpainting i.e. inpaint-

ing along with the automatic detection of the regions to be inpainted. This in-

cludes our following works:

• An exemplar based inpainting approach using autoregressive (AR) model,

• A technique for simultaneous inpainting and super-resolution using self-

learning,

• A method to identify damaged regions in facial images of statues for in-

painting,

• A simple pixel based approach to detect cracks in heritage site images for

inpainting using order-statistics and density based filters,

• A patch based technique using singular value decomposition (SVD) to de-

tect cracks for inpainting ,

• A method for more accurate crack detection in heritage site images using

tolerant edit distance (tED) for inpainting, and

• An extension to auto-inpaint cracks in videos with quantitative assessment.

1.4 Thesis organization

The contents of this thesis are organized as follows. The literature review is pre-

sented in chapter 2. We propose an inpainting technique for filling the missing

regions in the object / scene being imaged, in chapter 3. In order to fill the missing

regions in heritage scenes by imitating the creative expressions of artists, which

could be in the form of brush strokes in mural paintings or carvings in petro-

glyphs and sculptures, one needs to capture the dependencies in surrounding
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regions using pixel-neighborhood relationships. In this chapter, we discuss an

iterative exemplar based inpainting technique wherein we use the estimated pa-

rameters of an autoregressive (AR) model that represent the pixel-neighborhood

relationships. Unlike those approaches which simply copy the pixels to be in-

painted from the best matching exemplar, we use the AR parameters in addition

to the best matching exemplar to fill the missing pixels so that the artistic creative

expressions are retained in the filled regions.

As already discussed, for applications like creating immersive walkthrough

systems or digital reconstruction of invaluable artwork both inpainting and reso-

lution enhancement of the given images are the preliminary steps that need to be

performed for providing a better visual experience. In chapter 4, we present a uni-

fied framework to perform simultaneous inpainting and super-resolution, rather

than addressing them in a pipelined manner as is usually done. The presented

approach is based on creating pairs of LR-HR dictionaries for self-learning. With

the use of this technique, the missing pixels are filled not only in the given spatial

resolution but also in the higher resolution leading to super-resolution inpainting.

The inpainting techniques discussed in chapter 3–4 depend on the user to sup-

ply the regions to be inpainted. In chapter 5, we discuss a method that automates

the process of identifying the damaged dominant regions viz. eyes, nose and lips

in face image of statues at a historic site, for the purpose of inpainting. Thus, the

missing regions to be filled are not known but is automatically detected prior to

inpainting. Here, we use bilateral symmetry of face as a cue to detect the dom-

inant regions followed by matching of texton features to identify the damaged

eye, nose and lip regions. Poisson image editing method is then used to inpaint

the damaged regions.

The aim of chapters 6–7 is to introduce techniques that can automatically de-

tect the cracked regions in heritage monuments and demonstrate their repair by

inpainting. This can be particularly useful for performing on-the-fly digital re-

construction of damaged regions when tourists capture the heritage monuments

using their handheld video capturing devices. In chapter 6 we first discuss a pixel

based simple method to automatically detect the damaged regions which are char-
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acterized by abruptly dark deteriorations in the photographed monuments of a

heritage site by making use of of order-statistics and density filters. This is fol-

lowed by a patch based approach using singular value decomposition (SVD) for

automatic detection of the cracked regions in the photographed object / scene,

for the purpose of digitally restoring them to their entirety using inpainting. In

chapter 7 we discuss another effective and more accurate crack detection method

based on comparison of patches using a measure derived from the edit distance,

which is a popular string metric used in the area of text mining. We then extend

this crack detection approach to perform inpainting of video frames by making

use of the scale invariant feature transform and homography. We consider the

camera movement to be unconstrained while capturing video of the heritage site,

since such videos are typically captured by novices, hobbyists and tourists. Here,

we also provide the temporal consistency measure to quantify the quality of the

inpainted video.

Finally, in chapter 8 we conclude the thesis by summarizing the main contribu-

tions and by listing out future research directions. Most of the material discussed

in this thesis has been published in our works [101, 102, 103, 104, 105, 106, 107].
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CHAPTER 2

Literature Review

In this chapter, we provide a review of the literature for inpainting and super-

resolution highlighting the insights of current research status in these areas. We

first review the literature for inpainting in section 2.1 followed by super-resolution

in section 2.2.

2.1 Inpainting

Image inpainting has been an active area of research for more than a decade. Dur-

ing the 1990s many researchers addressed the problem of interpolating missing

pixel values. However, it was only towards the end of the decade that Masnou

and Morel [95] proposed the first inpainting technique. Their method connected

the level lines (i.e. curves or contours of constant intensity) arriving at the bound-

ary of an occluded region. With this technique, the occluded regions were filled

up but the level lines did not curve in a plausible manner. A major breakthrough

to the inpainting problem was later provided by Bertalmio et al. [9]. Their algo-

rithm not only connected the level lines arriving at the boundary of the occluded

regions, but also enabled their curving inside the occluded region in a visually

plausible manner. The periodical curving of the level lines that also avoids cross-

ings, was achieved using anisotropic diffusion [3, 114]. The algorithm proposed

by Bertalmio et al. [9] was successful in propagating structure, however, failed

in inpainting the areas having large textured regions. Nevertheless, this method

inspired future works that also relied on the propagation of level lines [100, 147].

For propagating texture, a patch replicating method was suggested by Cri-
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minisi et al. [25, 26]. This patch-based technique exploits the self-similarity in

an image by searching for a similar patch from the surrounding known regions

(having no missing pixels) to inpaint the missing pixels in a patch under consider-

ation. Here, the occluded region containing the missing pixels is filled in a patch-

by-patch approach by copying pixels from the corresponding similar patches i.e.

exemplars. The method emphasizes on the order of selecting the patch to be filled

up as this allows the propagation of both structure as well as texture.

Another technique to inpaint large textured regions was proposed by Pérez

et al. [112] that used the Poisson’s equation for adding objects / texture from other

images by using them as guidance vector field. Thus, if a user supplies the region

of interest to be edited and a region from which information is to be transferred

i.e. guidance vector field, the technique results in a seamless blending of these

two regions. Researchers have also proposed methods [54, 151] that make use of

level lines for texture synthesis. Yet another patch-based approach is proposed

in the work by [149]. This approach fills the missing pixels by considering pixels

not only in spatial neighborhood, but also across temporal neighborhood in an

iterative multi-scale manner using spatio-temporal pyramids. This is performed

by optimizing a cost function that ensure global coherence.

Later, Mairal et al. [93] proposed a technique for color image restoration based

on sparse representations obtained by dictionary learning. This method, basi-

cally, addresses the problem of learning dictionaries for sparse representation of

color images in a quest to extend the K-SVD based denoising approach proposed

for grayscale images in [36]. In addition to inpainting, this method is useful in

obtaining impressive results for applications like denoising and demosaicing. On

similar lines, Mairal et al. [94] proposed a method for image restoration using non-

local sparse models. This method provided a framework to combine dictionary

learning along with searching for similar patches, using simultaneous sparse cod-

ing. Around the same time, Pritch et al. [115] and Barnes et al. [7] proposed fast

algorithms for image re-targeting which includes inpainting as one of its applica-

tions. This method is non-iterative, which fills the missing regions by mapping

these to other locations in the input image by performing graph-cut optimization.
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On the other hand, the method proposed in [7] is suited for iteratively filling the

missing regions by quickly searching for exemplars using randomized correspon-

dences.

Bugeau et al. [14] proposed a variational model for inpainting that minimizes a

cost function involving (a) similarity of patches for texture synthesis, (b) diffusion

for propagation of information in the direction of level lines and (c) coherence for

maintaining the consistency with neighborhood. Another approach that exploits

the redundancy in images for inpainting was proposed by Xiong et al. [153]. This

approach fills in the missing regions using self-similar patches in a parameter as-

sisted manner. On similar lines, [80] proposed an inpainting algorithm using a

novel strategy for exemplar matching. Here, a fast exemplar search is performed

by evaluating matching scores obtained by decomposing the exemplars into fre-

quency coefficients followed by selecting fewer but most significant coefficients.

The missing pixels are then filled using the exemplar in gradient based approach.

Li et al. [85] proposed a method based on scene transform and color transfer.

Here, a source image that resembles the input image, is searched by matching

various features. The missing regions in the input image are then filled using

the corresponding regions in the source image by minimizing a cost function in-

volving boundary condition that facilitates plausible blending. Xu and Sun [154]

proposed an inpainting method by using sparsity as a cue to assign priority that

decides the order in which patches are filled the missing regions. This method

prioritizes patches having higher sparsity, while the filling is done by expressing

the selected patch as a sparse linear combination of similar patches that are consis-

tent with the neighborhood. Likewise, the method proposed by Huan et al. [61]

uses fast marching method to decide the order of filling patches in the missing

region, followed by using exemplars and Markov random field (MRF) prior for

inpainting these regions.

A different method for inpainting was attempted by Hladky and Pauls [60] by

proposing a neuro-biological image completion model. Their method performs

completion of occluded visual data by finding solutions to the minimal surface

problem with Dirichlet boundary conditions in the roto-translation group. Simi-
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larly, the work by Subrahmanyam et al. [130] addressed the problem of inpainting

noisy photographs. Their method uses a recursive image recovery scheme for si-

multaneously inpainting missing regions in an image by using unscented Kalman

filter and also suppresses film-grain noise.

Researchers have also attempted inpainting techniques based on probabilistic

structure estimation [125], methods using depth [10, 12, 78], focus [96], statistics

of patch offsets [59, 76], combining patches from multiple images that may con-

tain same or different objects [28, 150] and enhancement of high frequency details

using patch-based anisotropic diffusion [116].

Recent techniques include the works by Ghorai et al. [50], Huang et al. [62],

Purkait and Chanda [116], Rematas et al. [118]. While the work by Rematas et al.

[118] presents a learning based inpainting technique by making use of the struc-

tural information extracted from 3D models a particular class of objects. Filling

the missing regions in images containing an object of this class is performed us-

ing the learnt structural information. The method proposed by Ghorai et al. [50]

performs multiscale image completion by combining transform domain patch fil-

tering. Likewise, Huang et al. [62] proposed a patch-based image completion

method that makes use of constraints on patch offsets and transformations de-

rived from the translational regularities in the estimated planes. A comparative

survey of inpainting techniques can be found in [56]. However, all the methods

discussed above are semi-automatic, in the sense that regions to be inpainted are

required to be manually selected by the users.

We now provide a brief overview of the techniques under blind inpainting

and auto-inpainting categories, which do not require any user-interaction for pro-

viding the regions to be inpainted. However, the amount of published literature

under these categories is very much limited, unlike the several techniques dis-

cussed above that are supplied with the regions to be inpainted. The blind in-

painting techniques proposed in [1, 31, 146, 155] assume the input image to be a

noisy observation and perform image recovery by considering all the image pix-

els to be corrupted by various noise or degradation models. On the other hand,

the methods proposed for blind inpainting by Xie et al. [152] and Cai et al. [15]
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use sparse stacked denoising autoencoders and convolutional neural networks,

respectively. Here, large number of examples consisting corrupted and uncor-

rupted patch pairs are used for training a model that perform blind inpainting.

Chang et al. [20] proposed a method to auto-inpaint damage in images due to

color ink spray and scratch drawing by making use of several filters and struc-

tural information of damages. Likewise, the method proposed by Tamaki et al.

[133] addresses auto-inpainting string-like objects that block user’s view of a dis-

cernible scene using contrast as a cue. Amano [4] presented a correlation-based

method for detecting defects in images. This method relies on correlation between

adjacent patches for detection of defects i.e. small number of regions disobeying

an “image description rule”, complied by most local regions. Parmar et al. [109]

proposed an auto-inpainting technique which uses matching of edge-based fea-

tures with pre-existing templates to distinguish vandalized and non-vandalized

regions in frontal face images of monuments at heritage sites. Similarly, Turakhia

et al. [140] proposed a method to automatically inpaint cracks in images of her-

itage monuments which relies on the detection of edges and tensor voting to iden-

tify cracks. Another tensor voting based method for auto-inpainting of cracks in

pavement images was proposed by Zou et al. [160] which is heavily dependent on

the accuracy of generating the crack-pixel binary map that acts as an input to the

tensor voting framework. Later, Cornelis et al. [24] proposed a method for virtual

restoration of paintings. This method is flexible as the user may set parameters

to suit the input. However, it is suitable only for the detection of fine cracks that

appear in paintings.

For inpainting in videos, a method has been proposed by Patwardhan et al.

[111]. Their technique considers a static background with a moving foreground,

any of which could fall under the region to be inpainted. First, the occluded fore-

ground patches are filled up using motion-inpainting. The background patches

which are visible in other frames are then directly copied. Finally, any missing

region is filled up using the exemplar-based inpainting approach [26]. It may

be noted that, in this approach the users need to manually specify the objects or

regions that are to be inpainted. Also, many constraints are placed on the cam-
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era motion. Later, Al-Takrouri and Savkin [2] proposed a model based valida-

tion technique that uses temporal information to recover corrupted parts of video

frames. While a detailed and comparative survey on video inpainting techniques

can be found in the works by Ghorai et al. [49], Newson et al. [99], Shih et al. [126],

one may note the dependency of these techniques in the robustness of the track-

ing algorithms used, the lighting conditions and the constraints of camera motion.

Most video inpainting techniques can inpaint moving objects under constrained

camera motion or a user-selected object. However, to the best of our knowledge,

there does not exist any approach that demonstrates video inpainting under un-

constrained camera motion with no moving objects and is completely automatic

without the need to provide the regions to be inpainted, apart from our proposed

technique that we discuss later in chapter 7.

2.2 Super-resolution

The multiple-image super-resolution approach was first addressed in the work

by Huang and Tsai [65] which demonstrated the estimation of an HR image using

number of LR observations with sub-pixel shifts. Later, Irani and Peleg [66] pre-

sented an iterative back-projection based approach wherein the super-resolved

image was estimated by iteratively computing the difference between the ob-

served and the simulated LR images from the current SR estimate. An alternate

approach which uses l1-norm minimization and robust bilateral prior was pro-

posed much later by Farsiu et al. [39]. However, by this time a limitation of the

classical multi-image SR on the achievable magnification factor was proven as

limited (≈2) in the works of Baker and Kanade [6], Lin and Shum [86]. This limi-

tation motivated the exploration for techniques that can learn from examples i.e.

example-based SR approaches in a quest to attain higher magnification factors.

Freeman et al. [45] were the first to propose an example-based approach for SR.

This approach required the construction of an over-complete dictionary consist-

ing of LR-HR patch-pairs obtained from a large set of different training images.

Given the test LR image, the generated dictionary was then used to recover the
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missing HR details. By placing sparsity constraints on the over-complete dictio-

naries Yang et al. [156] proposed a technique using the concept of compressive

sensing. Here, the SR problem was solved by jointly training LR-HR pair dictio-

naries and enforcing the similarity of the corresponding sparse representations.

Most of the approaches use some form of smoothness prior that has the ten-

dency to smooth out the textured regions of images for high magnification factors.

In order to preserve edges in the super-resolved image, Fattal [40] proposed an ap-

proach that used edge dependencies between different resolution versions of an

image. Likewise, a gradient profile prior was used in the work by Sun et al. [131],

which parametrically defines the shape and sharpness of image edges learned

from large number of natural images. Gajjar and Joshi [48] proposed a wavelet

learning-based SR approach by making use of detail-preserving Inhomogeneous

Gaussian Markov Random Field (IGMRF) prior. Here, the learning process provides

an initial estimate which is used in estimating the super-resolved image. Later,

Freedman and Fattal [44] proposed an approach that uses a non-dyadic filter to

preserve the HR image details.

Motivated by the self-similarity properties of images across scales studied by

Ruderman and Bialek [121], Turiel et al. [141], researchers also exploited the patch

repetitions that occur within-and-across different resolution scales of the given LR

image in order to achieve super-resolution. A unified framework combining the

classical and example based SR was proposed by Glasner et al. [51], wherein sim-

ilar LR patches were found within-and across-different image resolution scales.

Here, each similar patch to the LR patch imposes a constraint on the correspond-

ing HR patch which is estimated by solving a system of linear equations arising

from these constraints. A similar approach was proposed by Luong et al. [90]

which uses kernel regression to fuse the similar patches in order to obtain super-

resolved image.

Khatri and Joshi [73] drew their inspiration from the work of Glasner et al.

[51] and proposed a self-learning algorithm. However, their method builds LR-

HR dictionaries comprising patches having exact match with only one coarser-

scale version while generating the remaining patch pairs from those learnt using
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l1-minimization. They further improved upon the solution by introducing Ga-

bor prior which forced the similarity of details between LR and downsampled

HR patches at various frequencies. The same authors later proposed a method in

[74] that removes the redundancies inherent in large self-learned dictionaries to

upsample an image without using any regularization methods or priors, which

drastically reduced the time complexity involved in performing super-resolution.

The most recent approaches for example based SR make use of anchored neigh-

borhood along with learned offline-regressors [136, 137] and transformed self-

exemplars [64] which allow geometric variations of the example patches in order

to cover significant number of textural appearance variations in the scene.

Recently, deep learning based approaches have provided state-of-the-art re-

sults in many areas, including super-resolution imaging. These methods [27, 32,

33, 87, 148] learn a cascade of filters and use them to enhance the spatial resolution

of an input image. It is interesting to note that a sparsity prior is used in most of

these methods to learn the cascade of filters.

As we have seen above, both the research areas viz. inpainting and super-

resolution have been well-explored in the last two decades. Yet, little work has

been reported in the literature that provides a unified approach for solving these

problems. A method for resolution enhancement using total variation inpainting

model was attempted by Chan et al. [18]. However, this method required several

LR versions that were blurred, noisy and containing missing pixels information

in order to obtain the super-resolved version. Later, Bhavsar and Rajagopalan

[11] proposed a joint method for inpainting and super-resolution of range maps

having missing data. The same authors also proposed another method for super-

resolution and inpainting of range maps using multiple relatively shifted LR range

images. Around the same time, Le Meur and Guillemot [81] proposed a method

to perform inpainting based on super-resolution. This method however, performs

inpainting at a coarser resolution followed by independent super-resolution to get

the inpainted image at the original resolution.

Having discussed the current research status in inpainting and super-resolution,

we present our first inpainting approach in the following chapter 3.
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CHAPTER 3

An Exemplar based Inpainting using Autore-

gressive Model

When capturing a photograph, some parts of the scene / object may not be visible

due to self-occlusion or difficulty in capturing the scene / object from a particular

viewpoint. Similarly, in case of heritage monuments, it may happen that the mon-

ument is ruined or a part of it is damaged, leaving behind cracks. Such situations

result in creation of holes i.e. missing information. In this chapter, we present

an inpainting method i.e. a process of restoring the image contents impercepti-

bly, to fill the missing regions in captured the photographs. Given the region to

be inpainted, our method makes use of similar patches i.e. exemplars to fill the

missing pixels. Note that this work provides an inpainting technique but does

not constitute automatic detection since the regions to be inpainted are provided

as an input. Nevertheless, the proposed technique can also be used for inpainting

automatically detected regions. A set of exemplars is automatically searched con-

sidering a window around every pixel in the region to be inpainted. The sum of

squared differences (SSD) criteria is used to determine the similarity of patches.

The novelty of our technique lies in the use of parameters of an autoregressive

(AR) model that are estimated using the non-negatively constrained least squares

(NNLS) method [23].

Unlike simply copying into the target i.e. pixels to be inpainted, values from

the best matching exemplar as is done by many of the exemplar based methods

[26, 113, 149], we use the AR parameters in addition to the best matching exem-

plar to fill the missing pixel values. For a set of candidate exemplars, the AR
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parameters suggest the contribution of values of neighboring pixels towards the

respective center pixel of every 3× 3 region in that set. A good source for filling

the missing pixels (i.e. an exemplar) may not always be available in the image. In

such situations, estimating a pixel value by making use of (a) knowledge of spa-

tial relationship of pixels and (b) information from an exemplar, avoids the seam

that may arise due to direct copying of pixels from the exemplar. We briefly dis-

cuss the limitations of existing approaches in section 3.1 and describe the details

of our proposed algorithm in section 3.2. The experimental results are illustrated

in section 3.3 with the help of true images captured from the world heritage site

Hampi, Karnataka, India. Section 3.4 concludes the chapter.

3.1 Limitation of existing approaches

Criminisi et al. [25, 26] proposed an inpainting technique that makes use of block

replication (i.e. example patches or exemplars) to fill the missing pixels. This tech-

nique enabled the propagation of texture inside the missing regions that was ear-

lier not possible with the methods that used partial differential equations (PDEs)

[9, 95]. The exemplar based method exploits the fact that for a small patch at the

boundary of the missing region, a similar patch i.e. an exemplar can be found from

the surrounding known region in the given image itself. As shown in figure 3.1,

the missing pixels in this patch are then filled by copying corresponding pixels

from the exemplar. This method emphasizes on order of selecting the patch to be

filled up, which allows the propagation of structure as well as texture. However,

simply copying of the pixels results in visible seam where even the most similar

exemplar is considerably dissimilar from the patch to be filled.

Another technique wherein objects / texture from either (a) the input image or

(b) different images can be a source for inpainting was introduced by Pérez et al.

[113]. Here, the source regions provide the guidance vector field for estimating

the missing pixel values. Thus, if a user supplies a region of interest to be edited

and a region from another (or same) image from which information is to be trans-

ferred (guidance vector field), a seamless blending is achieved by solving for the
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Figure 3.1: Setup for exemplar based image inpainting

Poisson equations. However, the guidance vector field needs to be manually se-

lected leading to highly subjective results. Moreover, the objective function to be

minimized determines the inpainted pixel values as the average of neighboring

pixel values, which is not true for all images. This motivates us to use an AR

model based approach for inpainting.

3.2 Proposed approach

Our work addresses the limitations mentioned in section 3.1 of the widely used

inpainting algorithms. Because of the spatial dependency of a pixel value on its

neighbors, an AR model can be used to express this dependence, where a pixel

value is a linear combination of values of its neighboring pixels [69]. Considering

a first order neighborhood, we make use of a set of exemplars to estimate the

AR parameters. These parameters in addition to the best matching exemplar are

used as constraints for estimating the values of the missing pixels. Since the AR

parameters suggest the contribution of neighbors, a non-negative least squares

(NNLS) method [23, 79] is used to calculate the values of these parameters. A

simple least squares (LS) method is unsuitable for this purpose as it may lead to

negative values for the AR parameters, which do not correspond to the correct

fractions.

An outline of our proposed method is shown in figure 3.2. We start with an

input image I and a user defined mask that specifies the region to be inpainted

or the target region Ω as shown in figure 3.1. Let the boundary of Ω be denoted

by δΩ. Our method makes use of the approach in [26] to determine the patch
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Figure 3.2: Proposed approach.

priority for inpainting, wherein for every pixel p ∈ I a confidence term C(p) and

data term D(p) are calculated. Initially, the confidence term (initial confidence

c(p)) is calculated as:

c(p) =

 1, ∀p ∈ I −Ω

0, ∀p ∈ Ω
(3.1)

Now considering a fixed size patch Ψp around every pixel p, the confidence

term C(p) and the data term D(p) are calculated as:

C(p) =
Σq∈Ψp c(q)
|Ψp|

, D(p) =
|∇I⊥p .np|

α
, (3.2)

where |Ψp| is the area of patch Ψp around pixel p, ∇I⊥p is orthogonal to the gra-

dient ∇Ip at a pixel p, np is unit normal to the target boundary δΩ and α is the

normalization factor taken to be 255 (for grey-level images). The priority P(p)

associated with every pixel p in δΩ is given by:

P(p) = C(p)D(p). (3.3)

Once these priorities are calculated, the patch Ψ p̂ around the pixel p̂ having max-

imum priority is considered for filling.

Since the pixels on the boundary of region Ω to be inpainted get more priority,

the selected patch Ψ p̂ will always consist of both the known and missing pixels

(as shown in figure 3.1). We intend to make use of information from a similar

patch i.e. an exemplar to fill the missing pixels in patch Ψ p̂. An exemplar can be
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found by comparing the patch Ψ p̂ with a patch Ψq̂ around every pixel q̂ in the en-

tire image, but as the image size increases the time taken to find an exemplar also

increases. However, we observe that a patch is similar to those in its surrounding

region. We therefore restrict the search for matching the patches to a large sized

window Wp̂ around the patch to be filled up instead of searching the whole image.

By doing so, the number of computations required to search the exemplar are con-

siderably reduced. We measure the similarity of patches Ψ p̂ and Ψq̂ by comparing

the pixels p̂i in patch Ψ p̂ that are known (i.e. p̂i 6∈ Ω) with corresponding pixels in

every patch Ψq̂ (where Ψq̂ ∈ Wp̂ and Ψq̂ ∩Ω = φ). The patch Ψq̂ which gives the

minimum sum of squared difference (SSD) is considered as the exemplar Ep̂.

Once the exemplar Ep̂ is available, one may be tempted to fill the missing pix-

els by simply copying the corresponding pixels from the exemplar Ep̂ as done in

[26]. This works well if the pixel intensities in the window Wp̂ do not vary much,

leading to small SSD error. However, it may be noted that due to variation in il-

lumination or contrast within the window Wp̂, which is often the case for images

of heritage scenes, the SSD obtained for Ep̂ will be high, i.e. even the most similar

patch will also be considerably different from Ψ p̂. In such cases, if pixel values

are copied from the Ep̂ into Ψ p̂, the modifications in Ψ p̂ do not appear to be uni-

form, making the seam clearly visible in the inpainted patch. In order to get better

inpainting, one can think of using pixel-neighborhood relationship for filling the

missing pixels in the patch Ψ p̂.

For estimating the pixel neighborhood-relationship, we model the central pixel

value of a 3× 3 region to be a linear combination of the values of its first order

neighboring pixels. Let kt, kr, kb and kl denote the contributions of the top, right,

bottom and left neighbors, respectively towards the central pixel value of a 3× 3

region. We now arrange all the patches Ψq̂ ∈ Wp̂ in ascending order of the SSD

error and consider only the first L patches to form a set Sp̂ for estimating these con-

tributions. Note that for a small patch (say of size 9× 9) the pixel-neighborhood

relationship within the patch is more or less consistent. Arranging the patches in

ascending order of SSD gives the candidate exemplars that are most similar to the

patch Ψ p̂ to be filled. Thus, the coefficients associated with the neighboring pixels

24



would remain consistent of all 3× 3 regions inside small similar patches, i.e., Sp̂,

and we can therefore write

gp = ktgqt + krgqr + kbgqb + klgql . (3.4)

where gp is the central pixel value of every 3× 3 region in Sp̂ and gqt , gqr , gqb , gql

are the top, right, bottom and left neighboring pixel values, respectively. A similar

method is used in [69] for enhancing the resolution of multispectral images using

an autoregressive model. The equation (3.4) represents the equation for an AR

model [47] for the pixel gp. Now that the values of gp and corresponding first

order neighbors are known by considering the set Sp̂, we estimate the values of

kt, kr, kb and kl that best fit the AR model.

Using least squares (LS) method to determine these AR parameters may result

in few of them being negative. However, since the coefficients associated with

neighboring pixels denote the proportion of the respective neighbor’s contribu-

tion, a negative value is unacceptable. We therefore use the NNLS method [23, 79]

to obtain the values of kt, kr, kb and kl, which assures that the obtained values are

non-negative. The NNLS method iteratively categorizes the constraints into active

and passive sets. The constraints corresponding to a negative or zero regression co-

efficient are included in the active set and the remaining constraints constitute the

passive set. The solution then corresponds to unconstrained least squares solution

using only the variables corresponding to the passive set by setting the regression

coefficients corresponding to the active set to zero.

The number of exemplars L in the set Sp̂ need to be greater than or equal to the

number of AR parameters to be determined, else we are left with more number

of unknowns to be estimated from lesser number of constraints. Further, as L in-

creases, we have more number of constraints which generalize the model leading

to better estimates of AR parameters. However, if L is very large, then many ex-

emplar candidates with larger SSD values (i.e. outliers) get involved in calculating

the AR parameters. As a result the estimated values do not represent the true spa-

tial relationship of the pixels in the patch Ψ p̂. Therefore, one has to heuristically

choose the number L. One may consider filtering the outliers instead of setting
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a particular value for L. However, the problem with SSD is that patches that are

visually similar can also have higher SSD, say due to spatial shifting of pixels in

the two patches being compared (as shown later in figure 4.2). In such cases too,

the first-order pixel-neighborhood relationship is helpful for estimating the AR

parameters and we therefore need to consider such patches by setting a particular

value for L instead of thresholding the outliers based on SSD. In case a patch has

many similar patches, are already considering the L best candidate exemplars by

arranging the patches in the ascending order of SSD. Considering more number

of similar patches will not significantly vary the estimation of the AR parameters,

but instead will add to the computational overhead.

One has to also take care that the size of patch Ψ p̂ is not very large. If a patch

with large size is considered, the size of patches in the set Sp̂ (that are used to

calculate the AR parameters) will also be large. Over a large region, the spatial

relationship of the pixels may change and the spatial relationship may not be ac-

curately represented by the AR parameters, and in turn reducing the effectiveness

of the algorithm. For images of heritage sites, this is of particular importance for

re-creating fine artistic details over small local regions.

With the availability of the exemplar Ep̂ and the pixel-neighborhood relation-

ship in the form of AR parameters, we estimate the missing pixel in Ψ p̂ by blend-

ing the corresponding pixels from the exemplar. For this purpose, we use a

method derived from the work by Pérez et al. [113], which demonstrates the seam-

less blending of pixel values from a source region in one image into a missing re-

gion in the same or a different image, by solving for unknown pixel values using

discrete Poisson equations. In their work, the value of every pixel p in the missing

region Ω satisfies the following equation:

|Np| fp − ∑
q∈Np∩Ω

fq = ∑
q∈Np∩δΩ

f ∗q + ∑
q∈Np

vpq (3.5)

where fp is a value of pixel p ∈ Ω, f ∗q is a value of pixel q ∈ I −Ω, fq is a value

of pixel q ∈ Np ∩Ω, Np is the set of neighbors of pixel p, |Np| is the number of

pixels in the set Np. Here vpq denotes the difference between values of a pixel p
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Figure 3.3: Ψ p̂ is the patch considered for filling, Ep̂ is the corresponding exemplar.
The shaded region denotes the pixels in the missing region Ω. fp is the value of
pixel p in Ψ p̂, gp is the corresponding pixel’s value in the exemplar Ep̂.

and its neighboring pixel q in source region which correspond to the pixel p in

the missing region and its neighboring pixel q, respectively. One may note that

in [113] both the source and missing regions are selected manually since the tech-

nique is primarily for image editing. Also, the blending is done considering all the

missing pixels at once and not in a patch based approach. In our technique, the

automatically obtained exemplar corresponding to the patch selected for filling is

considered as the source region. If we re-arrange equation (3.5) we get,

fp =
∑q∈Np∩Ω fq + ∑q∈Np∩δΩ f ∗q + ∑q∈Np vpq

|Np|
(3.6)

Considering this scenario in a patch based approach as shown in figure 3.3 and

taking |Np| = 4, the equation (3.6) can be be written as:

fp =
( fqb+ fql )+( fqt+ fqr )+(4gp−(gqt+gqr+gqb+gql ))

4 (3.7)

where ∑ fq = fqb + fql , ∑ f ∗q = fqt + fqr and vpq = gp − gq. The above equations

(3.6) and (3.7) show that the value fp is determined by taking the average of its

neighbors and by computing the average in the corresponding source patch se-

lected manually. However, for many images, it is not true that a pixel value is

an average of its neighbors. In general, pixel value can be considered as a linear

combination of the first order neighboring pixel values, and for this reason we

modify the equation (3.7) as,

fp = (kt fqt + kr fqr + kb fqb + kl fql) + gp − (ktgqt + krgqr + kbgqb + klgql). (3.8)
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Here kt, kr, kb and kl are the estimated AR parameters representing the contri-

butions of each first-order neighbor as shown in figure 3.3 while the exemplar Ep̂

provides the guidance vector field. It is worth to note that when kt = kr = kb = kl =
1
4 ,

equation (3.8) reduces to equation (3.7). The missing pixel values fp are now esti-

mated by posing the optimization problem as follows:

min ∑
∀ fp∈Ψ p̂∩Ω

∣∣∣∣∣∣
∣∣∣∣∣∣ fp −

 (kt fqt + kr fqr + kb fqb + kl fql)+

gp − (ktgqt + krgqr + kbgqb + klgql)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (3.9)

Once a patch is processed, its pixels are excluded from the region to be inpainted

Ω. The updated missing region is then used in the next iteration and after each

iteration the missing region Ω shrinks. The algorithm terminates when all the

missing pixels are filled.

3.3 Experimental results

We now present the results of our technique on data collected from the world

heritage site, Hampi, Karnataka, India. These images were captured using a Sam-

sung ES55 digital camera. The data consists of a number images of monuments,

having both damaged and non-damaged regions. The experimental results for

three such images are shown in figures 3.4(a), 3.5(a) and 3.6(a). In all the images,

fairly large cracks are visible and the aim is to restore the images as if they had no

cracks at all.

We show a comparison of the results of our proposed algorithm with that of

the algorithm presented in [26]. Both the algorithms are implemented in Matlab.

Once an image is given as an input, the user selects the region to be inpainted

i.e. Ω that has to be filled. These regions selected by volunteers to be inpainted

are shown in black color in figures 3.4(b), 3.5(b) and 3.6(b), respectively. The re-

sults using algorithm in [26] are shown in figures 3.4(c), 3.5(c) and 3.6(c), respec-

tively, and those of the proposed method are displayed in figures 3.4(d), 3.6(d)

and 3.6(d), respectively. A patch size of 9× 9 was selected, the window Wp̂ is cho-

sen to be of size 37× 57. In our experiment we consider the number of patches in
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(a) Input image (b) User selected region to be inpainted
shown in black color

(c) Inpainted result using method proposed
in [26]

(d) Inpainted result using our proposed
method

Figure 3.4: Result showing the inpainting of a crack in a wall carving.

(a) Input image (b) User selected re-
gion to be inpainted
shown in black color

(c) Inpainted result us-
ing method proposed
in [26]

(d) Inpainted result
using our proposed
method

Figure 3.5: Result showing inpainting of a long crack with varying width across a
stone-work.

the set Sp̂ used for estimating the AR parameters to be L = 30. The search for ex-

emplars is performed by comparing the respective color channels of the patches
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(a) Input image (b) User selected re-
gion to be inpainted
shown in black color

(c) Inpainted result us-
ing method proposed
in [26]

(d) Inpainted result
using our proposed
method

Figure 3.6: Result showing inpainting to a narrow damaged portion of a statue.

under consideration. Likewise, when transferring information from the exem-

plars to the missing pixels, all the color channels are processed one by one. This

enables color inpainting, which is an interesting feature for heritage images. Al-

ternatively, the exemplar search can be performed in the YCbCr color space by

comparing the luminance channel of the patches, while the filling of the missing

pixels can be performed by processing each color channel.

Since the reference images are not available, the two techniques cannot be

compared using the standard criteria for quantitative comparison viz. like peak

signal-to-noise ratio (PSNR), root mean squared error (RMSE), structural similar-

ity (SSIM) index, feature similarity (FSIM) index, etc. Nevertheless, in the areas

of image, compression, fusion and restoration researchers have used the entropy,

standard deviation and local mean orientation dominance measures to quantify

the image quality when no reference images are available [42, 127, 132, 159]. We

therefore consider these measures to compare the inpainted results shown in fig-

ures 3.4–3.6. Here, we also consider the Blind/Referenceless spatial Image QUal-

ity Evaluator (BRISQUE) proposed in [97] to measure the naturalness of inpainted

images, as well as the inpainted image quality assessment (IIQA) measure pro-

posed in [139] for comparing the inpainted results. We provide a brief description

of these measures below.

The first measure, entropy (used in [159] for evaluation the quality of image fu-

sion), quantifies the information contained in an image. More the entropy, better
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is the resultant image. Entropy H is calculated as:

H = −
G−1

∑
i=0

p(i)log2(p(i)) (3.10)

where p(i) is the probability or the normalized histogram of ith gray level in an

image having G gray levels. A high value of entropy indicates higher value of

contrast between adjacent pixels, which is a typical characteristic of porous sur-

faces found in heritage monuments. The second measure i.e. standard deviation

(SD) [127] also suggests about the contrast in an image. For an image having high

contrast, the value of SD is high. With the same notations used for calculating the

entropy in equation (3.10), the standard deviation SD is calculated as follows,

SD =

√√√√G−1

∑
i=0

(i− i′)2p(i) where, i′ =
G−1

∑
i=0

ip(i). (3.11)

The third measure i.e. local orientation dominance Rj indicates the presence of

an edge in a local region j [42, 132]. We have considered the local region j to be

of size 5× 5. Rj is calculated using singular values s1 and s2 of the local gradient

vectors as,

Rj =
s1 − s2

s1 + s2
, s1 ≥ s2, 0 ≤ Rj ≤ 1. (3.12)

It may be noted that for a noisy image, the mean value R = avg(Rj) is low, while

the same is high for an image with better visual quality.

BRISQUE [97] tries to measure the naturalness of an image. Here, the cue used

is that the normalized luminance coefficients of natural images closely follow

Gaussian-like distribution. A normalized luminance image is obtained by consid-

ering the mean and the standard deviation of 3× 3 neighborhood weighted using

a 2D circularly symmetric Gaussian function around every pixel. The pair wise

products of each pixel (i.e. normalized luminance coefficient) along the horizon-

tal, vertical, main-diagonal and secondary-diagonal directions are then used to

plot histograms. For each of these histograms the shape, mean, left variance and
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right variance along with the shape and variance of the histogram of the normal-

ized luminance image are used to obtain 18 features. This process is repeated at a

coarser scale to obtain a total of 18× 2 = 36 dimensional feature vector which is

then classified based on trained classes of feature vectors. A score based on corre-

lation with these classes is taken as the BRISQUE score, where the best and worst

qualities are represented by values 0 and 100, respectively. The IIQA measure

[139] tries to quantify the quality of the inpainted image based on the coherence

of the inpainted regions with the rest of the image and a saliency based structure

term. The coherence term captures the similarity of every inpainted patch with its

closest match in the rest of the image while the saliency-structure is generated us-

ing a mean and Gaussian blurred version of a neighborhood around every pixel.

The IIQA measure is then calculated by summing the product of these terms over

all the inpainted pixels and normalizing the resultant value. Higher the value of

IIQA measure, better is the quality.

The quantitative comparison for the results illustrated in figures 3.4–3.6 using

the quality measures discussed above, is shown in table 3.1. From this compari-

son one can observe that for the results shown in figure 3.4, our proposed method

performs better than the approach in [26] for all the quality measures. However,

for the results shown in figure 3.5, the proposed method performs better in terms

of entropy, standard deviation and local orientation dominance, but not in terms

of BRISQUE and IIQA. Similar ambiguity is observed from the quantitative com-

parison of the results shown in figure 3.6, where our proposed method performs

Images Entropy (H)
[159]

Standard devia-
tion (SD) [127]

Avg. local
orientation
dominance
(R) [42, 132]

BRISQUE [97] IIQA [139]

A B C A B C A B C A B C A B C
Figure
3.4

7.4746 7.5435 7.5939 45.8524 47.9063 47.9363 0.2000 0.2220 0.2224 10.6262 11.8215 11.7264 0.5084 0.3278 0.3338

Figure
3.5

6.8010 6.8435 6.8473 29.5197 30.3779 30.4150 0.2583 0.2428 0.2432 31.1195 32.2848 32.3708 0.2331 0.2334 0.2275

Figure
3.6

7.0230 7.0424 7.0426 31.7438 32.1608 32.1703 0.3395 0.2938 0.2491 44.2903 30.1808 30.0610 0.1861 0.1529 0.1193

Table 3.1: Comparison in terms of entropy, standard deviation, average local ori-
entation dominance, BRISQUE and IIQA quality measures for the results shown
in figures 3.4–3.6. Here, A represents the input image to be inpainted, B denotes
the approach in [26] and C indicates the proposed approach.
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better in terms of entropy, standard deviation and BRISQUE, but not in terms of

local orientation dominance and IIQA. This makes it difficult to suggest which of

the two methods performs better inpainting.

The problem in evaluating the quality of inpainted images is that, the ground

truth is seldom available for comparison and one does not know if the inpainted

region represents the true missing pixel information. Even if the ground truth im-

age is available, the inpainted region can be completely different from the ground

truth and yet appear visually plausible. This makes it difficult to have an objec-

tive comparison of the inpainting algorithms. To the best of our knowledge and

as suggested in the literature [5, 138, 139], the best way to evaluate the quality of

image inpainting is to assign a subjective score with the help of human observers.

We therefore use the following method for comparing our inpainting results.

The inpainted results were displayed side-by-side to 4-5 volunteers. Here, the

input images and the regions to be inpainted were not shown to the volunteers

in order to avoid any bias about the plausiblity of the inpainted regions. The

volunteers were then asked to rank the images according to their naturalness.

Unless any of the results appeared extremely synthetic, this step usually resulted

in an ambiguous answer that all were natural. After this step the input images

and the region to be inpainted were also shown to the volunteers and they were

asked to update their rankings if required and provide a reason for the rankings.

A consensus of the reasons and the corresponding ranks were then used to judge

the best inpainted results. Based on this method, a qualitative comparison of the

results shown in figures 3.4–3.6 is given below.

Observe the inpainted area below the knee of the dancer in the central region

in figure 3.4(c). A clear seam is visible in the inpainted area using the method

proposed in [26]. On the other hand, the corresponding region shown in figure

3.4(d) has been seamlessly inpainted using the proposed method. In figure 3.5(c)

a repetitive pattern is visible in the inpainted hand of the stone-work along with

a seam on the stomach. On the contrary, in the corresponding regions shown in

figure 3.5(d) using the proposed method, the inpainting appears to be plausible

and seamless. In the inpainted result shown in figure 3.6(c) that makes use of
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the technique proposed in [26], a clear contrast in color can be seen inside the

inpainted region. There is no such color contrast in the inpainted result of our

proposed approach as seen figure 3.6(d). Here, pixels inside the inpainted region

exhibit an effectual blending due to which no seam is visible.

Thus, from the figures 3.4–3.6 one can notice the seam at the inpainted regions

of the images in figures 3.4(c), 3.5(c), 3.6(c), respectively, obtained using the tech-

nique proposed in [26]. At the same time, the results obtained using our technique

shown in figures 3.4(d), 3.5(d) and 3.6(d), respectively, are seamless and plausible.

3.4 Conclusion

We have presented an automatic exemplar search based inpainting technique in

this chapter. The spatial dependence of a pixel with its neighbors is used here

as the cue to blend information from the exemplar into the missing pixels of

the patch under consideration. Assuming the neighborhood to be of the first or-

der, the spatial dependence is represented using an AR model, the parameters of

which are estimated from a set of candidate exemplars using the NNLS method.

Proposed method avoids the direct copying of pixels from the exemplar as this

results in visible seam, instead it uses the estimated AR parameters and the exem-

plar to perform a seamless blending. As seen from the experimental results, the

reported results are promising. We conclude that by estimating the spatial depen-

dence of a pixel with its neighborhood using the AR model, the damaged regions

in images of monuments can be inpainted plausibly. The images of heritage site

inpainted in this manner will provide better inputs for estimating image based 3D

models.
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CHAPTER 4

Simultaneous Inpainting and Super-resolution

In chapter 3 we discussed an image inpainting technique that fills the missing pix-

els by using the pixel-neighborhood relationship in exemplars. In this chapter, we

discuss a method that not only inpaints the manually selected missing region but

also performs super-resolution (SR). Past two decades have seen significant ad-

vancement in the techniques for inpainting and super-resolution. Although both

problems involve the searching and processing of similar patches for estimating

the unknown pixel values, the two problems have been addressed independently.

As already explained in chapter 1, both the inpainting and the resolution enhance-

ment i.e. super-resolution, can be used as preliminary steps for creating 3D mod-

els in applications like immersive walkthrough systems. However, the usual prac-

tice is to solve these two problems independently in a pipelined manner i.e. first

inpaint and then enhance the spatial resolution. This chapter provides a unified

framework to perform simultaneous inpainting and super-resolution.

In this approach, we construct dictionaries of image-representative low and

high resolution (LR-HR) patch pairs from the known regions in the test image and

its coarser resolution. The inpainting of missing pixels is then performed using

exemplars that are found by comparing patch details at a finer resolution. These

patches represent the higher resolution patches in the missing regions and we ob-

tain them from the constructed dictionaries by using self-learning [73]. Here, the

advantages when compared to other exemplar based inpainting techniques are

(a) the constraint in the form of finer resolution patch matching results in good

exemplars and better inpainting, and (b) inpainting is obtained not only in the

given spatial resolution but also at higher resolution leading to super-resolution
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(a) (b) (c) (d)

(f) (g) (h)
(e)

Figure 4.1: Simultaneous inpainting and super-resolution: (a) input; (b) region
to be inpainted marked in red color; (c) inpainting using planar structure guid-
ance [62]; (d) inpainting using proposed method indicated by a region inside the
rectangular area with a yellow boundary; (e) simultaneously inpainted and super-
resolved image (by a factor of 2) using the proposed method with known regions
upsampled using bicubic interpolation; (f)–(h) zoomed versions after upsampling
(inside region marked by the rectangular area with a yellow boundary in (d)) us-
ing various approaches viz. (f) bicubic interpolation, (g) Glasner et al. ’s method
[51] and (h) proposed method for super-resolution.

inpainting. In other words, we obtain SR as a consequence of inpainting, thus

reducing the number of computations when compared to performing these oper-

ations independently.

Note that our approach performs super-resolution without introducing blur

or artefacts indicating better inpainting at the given resolution. Also, our method

does not use any kind of regularization as used by most of the super-resolution

approaches [117, 158]. We once again emphasize that the primary goal here is to

obtain better inpainting. The super-resolution is obtained as a by-product since

we use a constraint that helps in finding a better source for inpainting. One of the

results of this method for a natural image is shown in figure 4.1.

The contents of this chapter are organized as follows. In section 4.1 we discuss

the need for comparing patches at finer resolution. Our proposed approach is

discussed in section 4.2. The efficacy of this method in comparison to state-of-

the-art methods is illustrated by showing results on natural images in section 4.3

where we also present the results for image captured at heritage sites. The chapter

ends with the conclusion in section 4.4.
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4.1 Need for patch comparison at finer resolution

Before we enter into the discussion of our approach for simultaneous inpainting

and super-resolution, we would like to point out the need for comparing patches

at finer resolution. Natural images including those of heritage scenes usually con-

tain many self-similar patches. This cue has been used effectively by exemplar

based inpainting methods [26, 149], where search is done for the region to be

filled. However, when similar patches are unavailable, the inpainting may not be

seamless resulting in graphical garbage. Even when similar patches are available,

the best match may not always be a good source for inpainting. The reason is

that the patch to be filled has too little number of known pixels to obtain a re-

liable match. One may increase the patch size to have more number of known

pixels. However, we may not find good matches for larger patches due to which

the inpainted regions look implausible.

In exemplar based inpainting approaches, patch matching is done by discard-

ing the missing pixels. Due to this, it may happen that a better source patch

for inpainting could be found among the patches other than the best match as

illustrated in figure 4.2. It is desirable to consider these patches as candidate

sources for inpainting without discarding them. Intuitively, by performing a de-

tailed assessment of the patches to be filled, one can confidently determine which

among the candidates is a better source for inpainting. In other words, if the high-

yp yq1

(SSD =
48821)

yq2

(SSD =
49131)

yq3

(SSD =
49597)

yq4

(SSD =
54113)

yq5

(SSD =
54495)

Figure 4.2: Matching patches in exemplar based approaches considering the sum
of squared distance (SSD) measure. Here, yp is the patch selected for inpainting
with the missing pixels shown in red color. The patches yq1 ,. . . , yq5 are the most
similar patches to yp in terms of SSD. Although yq1 has a smaller value for SSD,
we observe yq2 and yq3 to be better sources for filling the missing pixels in yp. Note
that red color indicates region only and not the color pixels.
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resolution (HR) i.e. finer resolution of the patches are made available, they can be

used to find a reliable match which is a better exemplar for inpainting. Consider-

ing this intuition as a cue we now discuss our proposed approach.

4.2 Proposed approach

The symbols used throughout this chapter are briefly described in table 4.1 and

the steps used in our proposed approach are summarized in algorithm 1. The

details of our approach are as follows. Given an image I0 having a region Ω0 to

be inpainted, we obtain the coarser resolution image I−1 by blurring and down-

sampling I0 as done in [51]. Let Ω−1 denote the missing region in I−1, which

corresponds to Ω0 as shown in figure 4.3.

Figure 4.3: Finding LR-HR patch pairs using given image I0 and its coarser reso-
lution I−1.

We now select a patch yp of size m×m around a pixel p on the boundary of

Ω0 for filling, based on a priority order that depends on the presence of structure

and proportion of known pixels in the patch yp. For calculating the priority we

use the method proposed in [26] that was explained earlier in section 3.2. Let

yk
p and yu

p denote the known and the unknown pixels in yp. The patch yp is then

compared with every m×m sized patch in the known region I0 −Ω0 using sum of

squared difference (SSD) by considering only the pixels corresponding to yk
p. We

then obtain K best matches denoted as yq1 , . . . , yqK representing the candidates

exemplars. The exemplar based methods [26, 149] use K = 1 to obtain the best

match, whereas our method considers more candidate matches by setting K > 1
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in order to find a better exemplar. These patches are then used in obtaining HR

patches.

Khatri and Joshi [73] have shown that HR details can be self-learnt from the

given image and its single coarser resolution. Drawing inspiration from [73], the

proposed method estimates the HR details even for patches with missing pixels.

To do this we first find LR-HR matches for known regions over the entire image.

Consider an LR patch of size m×m in the known region I0 −Ω0. We can obtain

the corresponding 2m× 2m sized HR patch in the same resolution by considering

the coarser resolution I−1 as illustrated in figure 4.3. Although not all LR patches

can find a good match in the coarser resolution, we use this methodology to create

dictionaries of image-representative LR-HR patch pairs, with the help of which a

Symbols Meaning
I0, I−1 Input image and its coarser resolution.
Ω0, Ω−1 Region to be inpainted in the input image I0 and corresponding

region in I−1.
yp Patch of size m×m around a pixel p ∈ I0.
yu

p Unknown missing pixels in the patch yp that are to be inpainted
i.e. yu

p ∈ Ω0.
yk

p Known pixels in the patch yp i.e. yk
p ∈ I0 −Ω0.

K Number of candidate exemplars.
yq1 , . . . , yqK Candidate exemplars corresponding to the patch yp.
N Number of patch pairs used for constructing the LR-HR dictio-

naries.
DLR Dictionary of low-resolution patches. Dimension: m2 × N.
DHR Dictionary of high-resolution patches. Dimension: 4m2 × N.
Dk

LRp
Dictionary of low-resolution patches containing only those rows
that correspond to the known pixels yk

p. Dimension: |yk
p| × N.

α Sparse vector of size N × 1.
Yp HR patch of size 2m× 2m corresponding to LR patch yp.
Yu

p , Yk
p HR pixels in patch Yp that correspond to the pixels yu

p and yk
p,

respectively, in the LR patch yp.
Yq1 , . . . , YqK HR patches corresponding to the candidate exemplars

yq1 , . . . , yqK .
Yq Best match for Yp among Yq1 , . . . , YqK .
Hp Final inpainted HR patch corresponding to the LR patch yp.
Lp Inpainted version of the LR patch yp.

Table 4.1: Description of the symbols used in this chapter.
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Algorithm 1 Steps used in our approach for simultaneous inpainting and super-
resolution.

1: Construct LR-HR pair dictionaries using the known regions in I0 and I−1.

2: Select highest priority patch yp = yk
p ∪ yu

p for inpainting using method in [26].

Here, yk
p ∈ I0 and yu

p ∈ Ω0.

3: Search for candidate sources (exemplars) yq1 , . . . , yqK in I0.

4: Self-learn HR patches Yq1 , . . . , YqK and Yp using the constructed dictionaries:

(a) Obtain Yq1 , . . . , YqK corresponding to yq1 , . . . , yqK .

(b) Estimate Yp corresponding to yp.

5: Find best exemplar Yq in HR by comparing Yp with Yq1 , . . . , YqK .

6: Obtain final inpainted HR patch Hp using Yp and Yq.

7: Obtain inpainted LR patch Lp from Hp using transformation estimated from

the constructed dictionaries and update Ω0.

8: Repeat steps 2–7 till all patches in Ω0 are inpainted.

good match can be estimated for any LR patch in the known region. We also

learn the HR of an LR patch yp with missing pixels (i.e. yu
p ∈ Ω0) by making

use of these LR-HR patch pairs. Simultaneous inpainting and SR of the missing

pixels is then performed by refining the estimated HR of yp using HR of the best

candidate among yq1 , . . . , yqK and an LR-HR relationship learnt from the known

region. Thus, we make use of self-learning while obtaining the HR patches of

inpainting region which are then used to obtain the corresponding inpainted LR

patches. In what follows we provide the details of (a) constructing LR-HR patch

pair dictionaries, (b) estimation of HR patches, and (c) simultaneous inpainting

and SR of missing pixels.

4.2.1 Constructing LR-HR patch pair dictionaries

To obtain the image-representative LR-HR patch pairs, we consider every m×m

sized patch in the known region I0 −Ω0. For each of these patches we find the

best match by searching for similar patches in I−1 −Ω−1. We then get the cor-

responding HR in I0 −Ω0. Here, every LR patch will be mapped to exactly one

HR patch. However, an HR patch may be mapped by many LR patches when
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Figure 4.4: Example of an image representative patch.

the LR patches are similar as seen in figure 4.4 where LR1–LR3 patches map to

a single HR patch in I0. We then create a plot of HR patches versus the number

of LR patches that each HR patch is mapped to. The HR patches that are highly

mapped indicate repetitiveness of the LR patches and are therefore appropriate

for representing the image patches. On the other hand, the HR patches having

less number of LR mappings are less likely to represent the patches inside the

region to be filled up. Such patches are therefore discarded.

The highly mapped HR patches form the HR dictionary DHR of size 4m2 × N

and the corresponding m×m sized patches in I−1 −Ω−1 form the LR dictionary

DLR of size m2 × N. Here N is the number of highly mapped patches such that

N >> 4m2. Note that the dictionaries constructed in this way do not have LR-HR

pairs for every patch in the known region of I0.

4.2.2 Estimation of HR patches

For an LR patch whose match is directly available in the LR dictionary, the cor-

responding patch in the HR dictionary is the required HR patch. For other LR

patches we estimate a good match using a linear combination of few patches in

the LR dictionary. When a signal is known to be sparse, the compressive sens-

ing (CS) theory [17] provides a method to obtain the sparse representation. In

our case, an LR patch y whose HR version needs to be estimated, can be sparsely
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represented using the LR dictionary DLR such that:

y = DLR ∗ α, (4.1)

where α is a sparse vector of size N × 1 and y represents the lexicographically

ordered LR patch of size m2 × 1. The sparse vector α is obtained by posing the

problem as:

min ||α||l1 , subject to y = DLR ∗ α, (4.2)

where ||α||l1 corresponds to ∑N
j=1 |αj|1 which is minimized using standard opti-

mization tools [16]. In this way, we obtain good matches from the already avail-

able LR dictionary itself. Assuming the LR-HR patch pairs to have the same

sparseness and using the estimated sparse coefficients (α), the corresponding HR

patch Y of size 4m2 × 1 is obtained as follows:

Y = DHR ∗ α, (4.3)

where DHR denotes the HR dictionary. The pixels in Y are rearranged to get a

patch of size 2m× 2m by reversing the operation that was used to obtain the lexi-

cographical ordering. This procedure is used to obtain the HR patches Yq1 , . . . , YqK

corresponding to the K candidate source patches yq1 , . . . , yqK by replacing y = yqi ,

α = αqi and Y = Yqi for i = 1, . . . , K in the above equations (4.1)–(4.3).

The patch yp that needs to be inpainted has missing pixels yu
p. Therefore, one

cannot directly obtain the corresponding HR patch. However, the known pixels

yk
p can be represented using a reduced LR dictionary Dk

LRp
which consists of only

those rows in DLR that correspond to the pixels yk
p depending on which of the

pixels in yp are missing. Here Dk
LRp

is of size |yk
p| × N where |yk

p| denotes the

number of known pixels in yp. We now obtain Yp corresponding to yp by replacing

y = yk
p, α = αp, DLR = Dk

LRp
and Y = Yp in equations (4.1)–(4.3). Note that, in

order to obtain Yp we use the complete HR dictionary DHR of size 4m2 × N and

hence Yp has the size of 2m× 2m, i.e. it has no missing pixels. Since Yp is obtained
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by considering only the known pixels yk
p ∈ yp and the corresponding dictionary

Dk
LR, the pixels Yk

p that correspond to yk
p represent true HR pixels. Likewise, the

HR pixels Yu
p that correspond to yu

p provide a better approximation to the missing

HR pixels due to the use of many similar and representative patches.

4.2.3 Simultaneous inpainting and SR of missing pixels

The final HR patch selection for missing regions is done using Yp and Yq1 , . . . , YqK

as follows. We compare each of the HR patches Yq1 , . . . , YqK with Yp and choose

the one having minimum SSD as Yq. As the pixels in Yu
p represent approximate

but not true HR version of the missing pixels, we replace them with those in Yq in

which all pixels represent true HR. The resulting patch Hp is final HR patch which

is then used to obtain the LR patch Lp representing the inpainted version of the

patch yp.

In order to obtain Lp from Hp we need the HR to LR transformation. In our

case, blurring and downsampling is used to obtain coarser resolution I−1 from I0

as done in [51]. Hence the same operation is used to obtain Lp from Hp. However,

if the point spread function (PSF) of the camera is available, one can use it and

perform downsampling to obtain the coarser resolution patches. Alternatively, if

one uses I−1 that is captured using a camera, then the HR to LR transformation

can be estimated from the available dictionaries having true LR-HR patch pairs

to get Lp from Hp. Once the LR-HR dictionary pair is available we can model

each LR pixel lri as a linear combination of 4 HR pixels hr00
i , hr01

i , hr10
i , and hr11

i as

follows:

lri = [hr00
i hr01

i hr10
i hr11

i ][a00 a01 a10 a11]
T, (4.4)

where a00, a01, a10 and a11 are the coefficients of the linear combination. Using the

pixels in the LR-HR pair dictionaries in equation (4.4), these coefficients can be

estimated in the least-squares sense. We can then obtain Lp from Hp by making

use of the estimated coefficients.

We now have both LR and corresponding HR patches which are inpainted.
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The patch Hp is now placed appropriately in the upsampled image to obtain SR

of the inpainted region. This process is repeated to inpaint the entire missing re-

gion Ω0. Note that in every iteration, only the missing pixels yu
p in the selected

patch yp are inpainted and the missing region Ω0 is updated accordingly. The or-

der in which the patches are selected for filling is based on presence of structure

and number of known pixels. This helps in propagating the structure inside the

missing regions as a result of which the global structure is preserved. One may

also super-resolve all the patches in the known region by a factor of 2 by estimat-

ing the corresponding HR patches as explained in section 4.2.2. This will result in

HR image where both known and inpainted regions are super-resolved.

4.3 Experimental results

We now present the inpainted results on the natural scene dataset available in

[63]. The dataset also contains results of the state-of-the-art methods for image in-

painting viz. image melding [28], Photoshop CS5 content aware fill [7], statistics

of patch offsets [59], GIMP Resynthesizer plugin [57], planar structure guidance

[62, 149] and the method by Komodakis and Tziritas [75]. We compare the results

of our proposed method with these methods. The number of candidate matches

considered in our implementation is K = 5 and the patch size is taken to be m = 7.

In section 3.3 we have discussed that the quality of image inpainting is best eval-

uated by assigning a subjective score with the help of human observers. Based

on this discussion, we compared the results considering a consensus of the ob-

servations made by volunteers. We now use the same method to compare the

results obtained using our proposed method with those obtained using the above

mentioned state-of-the-art methods. These comparative results are presented in

figures 4.5–4.10 which are discussed below.

Figure 4.5 shows the results of inpainting the marked region corresponding to

one of the kids in the cage. One can see the outline of the kid as well as the rods

showing inconsistent bending in the inpainted results shown in figures 4.5(c)–

4.5(d). An extra arm can be seen in figure 4.5(e) while some artefacts can be seen
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(a) Input (b) Region to be in-
painted

(c) Image melding
[28]

(d) Komodakis &
Tziritas [75]

(e) Patch offsets
[59]

(f) Content aware
fill [7]

(g) Planar struc-
ture guided [62]

(h) Planar struc-
ture unguided [62]

(i) GIMP Resyn-
thesizer [57]

(j) Proposed
method

Figure 4.5: Results of inpainting the marked region corresponding to one of the
kids in cage.

(a) Input (b) Region to be in-
painted

(c) Image melding
[28]

(d) Komodakis &
Tziritas [75]

(e) Patch offsets
[59]

(f) Content aware
fill [7]

(g) Planar struc-
ture guided [62]

(h) Planar struc-
ture unguided [62]

(i) GIMP Resyn-
thesizer [57]

(j) Proposed
method

Figure 4.6: Results of inpainting people and vehicle near the shop

in figures 4.5(f) and 4.5(i). The results in figures 4.5(g)–4.5(h) are not only blurred,

but also show inconsistency in the inpainted rods. The inpainted region obtained

using the proposed method shown in figure 4.5(j) looks visually better when com-

pared to other approaches.

The results of inpainting people and a vehicle in front of a shop are shown in

figure 4.6. An implausible inpaintng of the region occluded by the vehicle can

be seen in figures 4.6(c)– 4.6(d) and 4.6(f)–4.6(i). Similarly none of the results in

figures 4.6(c)–4.6(i) show completion of the advertisement board occluded by the

vehicle. Observe that the inpainting result of the proposed method displayed

in figure 4.6(j) is not only plausible within the region but also well restores the
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(a) Input (b) Region to be in-
painted

(c) Image melding
[28]

(d) Komodakis &
Tziritas [75]

(e) Patch offsets
[59]

(f) Content aware
fill [7]

(g) Planar struc-
ture guided [62]

(h) Planar struc-
ture unguided [62]

(i) GIMP Resyn-
thesizer [57]

(j) Proposed
method

Figure 4.7: Results of inpainting the table and chairs in a restaurant

(a) Input (b) Region to be in-
painted

(c) Image melding
[28]

(d) Komodakis &
Tziritas [75]

(e) Patch offsets
[59]

(f) Content aware
fill [7]

(g) Planar struc-
ture guided [62]

(h) Planar struc-
ture unguided [62]

(i) GIMP Resyn-
thesizer [57]

(j) Proposed
method

Figure 4.8: Results of inpainting benches on the hill-top.

advertisement board.

Figure 4.7 shows the inpainting of a table and chairs in a restaurant. In each

of the inpainted results in figures 4.7(c)–4.7(g) a part of either chairs or table is

visible, while the results in figures 4.7(h)–4.7(i) show improper inpainting of the

brown tiles. The result of the proposed approach depicted in figure 4.7(j) does not

show any artefacts of table or chairs in the inpainted regions and the inpainted

tile region looks acceptable.

Another result in figure 4.8 shows the inpainting of benches on a hill-top. The

result in figure 4.8(d) shows unrealistic criss-cross shadows of the fence, while

those in figures 4.8(c), 4.8(f) and 4.8(h) have shadow of the fence in the right-half
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(a) Input (b) Region to be in-
painted

(c) Image melding
[28]

(d) Komodakis &
Tziritas [75]

(e) Patch offsets
[59]

(f) Content aware
fill [7]

(g) Planar struc-
ture guided [62]

(h) Planar struc-
ture unguided [62]

(i) GIMP Resyn-
thesizer [57]

(j) Proposed
method

Figure 4.9: Results of inpainting people in front of the trucks.

of the image, which is undesirable. The result shown in figure 4.8(g) is clearly not

consistent with the known regions. Similarly, figure 4.8(e) has the door extended

downwards that unrealistically cuts through the floor, while figure 4.8(i) appears

to have a visible seam on the boundary of the inpainted region. Note that the

result of the proposed method in figure 4.8(j) does not have any unrealistic shad-

ows and is seamlessly inpainted. The texture of the inpainted region matches well

with the region surrounding it.

In order to show the effectiveness of our approach on inpainting the region

with low contrast we now consider another example. These results are shown

in figure 4.9. We see that in the result of the proposed method shown in figure

4.9(j), the bumper of the truck in the left side of the image is well completed on

inpainting the occluding person. None of the results shown in figures 4.9(c)–4.9(h)

show completion of the bumper region. Similarly, in figures 4.9(c)–4.9(i), the edge

of the pavement below the bumper does not appear to be convincingly inpainted,

whereas figure 4.9(j) looks better inpainted. From the all results shown in figures

4.5–4.9, it is clear that our method performs better when compared to state-of-the-
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(a) (b) (c) (d)

(f) (g) (h)
(e)

Figure 4.10: Result showing simultaneous inpainting and SR: (a) input; (b) re-
gions to be inpainted (c) inpainting using planar structure guidance [62]; ; (d)
inpainting using proposed method showing a rectangular area with blue bound-
ary inside one of the inpainted regions; (e) simultaneously inpainted and super-
resolved image (by a factor of 2) using the proposed method with known regions
upsampled using bicubic interpolation; (f)–(h) zoomed versions after upsampling
(the region marked by the rectangular area with blue boundary in (d)) using vari-
ous approaches viz. (f) bicubic interpolation, (g) Glasner et al. ’s method [51] and
(h) our method for super-resolution.

art approaches. Hence one can say that use of an additional constraint of matching

patches at higher resolution results in better inpainting.

In order to show the effectiveness of our approach in super-resolving in ad-

dition to inpainting, we also present a result showing SR in figure 4.10. The in-

painted and super-resolved region is compared with Glasner et al. ’s approach [51]

where the SR is performed on our inpainted result at the original resolution. Note

that SR approaches super-resolve only what is available i.e. regions having no

missing pixels, whereas the missing pixels are estimated and also super-resolved

in our approach. Hence, our approach not only inpaints but also reconstructs

high resolution of the unknown region with missing pixels. We display the in-

painted result in figure 4.10(d) and simultaneous SR in figure 4.10(e) obtained

using our method. The zoomed version after upsampling one of the inpainted re-

gions (shown by the rectangular area with a blue boundary in figure 4.10(d)) using

bicubic interpolation and Glasner et al. ’s method [51] for SR are depicted in fig-

ures 4.10(f) and 4.10(g), respectively. Looking at the results, we see that the super-

resolved region shown in figure 4.10(h) is comparable to the SR result shown in

figure 4.10(g). Also, the simultaneously super-resolved region as obtained in our

approach (figure 4.10(h)) shows greater details than simply upsampling the in-
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(a) (b) (c) (d)

(e) (f)

Figure 4.11: Result of simultaneous inpainting and super-resolution of the sword-
marks at Sun Temple, Modhera, India. (a) Input image; (b) regions to be inpainted
is shown in red color; (c) inpainted result using AR model; (d) inpainted result us-
ing proposed approach; (e) zoomed version after bicubic interpolation of the rect-
angular region with yellow border shown in (d); (f) zoomed version of the simul-
taneously inpainted and super-resolved region (by a factor of 2) corresponding to
the rectangular region in (d).

painted region using bicubic interpolation as shown in figure 4.10(f).

We now show the results of proposed method in comparison with the those ob-

tained using the AR model based inpainting technique discussed in chapter 3, on

heritage site images. These results are shown in figures 4.11–4.12. Sword-marks

over the historic stone carvings at the Sun temple at Modhera, India are shown in

figure 4.11(b). The inpainted image using the AR model discussed in chapter 3 is

shown in figure 4.11(c) while that using our proposed method is shown in figure

4.11(d). Here, one can observe that the inpainting in both the results appear to

be seamless with plausible artistic work generated inside the inpainted regions.

However, one may note that the result using our proposed approach shown in

figure 4.11(d) looks more natural in comparison to the one shown in figure 4.11(c)

when we look at the inpainted area near the elephant’s trunk. Moreover, the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Result of simultaneous inpainting and super-resolution of a dam-
aged wall of a temple at Hampi, India. (a) Input image; (b) region to be inpainted
is shown in red color; (c) inpainted result using AR model; (d) inpainted result
using proposed approach; (e) zoomed version after bicubic interpolation of the
rectangular region with blue border shown in (d); (f) zoomed version of the simul-
taneously inpainted and super-resolved region (by a factor of 2) corresponding to
the rectangular region in (d).

zoomed version of inpainted and super-resolved zoomed version shown in fig-

ure 4.11(f) provides clearer details in comparison to bicubic interpolation (figure

4.11(e)) of the inpainted region shown in figure 4.11(d).

We illustrate one more result for an input image shown in figure 4.12(a) hav-

ing a damaged wall of a temple at Hampi, India as marked in figure 4.12(b).

We display the inpainted image using the AR model based approach in figure

4.12(c) and that using our method is shown in figure 4.12(d). Here, one can ob-

serve the repair of a substantially large damaged region wherein the fine details
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within the repaired region are also visible. One may note that, although, both

models yield seamless inpainting, the result obtained using our proposed ap-

proach appears more plausible and in addition performs resolution enhancement

i.e. super-resolution. This can be seen from the zoomed image shown in figure

4.12(f) which provides greater details when compared to the bicubic interpolated

region shown in figure 4.12(e). Thus, in comparison to the inpainting method

using the AR model discussed in chapter 3, proposed approach provides better

inpainted results that look more natural and additionally also provides the reso-

lution enhancement.

For surface reconstruction, if the point cloud data corresponding to the input

images in figures 4.11(a)–4.12(a) are available, one may consider damaged regions

as holes and perform repair using Poisson surface reconstruction [71]. Although

this would fill the holes, it does not create artistic details inside the large miss-

ing regions. However, if the missing regions are filled in the images, and higher

resolution details are also made available as done here by using our method, the

resulting images can be used as source for generating 3D models of filled holes

with reliable artistic details.

4.4 Conclusion

We have presented a unified approach to perform simultaneous inpainting and

super-resolution. By using an additional constraint of matching patches at the

original resolution as well as at the higher resolution, we not only obtain bet-

ter source patches for inpainting but also have the corresponding super-resolved

version. A comparison with the state-of-the-art inpainting methods shows that

the inpainted results of the proposed method are indeed better. Also, the simul-

taneously super-resolved regions are comparable to the super-resolution of the

inpainted regions obtained using the method in [51] and also show greater details

than those obtained by upsampling the inpainted regions using bicubic interpo-

lation. The simultaneously inpainted and super-resolved images can be used as

source for generating 3D models with higher amount of details.
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CHAPTER 5

Auto-inpainting of Damaged Regions in Fa-

cial Images of Statues

In chapters 3 and 4 we have discussed inpainting techniques wherein the regions

to be inpainted are manually provided by the users. When we look at heritage

monuments, especially the statues, there is a general consensus about the desire

to view these without any damage to the dominant facial regions. This encourages

the exploration for techniques that automatically detect the damaged regions so

that their repair can be completely automated using an existing inpainting tech-

nique. Another reason that motivates this exploration is that it can be a useful tool

to automate the monitoring of heritage site using a surveillance system and alert

the authorities if any damage to monuments takes place. The damage could be ei-

ther intentional or it could be unintentional due to the curiosity of visitors, based

on which a necessary action can be initiated and monuments can be protected

from further damage.

In this chapter we discuss a method that automates the process of detecting the

damage to visually dominant regions viz. eyes, nose and lips in facial images of

statues, and their repair using an existing inpainting approach [113]. Here, we use

bilateral symmetry of face as a cue to detect the eye, nose and lip regions. Textons

Figure 5.1: Block diagram of our approach for detecting and inpainting the dam-
aged facial regions in statues.
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features [142] are then extracted from each of these regions in a multi-resolution

framework to characterize their textures. These textons are matched with those

extracted from a training set consisting of true damaged and non-damaged re-

gions in order to perform the classification. The repair of the identified dam-

aged regions in the test image is then performed using the Poisson image edit-

ing method [113] by considering the best matching non-damaged region from the

training set.

A block diagram of our method is shown in figure 5.1, the details of which

are organized as follows. In section 5.1 we discuss preprocessing, followed by

extraction of the eye, nose and lip regions in section 5.2. Details of classifying the

detected region as either damaged or non-damaged are given in section 5.3. We

discuss the repair of the detected damaged regions using inpainting in section 5.4

followed by experimental results in section 5.5 and conclusion in section 5.6.

5.1 Preprocessing

The input is assumed to be a frontal face image. One may note that slight devia-

tion from the frontal pose is not an issue in the region detection process. However,

for large deviation due to complex distortions, one may think of using image reg-

istration as a preprocessing step. Nevertheless, given a single image with complex

distortions, registration itself is a difficult problem and involves pixel interpola-

tion, thus affecting classification. We therefore consider only the frontal face im-

ages as our inputs.

The detection of the regions of interest viz. eyes, nose and lips is based on edge

features and can get affected by changes in the illumination conditions. In order

to make the detection process robust to illumination changes, we apply the single

scale retinex (SSR) algorithm1 [68] on the input image. Further, we apply an edge

preserving smoothing operation [114] over the resulting image, so as to detect the

regions with better accuracy. Following this, the edges are extracted to obtain an

1We used the implementation of SSR algorithm available at: http://in.mathworks.com/
matlabcentral/fileexchange/26523-the-inface-toolbox-v2-0-for-illumination-
invariant-face-recognition/content/INface_tool/photometric/single_scale_retinex.m
[143].
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edge image Ie.

5.2 Extraction of eye, nose and lip regions

The visually dominant regions viz. eyes, nose and lips have a common property of

being bilaterally symmetrical. Motived by the work in [70], our approach uses this

property as a cue for detecting the eye, nose and lip regions. Using the edge image

Ie, symmetry measures bh(x, y) and bv(x, y) around each pixel location (x, y) are

calculated in the horizontal and vertical directions, respectively as follows,

bh(x, y) =
min(y,y−N)

∑
j=1

[1(Ie(x, y− j) = Ie(x, y + j))] and

bv(x, y) =
min(x,x−M)

∑
i=1

[1(Ie(x− i, y) = Ie(x + i, y))],

(5.1)

where, M× N represents the size of input image and 1(condition) is an indicator

function that outputs the value of 1 if condition is true, else outputs 0. The pixels

considered for calculating bh(x, y) and bv(x, y) are illustrated in figure 5.2.

(a) (b)

Figure 5.2: Pixels considered for the calculation of symmetry measures bh(x, y)
and bv(x, y) in (a) horizontal and (b) vertical directions, respectively.

The calculated symmetry measures are then used to obtain the projections Sx
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(a) Input
image

(b) Edge
image (c) Projection Sx(y) (d) Projection Sy(x)

Figure 5.3: Extraction of the potential regions of interest using bilateral symmetry.

and Sy as follows:

Sx(y) =
M

∑
i=1

bh(i, y), and Sy(x) =
N

∑
j=1

bv(x, j), (5.2)

where, y and x respectively denote the column and row being projected. The peak

in projection Sx provides the mid-line about which the face is nearly symmetric,

while the peaks in projection Sy help in identifying vertical locations of the eye,

nose and lip regions. This is illustrated using the example shown in figure 5.3.

The regions of interest can then be extracted using appropriately sized windows

around the locations of the peaks detected in projections Sx and Sy.

One may wonder if a little skew or non-perfect fronto-parallel view may jeop-

ardize the bilateral symmetry measures. While it is true that a little skew from the

non fronto-parallel position does affect the bilateral symmetry of the image, it may

be noted that the peaks in the projections of the horizontal and vertical symmetry

Figure 5.4: Detected eye, nose and lip regions shown in black rectangular regions
for a case of little skew or non-perfect fronto-parallel image.
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measures Sy(x) and Sx(y), respectively, get shifted in accordance to the skewness

and the regions of interest get detected accordingly. An example of detecting the

eye, nose and lip regions in such a case is shown in figure 5.4. However, this does

not hold true for large deviation from the non fronto-parallel position, which may

lead to failure.

5.3 Classification

For classifying the detected regions as damaged or non-damaged we use texture

as a cue. A method for modeling different texture classes having uniformity

within each class has been proposed in [142]. Our work, however, deals with

the images of statues at historic monuments that have natural textures with no

uniformity. In such cases, it is difficult to extract any repetitive pattern at a single

scale. However, irregular patterns and structures in nature have been successfully

represented using fractals [37, 84]. The fractals are geometric patterns that repeat

at smaller scales to produce irregular shapes and surfaces that cannot be repre-

sented by classical geometry. This motivated us to make use of a multi-resolution

framework to address the issue of irregularities in natural texture at different res-

olutions; a property characterized by stone-work and monument surfaces. More-

over, our method automatically calculates the number of clusters required to rep-

resent the two classes that correspond to damaged and non-damaged regions, as

opposed to the approach in [142] which uses fixed number of clusters for repre-

senting several texture classes.

Figure 5.5: Texton extraction from the detected nose region in a test image.
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Figure 5.6: Auto-selection of number of clusters K by fitting two straight lines to
the data.

The texture features are extracted in the form of textons, which are cluster cen-

ters in the filter response space. These textons are obtained in a multi-resolution

framework by convolving the detected potential region of interest and its two

coarser resolution versions with the maximum-response-8 (MR8) filter bank [142].

In order to obtain the coarser versions of the detected region, it is low-pass filtered

using Gaussian filter before downsampling. The MR8 filter bank consists of 38 fil-

ters viz. edge and bar filters with 6 orientations at 3 scales along with a Gaussian

and a Laplacian of Gaussian filter. Each pixel of the input region is now trans-

formed into a vector of size 8 by considering 8 maximum responses out of the

38 filters. In other words, the maximum response for orientation of the edge and

bar filters at each scale along with the response for the Gaussian and Laplacian of

Gaussian filters are recorded to obtain a vector of size 8. We illustrate the process

of extracting the textons for a detected nose region in the test image, with the help

of figure 5.5. A similar process is independently applied to extract the textons

features from the eye and lip regions.

The K-means algorithm is then applied on these vectors to obtain the K cluster

centers i.e. textons. One may note that the method proposed in [142] requires the
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number of clusters (K) to be known in advance. However, it may not be possible

to pre-determine the number of clusters K as this is a data dependent term. In

our work, we use a simple approach to estimate the optimal number of clusters.

Here, we plot a two dimensional evaluation graph, where X-axis shows number

of clusters (K) and Y-axis shows the pooled within cluster sum of squares around

the cluster means (Wk) calculated as follows [135]:

WK =
K

∑
r=1

 ∑
∀i,i′∈Cr

di,i′

 , (5.3)

where di,i′ is the squared Euclidean distance between members (i, i
′
) of cluster Cr.

Here, Tibshirani et al. [135] have shown that the point at which the monotonic de-

crease flattens markedly provides the optimal value of K. However, if the curve

is smooth, it is difficult to determine where exactly this decrease flattens. We then

have a challenging task to obtain the optimal value of K. To overcome this diffi-

culty, we attempted to best fit two straight lines to the curve using expectation-

maximization (EM) algorithm. The point of intersection of the two best fit lines

then gives the approximate point at which the curve starts to flatten. The pro-

jected point on the axis of number of clusters is then considered as the optimal

value of K as illustrated in figure 5.6.

A process as described above is used offline for extracting the textons from

a training set consisting of true damaged and non-damaged regions. Here, the

textons representing a damaged eye, nose or lip region are extracted using all the

training images containing the corresponding true damaged region. Likewise,

textons representing the non-damaged regions are extracted using the true non-

damaged regions from the all training images. As discussed earlier, each texton

is a vector of size 8× 1 which represents the cluster center of filter responses ob-

tained at multiple scales and a collection of these vectors forms the feature set for

each region. An example showing the offline extraction textons from a training set

containing damaged nose regions is illustrated in figure 5.7. We now compute the

Euclidean distance between textons of the detected region (viz. eye, nose or lip) in

the test image and those from the corresponding true damaged and non-damaged
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Figure 5.7: Offline extraction of textons from the training set images containing
damaged nose regions.

regions of training images, to perform the classification. Here, the minimum dis-

tance criteria is used to classify the region as either damaged or non-damaged. It

may be noted that for each extracted region, viz. eyes, nose and lips, the classi-

fication is performed independently. This enables the simultaneous detection of

multiple damaged regions in the test image.

5.4 Inpainting

Once a region is identified as damaged, inpainting is done using a non-damaged

source region. Here, if one eye is damaged, we use the flipped version of the other

eye (detected automatically) from the same image as the source. However, if both

eyes or the nose or lip regions are damaged, we make use of the images from the

training set as the source for inpainting. Here, the source selection criteria is the

extent of similarity in the Euclidean space, between the undamaged region in the

test image and the training set images. However, if all the detected regions in an

image are damaged, then the source regions have to be provided manually. One
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Algorithm 2 Steps used in our approach for auto-inpainting (i.e. detecting and
inpainting) the damaged regions in facial images of statues.

1: Make the input image illumination invariant using SSR algorithm [70] and

perform edge preserving smoothing [114].

2: Extract the edges to get image Ie and calculate the symmetry measures bh(x, y)

and bv(x, y) using equation (5.1).

3: Calculate the projections Sx and Sy using equation (5.2) to extract the eye, nose

and lip regions.

4: Consider one detected region at a time and extract the corresponding texton

features by:

(a) obtaining the MR8 filter responses [142] using the detected region along

with its two coarser resolutions and

(b) clustering the filter responses into K clusters by auto-selecting K as shown

in figure 5.6.

5: Compare the extracted textons of training and test image.

6: Identify damaged regions based on nearest neighbor criteria.

7: Repeat steps 4–6 for each detected region independently.

8: Inpaint using method in [113] by considering a suitable source region as fol-

lows:

(a) if only one eye is damaged, use the other eye as the source.

(b) if both eyes or other regions are damaged, use a corresponding non-

damaged region from the source training set image selected based on its sim-

ilarity with the non-damaged regions.

(c) if all the detected regions are damaged, then manually provide the source

regions.

way to automate inpainting in such cases is to assign a random source image.

However, this may not always lead to plausible results and we therefore provide

the user a choice to select the source image. Once we have the source region, we

use it as a guidance vector field for the Poisson image editing technique [113] to

inpaint the identified damaged region. The steps used in our proposed method

are summarized in algorithm 2.
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5.5 Experimental results

We now discuss the results of our experiments conducted on a database consist-

ing of 40 facial images of Egyptian statues having damaged and non-damaged

regions, downloaded from the Internet [53]. The spatial resolution of the images

is adjusted such that all images are of the same size. A mean correction is applied

to the images, so that they have the same average brightness. Training for the eye,

nose and lip regions has been done independently. For training we have used 10

images each for damaged and non-damaged regions. Testing was carried out on

all the images from the database including those used for training.

The results using our approach are shown in figures 5.8–5.11. The detection

and inpainting of a damaged nose is shown in figure 5.8, where the source used

for inpainting is an image from the training set containing an undamaged nose.

In figure 5.9, the reflected version of the non-damaged left eye has been used to

inpaint damaged right eye. However, in figure 5.10 since both eyes are damaged,

an image from the training set containing non-damaged eyes is used as the source

for inpainting. Note that the criteria used for selecting the source is similarity of

the non-damaged regions in the test image with the corresponding regions in the

images from the training set. In figure 5.11, we show a result where our method

fails to detect the damaged nose. Here, the input image contains the nose region

having small amount of damage, due to which the corresponding textons match

those of the non-damaged nose regions from the training set. This is caused by

the extracted statistics of the damaged and non-damaged regions. Thus, among

the extracted potential regions of interest shown in figure 5.11(b), the damaged

nose is incorrectly classified as undamaged and is therefore undetected in figure

5.11(c).

We now discuss the performance of our method of automatic detection of fa-

cial regions and inpainting by considering the ground truth from the inputs pro-

vided by the volunteers. Performance evaluation is done in terms of the standard

recall and precision metrics defined as: Recall= |Ref
⋂

Dect|
|Ref | and Precision= |Ref

⋂
Dect|

|Dect| .

Here, Ref are the regions declared to be damaged or undamaged by volunteers
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(a) (b) (c) (d) (e)

Figure 5.8: Detecting and inpainting a damaged nose; (a) input image, (b) ex-
tracted potential regions of interest, (c) detected damaged nose, (d) inpainted nose
using the source image (e).

(a) (b) (c) (d)

Figure 5.9: Detecting and inpainting a damaged eye; (a) input image, (b) extracted
potential regions of interest, (c) detected damaged eye, (d) inpainted eye.

and Dect are the regions detected as damaged or undamaged by the proposed

technique. From a set of 40 images, 50 regions were found to be damaged, while

50 were undamaged. Out of 50 damaged regions 47 were correctly classified,

while all 50 undamaged regions were correctly classified. For source region se-

lection, 49 out of 50 regions were correctly selected. The performance in terms

of the recall and precision metrics is summarized in Table 5.1 which shows the

effectiveness of our method.

Note that the source selection method used in our approach is not comparable

with content based image retrieval (CBIR) techniques. This is because for a large

damaged region, a CBIR system may not find adequate amount of non-damaged

content to retrieve a good match relevant for inpainting. Although our method

is developed for images of statues, it can be effective for facial regions in natural

images as both have same the facial characteristics. Thus, we have presented

Region type #Regions Recall Precision
Damaged 50 0.9400 1.0000
Undamaged 50 1.0000 1.0000

Table 5.1: Performance in terms of recall and precision.
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(a) (b) (c) (d) (e)

Figure 5.10: Detecting and inpainting damaged eyes; (a) input image, (b) extracted
potential regions of interest, (c) detected damaged eyes (d) inpainted eyes using
the source image (e).

(a) (b) (c)

Figure 5.11: Failure case; (a) input image, (b) extracted potential regions of inter-
est, (c) damaged nose is incorrectly classified as undamaged.

a texture based approach to automatically detect the damaged regions in facial

images of statues for performing their digital repair using an existing inpainting

technique. The results show that these regions can be effectively repaired.

5.6 Conclusion

In this chapter we have presented techniques for automatic detection of damaged

dominant facial regions in statues and cracks in heritage monuments for their

digital repair. In our first approach, a bilateral symmetry based method is used to

identify the eyes, nose and lips. Here, texton features are extracted from each of

these regions in a multi-resolution framework to characterize the textures of dam-

aged and non-damaged regions. These textons are matched with those extracted

from a training set of true damaged and non-damaged regions for detecting the

damaged ones which are then inpainted with the help of suitable source regions.

Here, we have addressed the repair of specific regions viz. the facial regions of

statues in heritage monuments. However, damage like cracks in the non-facial

regions of the monuments also diminishes their attractivenesses. We address this
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in the following chapters 6–7 wherein we present techniques for automating the

digital repair of cracks.
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CHAPTER 6

Pixel and Patch based Approaches for Auto-

inpainting of Cracked Regions

In chapter 5, we discussed a technique for automatic detection and inpainting of

the damaged eye, nose and lip regions in facial image of statues. In this chapter,

we consider the damage in non-facial regions and describe techniques for their

automatic detection and inpainting. In particular we consider the non-facial re-

gion that have damage in the form of cracks. In heritage sites, the cracks could

be developed over a period of time due to environmental effects or due to man-

ual destruction. The presence of cracked regions make the heritage monuments

less attractive. It would be interesting for the visitors if they are presented with

a view of these moments after a seamless removal of the cracks. A technique

for automatic detection of the cracks in an acquired image will be particularly

useful for performing on-the-fly digital reconstruction when the tourists take pic-

tures of the heritage monuments using their handheld image / video capturing

devices. Towards this end, in this chapter we discuss techniques for automatic de-

tection of cracked regions and demonstrate their repair using existing inpainting

algorithms. Note that the application is to actually restore a heritage scene, i.e.,

digitally repair cracks that physical objects have. Thus, we are not talking about

image restoration, but about object completion. In other words, we do not detect

an external damage or defect due to alteration of a photograph, but instead detect

and inpaint the cracked regions in the photographed scenes / objects.

The contents of this chapter are organized as follows. In section 6.1 we dis-

cuss a simple yet effective pixel based method to automatically detect the dam-
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aged regions which are characterized by abruptly dark deteriorations in the pho-

tographed monuments of a heritage site. The use of order-statistics and density

filters makes our technique computationally fast and we are able to accurately de-

tect these cracked regions. In section 6.2 we discuss another approach for crack

detection. This approach is based on comparing overlapping adjacent patches us-

ing singular value decomposition (SVD). The conclusion of this chapter is given

in section 6.3.

6.1 A Simple Pixel based Method

Images of heritage sites usually contain murals and monuments having a porous

surface, making the detection of damaged region exhibiting visual discontinuities,

a very challenging task. Here, we discuss a computationally efficient and effective

technique to detect these visual discontinuities which appear as abruptly dark

regions representing the cracks. A block diagram of our proposed method for

crack detection is shown in figure 6.1 and the details of each step are discussed

in sections 6.1.1–6.1.4 followed by the experimental results in section 6.1.6. We

proceed with the discussion of this proposed approach.

Figure 6.1: A simple approach for crack detection.

Given an input image I of a damaged monument in the RGB color space, we

transform it to the HSV color space and extract the grayscale image IV that corre-

sponds to the intensity image. In the images of heritage monuments, the damaged

regions like cracks usually appear darker in comparison to their surroundings

area. However, due to the porous surface of photographed monuments, one ob-

serves large variations in intensity of many adjacent pixels. It is therefore neces-

sary to enhance the contrast of these dark regions with respect to the surrounding

regions. A widely used method for contrast enhancement is the histogram equal-

ization. This is followed by edge detection to detect intensity contrast among
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neighboring pixels [52]. Our experiments, however, revealed that contrast en-

hancement using histogram equalization increased the contrast of various other

regions as well, and subsequent edge detection resulted in many false positives.

We therefore, instead, use order-statistics based filtering as discussed below.

6.1.1 Order-statistics based filtering

Order-statistics filters have been used for edge enhancement in noisy images [82,

83]. This motivated us to use order-statistics filters instead of histogram equaliza-

tion for enhancing the contrast of dark regions. There are various filters based on

order-statistics such as the min, max and median filters. We use a combination of

the min and max filters to achieve the desired contrast enhancement.

Since the min and max filters enhance the dark and bright regions in the image,

by taking an average of the output of these filters we obtain a smoothed version

Ia of the intensity image IV . This helps us to overcomes the rapid variation in

intensity due to porous regions. The max filtered version of Ia is then subtracted

from the intensity image to achieve the contrast enhancement of the abruptly dark

regions. We achieve this by considering a patch Φp around every pixel p in the

image IV and obtain the min and max filtered images by extracting the minimum

and maximum intensities from each patch Φp. The average of these filters i.e. Ia

is obtained using the equation (6.1) as follows.

Ia(p) =
min(Φp) + max(Φp)

2
, Φp ∈ IV . (6.1)

The contrast enhanced image Ih is then obtained as follows using equation (6.2),

Ih(p) = IV(p)−max(Φp), Φp ∈ Ia. (6.2)

The input image I and the contrast enhanced image Ih are shown in figures

6.2(a) and 6.2(c), respectively. One may note that the contrast enhanced image Ih

is not the same as the intensity image with inverted thresholds. Due to the porous

surface of the photographed monuments, the intensity image IV (shown in figure
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(a) Input image I (b) Intensity image IV (c) Contrast enhanced image Ih

Figure 6.2: Contrast enhancement using order-statistics based filtering.

6.2(b)) and its thresholds inverted version contain random sharp variations in con-

trast. Whereas, the image obtained after contrast enhancement as shown in figure

6.2(c) exhibits sharp contrast variations at the regions with abrupt changes in the

intensity, with smooth contrast variations elsewhere. Thus, we observe a drastic

variation in contrast of the cracks with respect to their surrounding regions.

6.1.2 Scan-line peak difference detection

Since the contrast enhanced image Ih exhibits sharp variations at the potentially

damaged regions, we detect these by comparing adjacent pixel values along a

scan-line. Large peaks of a such comparison between adjacent pixel values of a

scan-line correspond to the potential cracks on that scan-line. In order to detect

these cracks, we consider every scan-line to contain at most α number of peaks

to be a part of the cracked regions. Here, we use a set Mx for denoting these α

number of peaks per scan-line as follows,

Mx =
{

λj, j = 1, . . . , α|λ1 ≥ λ2 ≥ . . . ≥ λn,

λk = dk(x, y), k = 1, . . . , n} , where,

d(x, y) = max(|Ih(x, y)− Ih(x, y + i)|), i = ±1,

(6.3)

where λ1, λ2, . . . , λn are the pixel value differences between the adjacent columns

y at every scan-line x, arranged in descending order. The parameter α controls

the number of high peak-differences i.e. pixels in the potential cracked regions,

that can be detected along a scan-line. Using the set Mx per scan-line we create a
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binary image Ib denoting the candidate pixels in the potential cracks as,

Ib(x, y) =

 1, if d(x, y) ∈ Mx

0, otherwise.
(6.4)

6.1.3 Density based filtering

Using such a process for peak-difference detection along a scan-line detects pixels

at nearby locations in adjacent scan-lines and leads to increase in their density

along the potential cracks. We now use a density based filter to threshold a local

region ϕp around every pixel p detected in the binary image Ib based on presence

of other detected pixels inside ϕp. This discards the isolated pixels detected in

Ib which do not belong to the potential cracks. Thus, we localize the cracks by

creating another binary image Id as follows,

Id(ϕp) =


1, if ∑

q∈ϕp

Ib(q)
|ϕp| ≥ θ1

0, otherwise,
(6.5)

where |ϕp| is the area of the local region ϕp around a pixel p and θ1 is the threshold

density. The binary image Ib and the density filtered binary image Id are shown

in figure 6.3.

(a) (b)

Figure 6.3: Detection of candidate pixels in the potential cracked regions. (a) The
binary image Ib generated using equation (6.4) by detecting peak differences along
every scan-line the contrast enhanced image Ih; (b) the density filtered binary im-
age Id.
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6.1.4 Refinement

The density filtered binary image Id, however, consists of disjoint parts of the

cracks. In order to address this issue, we use the morphological dilation process

so that the disjoint regions get connected. By doing so, few isolated group of

pixels that do not belong to the cracked regions may also get connected. These

are eliminated by applying yet another density based filtering operation on the

centroids of each connected components in Id to get a the final binary image Ig

containing the detected cracks. To do this, let us denote the dilated version of Id

by ID and a patch around centroid Ci of every connected region i ∈ ID by ϕ̂i. The

density based filtering operation on ID is then performed using equation (6.6) as

follows,

Ig(ϕ̂i) =


ID(ϕ̂i), if ∑

q∈ϕ̂i

ID(q)
|ϕ̂i|
≥ θ2

0, otherwise.
(6.6)

Here, Ig is the output of the density filtering operation on ID, |ϕ̂i| is the area of the

patch ϕ̂i and θ2 is the threshold.

6.1.5 Inpainting

We illustrate the regions detected in the binary image Ig in red color by overlaying

them on the input image I as shown in figure 6.4(a). The regions detected in Ig

represent the cracks and can therefore be used as a mask indicating the missing

(a) Input image I overlaid with
the crack detected in Ig shown
in red color

(b) Inpainted version of I using
the region detected in Ig

Figure 6.4: Automatic detection and repair of cracks.
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regions for inpainting. One can now use a suitable inpainting algorithm to per-

form their digital repair. We demonstrate the repair of the detected cracks using

our inpainting technique discussed in chapter 3. The inpainted version of the in-

put image I by considering the regions detected in the binary image Ig as missing

regions, is shown in figure 6.4(b).

One may note that the objective of this method is to detect abruptly dark re-

gions that characterize cracks and is therefore not suited for detection of vandal-

ized eye, nose and lip regions of faces in statues as discussed in chapter 5 for

which texture is used as a cue. Hence, the technique discussed in chapter 5 is not

suited for addressing the detection of cracks.

6.1.6 Experimental results

We present the results of our technique on the data collected from the world her-

itage site at Hampi, India. The images were captured using a Samsung ES55 dig-

ital camera. The data consists of a number images of monuments, having both

cracked and non-cracked regions. Fairly large cracks are visible in all the images.

The images used in the experiments are of size 684× 912 pixels. For the order-

(a) (b) (c) (d) (e)

Figure 6.5: Results: (a) input images; (b) cracks marked by the volunteers are
shown in red color; (c) inpainted version of (b); (d) automatically detected cracks
using our method are shown in red color; (e) inpainted version of (d).
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statistics based filtering operation we considered patches Φ of size 3× 3. For de-

tecting the peak difference in the scan-line of the contrast enhanced image IV , we

have set the value of α to 2. The patch size ϕ for density based filtering operation

is taken to be 9× 9 while for refinement ϕ̂ is chosen as 61× 61. The thresholds θ1

and θ2 are set to 0.08 and 0.45, respectively.

Since no ground truth data is available that presents the true pixels in the

cracked region, we have manually determined them with the help of volunteers.

Although the subjectively generated ground truth data may not be accurate, it can

still be used to judge the effectiveness of the detected cracks. The results of this

approach in comparison to the manually marked cracks by volunteers are shown

in figure 6.5. Here, figure 6.5(a) shows the input images. The cracks marked

manually by volunteers are shown in figure 6.5(b), while figure 6.5(c) shows the

corresponding inpainted images. The cracks detected automatically using our

technique are shown in figure 6.5(d), while figure 6.5(e) shows their inpainted

versions. The results reported in figure 6.5 show that automatically detected

cracked regions cover almost all the pixels marked as cracks by the volunteers.

Use of these regions as input mask for inpainting techniques is justified from the

inpainted results.

We now quantify the accuracy of the detected cracks using the standard recall

and precision metrics defined in equation (6.7) as follows,

Recall =
|Ref

⋂
Dect|

|Ref | and Precision =
|Ref

⋂
Dect|

|Dect| , (6.7)

where Ref are the pixels declared to be in the cracked regions by volunteers and

Dect are the pixels detected as cracks by our technique. For detected cracks in

Images # Cracked
pixels Recall Precision Time

(sec)
Image in row 1 6501 0.9812 0.3254 3.3852
Image in row 2 3529 0.9717 0.2986 3.4164
Image in row 3 5500 0.9955 0.3082 3.3540

Table 6.1: Performance evaluation for the automatically detected cracks shown in
figure 6.5(d).
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(a) (b) (c) (d) (e)

Figure 6.6: Comparative results with respect to the technique proposed in [4]. (a)
Input images; (b) regions marked as cracks by volunteers; (c) detection using the
technique in [4]; (d) detection using our method; (e) inpainted version of (d).

the binary image Ig to be suitable for use in an inpainting algorithm, the desired

Recall value should be nearer to 1. A lower value indicates that less number of

pixels in the cracked regions have been detected due to which the undetected

cracked pixels are used as source for inpainting leading to poor inpainted results.

On the other hand a low Precision value can be acceptable as it indicates that more

number of pixels have been detected which only increases the size of the region to

be inpainted. The Recall and Precision values for the results shown in figure 6.5(d)

along with the time taken for detection are given in table 6.1. Here, we observe

that the detected cracks have a high Recall value, indicating that almost all the

cracked pixels marked by the volunteers are detected.

We now compare our results with those obtained from the defect detection

method proposed by Amano [4] as shown figure 6.6. It may be noted that the

Images
#

Cracked
pixels

Defect detection method [4] Proposed method

Recall Precision Time
(sec) Recall Precision Time

(sec)
Image

in row 1 3494 0.0000 0.0000 109.00 0.9825 0.1763 3.5256

Image
in row 2 2831 0.3727 0.0239 096.00 0.9414 0.1284 3.3384

Table 6.2: Performance comparison with respect to the method in [4] for the results
shown in figure 6.6.
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(a) (b) (c)

Figure 6.7: Results for images that do not contain cracks. (a) Input images; (b)
detection result of the technique proposed in [4]; (c) detection results using our
technique.

results for technique [4] are obtained after fine-tuning the parameters. Here, we

observe that the defect detection method [4] detects superimposed text but fails

to detect the cracks. On the other hand, the regions detected by our method are

similar to the regions marked as cracks by the volunteers. This is also suggested

by the Recall and Precision values given in table 6.2. Moreover, the timing infor-

mation suggests that the detection of cracks using our method is significantly fast.

Here, both the techniques have been implemented on the same machine having

an Intel Core i5 processor.

We now present the detection results for images that do not contain the cracked

regions in figure 6.7. Here, we again observe that the defect detection technique

in [4] detects the superimposed text. On the other hand, our method does not de-

tect any region thus avoiding false detection. In other words, our method is also

capable of correctly identifying cases in which no cracks are present.

We now analyze the computational complexity of our proposed technique.

Consider the grayscale intensity image IV to be of size M× N, having η = MN

number of pixels, while the patch Φ having κ number of pixels such that κ << η.

The number of pixels processed by each of order-statistic filters viz. min and max

is ηκ. Also 2ηκ number of pixels are processed when calculating Ia which is the

average of outputs of the order-statistic filters. Likewise, the calculation of the

contrast enhanced image Ih involves the processing of 2ηκ number of pixels. Fur-

ther, the generation of the binary map Ib requires the processing of 2η number
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of pixels. Let k denote the total count of pixels processed in all further opera-

tions, which is the product of number of pixels detected in the binary map Ib

and the size of neighborhood for each operation. However, both these quanti-

ties are very less as compared to η and therefore their product k << η. The total

number of pixels processed by our technique is therefore T = 5ηκ + 2η + k. If

processing each pixel takes a unit time, then total time required by our technique

is 5ηκ + 2η + k = O(η), which is linearly proportional to the size of the grayscale

intensity image IV .

From the results shown in figures 6.5–6.7, along with the performance compar-

ison shown in tables 6.1 and 6.2, it is clear that the cracked regions are successfully

detected by the our method. Although the technique in [4] is good for detection

for an alteration to the photograph (like overlay text), our method is more suitable

when it comes to detection of damage in the photographed scene / object and is

comparatively faster. For successful commercialization of the auto-detection of

cracks, one needs to obtain the results in quick time. Our method is straightfor-

ward and the speed of our approach is linearly proportional to the size of the

input image making it usable in real-time applications. This makes our algorithm

suitable for the use in digital cameras to obtain on-the-fly automatic detection of

the cracks and their inpainting when a tourist is capturing the photograph of a

damaged heritage scene.

We now proceed with the discussion of different approach for detection of

cracked regions in section 6.2, which is patch based unlike the pixel based ap-

proach presented here.

6.2 A Patch based Approach using SVD

In section 6.1, we discussed a simple yet effective technique for detecting and

inpainting the cracked regions in heritage monuments. The method is intuitive

and relies on the detection of drastic variations in the intensity of adjacent pix-

els across a scan-line to detect the boundary of the cracked regions. Yet, it is a

primitive approach that performs pixel based comparisons and involves many
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Figure 6.8: SVD based approach for crack detection.

parameters that are set heuristically.

In this section, we discuss a patch based method for detecting the cracks. Here,

the main idea is to compare the overlapping patches for similarity using the sin-

gular value decomposition (SVD) based patch analysis. Calculating an average

dissimilarity of the row and column adjacent patches with respect to a patch un-

der consideration helps to reveal the amount of visual discontinuity between the

patches. By using a threshold, the cracks can then be identified as the ones having

higher dissimilarity value. Once the cracks are detected, their filling can be per-

formed using a generic inpainting technique. For illustration purpose, we demon-

strate this repair using the existing inpainting technique proposed in [26].

A block diagram of the proposed approach is shown in figure 6.8. Given an

input image I in the RGB color space, we first transform it into HSV color space

and extract the grayscale image IV that corresponds to the intensity image. Now

consider a patch Φp of size m× n at pixel p ∈ IV with coordinates (x, y) as shown

in figure 6.9. Here, x = 1, . . . , M−m and y = 1, . . . , N − n, such that M× N rep-

Figure 6.9: Overlapping patches considered for comparison.
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resents the size of the image IV . The elements of patch Φp are rearranged to form

a column vector vp of length L = mn by using lexicographical ordering of pixels.

Similarly, consider the pixels r and s adjacent to p with respective coordinates as

(x, y + 1) and (x + 1, y). The corresponding patches Φr and Φs are also ordered

lexicographically to obtain the vectors vr and vs as illustrated in figure 6.9.

We find the similarity between the vectors vp, vr and vs using the geometric

interpretation of the SVD model [30] on the matrix having these vectors as its

columns. By calculating the similarity between vectors of adjacent patches, we

create a similarity matrix S whose elements are then compared with an automat-

ically estimated threshold δ, to detect patches having discontinuities. In what

follows, we discuss patch analysis in the SVD domain.

6.2.1 SVD and patch analysis

We form a matrix A with the columns as vp, vr and vs corresponding to patches

Φp, Φr and Φs, and decompose it using SVD such that A = UΣVT. Here U is a

L× L matrix, the columns of which are the eigenvectors of AAT, V is a 3× 3 ma-

trix consisting of eigenvectors of AT A, and Σ is L× 3 matrix of singular values

(σ1 ≥ σ2 ≥ σ3 ≥ 0) at diagonals. We now reduce the size of matrices U to L× 3

and Σ to 3× 3, which however does not affect the reconstruction of A = UΣVT.

By discarding the smallest eigenvalue, we further reduce the size of matrices U to

L× 2, Σ to 2× 2 and V to 3× 2, which now leads to an approximate reconstruc-

tion of matrix A. Such a method is widely used for image compression and noise

reduction [145].

Considering the updated matrices Σ and V, the rows w1, w2 and w3 of the

matrix VΣ now reflect the extent to which pixels in the corresponding columns

vp, vr and vs have a similar pattern of occurrence [30]. The extent of similarity

between any two columns of the matrix A is given by the cosine of angle between

corresponding rows of the matrix VΣ as follows,

cos(θpr) =
w1.w2

||w1|| ||w2||
and cos(θps) =

w1.w3

||w1|| ||w3||
. (6.8)
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Note that if the smallest eigenvalue is retained then the complete reconstruction

of A is possible, and in that case the angle obtained by directly considering the

columns of matrix A is the same as that obtained between the corresponding rows

of matrix VΣ. Here, however, discarding the eigenvectors corresponding to the

smallest eigenvalue helps in calculating the true similarity even when the patches

are noisy.

One may easily verify this from the following example. Consider the vec-

tors vp = [4, 5, 6, 7, 6, 5, 4]T, vr = [4, 4, 6, 8, 6, 4, 4]T and vs = [1, 2, 3, 4, 3, 2, 1]T. In

SVD domain representation of a matrix having these vectors as its columns, the

rows of matrix VΣ are obtained to be w1 = [−14.21, 0.89], w2 = [−14.12,−0.41]

and w3 = [−6.52,−1.05], while cos(θpr) = 0.9958 and cos(θps) = 0.9756. On other

hand, if we directly use the vectors vp, vr, vs instead of w1, w2, w3, respectively, we

get cos(θpr) = 0.9926 and cos(θps) = 0.9734. Thus, it may be noted that unlike cal-

culating the correlation directly between the actual patches, our method performs

the similarity comparison in the SVD domain wherein by discarding the small-

est eigenvalue and the associated eigenvector, the obtained similarity values are

robust to noisy patches.

The comparison of patches Φr and Φs, which overlap with and are row, col-

umn adjacent to the patch Φp, enables us to simultaneously capture horizontal,

vertical and diagonal discontinuities. We now create a similarity matrix S such

that its element S(p) represent the average similarity value of patch Φp with over-

lapping patches Φr and Φs calculated as follows,

S(p) =
1
2
[
cos(θpr) + cos(θps)

]
, ∀p ≡ (x, y) ∈ IV . (6.9)

6.2.2 Thresholding

Once the similarity matrix S is obtained, the idea is to detect the cracks by thresh-

olding values of the matrix S which may have different values for different input

images. It may be noted that if the overlapping patches in an input image have

very high similarity, then the corresponding matrix S may have many values that

are nearer to 1, and therefore a high value of threshold δ could be required for
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correctly detecting the patches having discontinuities that represent the cracks.

Therefore, one has to choose the threshold δ based on the input image for correct

detection of cracked regions, which we describe as follows.

In order to select the threshold value δ dynamically for a given image, we con-

sider three quantities derived from the similarity matrix S, viz. the average value

avg(S), minimum value min(S) and the maximum value max(S). Since the com-

pared patches are adjacent and also overlap each other, they have a high amount

of similarity in their content. Therefore, it is reasonable to assume that the values

in matrix S that are less than the average value avg(S) would definitely corre-

spond to the patches having discontinuities and hence represent cracks. Thus, the

lowest value that δ may take is avg(S).

If the difference between lowest and highest values of S is high, it suggests

that the values corresponding to patches with discontinuities are spread over a

wider range, whereas the spread is over a narrow range when the difference is

small. If the values in the similarity matrix S vary in a narrow range, then the

threshold value δ would be nearer to avg(S). Thus, we infer that the threshold

value has to be higher than the average value avg(S) and also should depend on

the minimum min(S) and maximum max(S) values. We set an initial threshold α

to be an average of these three terms as given in the following equation (6.10).

α =
min(S) + max(S) + avg(S)

3
(6.10)

However, experimentally we found that a correction factor depending on the

value α is required for correct detection of the cracks. Based on our experimenta-

tion, we arrive at the following equation (6.11) that incorporates suitable correc-

tion factors to determine the threshold δ.

δ =



α + 0.10, if 0 ≤ α < 0.90,

α + 0.05, if 0.90 ≤ α < 0.95,

α + 0.01, if 0.95 ≤ α < 0.99,

α, if α ≥ 0.99

(6.11)
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In this way, the initial threshold α is calculated automatically, based on which an

appropriate correction factor is added, to dynamically set the threshold δ depend-

ing on the input image.

Here, since overlapping patches are expected to have very high similarity val-

ues, in equation (6.11) the correction factors are added to have the threshold δ

to be as near as possible to “1”. Thus, for lower values of the initial threshold

(α), high correction factors are added while for higher values of α low correction

factors are added. While this results in a saw-tooth type variation, it helps to set

thresholds nearer to “1” for α values that are on the higher side of the three ranges

viz. [0, 0.90), [0.90, 0.95) and [0.95, 0.99).

Once we obtain the threshold δ, we use it to detect the cracks by thresholding

the values in the matrix S representing the similarity of patches in the intensity

image IV . If S(p) < δ, we declare the corresponding patches Φp, Φr and Φs to be

significantly dissimilar. Using this criteria, all the values in the matrix S are com-

pared with threshold δ to detect dissimilar patches, using which a binary image B

is constructed as,

B(Φp) =

 1, if S(p) ≥ δ, ∀p ≡ (x, y) ∈ IV ,

0, otherwise, and

B(Φs) = B(Φr) = B(Φp).

(6.12)

The binary image B generated in this way by thresholding has the cracked regions

represented by the value 1.

6.2.3 Inpainting

Once the cracks are detected, we use an existing inpainting technique to inpaint

them as done in section 6.1.5. The detected cracked pixels considered as missing

pixels for this purpose. Now, any generic inpainting technique can be used to per-

form inpainting of the missing pixels, and to show this, here we use the inpainted

technique proposed in [26], which is a different inpainting technique than the one

used in section 6.1.5. In the following section 6.2.4, we illustrate the detection or

cracks and their inpainting using few experimental results, in order to show the
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working of the proposed SVD based approach.

6.2.4 Experimental results

We now discuss the results of our experiments on images downloaded from the

Internet [53], as well as on those captured by us. In our experiments, the size

patches Φp, Φr and Φs is set to 3× 3. As mentioned earlier in section 6.2.2, the

detected cracks are inpainted using the technique proposed in [26] in order to

demonstrate the suitability of our method to auto-detect cracked regions for in-

painting.

The results of our experiments on wall and ceiling images are shown in fig-

ure 6.10, and those on images pavements are illustrated in figure 6.11. The input

images of wall and ceiling are shown in figure 6.10(a). Since the ground truth

containing the marked cracked regions was not available for the input images,

we have considered regions marked by volunteers as cracks for comparison. The

images containing the regions marked as cracks by volunteers are shown in fig-

ure 6.10(b). The detected cracks using our method are shown in figure 6.10(c) and

the corresponding inpainted images are shown in figure 6.10(d). Here, the input

image in the first row contains a crack having high contrast with respect to its

surroundings. Although this appears to be a trivial case, one may note that the

presence of tiny dark regions over the image make the detection a challenging

task. The detection performed by our method is similar to the region marked by

the volunteers. The input image in the second row contains cracks along with

other damaged regions. In this case also our method well detects the cracked

region. A more complex case containing the crack in an image having low con-

trast is shown in the input image in the third row. Even in this case our method

performs better. Likewise, in the pavement images shown in figure 6.11, the de-

tected cracked regions are similar to those marked by the volunteers, indicating

the efficacy of our crack detection method.

In order to quantify the accuracy of the detected cracks, once again we consider

the popularly used recall and precision metrics [160] defined in equation (6.7). The

performance in terms of Recall and Precision values for input images in figures
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(a) Input (b) Cracks marked by
volunteers

(c) Detected cracks (d) Inpainted image

Figure 6.10: Detection of cracks in images of wall and ceiling. (a) Input images; (b)
Cracks marked by volunteers are shown in red color; (c) Cracks detected using our
method; (d) Inpainting of the detected cracks in (c) using the technique proposed
in [26].

6.10 and 6.11 is given in table 6.3. The crack detection results obtained using

our technique are significantly similar to the detection performed manually by

volunteers which is also evident from table 6.3. We observe that Recall value for

all the detected cracks in these images is nearer to 1. This clearly indicates that the

desired pixels of the cracked regions have been detected.

Input
#

Cracked
Pixels

Recall Precision

Image in row 1 of figure 6.10 05414 0.9540 0.6702
Image in row 2 of figure 6.10 02513 0.9988 0.2290
Image in row 3 of figure 6.10 05431 0.9742 0.3708
Image in row 1 of figure 6.11 40741 0.9914 0.4445
Image in row 2 of figure 6.11 05613 0.9984 0.4772
Image in row 3 of figure 6.11 29333 0.8919 0.5781

Table 6.3: Performance of the proposed technique in terms of Recall and Precision
for the results shown in figures 6.10 and 6.11.
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(a) (b) (c) (d)

Figure 6.11: Detection of cracks in pavement images. (a) Input images; (b) Cracks
marked by volunteers are shown in red color; (c) Cracks detected using our
method; (d) Inpainting of the detected cracks in (c) using the technique proposed
in [26].

We now show results on images captured by our camera in figure 6.12, that

include indoor and heritage scenes. These results are compared with the defect

detection technique proposed in [4]. It may be noted that the results for technique

[4] are obtained after fine-tuning the parameters while the parameters α and δ in

Input
#

Cracked
Pixels

Defect detection method [4] Proposed method

Recall Precision Time
(sec) Recall Precision Time

(sec)
Image

in row 1 8217 0.1503 0.0093 512 1.0000 0.5372 4.63

Image
in row 2 1353 0.6438 0.0260 093 1.0000 0.1749 4.41

Image
in row 3 3494 0.0000 0.0000 109 0.9531 0.2971 4.51

Table 6.4: Performance comparison in terms of Recall and Precision for the images
shown in figure 6.12.
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(a) (b) (c) (d)

Figure 6.12: Detection of cracks in indoor and heritage scene images captured by
us. (a) Input images; (b) Cracks detected using the technique proposed in [4] are
shown in red color; (c) Cracks detected using our method are shown in red color.
(d) Inpainted image for the cracks detected by our method.

our method are dynamically calculated, depending on the input image. The per-

formance comparison for these results in term of recall and precision are shown in

table 6.4. From the results shown in figure 6.12 and the performance comparison

in table 6.4, it is clear that the desired cracked regions are successfully detected by

our method. Although the technique in [4] is good for detection for an alteration

to the photograph like overlay text, our method is comparatively fast and more

suitable when it comes to detection of damage in the photographed scene / object.

In comparison to our previous crack detection approach discussed in section

6.1, the recall using the proposed approach is more or less similar but the pre-

cision shows improvement indicating higher accuracy in detecting the cracks.

This is also indicated by one of the results in tables 6.2 and 6.4 corresponding

to, (a) an image of a heritage site shown in row 1 of figure 6.6 (Recall = 0.9825

and Precision = 0.1763), and (b) the same image shown in row 3 of figure 6.12

(Recall = 0.9531 and Precision = 0.2971).
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6.3 Conclusion

In this chapter we have first presented a simple yet effective crack detection tech-

nique that can be used to generate an input mask for inpainting algorithms, con-

sidering the case of inpainting images of heritage sites. Our proposed method

automatically detects the cracks region which are characterized by abruptly dark

deteriorations. By performing scan-line peak difference detection on contrast en-

hanced potential cracked regions, followed by a density filtering operation, we

localize the cracked regions. The refinement of this output provides the area that

contains the cracked regions which can be repaired by using a generic inpainting

algorithm. This method is fast, which makes it suitable for the use in real-time

applications. We have then presented a patch based technique for detection and

inpainting of cracks by comparing similarity of overlapping patches in the SVD

domain. Here, we have used an image adaptive threshold to detect the dissimilar

patches that indicate visual discontinuities and construct a binary map contain-

ing the cracked regions. Experimental results show that the proposed method

performs better crack detection in comparison to the technique in [4] and is more

accurate than the premitive pixel based crack detection method discussed in sec-

tion 6.1. Nevertheless, the detected regions using both the proposed techniques

can be suitably used as input masks to inpaint the images containing cracked re-

gions.

In the following chapter 7, we propose yet another but more accurate approach

to automatically detect and inpaint cracks, along with its extension to perform

auto-inpainting in videos of heritage sites containing cracked regions.
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CHAPTER 7

Tolerant Edit Distance based Auto-inpainting

of Cracked Regions

In chapter 6 we have discussed pixel and patch based crack detection methods

for inpainting. In this chapter, we present another effective and more accurate

crack detection technique based on patch comparison using a measure derived

from edit distance [144] used for comparing text strings. We elaborate details of

the proposed crack detection technique in section 7.1 for images. We then con-

sider the extension of this technique in section 7.2 for performing auto-inpainting

of video frames by making use of the scale invariant feature transform (SIFT) and

homography. We consider the camera movement to be unconstrained while cap-

turing video of the heritage site, as such videos are typically captured by novices,

hobbyists and tourists. Here, we also provide a novel measure to quantify the

quality of inpainted videos. The conclusion of this chapter is given in section 7.3.

7.1 Crack Detection using Tolerant Edit Distance

Cracks are typically characterized by dark areas in an image which can be eas-

ily identified by human beings but pose difficulty to computers. In trivial cases,

simple thresholding is sufficient for detecting the cracks. However, as seen pre-

viously in chapter 6, the subtle variations in pixel intensities make the detection

of cracks a challenging task. The approach that we now discuss uses similarity of

non-overlapping adjacent patches as a cue to localize the cracked regions.

A block diagram of this approach for crack detection is shown in figure 7.1.
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Figure 7.1: Our approach for crack detection using tolerant edit distance.

The novelty here is that we compare the patches for similarity using a measure

derived from the edit distance, which is a popular string metric used in the area

of text mining. Our distance measure is such that it avoids penalizing trifle dif-

ferences between the corresponding pixels of the compared patches. This helps in

better localization of the cracks since the patch similarity is determined by avoid-

ing a strict pixel-to-pixel comparison inside the patches. The patch penalty along

with average edge strength within the patches is used to localize the cracked re-

gions. Further, the refinement of the localized cracked regions is performed us-

ing a sophisticated segmentation technique unlike our previous patch based ap-

proach, which did not perform refinement. The overall process in the proposed

approach thus provides the cracked regions detected in more a accurate manner.

(a) (b) (c)

Figure 7.2: Auto-inpainting cracked regions. (a) Original image of a heritage
scene. (b) Automatically detected cracked region using the proposed method is
shown in red color. (c) Image obtained after inpainting the detected region.
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We then demonstrate the digital repair of the detected cracked regions using an

existing inpainting technique [26]. One such example is illustrated in figure 7.2.

We now provide the details of our proposed approach, starting with the pre-

processing step.

7.1.1 Preprocessing

For a given input image I of size M× N we perform a preprocessing step by

considering its intensity normalized version I0. Since the cracked regions are dark,

the low intensity pixels are more likely to be part of a crack. We construct a weight

matrix Iw from I0 such that dark pixels have higher weights given by,

Iw(x, y) = exp(−I0(x, y)), (7.1)

where (x, y) denote the pixel coordinates. The weights in Iw are multiplied with

the corresponding pixels in I0 and the resulting image is eroded to obtain an image

Iv that we use for further processing. The erosion operation is performed so that

the narrow dark regions are enlarged for proper detection, which may otherwise

(a) I (b) I0 (c) Iw

(d) I0 ∗ Iw (e) Iv

Figure 7.3: Preprocessing of an input image.
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remain undetected in later operations. The preprocessing step is illustrated with

an example in figure 7.3.

7.1.2 Patch comparison using tolerant edit distance

Since the cracked regions exhibit noticeable dissimilarity with respect to the neigh-

boring regions, we intend to mark them out by comparing adjacent non-overlapping

patches in the image Iv. A simple method for patch comparison is to calculate

sum of absolute difference or sum of squared difference (SSD) across correspond-

ing pixels of the compared patches. These measures are, however, sensitive to

noise and may give a high error even for visually similar patches, which is evi-

dent in figure 7.4. Moreover, comparing a patch with its spatially shifted version

also gives high error, where in fact both are visually identical. Thus, it becomes

difficult to separate the cracks from its neighborhood using a threshold.

In string matching, shifting errors are overcome using the edit distance [144].

Edit distance is a string metric that gives the count of operations required for

transforming one string into another. The transformation is achieved by compar-

ing the characters of first string with that of the second string and performing an

appropriate operation. Here, the valid operations on comparing a pair of char-

acters are insertion, deletion and substitution. For example, consider two strings

“books” and “loops”. Here only two operations, both substitutions viz. “b” to

“l” and “k” to “p” are required for the transformation. Hence the edit distance

(a) (b) (c)

Figure 7.4: Comparison of (a) sum of absolute difference image, (b) sum of
squared difference image and (c) tolerant edit distance image ItED for tolerance
δt = 10. Patch size is 3× 3. With the input image of size 684× 912 we have ItED of
size 227× 303. Here, an enlarged, intensity inverted version is shown for clarity.
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between “books” and “loops” is 2. Likewise, for transforming “books” to “oops”

we again require two operations, a deletion and a substitution, giving an edit dis-

tance equal to 2.

Now, in order to compare patches, consider the lexicographical ordering of

two patches synonymous to two strings and each pixel synonymous to charac-

ters of the respective strings. If we calculate the edit distance, it would give the

number of operations required to transform one patch to another. A smaller value

of edit distance conveys less number of operations and in turn higher similarity

of the patches. However, in the presence of noise, the edit distance will still be

higher. This is because the substitution operation penalizes the mismatch of com-

pared characters.

In order to overcome the noise sensitivity of edit distance, a tolerance can be

used for the substitution operation. In other words, if the difference between

the compared characters falls within some tolerance value, the characters can be

considered as equivalent and, therefore, no penalty is given by the substitution

operation. We call the edit distance with such a substitution operation as tolerant

edit distance (tED). The tED thus gives a measure of similarity between patches,

in the presence of noise and spatial shift. To illustrate this, consider the example

shown in figure 7.5 where we compare two visually similar patches P1 and P2 of

size 3× 3, such that the patch P2 is a vertically shifted version of patch P1. Here,

the value for edit distance is 4 due to the shifting. However, by considering pixel

values within a tolerance = 3 as equivalent, we have the tolerant edit distance =

2 indicating robustness to noisy pixel values. One may note that if these patches

are compared using sum of absolute difference or SSD we get higher comparison

error. We therefore use tolerant edit distance to compare patches of size m× n in

Iv after the preprocessing step. This is done as follows.

For a patch Φp at pixel p with coordinates (x, y) in the image Iv, the right and

bottom non-overlapping patches that are considered for similarity are patches Φr

and Φs at pixels r = (x, y + n) and s = (x + m, y) as shown in the figure 7.6. One

may also consider a diagonal neighboring patch at pixel (x + m, y + n). Never-

theless, the right and bottom neighboring patches suffice to localize that cracked
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(c) Tolerant edit distnace for tolerance = 3 be-
tween v1 and v2

Figure 7.5: Example for comparing two patches of size 3× 3 using edit distance
and tolerant edit distance. Here, the patch P2 is a vertically shifted version of
patch P1.

pixels and the accuracy of detecting the cracked regions is improved by refine-

ment. Let the pixels in patch Φp, and its right and bottom neighboring patches Φr

and Φs be rearranged using lexicographical ordering to form vectors vp, vr and

vs, respectively.

We now measure the similarity between patches Φp, Φr and Φs by calculating

the tolerant edit distance (tED) dpr and dps between the pairs vp, vr and vp, vs, the

average of which is assigned to the pixel p. The algorithm for computing the tED

is given in algorithm 3. The tED calculated using algorithm 3 is such that pixel

values within a tolerance δt are considered to be equivalent. It is calculated for all
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Figure 7.6: Patch comparison using tolerant edit distance.

the patches for which there exist both right and bottom non-overlapping adjacent

patches. The calculated tED values are used to form an image ItED, which, when

multiplied with an edge strength image makes it easier to detect the cracked re-

gions. Figure 7.4(c) shows the image ItED corresponding to image Iv depicted in

figure 7.3(e).

7.1.3 Edge strength calculation

Since the cracked regions are distinct from their neighboring regions, they exhibit

higher edge strengths. In order to give preference to patches having higher edge

strengths, we generate an image Ig consisting of normalized gradient magnitudes

from the preprocessed image Iv. The gradient magnitude along the boundary of

the cracked regions may vary and therefore the pixels of a cracked region may not

have a unique edge strength. In order to assign a unique edge strength to each

cracked region, we intend to identify the regions disconnected by weak gradient

magnitudes. For this purpose, we create an image Im by convolving the image Ig

with horizontal, vertical, diagonal and anti-diagonal line filters of size 3× 3 with

filter masks shown in figure 7.7, and recording the maximum response at each
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Algorithm 3 Calculation of tED

% For vectors v1 and v2 with lengths |v1| and |v2|, respectively and δt as toler-

ance value,

% Initialization

D[0, 0] := 0

for i := 1 to |v1| do D[i, 0] := i end for

for j := 1 to |v2| do D[0, j] := j end for

% Required operation: substition, insertion or deletion

for i := 1 to |v1| do

for j := 1 to |v2| do

m1 := D[i− 1, j− 1] + C(v1[i], v2[j], δt)

m2 := D[i− 1, j] + 1

m3 := D[i, j− 1] + 1

D[i, j] = min(m1, m2, m3)

end for

end for

% Result

return tED := D[|v1|, |v2|]

% Comparison function: C(v1[i], v2[j], δt)

if |v1[i]− v2[j]| ≤ δt then

C(v1[i], v2[j], δt) := 0

else

C(v1[i], v2[j], δt) := 1

end if

pixel.

In all our experiments we observed that pixels around the boundary of cracked

regions have a low non-zero response to the line filter. Because of this, the dis-
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Figure 7.7: Line filters. (a) Horizontal, (b) main diagonal, (c) vertical and (d) anti-
diagonal.

joint cracked regions get connected while performing unique edge strength as-

signment. To avoid such a situation, the filter responses having lower values

are required to be discarded using an image dependent threshold. Since the re-

sponse to line filters is not expected to vary significantly for pixels in the cracked

regions, a threshold with respect to the maximum response can be used. Set-

ting the threshold to 0.1 times the maximum response was found appropriate

for discarding the low non-zero responses which were responsible for connect-

ing the disjoint cracked regions. The image Im is thus updated by discarding the

low responses with respect to the maximum response (i.e. setting Im(x, y) = 0

if Im(x, y) < 0.1 ∗max(Im)) followed by morphological closing to detect the con-

nected components.

The gradient magnitude image Ig is now updated by using the updated image

Im, such that, the highest gradient magnitude within each connected component

is assigned to all the pixels within the respective component. Updating Ig in this

manner enables us to assign a unique edge strength value to distinct components.

The edge strength image Ie is now constructed by taking the normalized sum of

Ig and Iw. For every patch Φp for which tED is calculated, we now consider the

average of edge strengths of all the pixels within the patches Φp, Φr and Φs, and

multiply it with the corresponding tED, to get the weighted tED image Itw. This

process is illustrated with an example in figure 7.8.

In order to fill the gap between the boundaries, a morphological closing op-

eration is applied on Itw, with the size of the structuring element depending on

the size of the preprocessed image Iv. The morphologically closed image Itw is

now multiplied with the resized version of the weight matrix Iw to obtain an in-

termediate image Iwc. In order to assign unique values to different objects for
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(a) Initial Ig (b) Refined and closed Im (c) Updated Ig

(d) Ie (e) Itw

Figure 7.8: Edge strength Ie and weighted tolerant edit distance images Itw. Sizes
of Ig, Im and Ie are the same as that of I0, while Itw and ItED are of the same size.
Here, enlarged and intensity inverted version of Itw is shown for clarity.

segmentation in image Iwc, we employ the method used earlier for updating the

gradient magnitude image Ig described in the previous paragraph. Thus, by con-

volving the intermediate image Iwc with the 3× 3 line filters, thresholding the

maximum response image and applying the morphological closing operation, we

obtain the image Ic of size (M
m − 1)× (N

n − 1), as shown in figure 7.9(a) in which

the connected components have unique values.

7.1.4 Thresholding

Higher the value of a region in the image Ic, more likely it is to be a crack.

Thus, the regions with values lower than a threshold T need to be discarded. Let

V denote the array consisting of k unique values in Ic arranged in ascending order.

Then, inspired by the threshold selection method for matching features of the

scale invariant feature transform (SIFT) given in [88], we estimate the threshold T

using algorithm 4.

The image Ic is now updated by setting values less than T to zero. Each pixel

in Ic corresponds to an m× n overlapping patch in Iv. We obtain an initial crack
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Algorithm 4 Selection of threshold T
% For an array V consisting of k unique values in Ic arranged in ascending

order,

% Initialize

T := V[k]

% Update

for i := k− 1 to 1 do

if V[i] < 0.2 then

break

end if

if ( V[i]
V[i+1]) ≥ (V[i−1]

V[i] ) then

T := V[i]

end if

end for

% Result

return T

detected image I1 which is of the same size as that of Iv by copying pixels values

from Ic to corresponding patches in I1. A second morphological closing operation

is now applied on the binary image I1 in order to avoid splitting of the detected

region. Note that the image I1 as shown in figure 7.9(b) gives a good estimate of

the cracked regions. However, few pixels of the cracked regions which are similar

to the surroundings may still remain undetected. Therefore, a refinement step is

required to achieve a more accurate detection.

7.1.5 Refinement

The method described above relies on patch-based comparison which localizes

the cracked regions in the binary image I1. In order to perform a more accurate
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(a) Ic before update (b) I1

Figure 7.9: Initial detection. Image Ic is thresholded and mapped to Iv to obtain
I1. Size of Ic is same as that of ItED, while I1 and Iv are of the same size. Here,
enlarged, intensity inverted version of Ic is shown for clarity.

detection at pixel level, sophisticated techniques are required, such that, a binary

segmentation-based refinement around the initially detected regions can be per-

formed. Interactive image segmentation techniques based on curve evolution [19]

and graph-cut optimization [120] have been widely used for accurately detecting

roughly marked objects. These segmentation techniques require the user to manu-

ally select a region around the object of interest. By optimizing an energy function,

the selection is refined to fit the object boundary. The initially detected binary im-

age I1, which is detected automatically without any user interaction, can be used

as an input to the above mentioned interactive segmentation techniques.

For refining I1, we use the method based on active contours1 proposed in [19],

to obtain the final crack detected binary image I f , an example of which is shown

1For active contour segmentation technique, we have used the implementation available
at http://www.mathworks.in/matlabcentral/fileexchange/23847-sparse-field-methods-
for-active-contours

(a) I f (b) I f overlapped on input im-
age

(c) Inpainted image

Figure 7.10: Refinement of the initially detected cracks. (a) Final detection binary
image I f , (b) detected regions overlapped on the input image, (c) inpainted result.
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Algorithm 5 Summary of steps involved in proposed crack detection approach.

1: Obtain the weight image Iw from the intensity normalized input image I0 us-

ing Eq. (7.1).

2: Use I0 and Iw to obtain the preprocessed image Iv.

3: Compute the tolerant Edit Distance image ItED by comparing all the non-

overlapping adjacent patches in Iv for similarity as shown in figure 7.6.

4: Generate image Ig consisting of the normalized gradient magnitudes from Iv.

5: Convolve Ig with horizontal, vertical, diagonal and anti-diagonal line filters of

size 3× 3 and record the maximum response at each pixel to create an image

Im.

6: Discard the low responses in Im and perform morphological closing to detect

the connected components.

7: Update Ig using Im such that the highest gradient magnitude within each con-

nected component is assigned to all the pixels within the respective compo-

nent.

8: Take the normalized sum of Ig and Iw to construct image Ie.

9: Multiply Ie with ItED to get the weighted tED image Itw and apply morpho-

logical closing to fill gaps.

10: Multiply Itw with the resized version of the weight matrix Iw to obtain an

intermediate image Iwc.

11: Perform steps 5–7 considering Iwc in place of Ig to obtain the image Ic having

unique values for the connected components.

12: Update Ic by setting values less than an automatically obtained threshold T to

zero.

13: Obtain the initial crack detected binary image I1 using Ic.

14: Refine I1 using the method in [19] to obtain the final crack detected image I f .

The regions detected in I f are inpainted using the technique in [26].

in figure 7.10(a). Thus, we use automatically detected I1 in place of the interactive

input for segmentation.
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7.1.6 Inpainting

In order to justify the suitability of the proposed method for inpainting, we also

show the inpainted result in figure 7.10(c). Here, we consider the detected cracked

regions in the image I f as the missing regions to be inpainted, which are marked

with red color that overlaps the input image as shown in figure 7.10(b). Inpainting

of the missing regions is then demonstrated using the technique proposed in [26].

A summary of the steps involved in this approach are given in algorithm 5.

We now proceed towards discussing the experimental results in the following

subsection.

7.1.7 Experimental results

In our experiments, we show the results for five input images of size 684× 912

captured from the world heritage site at Hampi, Karnataka in India and one input

image downloaded from the Internet [53] to illustrate the detection and inpainting

of multiple cracked regions. We considered patches Φp, Φr and Φs of size 3× 3 in

our experiments. Use of patches having larger sizes did not significantly improve

the detection. In calculation of the tolerant edit distance, we have set the tolerance

value δt = 10 based on the following experimentation.

We considered many patches at the boundary of known cracked regions from
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Figure 7.11: Curves for varying tolerance values δt.
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a number of images, along with their corresponding non-overlapping adjacent

patches. For each of these patches, we calculated the tolerant edit distances by

varying values of δt. Curves of tolerant edit distance versus probability of patches,

corresponding to every δt were plotted, as shown in figure 7.11. Since the patches

belonged to crack boundaries, we have higher edit distance (i.e. δt = 0). Increas-

ing the value of δt reduces the sensitivity and therefore only large variations can

be detected. It is observed that for δt = 10, sufficiently large variations were de-

tected and further increasing δt did not change the curve significantly. The size

of structuring element for morphological closing used for filling in large gaps,

depends on the image size. For an image of size M× N, the size of structuring

element is chosen as (max (M, N)/360+ min (M, N)/270) such that M, N > 270.

We now show in figures 7.12–7.17, a comparison of the results obtained using

the proposed approach, with those obtained using the techniques in [4, 140] and

the SVD based crack detection method discussed in section 6.2. It may be noted

that the results for the technique in [4] are obtained after fine-tuning the param-

eters. We show the input images containing cracked regions in figures 7.12(a)–

7.17(a). Since the true cracked regions were unavailable, used regions marked

by volunteers as the ground truth for comparison. These are shown by the re-

(a) Input (b) Amano [4] (c) Turakhia et al.
[140]

(d) SVD based
method

(e) Proposed
method

(f) Selection by
volunteers

(g) Inpainted (b) (h) Inpainted (c) (i) Inpainted (d) (j) Inpainted (e)

Figure 7.12: Detection and inpainting of a cracked region in an image of a wall
carving containing people. The detected cracked pixels in (b)–(e) and those
marked by volunteers in (f) are shown in red color. Inpainted version the detected
crack in (b)–(e) is shown in (g)–(j), respectively.
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(a) Input (b) Amano [4] (c) Turakhia et al.
[140]

(d) SVD based
method

(e) Proposed
method

(f) Selection by
volunteers

(g) Inpainted (b) (h) Inpainted (c) (i) Inpainted (d) (j) Inpainted (e)

Figure 7.13: Detection and inpainting of a narrow cracked region near the bottom
left corner of the image. The detected cracked pixels in (b)–(e) and those marked
by volunteers in (f) are shown in red color. Inpainted version of the detected crack
in (b)–(e) is shown in (g)–(j), respectively.

(a) Input (b) Amano [4] (c) Turakhia et al.
[140]

(d) SVD based
method

(e) Proposed
method

(f) Selection by
volunteers

(g) Inpainted (b) (h) Inpainted (c) (i) Inpainted (d) (j) Inpainted (e)

Figure 7.14: Detection and inpainting of cracked regions across an artistic work.
The detected cracked pixels in (b)–(e) and those marked by volunteers in (f) are
shown in red color. Inpainted version the detected cracks in (b)–(e) are shown in
(g)–(j), respectively.

gions marked in red color figures 7.12(f)–7.17(f). The results for crack detection

using the technique proposed in [4] are shown in figures 7.12(b)–7.17(b), while

those using the technique proposed in [140] are shown in figures 7.12(c)–7.17(c).

We also compare the results obtained using the SVD based crack detection ap-

proach discussed in section 6.2 that we show in figure 7.12(d)–7.17(d) with those

obtained using our proposed method illustrated in figures 7.12(e)–7.17(e). Here,
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(a) Input (b) Amano [4] (c) Turakhia et al.
[140]

(d) SVD based
method

(e) Proposed
method

(f) Selection by
volunteers

(g) Inpainted (b) (h) Inpainted (c) (i) Inpainted (d) (j) Inpainted (e)

Figure 7.15: Detection and inpainting of a cracked region in an image contain-
ing multiple textured regions. The detected cracked pixels in (b)–(e) and those
marked by volunteers in (f) are shown in red color. Inpainted version of the de-
tected crack in (b)–(e) is shown in (g)–(j), respectively.

(a) Input (b) Amano [4] (c) Turakhia et al.
[140]

(d) SVD based
method

(e) Proposed
method

(f) Selection by
volunteers

(g) Inpainted (b) (h) Inpainted (c) (i) Inpainted (d) (j) Inpainted (e)

Figure 7.16: Detection and inpainting of an elongated cracked region. The de-
tected cracked pixels in (b)–(e) and those marked by volunteers in (f) are shown
in red color. Inpainted version of the detected crack in (b)–(e) is shown in (g)–(j),
respectively.

in order to demonstrate the suitability for automating the repair of cracked re-

gions, we also show the corresponding inpainted images obtained by using the

method proposed in [26].

Figure7.12 shows the image of a wall carving containing people. Here, the

techniques [4, 140] and SVD based method detect more regions than the ground

truth. On the other hand, the region detected using the proposed method is simi-
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(a) Input (b) Amano [4] (c) Turakhia et al.
[140]

(d) SVD based
method

(e) Proposed
method

(f) Selection by
volunteers

(g) Inpainted (b) (h) Inpainted (c) (i) Inpainted (d) (j) Inpainted (e)

Figure 7.17: Detection and inpainting of multiple cracked regions. The detected
cracks in (b)–(e) and those marked by volunteers in (f) are shown in red color. In-
painted version of the detected cracks in (b)–(e) are shown in (g)–(j), respectively.

lar to that marked by the volunteers. Similar is the case for results considering an

image containing a narrow cracked region shown in figure 7.13.

In figure 7.14 we show a sensitive case where the cracked region appears across

an artistic work. Here, the method in [4] performs poor detection with the re-

sult using the method in [140] fails to detect significant number of cracked pix-

els due to which the cracked regions are visible after inpainting. In this case, the

SVD based method performs better detection of cracked region, yet, it also detects

many smaller regions that are not marked by the volunteers. Here, again, our pro-

posed method perform even better and detects the region similar to the ground

truth which can also be noticed from the plausibly inpainted result. Similarly, for

an image containing multiple textured regions shown in figure 7.15, the proposed

method performs visually better detection of cracked region in comparison to the

methods in [4, 140] and SVD based crack detection method.

In figure 7.16 we show the detection of an elongated cracked region. Here,

one can observe that the method in [4] detects large blocks around the cracked

region marked by the volunteers. Also, the method in [140] and the SVD based

method detect more number of regions in comparison to the ground truth. On the

other hand, our proposed method perform better detection of the cracked regions

even in this case. Likewise, for an image containing multiple cracked regions
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shown in figure 7.17, our proposed method preforms more accurate detection of

the cracked regions, in comparison to the methods [4, 140] and SVD based crack

detection method.

Input
image

#
Cracked
pixels

Defect detection
method [4]

Method by
Turakhia et al.

[140]

SVD based
method Proposed method

Re-
call

Preci-
sion Time

(sec)

Re-
call

Preci-
sion Time

(sec)

Re-
call

Preci-
sion Time

(sec)

Re-
call

Preci-
sion Time

(sec)
Figure
7.12(a) 3494 0.000 0.000 109.0 0.988 0.887 21.65 0.953 0.743 04.51 0.990 1.000 03.62
Figure
7.13(a) 3819 0.918 0.370 13.02 0.970 0.390 22.22 1.000 0.422 14.54 0.969 1.000 03.32
Figure
7.14(a) 5162 0.046 0.068 302.3 0.749 0.678 23.29 0.863 0.392 12.77 0.840 0.997 05.02
Figure
7.15(a) 2997 0.783 0.737 12.06 0.999 0.728 25.16 0.921 0.678 04.80 0.990 0.997 03.49
Figure
7.16(a) 5435 1.000 0.579 19.01 0.974 0.974 29.92 0.987 0.857 04.89 0.985 0.996 04.77
Figure
7.17(a) 2276 0.966 0.949 1500 0.932 0.949 13.64 0.808 0.898 05.23 0.952 0.989 07.44

Table 7.1: Comparison in terms of recall and precision for images shown in figures
7.12–7.17.

We now perform an objective comparison of the results discussed above. For

this purpose the popularly known recall and precision metrics defined in equation

(6.7) are considered. However, for showing an insight of the robustness of our

proposed algorithm, we use a slightly different precision measure defined as,

Precision =
|Refconn|
|Dect| , (7.2)

where, Dect are the pixels detected by the algorithm to be in the cracked regions

and Refconn are those pixels detected in Dect that are connected to cracked regions

marked by volunteers.

The quantitative measures recall and precision for results displayed in figures

7.12–7.17 are given in table 7.1. From the table we observe that both recall and

precision values for the detected cracked regions using our method are nearer to

1, indicating that the desired cracked pixels have been detected with high accu-

racy. Thus, our method performs better crack detection. On the other hand, the
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technique proposed in [4] results in detection of either (a) pixels that do not cor-

respond to the desired cracked regions or (b) too many pixels around the desired

cracked regions. The later leads to unnecessary inpainting of many regions that

modifies large undamaged regions in the image, which is not desirable. More-

over, it slows down the inpainting as the inpainting process is computationally

expensive. The results of our crack detection method are at par with and in some

cases better than those obtained using the technique in [140]. Yet, our proposed

method is significantly faster, more accurate and the inpainted results are convinc-

ing. Also, in comparison to our previous crack detection approaches discussed in

chapter 6, the recall values for the proposed approach are similar but the precision

values show significant improvement indicating higher accuracy of detection.

The implementation details along with the timing information are presented

as follows. For images, the calculation of tolerant edit distance which involves

comparison of many patches is implemented in C (Matlab MEX) while the rest

of the method is implemented in Matlab. For a 684× 912 sized image, the initial

detection takes about 1.5 seconds on a Windows 7 Professional operating system

with 32 bit Intel Core i5, 2.5GHz CPU and 3 GB RAM. The remaining detection

time is spent on refinement, which again is a C (Matlab MEX) implementation.

However, in the same setup, the process for inpainting (for example the regions

detected in figure 7.12(e)) requires about 37 seconds, which is also a C (Matlab

MEX) implementation. Therefore, at present the implementation does not execute

in real-time and needs to be performed offline. In future, if a faster inpainting

method is developed, the implementation could run in nearly real-time.

Here, we have discussed a crack detection technique based on tolerant edit

distance for performing auto-inpainting. This technique shows substantial im-

provement in the accuracy of detection in comparison to other approaches. In

following section, we extend this approach to perform auto-inpainting in videos

and also provide a measure to quantify the quality of inpainted videos.
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7.2 Extension to Auto-inpaint Videos with Quantita-

tive Assessment

In order to extend the approach of crack detection and inpainting discussed in

section 7.1 to videos, one may think of performing frame-by-frame detection and

inpainting. This abstraction, however, in practice is a long-drawn-out process

as it does not exploit the inter-frame redundancy. Also, there may be occlusion or

change in illumination across frames as the camera moves, due to which the pixels

corresponding to cracked regions detected in one frame may not map to the pixels

corresponding to the same cracked regions detected in some other frame. Since

the inpainting task is highly sensitive to the pixels to be inpainted, it leads to large

variations in the two inpainted frames for the same cracked regions. As a result,

the auto-inpainted videos created by detecting and inpainting frame by frame,

appear unstable and the effect of seam becomes visible.

Alternatively, one may use motion as a cue to track and inpaint the cracked

regions across subsequent frames. Motion estimation and compensation have

been popularly used in video compression techniques [67, 128]. Here interme-

diate frames are generated using independent frames and motion parameters.

However, since these methods are block based, their use to inpaint videos re-

sults in blocking artefacts. Moreover, they are computationally expensive and the

motion parameters are estimated using 2D-2D transformation. A frame-to-frame

transformations is, therefore, needed to track the damaged regions in subsequent

frames for creating a seamlessly inpainted video.

Brown and Lowe [13] have suggested a method for automatic image stitch-

ing, wherein transformation between the images to be stitched is calculated by

matching keypoints invariant to rotation, scaling and view point. Here, the trans-

formation is considered to be projective or a homography [58]. Since the videos

captured at heritage sites usually contain nearly planar rigid objects / scene with

a moving camera, we can consider the video frames to be images captured from

different viewpoints. Hence, the transformation between these frames can be rep-

resented by a homography.
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Figure 7.18: Our approach for extending crack detection and inpainting in images
to videos of heritage scenes.

Our approach for detecting and inpainting the cracked regions in videos is

shown in figure 7.18. Here, we consider pairs of temporally adjacent frames and

use the homography [58] to track the cracked regions from one frame to another.

The first video frame is initially considered as the reference frame, which is later

updated based the camera movement. The cracked regions are detected in refer-

ence frames using the method described in section 7.1 and then tracked to subse-

quent frames. Similarly, the detected cracks are inpainted in the reference frames

using the technique proposed in [26] and then mapped to the tracked regions in

the subsequent frames. Note that the inpainting of video frames cannot be done

by simply copying objects visible in other frames, as done in [111]. This is be-

cause, an object to be inpainted in one frame also needs to be inpainted in other

frames as well, which mandates the use of a hole filling technique. Details of the

proposed approach are given below.

7.2.1 Homography estimation

As already mentioned, since the videos captured at heritage sites usually contain

nearly planar rigid objects / scene with a moving camera, we consider the video

frames to be images captured from different viewpoints. Hence, the transforma-

tion between these frames can be represented by a homography [58, 77], which
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we estimate by extracting keypoints and matching their scale invariant feature

transform (SIFT) descriptors2 [88].

(a) (b) (c)

Figure 7.19: Matching of SIFT keypoints. (a)–(b) Two frames of a video; (c) Pairs
of matching keypoints shown by green joining lines.

Let the keypoint at location (x1, y1) in the first frame match the keypoint at

location (x2, y2) in the second frame. For a set of such matching keypoints, the

homography matrix H obeys the following relationship [58],


x′2
y′2
z′2

 = H


x1

y1

1

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33




x1

y1

1

 , (7.3)

where (x′2, y′2, z′2) are the homogeneous coordinates for the point (x2, y2) in the sec-

ond frame such that x2 =
x′2
z′2

and y2 =
y′2
z′2

, and H is a 3× 3 non-singular matrix. Us-

ing the set of matched keypoint locations, the homography matrix H is estimated

using equation (7.3) by setting z′2 = 1 i.e. setting the homogeneous coordinates

(x′2, y′2, z′2) = (x2, y2, 1). This estimation of the matrix H is done by a random sam-

pling consensus (RANSAC) [43] of all the matching keypoints at locations (x1, y1)

and (x2, y2) in the two frames that obey the relationship3 [x2, y2, 1]T = H[x1, y1, 1]T.

Figure 7.19 illustrates the matching of SIFT keypoints between a pair of video

frames.
2An implementation for extraction and matching of SIFT keypoints and corresponding descrip-

tor is available at http://www.cs.ubc.ca/~lowe/keypoints/
3For fitting homography to keypoints using RANSAC, we used the code available at http:

//www.csse.uwa.edu.au/~pk/Research/MatlabFns/Robust/ransacfithomography.m
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7.2.2 Reference frame detection

A reference frame is the one in which cracked regions are detected independently.

While capturing the video with a moving camera, new cracked regions may ap-

pear. If the cracked regions are detected in the first frame and tracked across all

subsequent frames, the new cracks that appear as the camera moves will not be

detected. Therefore, an independent crack detection needs to be performed quasi-

periodically depending the camera movement. Thus, for fast camera movement,

the detection needs to be performed more frequently, while for slow camera mo-

tion, a less frequent detection is required. If the camera motion can be measured,

an appropriate threshold can be set to declare an incoming frame as a reference

frame. An intuitive way to quantify the camera motion is to calculate the magni-

tude of translation.

The authors in [41, 91] have shown that, given a homography matrix, it can be

decomposed to estimate the translation. The decomposition yields four solutions

in general out of which only two are physically possible. However, each of these

solutions has the same magnitude of translation. We make use of this information

to detect the reference frame. The solutions for decomposition4 of a homography

H are obtained using the method in [91].

Let t be the translation vector of one of the obtained solutions, such that,

t = [t1, t2, t3]
T. Then the magnitude of translation is given by |t| =

√
t2
1 + t2

2 + t2
3.

Also, let δr be the threshold for translation. Considering the first video frame as a

reference ref, a homography along with the translation between the reference and

every incoming frame fi is calculated. If the magnitude of translation is above

a threshold δr, then the incoming frame fi is declared to be a reference frame.

For the new incoming frames, fi becomes the reference frame. This method for

detecting the reference frames in a videos is given in algorithm 6.

For selection of the translation threshold δr to detect the reference frames, we

conducted the following experiment. We manually selected two frames viz. (1)

the frame in which a cracked region has completely appeared and (2) the frame

4For decomposition of estimated homography, we have used the implementation available at
http://cs.gmu.edu/~kosecka/examples-code/homography2Motion.m
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Algorithm 6 Detection of reference frame

% Let the ith video frame be denoted by fi, such that the video consists of total

k frames. If Ri := 1 then fi is a reference frame.

% Initialization

R1 = 1; Ri := 0 ∀i := 2, . . . , k.

ref := f1. {reference frame.}

% Update Ri

for i := 2 to k do

suc := fi. {subsequent frame.}

Estimate translation t between ref & suc.

if |t| ≥ δr then

Ri := 1.

ref := suc.

end if

end for

% Result

return Ri ∀i := 1, . . . , k.

in which the next cracked region begins. For every such pair of frames, transla-

tion was calculated. Conducting the experiment on a number of videos having

frames of size 270× 360 revealed that the average value of δr = 25 can be used to

detect new incoming cracked regions. However, the problem with this threshold

is that, while a part of the newly appearing cracked region gets detected success-

fully, the remaining part which appears in subsequent frames is not detected. For

successful detection of the complete cracked regions, a lower value of threshold

is required. By keeping the threshold from 25 to 0, we found δr = 5 to be an ap-

propriate threshold for successful detection of the complete cracked regions. Also

note that the intensity change in corresponding pixels across the frames within

this small translation is negligible. This enables a seamless copying of pixel val-
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ues when propagating the already inpainted cracked regions across subsequent

frames. We have, therefore, set δr = 5.

Having discussed homography estimation and reference frame detection, we

now proceed with the discussion of tracking and inpainting the cracked regions

across frames in the following section.

7.2.3 Tracking and inpainting cracked regions across frames

For a pair of temporally adjacent frames fi−1 and fi, the locations (xi, yi) of cracked

pixels in fi can be tracked from the frame fi−1 using the corresponding locations

(xi−1, yi−1) as follows,


x
′
i

y
′
i

z
′
i

 = Hi


xi−1

yi−1

1

 , (7.4)

where (x
′
i, y

′
i, z
′
i) are the homogeneous coordinates for the point (xi, yi) such that

xi =
x
′
i

z′i
, yi =

y
′
i

z′i
and Hi denotes the homography between frames fi−1 and fi. Here,

it may happen that estimated coordinates xi and yi are real numbers. These are

rounded to the nearest integers so that we have the tracked pixels at integer lo-

cations. For simplicity, let the integer-rounded location coordinates be denoted

by (xi, yi). Setting these cracked pixel locations to 1 with all other locations set

to a value of 0, a crack-mask consisting of 1’s and 0’s is constructed for the frame

fi. Since homography introduces geometric distortions, it may happen that some

narrow cracked regions detected in the frame fi−1 may become disjoint regions

in the newly constructed crack-mask, which leads to some part of the cracked re-

gions being missed out. In order to avoid this, we use morphological closing on

the crack-mask to connect the nearby disjoint regions. The crack-mask now gives

the locations of the tracked cracks in the frame fi that correspond to the crack

regions detected in the frame fi−1. Figure 7.20 illustrates the tracking of cracked

regions.

We now describe how an incoming frame is processed. The first video frame f1

being a reference frame is independently inpainted after identifying the cracked
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(a) (b) (c)

Figure 7.20: Tracking detected regions using the estimated homography matrix.
(a) Detected damaged regions in the frame fi−1; (b) frame fi; (c) tracked cracks
in the frame fi. Green lines show the mapping of few points on the boundary of
crack regions, while the detected and tracked cracked regions using SIFT features
are shown in red.

regions in it. Any subsequent incoming frame fi may or may not be a reference

frame depending on the camera motion. For both cases, we use the above pro-

cedure along with equation (7.4) to track cracked regions from fi−1 to fi. Let Pi

denote the binary image consisting of the cracked regions tracked from frame fi−1

to frame fi. In case fi is not a reference frame, it can be inpainted by filling up the

location of the tracked crack pixels (i.e. {(xi, yi)|Pi(xi, yi) = 1}). This is achieved

by simply copying the values of the corresponding pixels from the inpainted ver-

sion of the previous frame fi−1. Note that the frames are temporally adjacent and

the change in intensity of corresponding pixels is negligible. Also note that the

selected translation threshold δr is small enough so that the change in intensity

of corresponding pixels across frames within this translation is also negligible.

Thus, the copying of pixel values across subsequent frames does not introduce

any seam.

Since the homography matrix Hi is non-singular, its inverse H−1
i exists. There-

fore, the crack pixels at locations (xi, yi) and the corresponding locations (xi−1, yi−1)

from the previous frame fi−1, must be related as follows,


x′i−1

y′i−1

z′i−1

 = H−1
i


xi

yi

1

 , (7.5)

where (x′i−1, y′i−1, z′i−1) are the homogeneous coordinates for the point (xi−1, yi−1),

such that xi−1 =
x′i−1
z′i−1

and yi−1 =
y′i−1
z′i−1

. Since xi and yi were rounded to integers,
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Figure 7.21: Example showing a source pixel at a non-integer location (xi−1, yi−1)
in the frame fi−1, tracked to a pixel at location (xi, yi) in the frame fi. The circles
with black boundary indicate the integer locations.

we may obtain the corresponding xi−1 and yi−1 as real numbers as illustrated

in figure 7.21. The intensity at this location is obtained by considering the first-

order integer location neighborhood and using the bilinear interpolation. It may

be noted that inpainting performed in this manner across is almost insensitive to

small changes in the morphologically closed crack-mask due to directly copying

the values from the previously inpainted regions.

If the incoming frame fi is a reference frame, then crack detection is performed

independently. However, since only the newly appearing cracked pixels need to

be inpainted, we first calculate the binary image Pi consisting of the cracked re-

gions tracked from the previous frame fi−1. Now, let Bi denote the crack detected

binary image corresponding to fi obtained using the method discussed in section

7.1. Then, the binary image Qi consisting only the newly appearing cracked pixels

is given by,

Qi(xi, yi) =

 1, Bi(xi, yi)− Pi(xi, yi) > 0,

0, otherwise.
(7.6)

Now, an initial inpainting of the new reference frame fi is done by using the in-

painted version of the previous frame fi−1 and the binary image Pi. The locations

(xi−1, yi−1) in frame fi−1 corresponding to pixels at locations {(xi, yi)|Pi(xi, yi) = 1}

are obtained using the relation in equation (7.5). Similar to inpainting a non-

reference frame as described above, the pixels at locations (xi, yi) are filled by

copying values from the corresponding pixels at locations (xi−1, yi−1) to obtain

the initial inpainted image. The newly detected cracked pixels given by the bi-

nary image Qi are the holes to be filled in the initially inpainted image. The final
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 7.22: Inpainting a newly appearing reference frame fi. (a),(b),(c) show
frames fi−2, fi−1 and fi, respectively; the cracked regions corresponding to
(a),(b),(c) tracked from detected cracks in previous frames are shown in (d),(e),(f);
independent crack detection in fi is shown in (g), while the newly appearing
cracked pixels in (g) with respect to (f) are displayed in (h); the inpainted versions
of fi−2, fi−1, fi obtained by copying pixels from respective previous inpainted
frames are shown in (i),(j),(k); final inpainted version of fi obtained after inpaint-
ing the newly detected pixels is shown in (l). Note that the crack visible near the
right side in (k) is filled in (l) by independently inpainting pixels shown in (h).

inpainted version of the reference frame is obtained by using the method pro-

posed in [26] considering the initial inpainted image and the binary image Qi as

inputs. An example for performing inpainting when a new reference frame ap-

pears is illustrated in figure 7.22.

It may happen that a detected reference frame is highly blurred or noisy due to

an unstable camera motion. In such a case, the crack detection method described

in section 7.1 may fail and detect many regions as cracks. This can be avoided by

simply thresholding the number of pixels in the newly detected cracked regions.

Assuming that the number of pixels in the cracked regions do not vary substan-

tially across the reference frames or whenever a new reference frame is encoun-

tered, we set a threshold δ0 based on the number of cracked pixels detected in the

first frame. This is a valid assumption because, while the camera moves and new

cracked regions enter a frame, some pixels of the previously detected cracked re-

gions may exit. Also, even if the cracked pixels do not exit, we expect only few

new cracked pixels to enter. Therefore, the threshold δ0 accounting for the newly

entering cracked pixels is set to half the number of cracked pixels detected in the

first frame.
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Algorithm 7 Video frame inpainting

% Let the ith video frame be denoted by fi, such that the video consists of total

k frames. Ri := 1 denotes fi is a reference frame. Let Ai denote the inpainted

version of frame fi.

% Initialization

Detect damaged regions in f1 to get B1.

Set threshold δ0 := |B1|.

Perform inpainting on f1 using B1 to get A1.

% Loop

for i := 2 to k do

Extract SIFT descriptors and homography Hi.

Calculate Pi by tracking damaged regions.

if Ri := 1 then

Detect damaged regions in fi to get Bi.

Calculate Qi using Pi and Bi.

if |Qi| :≤ δ0 then

Calculate Si using Pi and Bi.

Fill pixels {(xi, yi)|Si(xi, yi) = 1} using Ai−1 to get initial inpainted im-

age init.

Perform inpainting on init using Qi to get Ai.

else

Ri := 0, Ri+1 := 1.

Fill tracked pixels {(xi, yi)|Pi(xi, yi) = 1} using Ai−1 to get Ai.

end if

else

Fill tracked pixels {(xi, yi)|Pi(xi, yi) = 1} using Ai−1 to get Ai.

end if

end for

% Result

return Inpainted frames Ai ∀i := 1, . . . , k.
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Let |Qi| denote the number of newly detected cracked pixels in the frame fi

and |B1| denote the number of cracked pixels detected in the first frame. Then, for

a reference frame fi, if we have |Qi| > δ0 (such that δ0 = 0.5 ∗ |B1|), the frame fi is

treated as a non-reference frame and inpainting is performed accordingly. Also,

the frame fi+1 is set as a reference frame, provided fi is not the last frame. The

complete procedure for auto-inpainting video frames is given in algorithm 7.

7.2.4 Measuring temporal consistency of the inpainted video

The quality of a processed video is usually quantified in terms of some metric by

comparing the video with an undistorted source. For example, in video compres-

sion, the quality of a video reconstructed at a receiver is measured by comparing it

with the original video transmitted by the sender. However, in some applications

the original source or reference is not available for comparison. Video inpainting

is one such application in which missing regions in frames need to be filled up

and hence a reference for comparison is not available. In such a case, the objective

quantification of the video quality is based on no-reference video quality assess-

ment (NR VQA) measures viz. blockiness, bluriness and sudden local changes

[38, 122, 123].

The NR VQA measures listed above estimate the video quality directly from

the processed (i.e inpainted) video without considering the input video. Never-

theless, in an application like video inpainting, some information from the un-

processed video also can be used to quantify the quality of the processed video.

Intuitively, to obtain a temporally plausible inpainted video, the optical flow of

the input video should be maintained on inpainting, provided the objects to be

inpainted are stationary. In other words, the optical flow between every pair of

temporally adjacent frame in input and corresponding pair of frames in the in-

painted video should be similar. The inpainting of only the stationary object is

a valid assumption for inpainting videos of heritage monuments. With this cue,

the optical flow between every pair of adjacent frames in both input as well as in-

painted video can be estimated and used to quantify the quality of the inpainted

video. One can estimate the optical flow by using the classic method proposed by
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Lucas and Kanade [89].

(a) (b) (c)

Figure 7.23: Optical flow between a pair of temporally adjacent frames in (a) input
video, (b) auto-inpainted video using proposed method, (c) video generated by
auto-inpainting every frame independently. The optical flow in (a) and (b) appear
to be similar while some haphazard orientations in the optical flow are observed
in (c).

Consider L0(i) and D0(i) be the magnitude and direction, respectively, of the

optical flow between the ith and i + 1th frames in the input video. Similarly, let

L1(i) and D1(i) be the magnitude and direction, respectively, of the optical flow

between the ith and i + 1th frames in the inpainted video. Both L and D are vector-

ized using lexicographical ordering. Then, the temporal consistency between ith

and i + 1th frames is given by the Pearson’s correlation coefficient r(i) as follows

[72].

r(i) =
1

l − 1

l

∑
j=1

(K j
0(i)− K̄0)(K

j
1(i)− K̄1)

σ0(i)σ1(i)
, (7.7)

where K can be the vector of the magnitude (L) or direction (D) of optical flow,

K̄ and σ are mean and standard deviation of K respectively, and l represents the

length of K. The value r(i) = +1 indicates perfect positive correlation, r(i) = −1

indicates perfect negative correlation while r(i) = 0 corresponds to no correlation

between the vectors. The average value of r for all the pairs of adjacent frames

then gives the temporal consistency between the input and the inpainted videos.

A higher average value of r indicates higher temporal consistency. An example of

temporal consistency in terms of optical flow is shown in figure 7.23.
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7.2.5 Experimental results

We now present four results of our auto-inpainting method on videos captured

by us from the heritage site at Hampi, Karnataka, India. Here, we consider the

camera movement to be unconstrained while capturing video of the heritage site,

as such videos are typically captured by novices, hobbyists and tourists. The re-

sults are shown in figures 7.24–7.27 where we show 6 frames of each video. Al-

though the videos were captured at only one heritage site, our method is generic

and should work for other heritage site videos. As an example, we show one

more result on a video of the McConkie Ranch Petroglyphs near Vernal, Utah,

USA, in figure 7.28 and it demonstrates the effectiveness of the proposed method.

This video was uploaded by an enthusiast on the popular streaming site YouTube

[124].

From the reported results, we can observe that by using our method, the de-

tected cracked regions are effectively tracked and plausibly inpainted to get a

(a)

(b)

(c)

(d)

(e)

Figure 7.24: Result of auto-inpainting in video frames containing cracked re-
gions in a Hampi wall. (a) Input frame sequence, left most frame is the reference
frame; (b) cracked regions detected in the reference frame tracked using proposed
method; (c) inpainted frames corresponding to frames in (b); (d) cracked regions
detected independently in every frame; (e) inpainted frames corresponding to
frames in (d).
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(a)

(b)

(c)

(d)

(e)

Figure 7.25: Result of auto-inpainting in video frames containing cracked regions
around stone carving. (a) Input frame sequence, left most frame is the reference
frame; (b) cracked regions detected in the reference frame tracked using pro-
posed method; (c) inpainted frames corresponding to frames in (b); (d) cracked
regions detected independently in each frame; (e) inpainted frames correspond-
ing to frames in (d).

(a)

(b)

(c)

(d)

(e)

Figure 7.26: Result of auto-inpainting multiple cracked regions in video frames.
(a) Input frame sequence, left most frame is the reference frame; (b) cracked re-
gions detected in the reference frame tracked using proposed method; (c) in-
painted frames corresponding to frames in (b); (d) cracked regions detected in-
dependently in each frame; (e) inpainted frames corresponding to frames in (d).
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(a)

(b)

(c)

(d)

(e)

Figure 7.27: Result of auto-inpainting cracked regions in video frames containing artistic
work. (a) Input frame sequence, left most frame is the reference frame; (b) cracked regions
detected in the reference frame tracked using proposed method; (c) inpainted frames cor-
responding to frames in (b); (d) cracked regions detected independently in each frame; (e)
inpainted frames corresponding to frames in (d).

(a)

(b)

(c)

(d)

(e)

Figure 7.28: Result of auto-inpainting cracked regions in video frames captured at Utah
containing petroglyphs. (a) Input frame sequence, left most frame is the reference frame;
(b) cracked regions detected in the reference frame tracked using proposed method; (c)
inpainted frames corresponding to frames in (b); (d) cracked regions detected indepen-
dently in each frame; (e) inpainted frames corresponding to frames in (d).
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seamless video. Although there exist approaches for semi-automatic inpainting

of unwanted objects in videos [149] and video inpainting under constrained cam-

era motion [111], it may be noted that, to the best of our knowledge, there does

not exist any approach that demonstrates automatic video inpainting under un-

constrained camera motion with no moving objects. Our approach handles these

cases and we, therefore, do not show any comparison with the approaches in

[111, 149]. However, we do compare the proposed approach with auto-inpainting

done in a frame-by-frame fashion. The results of our method, along with auto-

inpainting performed individually on every frame are shown in figures 7.24–7.28.

We now present an objective comparison of our method with frame-by-frame

auto-inpainting in table 7.2 in terms of the NR VQA measures viz. blockiness,

blurriness [38] and sudden local change [122, 123], along with the temporal con-

sistency measure discussed in section 7.2.4. A video with higher blockiness and

blur has higher value of the blockiness and blurriness metrics, respectively. For

a temporally plausible video, the sudden local change is less while the temporal

consistency measure has a higher value. From table 7.2 we observe that the pro-

posed method performs better in terms of blockiness, sudden local change and

temporal consistency, which is in accordance with the results in figures 7.24–7.28.

The implementation details along with the timing information are presented

as follows. The cracked region detection in reference frames and independent in-

painting of newly detected cracked pixels are implemented in Matlab. For frames

Proposed method Frame-by-frame auto-inpainting
Video A B C D E A B C D E
Video1

(figure 7.24) 0.1125 5.1020 1.0737 0.9529 0.7501 0.1296 5.1073 1.3126 0.5064 0.2496
Video2

(figure 7.25) 0.1034 4.1261 1.5459 0.6671 0.9604 0.1270 4.2057 1.9463 0.1978 0.4148
Video3

(figure 7.26) 0.2975 4.3382 1.2908 0.9979 0.5424 0.2292 4.3666 1.5322 0.1862 0.6134
Video4

(figure 7.27) 0.1453 4.6306 1.8454 0.8173 0.9678 0.1473 4.7223 2.0858 0.2009 0.8946
Video4

(figure 7.28) 0.1582 3.1264 2.0559 0.5821 0.9654 0.1662 3.1586 2.7768 0.2301 0.9381

Table 7.2: Comparison of proposed method with frame-by-frame auto-inpainting,
in terms of blockiness (A), bluriness (B), sudden local change (C) and temporal
consistency in optical flow’s direction (D) and magnitude (E).
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of size 270× 360 (for example the video corresponding to figure 7.24), the inpaint-

ing of reference frames takes nearly 1.5–2 seconds. This includes the time required

for tracking and inpainting from previously detected cracked regions (about 0.6

seconds) followed by initial detection, refinement and inpainting of the newly de-

tected cracked pixels. The first frame, however, required about 4.5 seconds for

initial detection, refinement and inpainting. Note that the size of the frame here

is 270× 360. Subsequent (non-reference) frames take about 0.08 seconds to com-

plete tracking and inpainting from previously detected cracked regions, which is

very fast when compared to independent inpainting of each frame. In this case, a

considerable amount of time is required for the inpainting operation in reference

frames which introduces a lag in the video.

Although major computational steps are implemented in C (Matlab MEX), our

implementation is not an optimized version but a proof of concept of the method

discussed here. Having said that, we are optimistic about the implementation of

our method for mobile phones in order to use the method directly on videos cap-

tured onsite. This is because of the quick inpainting of subsequent (non-reference)

frames. A real-time on-the-fly inpainting of the video frames could be possible

with an implementation optimized for the hardware of mobile phones.

7.3 Conclusion

In this chapter, we have first presented yet another technique that can automat-

ically detect cracked regions and use these regions for inpainting. By compar-

ing non-overlapping patches using the tolerant edit distance measure introduced

here, our method initially localizes the cracked regions. Further, using an ac-

tive contour-based segmentation, the results are refined to accurately detect the

cracked regions. Thus we have progressed from chapter 6 where we discussed a

primitive pixel based approach for crack detection approach in section 6.1 and a

patch based method in section 6.2, to a sophisticated patch based approach dis-

cussed in this chapter, each showing improvement in the accuracy of detecting

cracked regions. We have then discussed the extension of this approach to per-
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form automatic inpainting of video frames. Here, every incoming frame is tested

for being a reference frame wherein the newly appearing cracked pixels are in-

painted independently. For subsequent non-reference frames, the tracking and

inpainting of the cracked regions is performed by making use of the scale invari-

ant feature transform (SIFT) and estimating homography between two temporally

adjacent frames. In the end, we have also provided the temporal consistency mea-

sure to quantify the quality of the inpainted video. Reported results suggest the

efficacy of our method to auto-inpaint the cracked regions in videos captured at

heritage sites.
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CHAPTER 8

Conclusions and Future Research Directions

In this chapter, we provide the conclusions by summarizing our main contribu-

tions and also indicate future research directions.

8.1 Conclusions

In this thesis we have addressed the problem of auto-inpainting by providing

novel techniques for inpainting, simultaneous inpainting and super-resolution,

followed by methods to automatically detect the regions to be inpainted con-

sidering the domain of digital heritage reconstruction. We began with a discus-

sion of an exemplar based inpainting technique wherein we have used the pixel-

neighborhood relationships as a cue for filling the missing pixels. This was done

by estimating parameters of an AR model representing the pixel-neighborhood re-

lationships. Unlike those approaches which simply copy the pixels to be inpainted

from the best matching exemplar, we have used the estimated AR parameters in

addition to the best matching exemplar to perform a seamless inpainting. We

then proceeded towards discussing our second inpainting approach that not only

inpaints the given image but also creates the missing details in its higher resolu-

tion i.e. it performs super-resolution inpainting. Simultaneously super-resolved

regions in our proposed method are comparable to super-resolution of the in-

painted regions obtained using the recent approach proposed in [51], and show

greater details than those obtained using upsampling of the inpainted regions us-

ing bicubic interpolation.

In our next work, we have proposed a method that automates the process of
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identifying the damage to visually dominant regions viz. eyes, nose and lips in

face image of statues at a historic site, for the purpose of digital repair using in-

painting. The dominant regions are extracted by considering the bilateral symme-

try of face. Texton features are then used to identify the damaged regions. Poisson

image editing method is then used to inpaint the damaged regions using a source

region either from the same image or from other images depending on the extent

of damage.

In our later works, we have introduced novel techniques that can automati-

cally detect the cracked regions in heritage monuments and demonstrate their re-

pair by inpainting. This can be particularly useful for performing on-the-fly dig-

ital reconstruction of damaged regions when tourists capture the heritage mon-

uments using their handheld video capturing devices. Here, we have first dis-

cussed a simple pixel based method by making use of order-statistics and density

filters. This is followed by a patch based technique that makes use of SVD for

automatic detection of the cracked regions. This method shows improvement

in the accuracy of detection in comparison to the simple pixel based approach.

Following these two approaches, we discuss yet another effective and more ac-

curate crack detection method based on comparison of non-overlapping patches

using the novel tolerant edit distance measure, which is derived from a popular

edit distance string metric used in the area of text mining. Thus, we have shown

the progress from a primitive method to a sophisticated technique for detecting

cracks.

Our next work involved extending our crack detection approach to perform

auto-inpainting of video frames by making use of the scale invariant feature trans-

form (SIFT) and homography. One may note that while most video inpainting

techniques can inpaint moving objects under constrained camera motion or in-

painting of a user-selected object [49, 99, 111, 126], to the best of our knowledge,

there does not exist any approach that demonstrates fully automatic video in-

painting (that also estimates the regions to be inpainted) under unconstrained

camera motion with no moving objects, which is addressed in work. At the end

of this work, we have provided video quality measures to quantify the temporal
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consistency of inpainted videos.

Following are the major observations drawn from our work.

• Seams visible in inpainted results that arise due to the direct copying of the

pixels from exemplars, can be avoided by making use of AR parameters for

estimating the missing pixel values.

• Matching patches at a finer resolution by creating image representative LR-

HR patch pair dictionaries helps not only in finding better source for in-

painting, but also helps in creating exemplars whenever good matches are

not available. This assists in performing better inpainting with simultaneous

super-resolution.

• Using bilateral symmetry of face as cue helps in detection of the dominant

facial regions while the texton features extracted from these regions assist in

labeling them as either damaged or non-damaged.

• The pixel based approach using order-statistics along with density based

filters and the patch based approaches using SVD and tolerant edit distance,

can all be effectively used for detection of cracked regions. Nevertheless, the

patch based approaches detect the cracked regions more accurately.

• In videos, better inpainting is obtained by detecting and inpainting the cracked

regions quasi-periodically based on motion rather than performing detec-

tion and inpainting in a frame-by-frame fashion.

• The quality of inpainted videos can be quantified in terms of temporal con-

sistency by making use of the optical flow estimated from corresponding

input videos.

8.2 Future Research Directions

This thesis has presented novel approaches for inpainting and detection of dam-

aged regions. In the process of this work, however, we identified related problems

that one may consider worth pursuing. These are briefly described as follows.
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• Benchmarks for inpainting quality assessment:

We have seen in chapter 3 that, assigning subjective scores with the help

of human observers is so far the most reliable way to quantify the quality

of inpainted images, as well as for comparing the results of different in-

painting methods. Apart from being subjective, such a comparison involves

time-consuming exercises. Yet, one may note that the inpainting community

continues to rely on subjective comparison of the inpainted results. There is,

however, a pressing need to have objective measures that can be reliably

used for comparing the results of various inpainting algorithms.

• Real-time inpainting:

In chapter 7, we observed that although the detection of cracked regions and

their propagation across subsequent frames was fast, a considerable amount

of time was spent on inpainting the detected cracked regions. In general,

the exemplar based inpainting methods perform several patch comparisons

due to which the speed of inpainting is slow. Although one can consider the

use of PatchMatch algorithm discussed in [7] to overcome this issue, it may

be noted that the best source patches may not be selected due to a random

search for matching patches. For enabling the real-time implementation of

our auto-inpainting techniques, there is a need to have a faster inpainting

method.

• Inpainting based on semantics:

The existing inpainting techniques have been dependent on exemplars ob-

tained by estimating patch similarity using a distance metric. However,

none of these approaches use semantic information when performing in-

painting. We human beings have developed a great ability to identify var-

ious objects even if they are partially occluded. Not only that, we can also

“imagine the completed object” from whatever is visible to us. Thus, we hu-

mans use a two step process: (1) use semantics to group visual information

into meaningful objects and (2) if occluded, use knowledge from our past ex-

periences to visualize the identified object in its complete form. This obser-

vation provides the motivation to explore the image inpainting problem in
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a machine-learning perspective where the system needs to be trained prior

to performing the desired task. For example consider a scenario wherein an

occluded chair is to be completed using inpainting. Here, without the use of

semantic information, it is likely that the inpainted regions contain extended

edges of the chair or a plain background. One can intuitively expect a better

result if the inpainting is done with knowledge of a prior information that

the occluded object is a chair and the exemplar search can then be restricted

to chairs. To the best of our knowledge, the removal of large missing re-

gions has not been addressed using machine learning approaches, which is

worth pursuing. Nevertheless, works this direction have been very recently

proposed in [110, 119] or available as an archived manuscript in [157].
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