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Abstract

“Stereo vision” refers to the ability to infer information on the three-dimensional

(3D) structure and distance/depth of a scene using two images captured from dif-

ferent view-points. It imitates one of the tasks performed by the human brain and

the two eyes. In the stereo vision, a scene point is projected onto different loca-

tions on the two image planes (left and right cameras) and the main goal here is to

find the corresponding pixels i.e., pixels resulting from the projection of the same

3D point onto the two image planes. The displacement between corresponding

pixels is called “disparity”, and obtaining the same at each pixel location forms a

dense disparity map. However, estimation of disparities is an ill-posed problem

and hence in practice is solved by formulating it as a global energy minimization

problem. An energy function represents a combination of a “data term” and a

“prior term” that restricts the solution space, and choosing a suitable data as well

as prior models lead to accurate dense disparity estimates. In this thesis, we ad-

dress this problem of dense disparity map estimation using rectified stereo images

with known calibration of cameras and propose various approaches for solving it

in a global energy minimization framework. We utilize “graph cuts”, an efficient

and fast optimization technique for minimizing our energy functions.

We first propose a method for dense disparity estimation using inhomoge-

neous Gaussian Markov random field (IGMRF) prior where we model the dis-

parity map using this prior. The estimated IGMRF parameters assist us to yield

a smooth solution while preserving the sharp depth discontinuities. In order to

model the data term, we use the pixel-based intensity matching cost which is

based on the brightness constancy assumption of the corresponding pixels. A

learning based approach is used to obtain an initial disparity map which is used
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in obtaining the IGMRF parameters. The dense disparity map is obtained by min-

imizing the energy function using graph cuts. In this case, the quality of the final

solution is strongly governed by the accuracy of the IGMRF parameters.

Though, IGMRF prior captures smoothness with discontinuities, it fails to cap-

ture higher order dependencies such as sparseness in the disparity map. This mo-

tivates us to use another prior namely the prior that represents sparsity in dispari-

ties. In our next work, we combine IGMRF and sparsity priors in our energy min-

imization framework in order to obtain a dense disparity map. Here, the sparsity

prior is defined using the learned overcomplete sparseness of disparity patches.

In this work, instead of making a brightness constancy assumption, we use an

intensity matching cost as a data term which is robust against outliers and insen-

sitive to image sampling. We use two different approaches in order to obtain the

sparseness of disparities. In the first method, the sparse representation is obtained

by a learned overcomplete dictionary where we make use of “K-singular value

decomposition” (K-SVD) algorithm. In order to better represent the sparseness,

“sparse autoencoder”, a non-linear model is then used. A two phase iterative ap-

proach is used to obtain the final solution. In order to achieve better performance,

a good initial estimate was obtained using a classical local stereo method includ-

ing a set of post-processing operations for disparity refinement.

The combination of IGMRF and sparsity priors serve as a better regularizer

but the choice of an appropriate data model also plays a key role in obtaining a

better disparity map. Although, the data term used earlier which was based on

pixel based intensity matching is robust against outliers and insensitive to image

sampling, it relies on the raw pixel values and hence the use of it may result in

ambiguous and erroneous disparities in textureless areas and near depth discon-

tinuities. Taking this into account, in our next work, we propose a method where

we make use of feature matching in the energy function. Hierarchical features of

given stereo image pair are learned using the “deconvolutional network”, a deep

learning model which is trained in an unsupervised way using a database con-

sisting of large number of stereo images. Combining the feature matching with

the intensity matching in our energy function restricts the solution space giving
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us a better estimate of the disparity map. We use IGMRF as prior for regularizing

the solution. In this case also, we use an iterative two phase algorithm for mini-

mizing the energy function where the IGMRF parameters and the disparity map

are refined alternatively.

Finally, we propose a method using a better constrained energy function in a

global energy minimization framework. As done in the previous work, our data

term has the feature as well as intensity matching. However, the prior term here is

formed using IGMRF and sparsity priors. Since the sparseness of disparities can

be represented better by using the sparse autoencoder, we use the same to infer

the sparseness of disparities. Once again an iterative approach is used to obtain

the final solution in which disparities are refined until we get the convergence.

We demonstrate the efficacy of our proposed methods by conducting exten-

sive experiments and evaluating our results on the Middlebury stereo datasets

[113]. We also compare the performance of our methods with the state of the

art global dense stereo methods. The results obtained show perceptual improve-

ments as well as quantifiable gains in terms of percentage of bad matching pixels.

Our results validate the effectiveness of using appropriate data and prior terms in

obtaining accurate disparities.
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CHAPTER 1

Introduction

Human vision gives us the ability to perceive and understand the three-dimensional

(3D) world surrounding us. Computer vision aims to duplicate the effect of hu-

man vision by electronically perceiving and understanding a two-dimensional

(2D) image of a 3D scene. Making computers to see the 3D world is not easy

because the images acquired by image sensors (camera) are 2D and this 3D-2D

transformation results in the loss of “depth” information of a scene. The distance

between the viewed scene and camera is referred as the depth of a scene and is

computed for each point in the scene. Computer vision algorithms are used to

reconstruct a 3D scene by estimating the depth information from one or more 2D

images. Depth estimation has a wide variety of applications including robotics,

scene understanding and reconstruction, safe navigation, autonomous vehicles,

3D television and cinema, telepresence, 3D printing, 3D rendering and modeling,

etc. Based on the application, generally two types of depth measures are obtained;

“absolute” and “relative”. Absolute depth is an estimate of the physical distance

in units such as meters to an object from the camera. Relative depth estimates

the location of objects in relation to other objects rather than in terms of physical

distance.

In general, the depth estimation methods are divided into two categories: “ac-

tive” and “passive”. In active methods, the active range sensor projects energy

(e.g., a pattern of light, sonar pulses, ultrasound) on to the viewed scene and mea-

sures the distance/depth from the reflected energy. Active range sensors use the

principles of Sonars and Radars, Moire interferometry, focusing and triangulation.

These methods are used to obtain an absolute depth of the viewed scene, and to
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obtain the “ground truths”. Though, they provide accurate depth measures, they

are expensive and are used in applications where high accuracy is required. For

many applications where a trade-off can be maintained between the cost and accu-

racy, passive methods do suffice. Passive methods perform the depth estimation

using the 2D image/s of the viewed scene. In practice, the intensity (optical) im-

ages are used because acquiring and processing these images is computationally

less expensive. Intensity image formed by optical sensors rely on the natural light

energy and these images can be found in abundance. However, in dark, thermal

images are obtained using thermographic sensors but acquisition and processing

of such images are computationally expensive.

Since human beings use various visual cues to perceive depth and understand

the 3D structure of the world, passive depth estimation algorithms make use of

such cues to estimate the depth from the 2D images. These cues are typically

grouped into two distinct categories:

• Monocular Cues: Monocular cues provide the absolute and relative depth

information of the scene from a single image. These cues include texture

variations, texture gradients, occlusion, known object sizes, light and shad-

ing, aerial perspective (haze), defocus, focus, motion parallax, etc. As an

example, the texture of many objects changes as the distance of the camera

from the object varies. Texture gradients that capture the distribution of the

direction of edges also add as a constraint to depth estimation. For exam-

ple, the distant objects may have larger variations in the line orientations

and nearby objects with almost parallel lines have smaller variations in line

orientations. Similarly, a grass field when viewed at different distances may

have different texture gradient distributions. If two objects are known to

be the same size (e.g., two trees) but their absolute size is unknown, rela-

tive size cues can provide information about the relative depth of the two

objects. The property of parallel lines converging in the distance at infin-

ity allows us to reconstruct the relative distance of two parts of an object.

Aerial perspective (haze) is another depth cue and is caused by atmospheric

light scattering. Due to haze, the foreground objects have high contrast and
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background objects at farther depth have lower contrast and are blurred.

Occlusion (also referred to as interposition) also provides a sense of depth.

It happens when near surfaces overlap far surfaces. If one object partially

blocks the view of another object, it is perceived as a closer object. The way

that light falls on an object and reflects off its surfaces and the shadows that

are cast by objects provide an effective cue to determine the shape of objects

and their position in space. Defocus blur can also be used as an effective

monocular cue for depth perception. As observer moves, closer objects ap-

pear to move more than farther objects. This phenomenon is called motion

parallax and is used to estimate the relative depths in a scene. This effect

can be clearly seen when driving in a car where nearby things pass quickly

while far off objects appear stationary. If information about the direction

and velocity of movement is known, motion parallax can provide absolute

depth information. Humans have the ability to change the focal lengths of

the eye lenses by controlling the curvature of the lens, thus helping them

to focus on objects at different distances. In computer vision, the focus cue

refers to the ability to estimate the distance of an object from known camera

lens configuration and the sharpness of the image of an object.

• Stereo Cues: Stereo cues provide the depth information of the scene from

two (more than two) images captured from different view-points. Stereo

cues are binocular, if two cameras are used. A scene point is projected onto

different locations on the two image planes (left and right cameras), depend-

ing on the distance of the scene point from the cameras. The displacement

between the corresponding left and right projection of the scene point is

called “disparity”. The disparity varies with scene distance and is inversely

proportional to the depth. It is used as a cue for depth estimation. Using the

disparities and stereo vision geometry, the depth is estimated based on the

principle of triangulation. Stereo cues provide very precise relative depth

estimates.

Based on these cues, standard passive depth estimation methods have been pro-

posed in the literature [125, 84]. The methods which make use of the monocular
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cues are “depth from monocular image”, “shape from defocus”, “shape from fo-

cus”, “shape from shading”, etc. Other methods which incorporate the stereo

cues include “depth from stereo”, “structure from motion (optical flow)”, etc. The

main advantage of monocular cue based methods is that relatively low amount

of operations are needed to process a single image instead of two or more. Due

to perspective projection’s many to one mapping property, all points along a line

pointing from the optical center towards a scene point are projected to a single

image point and results in a depth information loss. The depth reconstruction

of such points from monocular cues provides ambiguous results. Hence, from a

single image, it is not generally possible to infer unambiguous information about

the shape, location, and orientation of 3-D objects in a viewed scene. Stereo based

approaches use two (or more) cameras in distinct locations to significantly reduce

ambiguity. Stereo vision approaches provide precise depth measures. Most work

on visual 3D reconstruction has focused on stereo vision [26]. In this thesis, we

deal with the “binocular stereo vision”.

1.1 Binocular Stereo Vision

“Two are better than one; because they have a good reward for their labour”.

This proverb correctly defines the process of depth perception by human visual

system. The human visual system is based on two eyes and the brain where the

two slightly different projections of the world are captured onto the two retinas.

The displacement in the two retinal images is called disparity and the brain uses

this disparity information and recovers the distance or depth. The word “stereo”

comes from the Greek word "stereos" which means firm or solid. With stereo vi-

sion, we see the world as solid in three dimensions. Figure 1.1 shows an example

of a stereo human vision system.

In an attempt to simulate this as a stereo vision system, two cameras are used

as the eyes to capture 2D images of the physical 3D world-scene. In this case, the

computer takes the role of the brain in the computational modeling, processing,

and interpretation of the 2D images. Thus, the task of stereo vision is to recover
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Figure 1.1: A stereo human vision system

the 3D information i.e., depth in a manner similar to the way humans perceive

depth. However, depth can be estimated using more than two images of a scene

taken from different view-points, referred as “multi-view stereo”. Use of multiple

images better constrain the solution space and results in accurate depth estimates

but it also increases the cost of operations. Hence, in practice, the binocular stereo

is used which considers only two images of a scene for depth estimation.

1.1.1 Applications

Stereo vision has been an active research area in the field of computer vision and

has been used in different areas such as entertainment, medicine, scientific re-

search, virtual reality, robotics, view synthesis, video coding, safe navigation in a

spatial environment, etc. Few areas of application can be summarized as follows:

• Robot Navigation: Autonomous robot navigation in dynamic environments

requires the study of the relative motion of the objects in the robot’s environ-

ment with respect to the robot. Stereo vision can be used to efficiently esti-

mate the depth to the surfaces that lie in the vicinity of the mobile robots.

Depth information also allows the system to separate occluding image com-

ponents, such as one chair in front of another which the robot may otherwise

not be able to distinguish as a separate object.
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• Augmented Reality: Stereo vision processing is a critical component of aug-

mented reality systems that rely on the precise depth map estimation of a

scene in order to appropriately place computer generated objects making

use of real life videos.

• Automotive applications: The 3D perception of a car’s surroundings is cru-

cial both for driver assistance and for safety systems. An option to obtain

3D measurements of the surroundings is to use a stereo vision system.

• Scientific Research: Scientific applications of digital stereo vision include

the extraction of information from aerial surveys, calculation of contour

maps and geometry extraction for 3D building mapping.

• Entertainment and 3D Tele-conferencing: Entertainment is one of the ma-

jor areas where stereo vision is used since there is no doubt that the presence

of depth in images gives the viewer a more pleasant experience. To this end,

3D cinema, 3D TVs, and 3D video games that use stereo vision have be-

come popular. 3D teleconferencing system based on stereo vision allows a

3D display of remote participant and maintains eye contact with multiple

speakers, offering an alternative and possible improvement to traditional

video conferencing and display technologies.

Now, the further sections cover the theoretical aspect of the stereo vision system.

We begin with the discussion on basics of image formation, camera model and

camera parameters which are further used to understand the geometry of stereo

vision.

1.1.2 Camera Model and Image Formation

In computer vision, the process of image formation begins with the light rays en-

tering the camera through an angular aperture and hitting a screen or image plane

having a photosensitive device which registers light intensities. These light rays

are the result of the reflection of the rays emitted by the light sources and hitting

the object surfaces. A “pinhole camera” is the simplest imaging device that is suit-

able for many computer vision applications. The pinhole camera model captures
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the geometry of perspective projection. The geometry of the pinhole camera and

perspective projection is depicted in Figure 1.2.

The geometry of pinhole model consists of a 2D image plane π, a 3D scene

Figure 1.2: Illustration of pinhole camera model and perspective projection

point P, and the center of projection C. The distance between π and C is called focal

length of the camera. The line passing through C and perpendicular to π is called

the optical axis. The optical axis intersects the image plane at point c and is called

principal point or image center. Ray of light from P passes through the pinhole cam-

era through an infinitesimally small aperture i.e., C and the intersection of this

ray with the π at p forms the image of P. Such a mapping from 3D to 2D is called

perspective projection.

In order to find the mathematical relationship between a scene point and the

corresponding image point, we define four different coordinate systems. The

geometry of perspective projection with respect to these coordinate systems are

shown in Figure 1.3.

1. The World Coordinate System (Xw, Yw, Zw) has the origin at Ow. Locations of

3D scene points are measured with respect to the world coordinate system.
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2. The Camera Coordinate System (Xc, Yc, Zc) is identified by the camera and has

the center of projection C as its origin Oc. The axis Zc is aligned with the

optical axis.

3. Image Coordinate System (Xi, Yi) has axes aligned with the camera coordinate

system, with Xi and Yi lying in the image plane. It has principal point c as

its origin.

4. Pixel Coordinate System (Xu, Yu) has axes aligned with the image coordinate

system but has opposite orientation. It has its origin at the top left corner of

the image. The pixels in the images are represented with respect to the pixel

coordinate system.

Figure 1.3: Geometry of perspective projection. The scene point P and its image
point p are expressed as Pw and pi in their world and image coordinate systems,
respectively. Here, the image plane π is behind the center of projection C.

In general, the world and the camera coordinate systems are not aligned as shown

in Figure 1.3. The camera coordinate system is often unknown and the common
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problem is to determine the location and orientation of the camera coordinate

system with respect to the known world coordinate system. The “extrinsic pa-

rameters” of the camera defines such geometric transformation.

The extrinsic parameters are defined as any set of geometric parameters that

identify uniquely the transformation between the camera coordinate system and

the world coordinate system. Typically, these geometric parameters include:

1. a 3D translation vector T between the relative positions of the origins of the

two coordinate systems.

2. a 3× 3 rotation matrix R that brings the corresponding axes of the two coor-

dinate systems into alignment (i.e., onto each other).

Let the coordinates of a scene point P in the world and the camera coordinate

systems are denoted as Pw=[Px
w, Py

w, Pz
w]

T
and Pc=[Px

c , Py
c , Pz

c ]
T

, respectively. We can

find the relationship between Pw and Pc using the extrinsic camera parameters R

and T as follows:

Pc = R(Pw − T). (1.1)

Let rotation matrix R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 and translation vector T =


Tx

Ty

Tz

, Eq. (1.1)

can be written as: 
Px

c

Py
c

Pz
c

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33




Px
w − Tx

Py
w − Ty

Pz
w − Tz

 . (1.2)

or,

Px
c = R1

T(Pw − T), (1.3)

Py
c = R2

T(Pw − T), (1.4)

Pz
c = R3

T(Pw − T), (1.5)

9



where Ri
T corresponds to the ith row of the R matrix, i=1, 2, 3. The transforma-

tion described in Eq. (1.1) can be represented by a single matrix product using

a homogeneous coordinate system. Let Pw is expressed as P̃w=[Px
w, Py

w, Pz
w, 1]

T
in

homogeneous coordinates. We define an extrinsic camera matrix Mext of size 3× 4

which consists of extrinsic parameters of the camera as:

Mext =


r11 r12 r13 −R1

TT

r21 r22 r23 −R2
TT

r31 r32 r33 −R3
TT

 . (1.6)

The relation between Pw and Pc can be redefined using Mext as:

Pc = MextP̃w, (1.7)


Px

c

Py
c

Pz
c

 =


r11 r12 r13 −R1

TT

r21 r22 r23 −R2
TT

r31 r32 r33 −R3
TT




Px
w

Py
w

Pz
w

1

 . (1.8)

The scene point Pc in camera reference frame is projected on to the image plane

π as point p. The image point p can be expressed as pi=[px
i , py

i ]
T

in image coor-

dinate system. The perspective projection produces an inverted image of the ob-

ject/scene points. We can avoid this image inversion by assuming that the image

plane π is in front of the center of projection C as shown in Figure 1.4. One can

write the relationship between the scene point Pc and its corresponding image

point pi using the similar triangles as illustrated in Figure 1.4.

px
i =

f Px
c

Pz
c

. (1.9)

py
i =

f Py
c

Pz
c

. (1.10)
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The above equations are referred as fundamental equations of perspective projec-

tion. Note that these equations are written in camera coordinate system and the z

component of each image point is always equals to f .

Now, we need to obtain position of image point pi in the pixel coordinate sys-

Figure 1.4: Deriving the perspective projection equations in camera coordinate
system. Here, the image plane π is in front of the center of projection C.

tem, i.e. to determine the pixel coordinates that real camera actually delivers. Let

us denote the coordinates of the image point pi as pu=[px
u, py

u]
T

in the pixel coordi-

nate system. The relation between the pixel coordinates pu and its corresponding

coordinates pi in the image plane are,

px
u = −

px
i

sx
u
+ cx

u, (1.11)

py
u = −

py
i

sy
u
+ cy

u, (1.12)

where (cx
u, cy

u) are the coordinates of the principal point in pixel coordinate sys-

tem and (sx
u, sy

u) is the effective size of the pixel in the horizontal and vertical

directions, respectively. Note that the sign change in Eqs. (1.11) and (1.12) is due

to the fact that the X and Y axes of the image and pixel coordinate systems have
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opposite orientation.

In order to link the pixel coordinates of an image point with the correspond-

ing coordinates of the scene point in the camera coordinate system, the “intrinsic

parameters” of the camera are used. The intrinsic parameters characterize the op-

tical, geometric, and digital characteristics of the viewing camera. For a pinhole

camera, the intrinsic parameters are specified as follows:

1. The perspective projection that transform the coordinates of a scene point

defined in camera coordinate system to its image plane coordinates (see Eqs.

(1.9) and (1.10)). Here, the parameter is focal length f .

2. The transformation between the image plane coordinates and the pixel coor-

dinates of an image point. (see Eqs. (1.11) and (1.12)). Here, the parameters

are cx
u, cy

u, sx
u and sy

u.

In short, the set of intrinsic parameters of camera are defined as the focal length

f , the location of principal point in pixel coordinates (cx
u,cy

u), and the effective

pixel size in the horizontal and vertical directions (sx
u,sy

u). The relation between

the camera coordinates Pc of a scene point P and its corresponding image point

pu in pixel coordinates can be established by intrinsic parameters as:

Plugging Eqs. (1.9) and (1.10) in to Eqs. (1.11) and (1.12), respectively, we obtain:

px
u = − f Px

c
sx

uPz
c
+ cx

u. (1.13)

py
u = − f Py

c

sy
uPz

c
+ cy

u. (1.14)

The transformation described above can be represented by a single matrix product

using a homogeneous coordinate system. Let pu is expressed as p̃u=[ p̃x
u, p̃y

u, h]
T

in

homogeneous coordinates. Here, h is a homogenization parameter and according

to homogenization px
u = p̃x

u/h and py
u = p̃y

u/h. We define an intrinsic camera
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matrix, Mint of size 3× 3 which consists of intrinsic parameters of the camera as:

Mint =


− f /sx

u 0 cx
u

0 − f /sy
u cy

u

0 0 1

 . (1.15)

The relation between Pc and pu can be redefined using Mint as:

p̃u = MintPc, (1.16)


p̃x

u

p̃y
u

h

 =


− f /sx

u 0 cx
u

0 − f /sy
u cy

u

0 0 1




Px
c

Py
c

Pz
c

 . (1.17)

Computer vision algorithms reconstructing the 3D structure of a scene or com-

puting the position of objects in space require a direct relationship between the

world coordinates of 3D points in space and pixel coordinates of their correspond-

ing 2D image points. This is because the input for these algorithms are the digital

images. With the knowledge of extrinsic and intrinsic camera parameters, one can

write the relations linking directly the pixel coordinates of an image point pu with

the corresponding world coordinates Pw without explicit reference to the camera

coordinates.

Plugging Eqs. (1.3), (1.4) and (1.5) into Eqs. (1.13) and (1.14), we obtain:

px
u = − f R1

T(Pw − T)
sx

uR3
T(Pw − T)

+ cx
u. (1.18)

py
u = − f R2

T(Pw − T)
sy

uR3
T(Pw − T)

+ cy
u. (1.19)

The transformation described in Eqs. (1.18) and (1.19) between 3D world coor-

dinates to 2D pixel coordinates is called “projective transformation”. This can be

represented as a linear transformation using the product of extrinsic and intrin-

sic camera matrices. Considering the homogeneous representation of world and
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pixel coordinates P̃w and p̃u, the projective transformation is given as:

p̃u = MintMextP̃w, (1.20)


p̃x

u

p̃y
u

h

 =


− f /sx

u 0 cx
u

0 − f /sy
u cy

u

0 0 1




r11 r12 r13 −R1
TT

r21 r22 r23 −R2
TT

r31 r32 r33 −R3
TT




Px
w

Py
w

Pz
w

1

 , (1.21)

where

p̃x
u =

px
u

h
; p̃y

u =
py

u

h
. (1.22)

The multiplication of Mint and Mext matrices results in another matrix of size 3× 4

referred as projective matrix or camera matrix. The problem of estimating the val-

ues in the projective matrix i.e., the estimation of intrinsic and extrinsic camera

parameters is called “camera calibration”. The key idea behind the calibration

is to write the projection equations linking the known coordinates of a set of 3D

points and their projections, and solve for the camera parameters. In order to get

to know the coordinates of few 3D points, camera calibration methods rely on one

or more images of a calibration pattern i.e., a 3D object of known geometry, possi-

bly located in a known position in space. With the calibrated camera and known

image points, the 3D reconstruction of a scene point can be done by solving the

system of equations (1.18) and (1.19).

1.1.3 Stereo Vision Problems

As discussed in the previous section, the camera calibration and the knowledge of

the coordinates of an image point allows us to determine a ray in space uniquely.

If two cameras observe the same scene point, its 3D coordinates can be computed

as the intersection of two such rays which is the basic principle of stereo vision.

From a computational standpoint, a stereo system must solve the following three

problems in order to estimate the depth map of a scene using two images:
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• Calibration of Left and Right Cameras.

• The Correspondence Problem: Given the left and right views of the scene,

the goal is to find corresponding pixels i.e. pixels resulting from the projec-

tion of same 3-D point on to the two image planes. The difference in position

of the corresponding pixels is called disparity. Disparities of all the pixels in

an image form the so-called “disparity map”. In this thesis, we focus on

solving the correspondence problem and propose various approaches for

the same.

• The Reconstruction Problem: Given a number of corresponding pixels of

the left and right images i.e., disparity map and possibly information on

the geometry of the stereo system, the goal is to find the depth and thus

construct a 3-D coordinates of the points in the scene.

1.1.4 The Geometry of Stereo Vision

The geometry of stereo vision is defined using two pinhole cameras and is shown

in Figure 1.5. We consider left and right cameras with their centers of projection Cl

and Cr, image planes πl and πr, and focal lengths fl and fr, respectively. The dis-

tance B between the center of projections Cl and Cr is the baseline of the stereo

system. Both left and right camera identify the coordinate frames known as “left

camera coordinate system” and “right camera coordinate system”, respectively.

We assume that both cameras have been carefully calibrated so that their intrinsic

and extrinsic parameters are known with reference to fixed world coordinates.

Let P be a 3D scene point visible by the two cameras. The vectors Pl=[Px
l , Py

l , Pz
l ]

T

and Pr=[Px
r , Py

r , Pz
r ]

T
refer to the coordinates of P in the left and right camera coor-

dinate systems, respectively. The coordinate systems of left and right cameras are

related via a translation vector (baseline) B=(Cr−Cl) and a rotation matrix Rstereo.

Given P, the relation between Pl and Pr are given by:

Pr = Rstereo(Pl − B). (1.23)
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Figure 1.5: Geometry of stereo vision, epipolar geometry

The parameters B and Rstereo are referred as extrinsic parameters of the stereo

system that describe the relative position (translation) and orientation (rotation) of

the two cameras. The vectors pl=[px
l , py

l ]
T

and pr=[px
r , py

r ]
T

refer to the projections

of P on to the left and right image planes πl and πr, respectively and are expressed

in corresponding image coordinate system. The relation between Pl and pl, or Pr

and pr is defined by the fundamental equations of perspective projection as:

px
l =

flPx
l

Pz
l

; py
l =

flP
y
l

Pz
l

. (1.24)

px
r =

frPx
r

Pz
r

; py
r =

frPy
r

Pz
r

. (1.25)

Clearly, for all the image points we have pz
l = fl or pz

r= fr according to the image.

The geometry of stereo system is known as “epipolar geometry” that describes

the relation between left and right projections (images) of 3D points in space.

Given a pair of cameras, a scene point P defines a plane πP going through P

and the centers of projection of the two cameras Cl and Cr called the epipolar plane.

The points at which the baseline B intersects the image planes πl and πr are called

epipoles, and are denoted as el and er, respectively. In other words, el is the projec-

16



tion of Cr onto πl, and er is the projection of Cl onto πr.

For a point P, the epipolar plane πP intersects left and right image planes in

conjugated epipolar lines Ll and Lr, respectively. In other words, the left and right

epipolar lines Ll and Lr are the projections of the lines CrP and ClP onto πl and πr,

respectively. Therefore, all left and right epipolar lines pass through epipoles el

and er, respectively. Consider the triplet P, pl and pr. Given pl, P can lie anywhere

on the ray from Cl through pl. But, since the image of this ray in the right image

is the epipolar line Lr through the corresponding point pr, the correct match for

pl must lie on the epipolar line Lr. Similarly, the correct match for pr must lie on

its conjugated epipolar line Ll in the left image. This important fact is known as

“epipolar constraint”. The benefit of this constraint is that the search for the point

corresponding to pl need not cover the entire right image but can be restricted to

the line Lr, and vice versa for the search of point corresponding to pr.

In order to calculate the depth information or reconstruct the 3D points from

a pair of images, we need to compute the epipolar geometry. The estimation of

epipolar geometry determines a mapping between image point in one image and

its corresponding epipolar line the other image. As seen from Figure 1.5, the three

vectors Pl, Pl − B and B lie in the same plane i.e., they are coplanar. Therefore, the

equation of the epipolar plane through P can be written as the coplanarity condi-

tion of the vectors Pl, Pl − B and B. According to the coplanarity condition, the

cross product of any two vectors in a plane is perpendicular to any other vector

in the same plane. Considering cross product of B and Pl − B one can write,

(Pl − B)TB× Pl = 0. (1.26)

Using the relation between Pr and Pl described in Eq. (1.23), the coplanarity con-

dition can be rewritten as:

Pr
TRstereoB× Pl = 0. (1.27)
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Now, the cross product of vectors B and Pl can be expressed as a multiplication

by a rank deficient matrix S as:

B× Pl = SPl,

where S represent the translation between the origins of left and right camera

coordinate systems, and is defined as:

S =


0 −Bz By

Bz 0 −Bx

−By Bx 0

 (1.28)

Using this fact, Eq. (1.27) becomes,

Pr
TRstereoSPl = 0,

Pr
TEPl = 0, (1.29)

with

E = RstereoS. (1.30)

The matrix E is called the essential matrix, and establishes a natural link between

the epipolar constraint and the extrinsic parameters of the stereo system.

Here, the goal is to establish a mapping between the image points and their

corresponding epipolar lines. As we know that what we actually measure from

images are pixel coordinates and hence the transformation between the image

coordinates and the pixel coordinates should be known. This transformation is

given by the intrinsic parameters of both cameras. Let Ml
int and Mr

int be the intrin-

sic matrix of the left and right camera, respectively. Let pul and pur represent the

pixel coordinates of pl and pr, respectively. Using the Eq. (1.16), the transforma-

tions between the camera coordinates and its projection in pixel coordinates for

the scene point P are given as:
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pul = Ml
intPl; pur = Mr

intPr. (1.31)

Ml
int consists of the intrinsic parameters of left camera such as the focal length fl,

the location of principal point in pixel coordinates (cx
l ,cy

l ), and the effective pixel

size (sx
l ,sy

l ). Similarly, Mr
int has the intrinsic parameters of right camera i.e., fr,

(cx
r ,cy

r ) and (sx
r ,sy

r ). These set of parameters are called as intrinsic parameters of

a stereo system which are known by calibration. Now, using Eq. (1.31) we can

write, Pl = (Ml
int
−1
)pul and Pr = (Mr

int
−1
)pur. Substituting these into Eq. (1.29) we

obtain,

pur
T(Mr

int
−1T

)E(Ml
int
−1
)pul = 0,

pur
TFpul = 0, (1.32)

where,

F = (Mr
int
−1T

)E(Ml
int
−1
). (1.33)

The matrix F is called the fundamental matrix and it encodes the information on the

intrinsic and extrinsic parameters of the stereo. The Eq. (1.32) can be thought of as

the equation of the projective epipolar line Lr in the right image that corresponds

to the pixel point pul in left image or,

Lr = Fpul. (1.34)

We can conclude that fundamental matrix defines a mapping between the im-

age points in pixel frame and their corresponding epipolar lines. The fundamen-

tal matrix can be computed from a number of corresponding point matches in

pixel coordinate using the given left and right images only. Once the fundamen-

tal matrix is computed, one can reconstruct the epipolar geometry without any

information of the intrinsic or extrinsic parameters. This indicates that the epipo-

lar constraint as the mapping between the image points and the epipolar lines can

be established with no prior knowledge of the stereo parameters.
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The correspondence problem can be solved using the knowledge of funda-

mental matrix and epipolar geometry for the given pair of stereo images. For

every pixel in the reference image, a corresponding epipolar line is determined

using Eq. (1.34). Then the corresponding pixel is searched along the epipolar line

in the other image by using similarity criteria. Once the corresponding pixel is

found, the 3D location of the scene point is recovered by the intersection of two

rays i.e., the rays passing through the left and right image projections. The deter-

mination of the intersection of two such lines generated from two images is called

triangulation. Clearly, the determination of the scene position of an object point

through triangulation depends upon matching the image location of the object

point in one image to the location of the same object point in the other image.

1.2 A Simple Binocular Stereo System

In order to recover the depth of a scene, a canonical stereo system is often used

because of it’s simplicity. Here, a pair of cameras are arranged in such a way that

baseline is parallel to the image planes, the optical axes of the cameras are parallel,

the epipoles move to infinity, and the epipolar lines in the image planes are par-

allel. The geometric transformation that changes a general stereo configuration

with non-parallel epipolar lines to the canonical ones is called “image rectifica-

tion”. In other words, given a pair of stereo images, rectification determines a

transformation (or warping) of each image such that pairs of conjugated epipolar

lines become collinear and parallel to one of the image axes, usually the horizontal

one. The importance of the rectification is that the correspondence problem which

involves a 2D search in general is reduced to a 1D search on a scanline identified

trivially.

Figure 1.6 shows the top view of a canonical stereo system composed of left

and right pinhole cameras with co-planar image planes πl and πr, respectively.

We assume that both cameras have been calibrated. The optical axes are parallel;

for this reason, the fixation point defined as the point of intersection of the optical

axes lies infinitely far from the cameras. Given the left and right image points pl
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Figure 1.6: A simple stereo system. Here, the left and right image planes are co-
planar and parallel to the baseline.

and pr of the scene point P, our goal is to recover the position or depth of point P.

Let Z denotes the depth of P. The depth Z is the distance between P and the base-

line B i.e., distance between the camera and the scene point. Let pul=[px
ul, py

ul]
T

and pur=[px
ur, py

ur]
T

represent the pixel coordinates of pl and pr, respectively. The

focal length of both the cameras are same i.e., fl= fr. Note that pul and pur are

measured in the pixel coordinate frames of left and right cameras with respect to

their principal points cl=[cx
l , cy

l ]
T

and cr=[cx
r , cy

r ]
T

, respectively. Due to the rectifi-

cation of left and right images, the corresponding epipolar lines become collinear

and hence we get a displacement only between the x coordinates i.e., px
ul and px

ur

of pixels pul and pur, and py
ul=py

ur. The position of any scene point P in space is

determined by the triangulation and it is done by the intersection of rays defined

by Cl and Cr, and pl and pr. From the similar triangles (pl,P,pr) and (Cl,P,Cr), we

obtain:
B + px

ul − px
ur

Z− f
=

B
Z

. (1.35)

Solving Eq. (1.35) for Z, we obtain:

Z =
f B

d(x)
, (1.36)
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where d(x)=px
ur − px

ul represents the disparity with respect to right image as a

reference image. If we consider the left image as reference image then d(x)=px
ul −

px
ur. If d(x)=0 then Z=∞ i.e., zero disparity indicates that the point is (effectively)

at an infinite distance from the viewer. We can conclude from the Eq. (1.36) that

depth is inversely proportional to disparity.

Z ∝
1

d(x)
. (1.37)

In this thesis, we focus on solving the dense correspondence problem using

the rectified pair of stereo images with known camera calibration.

1.3 Stereo Matching Constraints

One has to find the correspondence for all pixels by using their intensities or fea-

tures only. The estimation of disparities is an ill-posed problem with inherent

ambiguity due to the several problems described as follows:

1. Photometric variation: The light reflected from the scene and projected by

camera depends on the position of that camera relative to the scene as well as

noise and nonlinearities in the camera itself. Thus, when a camera is moved

to a new position or when two cameras view a scene from two viewpoints,

the intensity at the corresponding points may be different.

2. Occlusion: Occlusion is due to the occurrence of a depth discontinuity that

causes an obstructed view of part of the scene that is observed by only one

of the cameras.

3. Repetitive texture: When the texture is repeated, for example, bricks in a

brick wall, multiple possible correspondences exist.

4. Lack of texture: For the untextured surfaces, it is difficult to find the corre-

sponding point.

In order to reduce the effects of these phenomena and make the problem well-

posed, several matching constraints are used. Some of these constraints follow
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from the geometry of the image formation process, photometric properties of a

scene, and object properties in our natural world. A list of commonly used con-

straints is given below:

1. Epipolar Constraint: Given the location of a pixel in one image, the match-

ing location must lie on the corresponding epipolar line in other image. This

constraint reduces the potential search space from 2D to 1D. The epipolar

constraint never fails and it can be applied reliably once the epipolar geom-

etry is known.

2. Photometric Similarity Constraint: It states that the corresponding points

(matching locations) in both images should have similar color/intensity.

This constraint is natural due to image-capturing conditions, and it is valid

for lambertain surfaces where the appearance of the surface does not vary

with view-point.

3. Geometric Similarity Constraint: This states that geometric characteristics

of the corresponding features found in the left and right images do not differ

much (e.g., length or orientation of the line segment, region or contour, etc.).

4. Uniqueness Constraint: For any location in one image, there should be at

most one matching location in the other image.

5. Smoothness/Continuity Constraint: In general, the most of the scenes have

the depth continuity i.e. they are smooth. This makes the disparities to vary

smoothly almost everywhere over the image. This constraint fails at depth

discontinuities resulting in discontinuous disparities.

6. Ordering Constraint: As per this constraint, if the points m and n in one

image correspond to the point m′ and n′, respectively in other image, and if

m is to the left of n then m′ should also be to the left of n′, and vice versa.

That is corresponding points should be in the same order in both views. If

there is a narrow object much closer to the camera than its background, or

there is a large discontinuity in depths, the order gets changed. The order-

ing constraint fails at regions known as the forbidden zone. This constraint

requires that the relative ordering of pixels on a scanline remain the same
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between the two views, which may not be the case in scenes containing nar-

row foreground objects.

Different stereo matching algorithms make use of different constraints and esti-

mate the disparity map for a given pair of stereo images. In practice, two types

of disparity maps are computed; dense disparity map and sparse disparity map.

In dense disparity map, the disparity is computed at each pixel location whereas,

in sparse disparity map, the disparities are computed at few locations only. The

sparse maps are computed by matching the sparse set of features in the left and

the right images and have limited applications. The dense disparity map finds it’s

application in view synthesis, surface reconstruction, depth estimation and image

based rendering which require disparity estimates in all image regions includ-

ing those that are occluded or without texture. Hence, in this thesis, we propose

various approaches for estimating the dense disparity map.

1.4 Contributions of the Thesis

In this thesis, we address the problem of dense disparity map estimation using

rectified stereo images with known calibration of cameras. The dense disparity

estimation is an ill-posed problem due to the presence of depth discontinuities,

photometric variation, lack of texture, occlusions, etc., and hence in practice, this

problem is solved in a global energy minimization framework by incorporating

the regularization where a disparity map is estimated by minimizing a global en-

ergy function. In general, an energy function represents a combination of a data

term and a prior term that restricts the solution space. The data term restricts

a desired disparity map to be agreeable with the observed data i.e., the given

stereo pair, while the prior term confines it to have a form matched with the prior

knowledge about the true disparity map. Once an energy function is defined, it

is minimized using an efficient optimization technique which leads to either local

or global minima. However, solutions with lower energy do not always corre-

spond to better performance. Therefore, it is more important to define a proper

energy function than to search for optimization techniques in order to improve
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the performance. A proper energy function is defined by the selection of an ap-

propriate data model and the prior model. In this thesis, we propose various new

approaches for solving the dense disparity estimation problem in a global energy

minimization framework by defining proper energy functions, and we employ

graph cuts, an efficient and fast optimization technique for minimizing our en-

ergy functions. The contributions of this thesis are summarized as under.

• Since the disparity estimation is an ill-posed problem, making use of a prior

information about the nature of the true disparity map makes the ill-posed

problem into better posed and leading to a better solution. In many cases,

the disparities are piecewise smooth i.e., they vary smoothly except at dis-

continuities. This spatial smoothness among disparities can be captured by

Markov random field (MRF) based models. In general, edge preserving ho-

mogeneous MRF models are used as a prior term in the global energy mini-

mization framework. The homogeneous MRF priors consist of single or a set

of global MRF parameters which may not adapt to the local structure of the

disparity map and hence fail to better capture the spatial dependence among

disparities. We need a prior that considers the spatial variation among dis-

parities locally. In our first work, we propose to use an inhomogeneous

Gaussian Markov random field (IGMRF) prior in an energy minimization

framework to estimate the dense disparity map. The IGMRF prior cap-

tures the local variation among disparities at each pixel location using the

adaptive IGMRF parameters. These parameters help us to obtain a solution

which is less noisy in smooth areas and preserve the depth discontinuities

in other areas. To form our energy function, we model the data term using

the pixel-based intensity matching cost based on the brightness constancy

assumption of corresponding pixels, and the prior term is defined using

IGMRF prior. Since the true disparity map is unknown, the IGMRF param-

eters are computed using a close approximation of true disparity map. To

this end, we also propose a learning based approach for obtaining an initial

estimate of disparity map. To start the regularization process, we use the

initial estimate of disparity map and compute the IGMRF parameters at ev-
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ery pixel location which are then used to estimate the final disparity map by

minimizing our energy function. The quality of the final solution strongly

depends on the accuracy of the IGMRF parameters.

The choice of an initial estimate plays a key role in our work because the

accuracy of the IGMRF parameters, and hence the quality of the final dispar-

ity map strongly depends on the quality of initial estimate. Also the use of

better initial estimate accelerates the convergence while regularizing the so-

lution. The initial estimate obtained by our learning based approach do not

produce accurate disparities, and use of it affect the quality of final solution.

Hence, in order to achieve better performance, in our subsequent works, we

obtain a better initial estimate using a classical local stereo method including

a set of post-processing operations for disparity refinement.

• Although, IGMRF prior captures the smoothness with discontinuities, it

fails to capture higher order dependencies such as sparseness in the dispar-

ity map. The disparity maps can be represented in a domain in which they

are sparse, and this transform domain representation can be obtained either

using fixed set of basis or it can be learned using a set of training examples.

We then consider the sparseness of disparities as an additional prior while

regularizing the disparity map. The use of learned sparseness has proven

to be more accurate when compared to the use of fixed basis while solving

the ill-posed problems, and hence we prefer to learn the sparse representa-

tion of disparities in our work. Our next work thus involves both IGMRF

and sparseness priors. The sparsity prior is derived using the learned over-

complete sparseness of disparity patches and captures the sparseness in the

disparity map. We consider a data term using the pixel-based intensity

matching cost which is robust to outliers and insensitive to image sampling.

Based on this formulation, we propose two methods for dense disparity es-

timation. In our first method, the sparse representation of disparities are

obtained by a learned overcomplete dictionary. We train our disparity dic-

tionary using the patches of estimated disparity map of the given stereo pair

via K-singular value decomposition (K-SVD) algorithm. The advantage of
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our dictionary learning method is that the learned dictionary is adaptive

to the disparities of the given stereo pair and we do not require the large

set of ground truth maps for training. However, overcomplete dictionary

model uses a linear structure, and a non-linear model can be used for the

better representation of sparseness. Hence, in our second approach, we use

a sparse autoencoder for learning and inferring better overcomplete sparse

representation of disparities. We train our sparse autoencoder using a large

set of ground truth disparity patches. The learned sparseness of disparities

are further used to define the sparsity prior. In order to estimate the dense

disparity map, both of our approaches start with the use of initial estimate

of disparity map, and iterate and alternate between two phases until con-

vergence. In phase one, sparseness of disparities are inferred and IGMRF

parameters are computed based on the current estimate of disparity map,

while in the second phase, the disparity map is refined by minimizing the

energy function with other parameters fixed.

• The combination of IGMRF and sparsity priors serve as a better regularizer

but the choice an appropriate data term also plays a key role in obtaining a

better disparity map. Although, the data term based on intensity matching

is robust against outliers, image sampling, view-point variation, etc., it re-

lies only on the raw pixel values (intensities), and the use of such a data term

may results in ambiguous and erroneous disparities in textureless areas and

near depth discontinuities. The stereo images can be represented in a better

way by using a feature space where they are robust, distinct and view-point

invariant. This makes us to propose a method for dense disparity map es-

timation using feature matching as well. The use of features learned using

deep learning and unsupervised learning methods have shown its superior

performance than those using fixed or hand crafted features. Hence, we de-

fine a feature matching cost using the hierarchical features of given left and

right stereo images, and these hierarchical features are learned using the

deep deconvolutional network, a deep learning model which is trained in

an unsupervised way using a database consisting of large number of stereo
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images. In our energy function, we combine the learned feature matching

and the intensity matching costs to form our data term. Here, our prior

remains the same i,e., IGMRF based prior. Once again, we minimize our en-

ergy function by using an iterative two phase algorithm where the IGMRF

parameters and the disparity map are refined alternatively.

• Finally, we propose one more approach for dense disparity estimation us-

ing a better constrained energy function. We define our data term using a

combination of learned feature matching and pixel-based intensity match-

ing costs, and the prior term is formed using the combination of IGMRF

and sparsity priors. Since the sparseness of disparities are more efficiently

represented by the learned sparse autoencoder than the use of learned over-

complete dictionary via K-SVD, we use sparse autoencoder for learning and

inferring the sparseness of disparities. An iterative two phase algorithm is

proposed to estimate the dense disparity map. We demonstrate the efficacy

of our proposed methods by conducting extensive experiments and evalu-

ating our results on the Middlebury stereo datasets [113]. We also compare

the performance of our methods with the state of the art and latest global

dense stereo methods.

1.5 Organization of the Thesis

In this thesis, we address the problem of dense disparity map estimation using

rectified stereo images with known calibration of cameras, and propose various

approaches for solving it in a global energy minimization framework. The organi-

zation of the thesis is as follows. Chapter 2 provides a review of the existing dense

disparity estimation approaches proposed in the literature. In chapter 3, we dis-

cuss the labeling problem and energy minimization framework for disparity esti-

mation. The details of the graph cuts method for optimizing the energy function

is presented and a novel technique for dense disparity estimation using IGMRF

as a prior is discussed. Since the IGMRF parameters are computed using the ini-

tial estimate of the disparity map, we further propose a learning based approach
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for obtaining an initial estimate. We incorporate the sparsity prior in addition to

the IGMRF prior in our energy function in chapter 4. We present two methods

for learning the sparsity prior. In the first method, the sparse representation of

disparities is learned by an overcomplete dictionary trained using K-SVD algo-

rithm whereas, in the second method, a sparse autoencoder is used. In chapter 5,

a novel approach for dense disparity estimation is proposed using learned hier-

archical feature matching in an IGMRF based regularization framework. For this,

a deep deconvolutional network is presented. A learned sparseness and IGMRF

based priors are combined with the learned feature matching in chapter 6. We

demonstrate the effectiveness of our proposed approaches by conducting various

experiments on standard stereo datasets and comparison with the state of the art

and the latest dense stereo methods. Finally, we summarize our work and con-

clude in chapter 7. We discuss the further challenges and directions for future

research in chapter 8.
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CHAPTER 2

Literature Review

Stereo correspondence has traditionally been and continues to be, one of the most

extensively researched topics in the field of computer vision. The main goal here

is to estimate the dense disparity map for a given pair of stereo images. How-

ever, estimation of disparities is an ill-posed problem with inherent ambiguities

due to sensor noise, depth discontinuities, illumination and intensity variation,

lack of texture, regions of repetitive textures, occlusions, etc. [26]. A variety of

approaches has been proposed for the same in the literature [114, 113]. A com-

prehensive review of a large number of such algorithms is given in [114], and

the quantitative comparison among all the state of the art and latest dense stereo

methods evaluated on stereo benchmark datasets can be found on Middlebury

stereo website [113].

In this chapter, we present a brief literature survey for the correspondence al-

gorithms that estimate the dense disparity map for a pair of rectified stereo images

with known camera geometry. A dense stereo correspondence algorithm gener-

ally performs (subsets of) the following four steps [114]:

1. matching cost computation,

2. cost aggregation,

3. disparity computation/optimization,

4. disparity refinement.

The actual steps taken depends on the specific algorithm. Based on these steps,

we can classify dense disparity estimation algorithms in two broad classes; “local

dense stereo methods” and “global dense stereo methods”.

30



2.1 Local Dense Stereo Methods

The intensity of an individual pixel does not give sufficient information since

there can be many pixel locations with similar intensity in the matched image.

Therefore, in local approaches, to find the disparity at a pixel location, the inten-

sities of several neighboring pixels in a window are considered. The disparity

computation at a given pixel depends only on the intensity values within a fi-

nite window. Here, an implicit smoothness assumption is made i.e., all the pixels

within a window have the same disparity. The local stereo methods are also re-

ferred as area based or window based methods. Following are the steps involved

in a traditional window based method:

1. Compute matching cost at every pixel location for all possible disparities.

2. Aggregate the matching cost over a window centered at every pixel location

for all possible disparities.

3. Compute the disparity at every pixel location using “winner-take-all” (WTA)

optimization i.e., the disparity with winning aggregated cost is selected for

each pixel.

4. Refine the disparity map by applying post processing methods such as sub

pixel disparity estimation, left-right consistency check, interpolation, me-

dian filtering [114], etc.

Commonly used matching costs include squared intensity differences (SD) [114,

4, 41], absolute intensity differences (AD) [95], and normalized cross correlations

(NCC) [41, 107]. In the case of SD and AD, the aggregation is performed by sum-

ming/averaging the costs over a local window and the disparity with minimum

cost is selected. The local algorithms that use the NCC, combine steps 1 and 2 i.e.,

the correlation is measured between windows centered at a pixel location and a

disparity with the highest correlation is selected. Truncated matching costs are

more useful and robust because they limit the influence of mismatches during ag-

gregation [114, 14, 15]. The matching costs are mainly designed on the brightness

similarity assumption of the corresponding pixels within a window. However,
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there are special circumstances when corresponding pixels have different intensi-

ties due to the effects of image sampling, noise, different gains and biases of the

stereo cameras, depth discontinuities, occlusion, etc. Hence, the matching costs

which are insensitive to such effects are proposed and used [114, 110, 13, 47]. A

better performing matching cost includes the non parametric local transforms, for

example, rank and census transform [148]. These transforms rely on the relative

ordering of intensities within a window, and not on the intensity values them-

selves, and the correlation using such transforms can tolerate a significant num-

ber of outliers and result in better disparity estimates near disparity edges.

The matching cost aggregation is the key step for the success of local stereo

approaches, and the quality of cost aggregation mainly depends on the size and

shape of the window. The classical window based methods use a fixed static

support region, typically a squared window for cost aggregation. When the win-

dow covers a region with non-constant disparity or depth discontinuities, such

methods are likely to fail, and the error in the disparity estimates grows with the

window size. Hence, a central problem in these methods lies in selecting an ap-

propriate window size. The window size must be large enough to include enough

intensity variation for reliable matching, but small enough to avoid the effects of

projective distortion and preserves the depth discontinuities. Hence, a window

size must be selected adaptively depending on local variations of intensity and

disparity. Adaptive-window methods [61, 20, 126, 127, 98] try to find an opti-

mal support window for each pixel and result in edge preserving and less noisy

disparity maps. Kanade and Okutomi [61] present a statistical method to select

an adaptive window at every pixel that minimizes the uncertainty in the dispar-

ity estimates. This method is, however, highly dependent on the initial disparity

estimates and is computationally expensive. Moreover, the shape of a support

window is constrained to a rectangle, which is not appropriate for pixels near ar-

bitrarily shaped depth discontinuities. On the other hand, Boykov et al. [20] try

to choose an arbitrarily shaped connected window. They perform plausibility hy-

pothesis testing and compute a correct window for each pixel. A useful range of

window sizes and shapes are chosen in [126, 127] to explore while evaluating the
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window cost, which works well for comparing windows of different sizes. How-

ever, the shapes of support windows used are not general and this method needs

many user specified parameters for the window cost computation.

The aggregation can also be implemented using multiple or shiftable windows

anchored at different pixel locations. Multiple-window methods [32, 114] select

an optimal support window among predefined multiple windows, which are lo-

cated at different positions with the same shape. For example, authors in [32]

perform the aggregation with nine different windows for each pixel and retain

the disparity with the smallest matching cost.

Although, the local methods using the adaptive windows or multiple win-

dows improve the performance of disparity estimation, they have a limitation in

common: the shape of a local support window is not general. In fact, finding the

optimal support window with an arbitrary shape and size is very difficult. For this

reason, the methods limit their search space by constraining the shape of a sup-

port window. Rectangular and constrained-shaped windows, however, may be

inappropriate for pixels near arbitrarily shaped depth discontinuities. To resolve

this problem, segmentation-based local methods [119, 129, 122, 83] are proposed

that use segmented regions with arbitrary sizes and shapes as support windows.

In these approaches, it is implicitly assumed that the disparity varies smoothly in

each region. However, these methods require precise color segmentation that is

very difficult when dealing with highly textured images.

Instead of finding an optimal support window, one can adjust the support

weights of the pixels in a given support window [135, 144, 71, 50, 156]. In an

adaptive support weight approach of [144], the support weights of the pixels in a

given support window are computed using color similarity and geometric prox-

imity, and the cost aggregation is performed using these support weights. This

method obtains better results in homogeneous regions and near depth discon-

tinuities. The cost aggregation based on adaptive support weights can also be

implemented using the edge preserving smoothness filter such as bilateral filter

[5, 90, 105, 81, 140, 139] and guided image filter [51]. The bilateral filter computes

the weighted average of the pixels within a window with the weights depend-
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ing on both the spatial and intensity difference between the central pixel and its

neighbors. Bilateral filter based local methods obtain higher accuracy along depth

discontinuities and lower matching ambiguity, especially within low textured re-

gions. However, these methods are computationally expensive since a large ker-

nel size is typically used for the sake of high disparity accuracy. To address the

computational limitation of the bilateral filter, authors in [51, 7] use guided image

filtering into cost aggregation whose computational complexity is independent of

the kernel size. Further to this, a non-local cost aggregation method is proposed

in [138] which outperforms all local cost aggregation methods such as bilateral or

guided image filtering in terms of speed and accuracy. Here, the matching cost

values are aggregated adaptively based on pixel similarity on a minimum span-

ning tree derived from the stereo image pair to preserve depth edges. The nodes

of this tree are all the image pixels, and the edges are all the edges between the

nearest neighboring pixels. The similarity between any two pixels is decided by

their shortest distance on the tree. The advantage of this method is that it has

low computational complexity and it is non-local as every node receives supports

from all other nodes on the tree.

The local stereo methods are easier to implement and are computationally less

expensive. These methods can easily capture accurate disparities in highly tex-

tured regions, however, they often tend to produce noisy disparities in large tex-

tureless regions or repetitive textures, blur the disparity discontinuities, and fail at

occluded areas. Though, the local methods based on adaptive windows, adaptive

weights and filtering improve the accuracy in these regions, but can not correct

it completely. The central problem of these stereo matching methods is to de-

termine the optimal size, shape, and weight distribution of aggregation support

for each pixel. An ideal support region should be bigger in textureless regions

and should be suspended at depth discontinuities. However, they assume that

the disparity is same over the entire window which does not hold in reality be-

cause the disparity maps are globally smooth with sharp discontinuities. Global

stereo methods overcome the limitations of local stereo methods by incorporating

the global information about the disparity map such as explicit smoothness in a
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global optimization framework.

2.2 Global Dense Stereo Methods

Since the dense disparity estimation is an ill-posed problem, making use of a prior

or global information about the nature of the true disparity map makes the ill-

posed problem into better posed, leading to a better solution. Global approaches

formulate the dense disparity estimation problem in a global energy minimization

framework by incorporating the prior where a disparity map is obtained by mini-

mizing the global energy function [114]. In general, the energy function represents

a combination of a data term and a prior term that restricts the solution space. The

data term measures how well the disparity map to be estimated agrees with the

input image pair where as the prior term measures how good it matches with the

prior knowledge about the disparity map. Such algorithms typically perform the

matching cost computation, disparity map optimization and disparity refinement steps

and skip the cost aggregation step.

The key step of the global approaches is to define an appropriate energy func-

tion and to provide an efficient optimization method to find local or global mini-

mum. Typically, these energy functions are non convex, and optimizing them is an

NP-hard problem. Hence, a variety of optimization methods have been proposed

for solving the energy minimization problem in stereo. These methods include

dynamic programming [2, 9, 27, 35, 130], simulated annealing [8, 36, 87], mean

field annealing [34, 96, 112], graph cuts [69, 21, 67, 68, 62, 106, 52], and belief prop-

agation [117, 116, 143, 142, 146, 141]. Dynamic programming can find the global

minimum for independent scanlines in polynomial time. Dynamic programming

based approaches work by computing the minimum cost path through the ma-

trix of all matching costs between two corresponding scanlines. However, these

approaches result in streaking artifacts near region boundaries. Moreover, a semi

global matching is proposed in [46, 45] which minimizes a 2D energy function by

solving a large number of 1D minimization problems. Semi global matching out-

performs dynamic programming and yields no streaking artifacts. Simulated an-
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nealing is theoretically capable of finding the global minima of an arbitrary energy

function but it requires exponential time and is extremely slow in practice. Mean

field annealing approach involves the computation of partition function which is

intractable. Optimization algorithms based on graph cuts [69] and belief propa-

gation [117] are the most efficient and prominent global optimization algorithms

in terms of time complexity and accuracy of the solution [120]. They guarantee

that the solution so obtained either reaches the global optimum or reaches a local

minima close to the global minimum with considerably less computational time

complexity. Hence, many of the latest and the state of the art global stereo meth-

ods are based on these two optimization techniques [114, 113].

In general, the disparities are piecewise smooth i.e., they exhibit low variance

except at discontinuities. This spatial smoothness among disparities can be cap-

tured by “Markov random field” (MRF) based models [80, 121, 36]. MRF models

are used to incorporate the explicit smoothness as a prior constraint in the energy

function. Many of the state of the art global stereo methods are based on the MRF

formulations, for example [114, 21, 117, 68, 143, 133, 67, 94, 43, 116, 62]. These

methods obtain sharp depth discontinuities at object boundaries and smooth dis-

parities in homogeneous regions. In the standard MRF formulation, the smooth-

ness constraint is enforced in a first or second order neighborhood.

In order to capture the smoothness in a large neighborhood and preserve the

depth discontinuities, segmentation based global stereo methods have been pro-

posed in the literature [48, 66, 16, 18, 17, 118]. These methods are based on the as-

sumption that the scene structure can be approximated by a set of non-overlapping

planes in the disparity space and that each plane is coincident with at least one

homogeneous color segment in the reference image i.e., within each segment, dis-

parities are constant, planar or vary smoothly. Here, the dense stereo matching

problem is cast as an energy minimization in segment domain instead of pixel

domain where the disparity plane is assigned to each segment using global opti-

mization algorithm. Despite the fact that segmentation based approaches usually

improve disparity estimates in large textureless regions, they inevitably introduce

errors in rich textured areas and do not handle well the situation that the scene
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contains non planar surfaces. Also, the solution here relies on the accuracy of seg-

mentation which is itself a non trivial task.

In global methods, the data term is generally defined by the pixel-based match-

ing cost between the intensities of corresponding pixels in the input left and right

stereo images. The commonly used pixel-based matching cost include, absolute

differences (AD) and squared differences (SD) measures [114] and rely on the

brightness constancy assumption of corresponding pixel intensities. In order to

handle the mismatches and outliers, truncated AD and SD measure have been

employed [21, 117]. Due to the image sampling, discontinuities, occlusions or il-

lumination variation, the intensity constancy assumption of corresponding pixels

do not hold good in reality. Hence, in order to handle such effects, several other

matching costs have been used by the global methods [114, 47]. For example,

matching cost insensitive to image sampling [143, 13], rank and census transform

[92], gradient based measures [94], mutual information [63, 46]. Although, global

methods skip the cost aggregation step, several aggregated matching costs have

been used to improve the performance of global methods near discontinuities and

at occlusions. For example, in [143] color weighted correlation is used as a data

term and the energy function is minimized using hierarchical belief propagation.

Recently, bilateral filtering is used as a matching cost in an energy minimization

framework [94].

In recent years, there has been a considerable progress in solving the stereo vi-

sion problem using machine learning methods due to the increasing availability of

the ground truth data. The work of [70] learn the probability of stereo matching er-

rors as a function of stereo images and underlying scene structure. These learned

probabilities are integrated into an MRF based energy minimization framework

for estimating the disparities. Since the likelihood function is dependent on the

states of a large neighboring region around each pixel, a high-order MRF inference

problem is solved using the simulated annealing algorithm which is extremely

slow. In [155], an expectation maximization (EM) algorithm is used to iteratively

estimate the disparity map and learn the MRF parameters based on the estimate

in an energy minimization framework. While these methods have shown promis-
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ing results, they do require some initial model whose parameters still need to be

preset. In these previous works, the model is learned from the same (unlabeled)

data that is to be labeled, and the parameters are adjusted in order to improve the

performance. In the methods of [111] and [147], supervised learning is used for

learning the model parameters by making use of the ground truth disparity maps.

Scharstein and Pal [111] present a conditional random field (CRF) based model for

disparity estimation where the maximum likelihood estimator for model param-

eters is learned using ground truth disparity maps and gradient descent method.

Computing the CRF parameters, however involves the partition function which is

intractable in cyclic graphs. Hence, the partition function is approximated by the

model distribution which is obtained using graph cuts. However, the method has

high computational complexity and this approximation can lead to poor dispar-

ity estimates. The number of CRF parameters used are also limited, affecting the

solution. Similar work is proposed in [147] where authors present a CRF based

model with non-parametric cost functions which is learned automatically using

the structured support vector machines (SVM) with linear kernels. However, the

method is also computationally expensive and use a traditional supervised learn-

ing method which requires a large set of labeled (ground truth) data.

Recently, unsupervised feature learning and deep learning approaches have

achieved superior performance when compared to the traditional supervised learn-

ing methods in solving many computer vision problems [128, 74, 11, 29]. The deep

learning approaches learn the hierarchical features using a large set of unlabeled

data and avoid the need for feature engineering. It has also attracted the attention

of stereo vision researchers in last few years. To this end, proposed approaches for

dense disparity estimation based on deep learning [149, 91] have achieved better

performance by obtaining a place in the top 10 dense stereo matching algorithms

as per the Middlebury stereo evaluation webpage [113].

Global methods have been proved to be the most efficient methods in the

stereo literature [114, 113]. They not only perform well in textured areas but

also provide more precise and reliable disparity maps in untextured and repet-

itive textured regions, and near depth boundaries. Recently, several other global
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stereo methods are proposed with better performance in terms of speed and accu-

racy [113]. Yamaguchi et al. [136] formulate dense stereo matching with a hybrid

Markov random field, composed of continuous random variables for slanted 3D

planes and discrete random variables for occlusion boundaries. Jung et al. [59] ex-

ploit the consistency criterion across real and virtual intermediate views and min-

imize an energy function, including the consistency term. Sinha et al. [115] model

locally slanted planes by matching and clustering sparse local features, and solve

the local plane sweep problem using semi global matching. Yamaguchi et al. [137]

construct a slanted plane model over superpixels and optimize an energy func-

tion, composed of segment label and boundary energy terms. A mesh structure

is constructed for stereo matching, and is optimized by employing a two-layer

MRF in [152]. Psota et al. [104] perform the disparity estimation through message

passing on the minimum spanning tree (MST). They represent the disparity maps

as a collection of hidden states on MST, and model each MST by a hidden Markov

Tree. Li et al. [79] generate multiple proposals on absolute and relative disparities

from multi-segmentation and then these proposals are coordinated by pixel-wise

competition and pair-wise collaboration within a MRF model for disparity esti-

mation. In [65], authors apply adaptive smoothness constraint using texture and

edge information of stereo images in an energy minimization framework.

Dense stereo matching is one of the most spot lighted research area in com-

puter vision and is now quite matured problem. In our work, we propose various

learning based approaches for dense disparity estimation in an energy minimiza-

tion framework.
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CHAPTER 3

An IGMRF based Regularization Framework

for Dense Disparity Estimation

In a binocular vision system, generally the disparities are found by comparing

pixel intensities or their features in the left and right images. However, estima-

tion of disparities is an ill-posed problem and making use of a prior information

about the nature of the true disparity map makes the ill-posed problem into better

posed and leading to a better solution. Global approaches pose the disparity esti-

mation problem in an energy minimization framework by incorporating prior or

priors while solving. In many cases, the disparities are piecewise smooth i.e., they

exhibit low variance except at discontinuities. This spatial smoothness among dis-

parities can be captured by Markov random field (MRF) based models. It is well

known that MRFs are the most general models used as priors during regulariza-

tion when solving ill-posed problems [80, 36]. Hence, many of the current better

performing global stereo methods are based on the MRF formulations as noted in

[114, 113].

In this chapter, we propose to use an inhomogeneous Gaussian Markov ran-

dom field (IGMRF) prior in an energy minimization framework to estimate the

dense disparity map. The IGMRF prior is adaptive to the local structure of the

disparity map and hence the use of it leads to a smooth disparity map with sharp

discontinuities. The IGMRF parameters are computed using the initial estimate

of the disparity map. In order to obtain the initial estimate, we propose a learning

based approach. We demonstrate that the use of IGMRF prior results in better dis-

parity map than those using edge-preserving homogeneous MRF priors proposed
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in the literature. Before we start discussing the proposed approach, in the next few

sections we discuss in brief about the labeling problem, MRF model, MAP-MRF

estimation, energy minimization framework, and graph cuts for optimization.

3.1 The Labeling Problem

In computer vision, a labeling problem is specified in terms of a set of sites and

a set of labels associated with them. The dense disparity estimation can be cast

as a labeling problem where a regular M × N lattice represents the set of sites

S = {(x, y)|1 ≤ x ≤ M, 1 ≤ y ≤ N} and the disparities represent the set of labels

L. Let a disparity map d ∈ RM×N represents a labeling. The labeling problem

is to assign a label to each site in the S i.e., the goal is to estimate d where a

disparity d(x, y) ∈ L is computed at each pixel location (x, y) ∈ S . In our work,

we solve the dense disparity estimation problem using a rectified pair of stereo

images. Use of rectified input images reduces the correspondence search to one

dimensional i.e., ∀(x, y), d(x, y) ∈ R. In other words, we measure the disparity

in the x coordinates only while the y coordinates of corresponding pixels remain

same.

3.2 MRF Prior Model

In order to solve the dense disparity estimation as a labeling problem, we model

the disparity map as an MRF and use a Maximum a Posteriori (MAP) estimation

technique. Disparities are inversely proportional to the depth and their variations

are due to various textures, sharp discontinuities as well as smooth areas within

the object. Therefore, the disparity maps are context dependent i.e., there exists

spatial correlation among the neighboring disparities. This dependence can be

appropriately modeled by using a Markov model. Here, the relation among dis-

parities at different pixel locations is described by Markov random fields.

The MRF provides a convenient and consistent way of modeling context de-

pendent entities. This is achieved by characterizing the mutual influence among

such entities using conditional probabilities for a given neighborhood. MRF was

41



first introduced in vision by Geman and Geman [36] for solving the image restora-

tion problem and has been used widely in solving a number of problems in the

field of computer vision [80]. The practical use of MRF models is largely ascribed

to the equivalence between the MRF and the Gibbs random fields (GRF). In this

work, we assume prior density of disparity map as an MRF. This is a valid as-

sumption since the disparities vary smoothly except at discontinuities.

Let D be a random field over a regular M× N lattice of sites S , and let a par-

ticular realization of D be denoted as d. D is said to be Markov random field

on S with respect to a neighborhood system N if and only if the following two

conditions are satisfied [80],

• P(D = d) > 0, ∀d ∈ D (positivity).

• P(d(x, y)|d(S − {(x, y)})=P(d(x, y)|d(N(x,y)) (Markovianity),

where P denotes probability, d(x, y) is the disparity (label) at site (x, y), N(x,y)

represents the set of sites lie in the neighborhood of (x, y), and D denotes the set

of possible labelings. The first property is needed for technical reasons to ensure

that the joint probability P(d) can be uniquely determined by the local conditional

densities P(d(x, y)|d(N(x,y)). The second property states that a disparity at a pixel

location is dependent directly on its neighbors. This allows us to model spatial

interactions among disparities.

MRF can be specified either by the joint distribution or by the local condi-

tional distribution. However, local conditional distributions are subject to non-

trivial consistency constraints, so the first approach is most commonly used. The

Hammersley-Clifford theorem gives a convenient way to specify an MRF. The

theorem states that D is an MRF on S with respect to N if and only if D is a

Gibbs random field (GRF) on S with respect to N [80]. Based on this MRF-GRF

equivalence, the MRF can be specified by the Gibbs distribution as:

P(D = d) =
1
Z exp(−U(d)), (3.1)

where Z is a normalizing constant called the partition function given by Z =

∑d∈D exp(−U(d)) and U(d) is a prior energy function given by U(d) = ∑c∈C Vc(d).
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Here, Vc(d) denotes the potential function of clique c and C is the set of all possi-

ble cliques. A clique c is defined as a subset of sites where each member of this

subset is a neighbor of all the other members. It consists either of a single site,

pair, or triple and so on. For simplicity, we consider pair wise cliques on a first-

order neighborhood consisting of the four nearest neighbors for each site (x, y).

Considering the pair wise interactions between pixels, the prior energy function

U(d) can be rewritten as:

U(d) = ∑
{(x,y),(x′,y′)}∈N

V{(x,y),(x′,y′)}(d(x, y), d(x′, y′)), (3.2)

where N is a set of all neighboring pairs of pixels {(x, y), (x′, y′)} referred as first

order neighborhood system. The disparity map d modeled as MRF can now be

specified as:

P(d) =
1
Z exp

(
− ∑
{(x,y),(x′,y′)}∈N

V{(x,y),(x′,y′)}(d(x, y), d(x′, y′))
)

. (3.3)

3.3 MAP-MRF Estimation

Our main goal is to find the disparity map d using a given rectified pair of stereo

images, left image IL ∈ RM×N and right image IR ∈ RM×N. In order to solve the

disparity estimation as a labeling problem, we consider one of the images to be

primary and the other one secondary. Let the left image IL be chosen as primary

image and the right image IR as secondary image. Let S be the set of pixel loca-

tions in IL and the task is to label each pixel in S with its disparity i.e., to estimate

the disparity map d. Once the prior knowledge about the d is modeled and the

data is known, the labeling problem of disparity estimation can be solved using

the Bayes estimation i.e., the maximum a posterior (MAP) which is obtained by

maximizing the posterior probability P(d|IL). We consider the primary image IL

as the data or the observation. Using Bayes rule, one can write:

P(d|IL) =
P(IL|d)P(d)

P(IL)
, (3.4)
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where P(d) is the prior probability of d, P(IL|d) is the conditional probability of

the data also called as likelihood probability, and P(IL) represents the distribution

of data which is constant and hence not considered while maximizing. The MAP

estimate d̂ can now be given as:

d̂ = arg max
d

P(d|IL) = arg max
d

P(IL|d)P(d). (3.5)

Taking the log we can write,

d̂ = arg max
d

log P(IL|d) + log P(d). (3.6)

We now define an appropriate model for likelihood probability P(IL|d). Let IL(x, y)

and IR(x + d(x, y), y) be the intensities at pixels (x, y) and (x + d(x, y), y), respec-

tively i.e., IL(x, y) and IR(x + d(x, y), y) are the projection of a scene point in left

and right images, respectively with disparity d(x, y). For a given disparity d(x, y),

the relationship between IL(x, y) and IR(x + d(x, y), y) can be represented as:

IL(x, y) = IR(x + d(x, y), y) + ζ(x, y), (3.7)

where ζ(x, y) is independent and identically distributed noise at pixel (x, y). We

assume that the noise at every pixel follows a Gaussian distribution with zero

mean and variance one. For a given d, the likelihood P(IL|d) can then be written as

a multiplication of individual conditional probabilities P((IL(x, y))|d(x, y)). One

can then express,

P(IL|d) = Π(x,y)∈SP((IL(x, y))|d(x, y)). (3.8)

Using Eq. (3.7) and making use of i.i.d. condition, one can write,

P((IL(x, y))|d(x, y)) = exp
(
− (IL(x, y)− IR(x + d(x, y), y))2). (3.9)
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Using Eqs. (3.8) and (3.9), we get,

P(IL|d) = exp
(
− ∑

(x,y)∈S
(IL(x, y)− IR(x + d(x, y), y))2

)
. (3.10)

Now, substituting the Eqs. (3.3) and (3.10) in Eq. (3.6), the MAP estimate is given

by,

d̂ = arg max
d

(
− ∑

(x,y)∈S
(IL(x, y)− IR(x + d(x, y), y))2 (3.11)

− ∑
{(x,y),(x′,y′)}∈N

V{(x,y),(x′,y′)}(d(x, y), d(x′, y′))
)

.

This is equivalent to minimizing the negative of the above function which is called

as energy function denoted by E(d) i.e.,

d̂ = arg min
d

E(d), (3.12)

where E(d) =

∑
(x,y)∈S

(IL(x, y)− IR(x + d(x, y), y))2

+ ∑
{(x,y),(x′,y′)}∈N

V{(x,y),(x′,y′)}(d(x, y), d(x′, y′)). (3.13)

3.4 Energy Minimization Framework

In dense disparity estimation, we wish to compute the disparity d(x, y) at every

pixel location (x, y) such that pixels in IL project to their corresponding pixels in

IR. When the disparity map is estimated using only the information about the

data, it results in an ill-posed problem. Additional constraints are needed to guar-

antee the uniqueness of the solution to make it better-posed. This results in reg-

ularizing the solution and a better estimate of the disparity map can be obtained.

The MAP labeling with a prior energy (MRF) is equivalent to regularizing the so-

lution. Hence, a regularized disparity map is obtained by minimizing the energy
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function given in Eq. (3.13).

A standard form of the energy function E(d) can be written as:

E(d) = ED(d) + EP(d), (3.14)

where the data term ED(d) measures how well the d to be estimated agrees with IL

and IR of the scene. The prior term EP(d) measures how good it matches with the

prior knowledge about the disparity map. In Eq. (3.13), the first term is considered

as ED(d) and the second term as EP(d) i.e.,

ED(d) = ∑
(x,y)∈S

(IL(x, y)− IR(x + d(x, y), y))2, (3.15)

and

EP(d) = ∑
{(x,y),(x′,y′)}∈N

V{(x,y),(x′,y′)}(d(x, y), d(x′, y′)). (3.16)

The data term ED(d) defined in Eq. (3.15) assumes that the two pixels (x, y) and

(x + d(x, y), y) in left and right image, respectively have the correspondence if

the intensities IL(x, y) and IR(x + d(x, y), y) are similar. Based on this brightness

(intensity) constancy assumption, it is given as the squared difference of corre-

sponding pixel intensities. Such data costs are referred as “intensity matching

cost”. Researchers have also used the intensity matching cost based on “absolute

difference” as well [114].

One common constraint on the disparity map is the “smoothness” i.e., the dis-

parity map is continously differentiable except at discontinuities. As discussed in

section 3.2, this smoothness constraint is used as a prior and it is often expressed

using the prior probability as MRF. Hence, considering pairwise interactions be-

tween pixels, the clique potential function in prior energy term is defined using

the smoothness prior as a function of finite difference approximations of the first

order derivative of disparity at each pixel location. In this case, the prior term

EP(d) measures the extent to which the smoothness assumption is violated by

d. In the stereo literature, several form of smoothness priors have been used

46



[114, 21, 117, 68, 143, 133, 67, 94]. Few of the smoothness priors are discussed

below.

Everywhere Smooth Prior

The everywhere smooth prior encourages the disparity map which are globally

smooth. To formalize this prior, one chooses V{(x,y),(x′,y′)}(d) in Eq. (3.16) to assign

higher penalties for larger differences between neighboring disparities d(x, y) and

d(x′, y′). Recall that {(x, y), (x′, y′)} ∈ N where N include a set all neighboring

pairs of pixels {(x, y), (x′, y′)}. Examples of such priors are:

• Quadratic

EP(d) = λ ∑
{(x,y),(x′,y′)}∈N

(d(x, y)− d(x′, y′))2. (3.17)

• Linear

EP(d) = λ ∑
{(x,y),(x′,y′)}∈N

|d(x, y)− d(x′, y′)|. (3.18)

Figure 3.1: Examples of everywhere smooth prior.

Here, λ is a positive constant and represents the penalty for departure from the

smoothness in d. The graphs of linear and quadratic are shown in Figure 3.1. The

limitation of using such prior is that the disparity maps get oversmoothed and the

discontinuities are not preserved [106].

In reality, the disparity maps are not smooth everywhere. Hence, a better

model would be one that reconstructs the smooth disparities while preserving the

sharp discontinuities. In order to take care of such a scenario, the discontinuity
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preserving smoothness priors such as piecewise constant and piecewise smooth

are used [21, 68, 117, 143].

Piecewise Constant prior

The piecewise constant prior encourages the disparity map consisting of several

regions where pixels in the same region have equal disparities. It can be obtained

by making V{(x,y),(x′,y′)}(d) zero if d(x, y)=d(x′, y′) and a constant otherwise. An

example of such prior corresponds to,

• Potts model

EP(d) = λ ∑
{(x,y),(x′,y′)}∈N

T(d(x, y) 6= d(x′, y′)), (3.19)

where T(.) is 1 if its argument is true and otherwise 0, and λ corresponds to

smoothness penalty.

Figure 3.2: Example of piecewise constant prior.

The graph of Potts prior is shown in Figure 3.2. Such priors preserve disconti-

nuities but are useful when the desired disparity map contains pieces of planar

regions.

Piecewise Smooth Prior

Piecewise smooth prior encourages disparity map consisting of several regions

where disparities in the same region vary smoothly. This prior can be constructed
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by choosing such a V{(x,y),(x′,y′)}(d) which assigns a higher penalty for the larger

difference between disparities d(x, y) and d(x′, y′) but sets a bound on the largest

possible penalty. This avoids overpenalizing sharp jumps between the dispari-

ties of neighboring pixels. Examples of such discontinuity preserving smoothness

functions are,

• Truncated quadratic

EP(d) = λ ∑
{(x,y),(x′,y′)}∈N

min
(
k, (d(x, y)− d(x′, y′))2). (3.20)

• Truncated linear

EP(d) = λ ∑
{(x,y),(x′,y′)}∈N

min
(
k, |d(x, y)− d(x′, y′)|

)
. (3.21)

The graphs of truncated quadratic and truncated linear are shown in Figure

3.3. Here, k is a constant that sets the upper bound on the magnitude of

V{(x,y),(x′,y′)}(d(x, y), d(x′, y′)).

Figure 3.3: Examples of piecewise smooth prior.

These edge preserving priors contain a pair of global parameters, the smoothness

penalty λ and discontinuity penalty k which are usually set by trial and error

method when working on a set of images. This process is time consuming and

the solution is highly sensitive to the values of these parameters. In order to over-

come this problem, the parameters can either be estimated [155] or learned from

a set of true disparities [111]. However, estimation or learning of parameters is

computationally expensive and requires a large amount of data.
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The another limitation with the use of these priors is that they are homoge-

neous MRF models i.e., the same set of global parameters are used at each pixel

location. This assumption is not valid in practice since the variation among dis-

parities at each pixel is different. These global parameters may not adapt to the

local structure of the disparity map and hence fail to better capture the spatial

dependence among disparities. We need an inhomogeneous MRF prior that con-

siders the spatial variation among disparities locally. This motivates us to use

an inhomogeneous Gaussian Markov random field (IGMRF) prior in our energy

function which was first proposed in [54] for solving the satellite image deblur-

ring problem. Use of IGMRF leads to spatially varying prior parameters thereby

allow varying degrees of spatial smoothing. IGMRF can handle smooth as well

as sudden changes in disparity map since it captures variation among disparities

at each pixel location. IGMRF based prior model has been successfully used in

solving satellite image deblurring problem [54], multiresolution fusion of satellite

images [57], and super-resolution of images [33]. In this work, we propose to use

an IGMRF as a prior model for disparity estimation in an energy minimization

framework.

3.5 Use of Graphs cuts for Optimization

The energy functions of the form given in Eq. (3.13) are usually non-convex i.e.,

they have multiple local minima. Minimization of such functions is an NP-hard

problem and hence computationally very expensive. In this thesis, we use the

graph cuts, an efficient optimization method for energy minimization. Graph cuts

[69, 21] guarantee that the solution so obtained either reaches the global optimum

or reaches local minima close to the global minimum with considerably less com-

putational time complexity. Graph cuts can be used for minimizing certain class

of energy functions only i.e., the functions must satisfy the regularity condition

[69, 21]. For example in Eq. (3.13), the first term is a function of a single pixel

(x, y) and a function of single variable is always regular while the second term

is a function of two variables, and it is regular iff V{(x,y),(x′,y′)}(d(x, y), d(x′, y′))
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is either “metric” or “semi-metric”. The basic approach in graph cuts is to con-

struct a graph of the energy function to be minimized such that the minimum cut

on the graph also minimizes the energy (either locally or globally). Kolmogorov

and Zabih [69] present a general purpose graph construction for minimizing an

energy function involving binary-valued variables only. The disparity estimation

considers the energy function involving non-binary variables, i.e. real valued dis-

parities, and this makes it NP-hard. The methods based on graph cuts can mini-

mize an energy function with non-binary variables by repeatedly minimizing an

energy function with binary variables in polynomial time.

The graph cuts algorithms are based on the expansion and the swap moves. It

has been proved that running the expansion algorithm iteratively results in ap-

proximate solutions within a known factor of the global minima for an energy

function with non binary labels provided that the smoothness term V{(x,y),(x′,y′)}

is a metric. Consider a labeling d and a particular label α. A new labeling d′ is de-

fined to be an α-expansion move from d, if d′(x, y) 6= α implies d′(x, y) = d(x, y).

This means that the set of pixels assigned the label α has increased when going

from d to d′. Similarly, consider a pair of labels α, β. A move from a labeling d to a

new labeling d′ is called an α− β swap, if d′(x, y) = d(x, y) for any label not equal

to α and β. This means that some pixels that were labeled α in d are now labeled

as β in d′, and some pixels that were labeled β in d are now labeled as α in d′. The

advantage of these moves is that they allow a large number of pixels to change

their labels simultaneously.

The expansion move algorithm cycles through the labels α ∈ L in some order

(fixed or random) and finds the lowest energy α-expansion move from the cur-

rent labeling. If this expansion has lower energy than the current labeling then

it becomes the current labeling. The algorithm terminates with a labeling that is

a local minimum of the energy with respect to expansion moves, more precisely

there is no α-expansion move for any label α, with lower energy. Similarly, the

swap move algorithm finds a labeling that is a local minimum of the energy with

respect to α− β moves. The key sub-problem in the expansion and swap move al-

gorithm is to compute the lowest energy labeling within a single α-expansion and
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α − β swap move of d, respectively. However, finding such a local minimum is

not a trivial task since there may be an exponential number of swap or expansion

moves for a given labeling d. This sub problem is solved efficiently with a simple

graph cut using a graph construction.

Let G be a directed graph consisting of a set of vertices V and set of edges E

with non-negative edge weights. It has two special vertices (terminals), namely

the source a and the sink b. A cut C referred as the a− b cut is a partition of the

vertices in V into two disjoint sets A and B such that a ∈ A and b ∈ B. The cost c

of the cut is the sum of costs of all edges that go from A to B,

c(a, b) = ∑
u∈A,v∈B,(u,v)∈E

c(u, v).

The minimum a− b cut problem is to find a cut C with the smallest cost. A min-

imum cut can be found in linear time by computing the maximum flow between

the terminals, according to the Ford and Fulkerson theorem [19]. Note that there

is a one to one correspondence between a cut C = A, B and a labeling d. It is a

mapping from the set of vertices V − {a, b} to {0, 1} where d(v) = 0 means that

v ∈ A and d(v) = 1 means that v ∈ B. This is an example of a cut when d is

considered as a binary valued labeling.

In order to solve the key sub problem of expansion or swap algorithm, a graph

is constructed for an energy function. It is proved in [69, 21] that the minimum

cut on the graph G corresponds to the lowest energy labeling within one expan-

sion or swap move from d. One may refer [69] for details of graph construction.

It is important to note that this sub problem is an energy minimization problem

over binary variables even though the overall problem that the expansion or swap

move algorithm is solving involves non binary variables. This is because, in ex-

pansion move each label will either keep its old value under d or acquire the new

label α.

As an example, any labeling d′ within a single α-expansion of the initial la-

beling d can be encoded by a binary labeling f = { f (x, y)|(x, y) ∈ S} where

d′(x, y) = d(x, y) if f (x, y) = 0, and d′(x, y) = α if f (x, y) = 1. Since the energy
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function E(d) is defined over all labelings, it is also defined over labelings speci-

fied by binary labelings. Hence, the key step here is to find the minimum of E( f )

over all binary labelings f . The importance of energy functions of binary vari-

ables results from the fact that a cut effectively assigns one of two possible values

to each vertex of the graph. So any energy minimization construction based on

graph cuts relies on intermediate binary variables.

3.6 Proposed Approach

We now present our proposed approach for dense disparity estimation using

IGMRF prior in an energy minimization framework.

3.6.1 IGMRF Model for Disparity

We model the disparity map d by an IGMRF prior in our energy function that ad-

justs the amount of regularization locally. To formalize this prior, the V{(x,y),(x′,y′)}(d)

in Eq. (3.16) is chosen as the square of finite difference approximation to the first

order derivative of disparities at each pixel. Let the prior term EP(d) defined

using IGMRF is denoted as EIGMRF(d) in our energy function. Considering the

differentiation in horizontal and vertical directions at each pixel location, one can

write EIGMRF(d) as [54]:

EIGMRF(d) = ∑
(x,y)

bX
(x,y)(d(x− 1, y)− d(x, y))2

+ ∑
(x,y)

bY
(x,y)(d(x, y− 1)− d(x, y))2. (3.22)

Here, bX and bY are the spatially adaptive IGMRF parameters in horizontal and

vertical directions, respectively. Thus, {bX
(x,y),b

Y
(x,y)} forms a 2D parameter vector

of IGMRF at each pixel location (x, y) in the disparity map. A low value of b indi-

cates the presence of an edge between two neighboring disparities. These param-

eters help us to obtain a solution which is less noisy in smooth areas and preserve

the depth discontinuities in other areas. Now, in order to estimate IGMRF param-

eters, we need the true disparity map which is unknown and has to be estimated.
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Therefore, an approximation of d has to be accurately determined if we want the

parameters obtained from it to be significant for regularization. To start the reg-

ularization process, we use an initial estimate of disparity map obtained using a

suitable approach and compute these parameters which are then used to estimate

the d.

3.6.2 Learning the Initial Estimate of Disparity Map

In this section, we discuss our proposed learning based approach for obtaining an

initial estimate of the disparity map. For this, we use a database of stereo images

and their corresponding ground truth disparity maps. This database is then used

to learn the true relationship of the spatial features of a disparity map across the

scales. The advantage of our learning method is that it is a simple approach and

unlike other learning based methods [111, 147] it do not need any probabilistic

model. Disparities are estimated from the available data itself. For learning, we

consider ns sets of stereo images of various scenes and each set has nv rectified

views. We obtain the disparity map for each of the stereo image set using the

standard multiple baseline stereo method [99]. A single level Gaussian pyramid

decomposition is applied on these nv views for each stereo set and disparities are

obtained on these using the same approach. A pyramidical decomposition is used

in order to better constrain the solution while learning. We now have a database

consisting of ns disparity maps estimated using the original data, ns disparity

maps corresponding to the Gaussian filtered and downsampled versions and ns

true disparity maps.

Given a test stereo image set with nv rectified views, we first use one level

Gaussian decomposition on these images. The same approach (for which the ini-

tial disparity of training set is estimated) of multiple baseline stereo is used to

obtain the disparity maps for the test stereo set as well as for their downsampled

versions. We divide the test disparity map into small patches of size 2 × 2 and

estimate the final disparities for each patch separately. Similarly, all the disparity

maps in the training set are also divided into small patches of size 2 × 2. To learn

the disparity, we start with the first patch of test disparity map with the corre-
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Figure 3.4: Block diagram of learning based approach for obtaining an initial esti-
mate of the disparity map. (Here, we used nv = 5 and ns= 60 in our experiments).

sponding single disparity value in its downsampled version and compare these

values with all the patches in training disparity maps with their corresponding

single disparity value in their downsampled versions. The comparison is done

using the sum of squared distance (SSD) measure. Let the patch of kth disparity

map in the training set gives the minimum SSD value with test disparity patch.

The location of that patch is noted and the disparity patch of kth true disparity

map in the training set is extracted from the noted location. These true dispar-

ities are the final learned disparities for the test stereo set. The same procedure

is repeated for all the patches in the test disparity map. This gives us the initial

estimate for the disparity map. Our proposed learning method for obtaining the

initial estimate is illustrated by the block diagram shown in Figure 3.4.

3.6.3 Estimation of IGMRF Parameters

In order to estimate the IGMRF parameters, we employ the method proposed in

[54]. The maximum likelihood estimate (MLE) of true disparity map g is,

b̂X = arg max
bX

(
log P(g|bX)

)
, and (3.23)
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b̂Y = arg max
bY

(
log P(g|bY)

)
. (3.24)

The log-likelihood derivatives are,

∂ log P(g|bX)

∂bX
(x,y)

= E
(
(d̂(x− 1, y)− d̂(x, y))

2)− ((g(x− 1, y)− g(x, y))2), (3.25)

∂ log P(g|bY)

∂bY
(x,y)

= E
(
(d̂(x, y− 1)− d̂(x, y))

2)− ((g(x, y− 1)− g(x, y))2), (3.26)

where E refers to the expectation operator, d̂ corresponds to the maximum a poste-

riori estimate of the disparity map and g is the true disparity map. Therefore, the

estimation problem consists of solving the systems given in Eqs. (3.25) and (3.26).

It can be seen that the expectation term only depends on the parameters bX, bY

and the other term only depends on g. This simplifies the estimation problem. It

is sufficient to compute the variance of each pixel difference with respect to the

prior laws E
(
(g(x− 1, y)− g(x, y))2) and E

(
(g(x, y− 1)− g(x, y))2). Jalobeanu

et al. [54] propose the simplest approximation of the local variance. The vari-

ance of the gradients (g(x− 1, y)− g(x, y))2 and (g(x, y− 1)− g(x, y))2 are equal

to the variance of the same gradients in the homogeneous case i.e., when all the

parameters are equal to the corresponding bX
(x,y) and bY

(x,y), respectively. Covari-

ance matrix of the homogeneous prior distribution is diagonalized by a Fourier

transform and variance can be calculated as 1/4bX and 1/4bY [1]. This gives us,

b̂X
(x,y) =

1

4
(
(g(x− 1, y)− g(x, y))2) , and (3.27)

b̂Y
(x,y) =

1

4
(
(g(x, y− 1)− g(x, y))2) . (3.28)

Since the true disparity map g is not available, we use an initial estimate d0 of dis-

parity map using our learning based approach discussed in previous subsection.

56



The parameters are obtained using,

b̂X
(x,y) =

1

4
(
(d0(x− 1, y)− d0(x, y))2) , (3.29)

b̂Y
(x,y) =

1

4
(
(d0(x, y− 1)− d0(x, y))2) , (3.30)

where d0(x, y)) is the disparity at location (x, y) in the initial estimate. The refined

estimates of the IGMRF prior parameters in X and Y directions are obtained using

the following equations:

b̂X
(x,y) ≈

1

max(4(d0(x− 1, y)− d0(x, y))2, 4)
, and (3.31)

b̂Y
(x,y) ≈

1

max(4(d0(x, y)− d0(x, y− 1))2, 4)
. (3.32)

As seen from the above equations, in order to avoid computational difficulty, we

set an upper bound b̂ = 1/4 whenever gradient becomes zero i.e., whenever the

neighboring disparities are the same. Thus, we set a minimum spatial difference

of 1 for practical reasons. This avoids obtaining high regularization parameter

that would slow down the optimization. It ensures that the pixels with zero dis-

parity difference are weighted almost same as those with small disparity differ-

ence (in this case with a disparity difference of one).

3.6.4 Final Disparity Map Estimation

In this section, we present our proposed approach for the estimation of dense dis-

parity map in an energy minimization framework. The block schematic of the

proposed approach is shown in Figure 3.5. Making use of the database of stereo

images and their corresponding ground truth disparity maps, we first obtain the

initial estimate of the disparity map. We then model the disparity map as an

IGMRF and estimate the IGMRF parameters from the initial estimate using Eqs.
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Figure 3.5: Block schematic of the proposed approach for dense disparity estima-
tion.

(3.31) and (3.32) at every pixel location. The IGMRF model on the disparity map

serves as the prior for the disparity estimation in which the prior parameters are

already known. The final estimate of disparity map is obtained by using the en-

ergy minimization framework where we use the energy function of the form given

in Eq. (3.14). We use the data term ED(d) as given in Eq. (3.15) and the prior term

EP(d) is defined by EIGMRF(d) using Eq. (3.22). Using these Eqs., the final energy

function to be minimized can be expressed as:

E(d) = ∑
(x,y)

(IL(x, y)− IR(x + d(x, y), y))2

+ ∑
(x,y)

bX
(x,y)(d(x− 1, y)− d(x, y))2

+ ∑
(x,y)

bY
(x,y)(d(x, y− 1)− d(x, y))2. (3.33)

Since the prior term is semi-metric in nature and the energy function is regular, it

can be efficiently minimized using graph cuts optimization based on α− β swap

move which quickly leads to the minima. The choice of an initial solution fed to

the optimization process determines the speed of convergence and hence use of

the initial estimate as the starting point speed-up the optimization process.

3.7 Experimental Results

In this section, we demonstrate the efficacy of the proposed method. We con-

ducted various experiments and evaluated our results on the Middlebury stereo
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Dataset [113] Size Disparity range
Venus 383× 434 0-20
Teddy 375× 450 0-64
Cones 375× 450 0-64

Table 3.1: Size of stereo images and their disparity range used for experimenta-
tions

datasets [113]. Experiments were conducted on the “Venus”, “Cones” and “Teddy”

stereo pairs belonging to Middlebury stereo 2001 and 2003 datasets [113]. The size

of each data set and disparity range are given in Table 3.1. For learning the initial

estimate, we create our training database using the stereo image pairs belonging

to Middlebury stereo 2005 and 2006 datasets [113] with ns=60 and nv=5. Note that

the dataset used here for training was different from the test dataset. We mention

that in all our works, we used “gray scale” stereo images for experimentations.

Figure 3.6 shows the left image, ground truth, initial estimate and the final

disparity map. Here, the disparity maps are represented as brightness images.

The brighter pixel indicates that the object point is nearer to the camera or at a

lesser depth and hence have the higher disparity because depth and disparity are

inversely proportional to each other. Similarly, darker pixel indicates the lesser

disparity and higher depth from the camera. We can clearly observe that the pro-

posed method gives pretty good disparity estimates in homogeneous as well as

textured regions while preserving the sharp discontinuities at object boundaries.

For example, it preserves the smooth variation of disparities in the various pla-

nar regions of “Venus” image and retains the discontinuities as well. Similarly, it

better captures the disparities locally in the cones and the face of the statue well

in the “Cones” image. Our method clearly preserves sharp discontinuities due to

the use of inhomogeneous MRF prior. Though, the initial estimate is piecewise

smooth but it shows noise in some homogeneous regions. One can see that the

final disparity map shows a significant improvement in smooth regions as well as

at object boundaries when compared to the initial estimate.

To perform the quantitative evaluation, we used the percentage of bad match-

ing pixels (B%) as the error measure with a disparity error tolerance δ. For an
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Left Image Ground Truth Initial Proposed

Figure 3.6: Results for the datasets of [113], “Venus” (1st row), “Teddy” (2nd row)
and “Cones” (3rd row).

Method Venus Teddy Cones
Initial Estimate (Proposed) 4.37 26.3 21.5
GraphCuts [21] 3.44 25.0 18.0
Final Estimate (Proposed) 3.12 21.3 17.8

Table 3.2: Quantitative evaluation of results on the Middlebury datasets [113] in
terms of % of bad matching pixels computed over the entire image with δ=1.

estimated disparity map d, the B% is computed with respect to the ground truth

disparity map g as follows [114]:

B =
1

M ∗ N ∑
(x,y)
|d(x, y)− g(x, y)| > δ, (3.34)

In all our works, the experiments were conducted on a computer with Core i7-

3632QM, 2.20 GHz processor and 8.00 GB RAM.

The quantitative evaluation of the proposed method is shown in Table 3.2.

We compare our results with those obtained using discontinuity preserving ho-

mogeneous MRF priors with energy minimization via graph cuts as proposed in

[21]. For example, truncated quadratic on “Venus” data set, and truncated linear
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on “Cones” and “Teddy” datasets is used. Results show that the use of IGMRF

prior significantly improves the performance when compared to the use of other

MRF priors. The results show the significance of learning as well as IGMRF regu-

larization. The average time for obtaining the initial estimate was approximately

100 seconds and it was approximately 60 seconds for obtaining final disparity

estimate via graph cuts optimization. The computation time for obtaining the ini-

tial estimate highly depends on the size of test image and the number of images

present in the training set. One may reduce the time complexity in obtaining the

initial estimate by using training images belonging to the same class as the test

image and this can be done by using suitable image retrieval algorithm as a first

step prior to building the database.

3.8 Conclusion

In this chapter, we have proposed a new approach for dense disparity estimation

in an energy minimization framework in which an IGMRF prior was used. The

model parameters were computed at each pixel location using the initial estimate

of the disparity map which was obtained using a learning based approach. A

database of stereo images and their corresponding ground truth disparity maps

were used in learning the initial estimate. Since our energy function is non con-

vex, we used a graph cuts based optimization technique that gives a solution close

to global optimum. The experimental results showed that the disparity maps ob-

tained using the proposed method were less noisy in homogeneous areas and

preserved the textures and sharp details in other regions. Our results demon-

strated that the use of IGMRF prior lead to better disparity map when compared

to edge-preserving homogeneous MRF priors.

An inherent limitation of the proposed learning algorithm for obtaining initial

estimate is computationally slow, and the quality of the solution depends on the

computed disparities that were used while learning. In addition to this, the accu-

racy of the IGMRF parameters depends on the quality of the initial estimate. One

can obtain better parameters by using a map close to the ground truth. The results
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indicated that the initial estimate was not free from noise in homogeneous regions

and contributed to bad matching pixels in the final solution which itself depends

on the inhomogeneous IGMRF parameters estimated using the initial estimate.

One can enhance the quality of the final results by improving the quality of initial

estimate.

In the next chapter, we propose an another method for dense disparity estima-

tion in an energy minimization framework. The approach uses a sparsity prior in

addition to IGMRF prior for regularizing the solution. We use a different method

for obtaining a good initial estimate for improving the accuracy of IGMRF param-

eters.
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CHAPTER 4

Sparseness based Regularization Framework

Dense disparity estimation is an ill-posed problem and it can be efficiently solved

in an energy minimization framework with the use of a proper regularization.

In the previous chapter, we proposed a disparity estimation method using an in-

homogeneous Gaussian MRF prior in the energy minimization framework. We

demonstrated that the use of IGMRF prior results in a better disparity map than

that obtained using edge-preserving homogeneous MRF priors. However, the

drawback of the IGMRF prior is that it fails to capture higher order dependen-

cies in the disparity map. To do this, one may use a triple-wise or a higher order

clique potentials. One of the recently proposed approach [133] uses second order

smoothness as a prior for disparity estimation. These priors capture the spatial

correlatedness among disparities in a larger neighborhood, and hence perform

better in untextured regions and slanted surfaces. However, these methods are

computationally very expensive. We need a prior that can model the disparity

characteristics in a larger neighborhood, without the need of higher order MRFs.

One example of such spatial regularization is sparsity prior.

In general, disparity maps are made up of homogeneous regions with a lim-

ited number of discontinuities resulting in redundancy. Because of this, one can

represent the disparities in a domain in which they are sparse. Here, sparsity

means that there are few significant pixel locations with nonzero values. This

transform domain representation can be obtained either using the fixed set of

basis such as discrete Fourier transform (DFT), discrete cosine transform (DCT),

discrete wavelet transform (DWT) [108, 42], or using an overcomplete dictionary

[3]. Finding sparse representations of depth or disparity maps is important for
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applications involving inverse problems such as depth denoising and inpainting

[88], and depth map compression [75]. In reality, finding the sparse representa-

tion of a disparity map is computationally expensive, and hence a better choice

would be to find the sparse representation of patches of small size individually

and average the resultant sparse patches in order to get the sparse representation.

The sparseness feature of the disparities can be considered as a prior knowledge,

and hence it can be incorporated as a sparsity prior while regularizing. The use

of sparsity information models the higher order dependencies that can be used

along with the IGMRF to get a better result. This is because each of the sparseness

coefficient captures the entire image characteristic, for example, for a 1D signal or

an image, the computation of a Fourier coefficient that represents the frequency

domain characteristic requires a complete signal/image and these coefficients are

sparse. Hence, we can say that sparsity prior captures higher order dependencies

in the signal/image.

In this chapter, we incorporate the sparsity prior in addition to the IGMRF

prior in our energy function. The sparsity prior captures sparseness in the dis-

parity map and is defined using the learned overcomplete sparseness of disparity

patches. In this chapter, we propose two learned overcomplete sparseness mod-

els for disparity estimation. In the first method, an overcomplete dictionary is

learned using K-singular value decomposition (K-SVD) algorithm. In the second

method, we use a sparse autoencoder for learning a better sparse representation

of disparities. In both these approaches, we use a better initial estimate obtained

using a classical local stereo method [114]. We also use a data term different from

the approach used in the previous chapter. Experiments are carried out to show

the effectiveness of using sparsity prior in improving the accuracy of estimated

disparity map.

4.1 Related Work

The first work to estimate the dense disparity map from sparseness was proposed

by Hawe et al. [42]. Here, the authors use a compressive sensing (CS) based ap-
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proach for reconstructing a disparity map from few disparity measurements. The

sparseness is represented using a fixed wavelet basis and the edge points are con-

sidered as sampling locations. The method requires an initial disparity map and

the sampling locations which are scene dependent. The accuracy of estimated fi-

nal disparities depends on the reliable initial estimate. In [40], a dictionary is used

to obtain sparse representation and the derived sparseness is used as regularizer

for reconstructing a depth map. The limitation of this approach is that the dictio-

nary is manually designed for 3D reconstruction in man-made environments.

Inverse ill-posed problems have been extensively studied for natural images

[22]. However, because of differences between image and depth statistics, it is not

obvious that the fixed set of basis, for example, DCT, DWT or DFT bases are the

most efficient way to represent the structure of depth/disparity maps. Thus, we

prefer to learn an efficient sparse representation from a large database of examples

instead of using a fixed basis. Learning the sparse representation has achieved su-

perior performance in solving various inverse problems [3]. For example, learned

sparseness using the overcomplete dictionary has been successfully used as a reg-

ularizer for solving the image denoising and inpainting problems [30, 85]. This

idea of learning a dictionary that yields sparse representations for a set of training

images has been studied in a number of works [100, 31, 73, 72, 3]. Here, the ad-

vantage is that the representation has higher accuracy than obtained with the use

of fixed basis and this can be done by adapting its columns to fit a given training

data [3]. This motivates us to learn the sparse representation of disparities using

an overcomplete dictionary and define a sparsity prior using the learned sparse-

ness. Such sparsity priors complement the IGMRF prior.

Recently, Tosic et al. [123] propose a two-layer graphical model for inferring

the disparity map. They include a sparsity prior in an existing MRF based stereo

matching framework. Here, the sparse representation of disparities is inferred by

a dictionary which is learned using a sparse coding technique which can cope up

with non-stationary depth estimation errors. Although, it performs better when

compared to discontinuity preserving homogeneous MRF prior, the solution can

be improved by using inhomogeneous MRF prior. However, their method is com-
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plex and computationally intensive.

4.2 Problem Formulation

Our main goal is to find the disparity map d for a given rectified pair of stereo

images IL and IR, and as done in the previous chapter we formulate the problem

as the minimization of the following energy function:

E(d) = ED(d) + EP(d). (4.1)

In the previous chapter, for defining the data term we made an assumption

that two pixels (x, y) and (x + d(x, y), y) in left and right image, respectively rep-

resent corresponding pixels if their intensities are similar. Based on this, we chose

the matching cost as a summation of the squared difference of corresponding pixel

intensities. However, there are special circumstances when corresponding pixels

may have very different intensities and this may be due to the effects of image

sampling, noise, different gains and biases of the left and right camera, discon-

tinuities, etc. Moreover, an intensity of a pixel may not represent the image of a

point in the scene but of a surface patch, and two pixels that contain correspond-

ing world points integrate light reflected from two different surface patches due

to foreshortening, depth discontinuities, lens blur, image sampling, etc.

Due to the effects of image sampling, the intensities of corresponding pixels

may change and the disparity may not be an integer. In this work, we derive our

data term using the intensity matching cost that is insensitive to image sampling

and robust to outliers proposed by Birchfield and Tomasi (BT) [13]. To do this, we

first measure how well a pixel (x, y) fits into the real-valued range of disparities

(d(x, y)− 1
2 , d(x, y) + 1

2) by finding,

F f wd
(x,y)(d(x, y)) = min

d(x,y)± 1
2

(
|IL(x, y)− IR(x + d(x, y), y)|

)
. (4.2)

Though, the intensities are known at integer locations only, linear interpolation

is used to obtain the intensity at non integer pixel location. F f wd
(x,y)(d(x, y)) is a
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matching cost function that measures the cost of assigning the disparity d(x, y)

to pixel (x, y) and considers IL as primary image and IR as secondary image. We

aim to derive a symmetric cost function such that when the reference image and

the target image are switched, the form of matching cost does not change. Also,

the symmetric matching cost improves the performance of global stereo methods

[145]. Hence, for symmetry, we also measure,

Frev
(x,y)(d(x, y)) = min

x± 1
2

(
|IL(x, y)− IR(x + d(x, y), y)|

)
. (4.3)

The final matching cost F(x,y)(d(x, y)) is computed by,

F(x,y)(d(x, y)) = min{F f wd
(x,y)(d(x, y)), Frev

(x,y)(d(x, y))}. (4.4)

Note that we estimate the integer disparities only. In order to make our matching

cost robust against outliers and occlusion, we use a truncation value τ on the cost.

Hence, F(x,y)(d(x, y)) can be rewritten as:

F(x,y)(d(x, y)) = min{F f wd
(x,y)(d(x, y)), Frev

(x,y)(d(x, y), τ)}. (4.5)

Further using Eq. (4.5), we give our data term ED(d) which is robust against

outliers and insensitive to image sampling by,

ED(d) = ∑
(x,y)

(
min{F f wd

(x,y)(d(x, y)), Frev
(x,y)(d(x, y), τ)}

)
. (4.6)

For finding the correspondences, we consider search from left to right as well as

from right to left and hence relax the traditional ordering constraint used in dis-

parity estimation. This results in positive as well as negative disparities.

In order to perform the regularization, we model d using its prior character-

istics and form the energy term EP(d). We define EP(d) as a sum of IGMRF and

sparsity priors, and it is given as:

EP(d) = EIGMRF(d) + γEsparse(d), (4.7)
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where EIGMRF(d) and Esparse(d) represent the IGMRF and sparsity prior terms,

respectively. Here, γ controls the weight of the term Esparse(d). The IGMRF prior

captures the spatial variation among disparities locally as well as it preserves

sharp discontinuities while the sparsity prior captures the higher order depen-

dencies in terms of sparseness in the disparity map. The combination of these

two priors better constrains the solution. We minimize our energy function using

graph cuts optimization. In general, for non-convex energy functions, graph cuts

results in a local minimum that is within a known factor of the global minimum.

In order to ensure global minimum, we use an iterative optimization with proper

settings of parameters. At every iteration, the IGMRF parameters and sparse-

ness are refined in order to obtain better disparity estimates (converging towards

global optima). The number of iterations may vary for different stereo pairs. In

the next sections, we discuss two proposed approaches for disparity estimation

based on overcomplete sparseness model learned using an overcomplete dictio-

nary and a sparse autoencoder, respectively.

4.3 Learning Sparseness using Overcomplete Dictio-

nary

In this method, the sparsity prior is defined using the spatially varying patterns

i.e., the disparity patches where each patch is encoded via a sparse representation

using the learned overcomplete disparity dictionary. Here, we learn the overcom-

plete dictionary and sparse representation of disparities using the K-SVD algo-

rithm.

4.3.1 Sparse Model for Disparity

The overcomplete dictionary model represents a useful framework for sparsely

representing the disparities. We consider a lexicographically ordered disparity

patch d(x,y) ∈ Rn of size
√

n×
√

n at a pixel location (x, y) in disparity map d 1.

1Note that d(x, y) is the disparity at location (x, y) and d(x,y) is the disparity patch at a location
(x, y) in d.
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Using an overcomplete dictionary D ∈ Rn×K that consists of K columns {Dj}K
j=1

such that n < K, a disparity patch d(x,y) can be represented as a linear combination

of these columns as:

d(x,y) = Da(x,y). (4.8)

The vector a(x,y) ∈ RK has the representation of d(x,y). The condition n < K is

called as overcompleteness. If n < K and D has a full rank, an infinite number of

solutions exists for the system in Eq. (4.8) and hence to obtain a unique solution, a

regularization term is added that encourages sparsity in the solution a(x,y). Thus,

the sparse solution is obtained by solving the following minimization problem,

min
a(x,y)

∣∣∣∣∣∣d(x,y) −Da(x,y)
∣∣∣∣∣∣2

2
s.t.

∣∣∣∣∣∣a(x,y)
∣∣∣∣∣∣

0
≤ t, (4.9)

where t is the maximum number of non-zero entries in sparse vector a(x,y). Here,

the sparsity is enforced by the ||.||0 i.e., the l0 norm. The sparse solution to Eq.

(4.9) is called “sparse coding” where we assume that the dictionary D is known

and fixed. The exact determination of sparsest solution is NP-hard and hence an

approximate solution is sought [28]. In past two decades, several approximation

algorithms have been proposed. The most popular and effective sparse coding al-

gorithms are, matching pursuit [86], orthogonal matching pursuit [124, 101], basis

pursuit [24] and focal under determined system solver [38]. A detailed descrip-

tion of these methods can be found in [3].

The choice of a dictionary plays a crucial role in obtaining the sparse solution,

and the best way is to learn it from the training set of examples [3]. The advantage

of using a learned overcomplete dictionary is that the representation would be

sparser than obtained with the use of fixed basis or predefined dictionaries, and

this is done by adapting its columns to fit a given training data. Overcomplete

dictionaries designed using K-SVD algorithm [3] have been successfully used in

many applications such as image denoising [30] and restoration [85]. This algo-

rithm is flexible and can work in conjunction with any pursuit algorithm. Due

to the simplicity and effectiveness of K-SVD algorithm, we propose to use it for

learning our overcomplete dictionary and inferring the sparse representation of

69



disparities.

The dictionary can be learned either from a large set of ground truths or from

the available data via K-SVD. For example, the authors in [30] consider two op-

tions for training the dictionary while solving the image denoising problem: (1)

training the dictionary on a corpus of patches taken from a high quality set of

natural images, or (2) training using patches from the available data i.e, corrupted

image itself. The idea of learning the dictionary using corrupted patches is natural

because the K-SVD has noise rejection capability [3], and we choose this idea of

dictionary training. We train our dictionary using the patches of estimated dispar-

ity map of the given stereo pair. Since the true disparity map is unknown and has

to be estimated, we use an initial estimate of the disparity map. The advantage

of our dictionary learning method is that the learned dictionary is adaptive to the

disparities of the given stereo pair and we do not require the large set of ground

truth maps for training. We now present the K-SVD algorithm for learning the

overcomplete dictionary of disparity patches.

4.3.2 The K-SVD Algorithm

We consider a training set G of overlapping disparity patches with each patch

d(x,y) ∈ Rn extracted at location (x, y) in the disparity map d ∈ RM×N. Let the

number of patches in training set G be nd. Given a training set, we seek an op-

timal overcomplete dictionary D that leads to the sparse representation for each

member d(x,y) in this set. Both the D and a(x,y) can be obtained by formulating the

problem as,

arg min
D,a(x,y)

∑
(x,y)

∣∣∣∣∣∣d(x,y) −Da(x,y)
∣∣∣∣∣∣

2

2
,

subject to ∀(x, y) ∈ S ,
∣∣∣∣∣∣a(x,y)

∣∣∣∣∣∣
0
≤ t. (4.10)

Here, a(x,y) ∈ RK represents the sparse vector of disparity patch d(x,y) ∈ G and

S is the set of sites or pixels. K-SVD is an iterative method that alternates be-

tween sparse coding of the training patches based on the current dictionary and

a process of updating the dictionary columns to better fit the data. The update
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of the columns of dictionary is combined with an update of the sparse represen-

tations, thereby accelerating convergence [3]. The algorithm can be described by

the following steps,

1. Set the initial dictionary D(0) ∈ Rn×K with l2 normalized columns. Start

with iteration number J = 1.

2. Repeat until convergence (stopping rule):

(a) Sparse Coding Stage: Using a pursuit algorithm to compute the sparse

representation a(x,y) for each disparity patch d(x,y) ∈ G by approximat-

ing the solution of,

∀(x, y) ∈ S min
a(x,y)

∣∣∣∣∣∣d(x,y) −Da(x,y)
∣∣∣∣∣∣2

2
s.t.

∣∣∣∣∣∣a(x,y)
∣∣∣∣∣∣

0
≤ t. (4.11)

(b) Dictionary Update Stage: For each column k = 1, 2, . . . , K in D(J−1),

update it as follows:

• Consider a matrix A with its column vectors as the sparse repre-

sentation a(x,y). Let the kth column of D is denoted as Dk and the

sparse coefficients of each patch correspond to Dk is the kth row in

A denoted as ak
T. With this, the penalty term (l2 norm) in Eq. (4.10)

can also be expressed as,

∑
(x,y)

∣∣∣∣∣∣d(x,y) −Da(x,y)
∣∣∣∣∣∣

2

2
= ||G − DA||2F

=

∣∣∣∣∣
∣∣∣∣∣G − K

∑
j=1
Dja

j
T

∣∣∣∣∣
∣∣∣∣∣
2

F

=

∣∣∣∣∣
∣∣∣∣∣(G −∑

j 6=k
Dja

j
T
)
−Dkak

T

∣∣∣∣∣
∣∣∣∣∣
2

F

=
∣∣∣∣∣∣Ek −Dkak

T

∣∣∣∣∣∣2
F
. (4.12)

Here, ||.||F corresponds to Frobenius norm. It can be clearly ob-

served that in Eq. (4.12), the multiplicationDA is decomposed into

sum of K number of rank-1 matrices. Among those, K− 1 terms are
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fixed and the error matrix Ek stands for the error for all the patches

in G when the kth column of D is removed. The error Ek is given

by,

Ek = G −∑
j 6=k
Dja

j
T. (4.13)

• Define wk as the group of indices pointing to patches in G that use

the dictionary column Dk i.e., where ak
T(i) is nonzero. Thus,

wk = {i|1 ≤ i ≤ nd, ak
T(i) 6= 0}. (4.14)

• Now, restrict Ek by choosing only the columns corresponding to

wk and obtain ER
k corresponding to this. Similarly, restrict ak

T by

discarding zero entries, resulting in a row vector ak
R of length |wk|.

Based on this, the penalty term given in Eq. (4.12) can now be writ-

ten as: ∣∣∣∣∣∣ER
k −Dkak

R

∣∣∣∣∣∣2
F
. (4.15)

The minimization of Eq. (4.15) w.r.t. Dk and ak
R can be efficiently

done via singular value decomposition (SVD). The SVD finds the

closest rank-1 matrix that approximates ER
k by decomposing ER

k =

X∆VT where X, ∆ and V correspond to orthonormal matrix con-

taining eigen vectors of ER
k ER

k
T, rectangular diagonal matrix con-

taining singular values of ER
k , and orthonormal matrix containing

eigen vectors of ER
k

TER
k , respectively. The updated solution for the

dictionary column Dk is chosen as the first column of X and the

updated sparse coefficient vector ak
R is chosen as the first column

of V multiplied by ∆(1, 1) i.e., the first element of matrix ∆.

(c) Set J=J+1.

The K-SVD algorithm efficiently learns dictionary as well as the sparse represen-

tation of each patch in the training set simultaneously. In our approach, the dic-

tionary is refined iteratively in order to obtain a better d.
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Figure 4.1: Block schematic of the proposed approach for dense disparity estima-
tion. Here, the sparseness is learned using the overcomplete dictionary, and the
algorithm starts with the use of an initial estimate and iterates until convergence.

4.3.3 Defining Sparsity Prior Esparse(d)

The learned dictionary and the sparse representations of disparity patches are

used in arriving at sparsity prior term Esparse(d). The sparsity prior is defined

using the disparity patches extracted at each location (x, y) in d where each patch

is encoded via a sparse representation using the learned overcomplete disparity

dictionary. For a learned D and a(x,y) obtained at every pixel (x, y), Esparse(d) is

then given by,

Esparse(d) = ∑
(x,y)

∣∣∣∣∣∣d(x,y) −Da(x,y)
∣∣∣∣∣∣

2

2
. (4.16)

Esparse(d) measures how well each disparity patch at location (x, y) in d agrees

with its sparse representations. It represents the reconstruction error over all dis-

parity patches in d.
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4.3.4 Dense Disparity Estimation

We now estimate the dense disparity map based on the formulation discussed in

section 4.2, and the block schematic for the same is shown in Figure 4.1. In the

chapter 3, we proposed a learning based approach for obtaining an initial esti-

mate of the disparity map. An inherent limitation of this learning algorithm is

that it is computationally slow and the quality of the solution depends on the raw

disparity estimates obtained using a multiple baseline approach given in [99]. The

accuracy of IGMRF parameters depends on the quality of the initial disparity es-

timates. Our results in chapter 3 showed that the initial estimate was noisy in

homogeneous regions and had bad match disparities, which in turn affected the

quality of the final results. In this chapter, we use a different approach for obtain-

ing an initial estimate in order to obtain a better disparity map. A classical local

stereo method [114] is used in which the absolute differences of corresponding

pixel intensities (AD) with truncation, aggregated over a fixed window is em-

ployed as a matching cost. In order to reduce computation time, we optimize this

cost by graph cuts instead of the classic “winner take all” (WTA) optimization.

Post-processing operations such as left-right consistency check, interpolation, and

median filtering [114] are applied in order to obtain a better initial estimate that

gives faster convergence while regularizing.

Using Eqs. (4.6), (3.22) and (4.16) defined for ED(d), EIGMRF(d) and Esparse(d)

terms, respectively our final energy function is given by,

E(d) = ∑
(x,y)

(
min{F f wd

(x,y)(d(x, y)), Frev
(x,y)(d(x, y), τ)}

)
+ ∑

(x,y)
bX
(x,y)(d(x− 1, y)− d(x, y))2 + ∑

(x,y)
bY
(x,y)(d(x, y− 1)− d(x, y))2

+γ ∑
(x,y)

∣∣∣∣∣∣d(x,y) −Da(x,y)
∣∣∣∣∣∣

2

2
. (4.17)

In order to minimize this, we start with the initial estimate of disparity map, and

iterate and alternate between the following two phases until convergence:
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Phase 1: With d being fixed, learn the dictionary D and obtain sparse vectors

a(x,y) at every pixel (x, y) by solving the optimization problem given in Eq. (4.10)

using K-SVD algorithm. With the current d, compute the IGMRF parameters bX
(x,y)

and bY
(x,y) at every pixel location using Eqs. (3.31) and (3.32).

Phase 2: With D, a(x,y), bX
(x,y), and bY

(x,y) fixed as obtained in phase 1, minimize

the Eq. (4.17) for d using the graph cuts method.

4.4 Learning Sparseness using Sparse Autoencoder

We now propose another method to estimate disparity in which we use sparse-

ness learned using autoencoder instead of K-SVD. In our formulation, the spar-

sity prior is defined using the spatially varying patterns i.e., the disparity patches

where each patch is encoded via an overcomplete sparse representation using the

learned weights of a sparse autoencoder. We first train our sparse autoencoder

using a large set of ground truth disparity patches and then infer the sparseness

of disparities using its learned weights. We demonstrate that the sparse repre-

sentation of disparities using sparse autoencoder is more effective than the use

of overcomplete dictionaries learned using K-SVD, and results in an improved

disparity map.

4.4.1 Motivation

Finding efficient sparse representation of natural images and depth maps using

the learned overcomplete dictionaries have been extensively studied since last

decade, and have shown excellent performance as priors in regularizing the ill-

posed problems [3, 30, 85, 123]. However, a practical problem with sparse coding

and dictionary learning techniques, for example, K-SVD algorithm is that they

are computationally expensive. This is because the dictionaries are learned by

iteratively recovering sparse vectors and updating one column of the dictionary

at a time [3]. Though, dictionary learning methods perform well in practice, they

use a linear system. Recent research suggests that non-linear, neural networks can
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achieve superior performance while learning an efficient representation of images

[11]. Examples of such networks are, sparse autoencoder [103, 78], belief network

[44, 12], convolutional neural network [53]. These networks learn the hierarchical

features of images at hidden layers including the sparse representation of images.

Among these methods, we are motivated to use sparse autoencoder for learning

the efficient overcomplete sparse representation of disparities. A sparse autoen-

coder performs well in solving vision problems since it has a structure similar to

human visual cortex [77, 78, 89]. It represents an unsupervised feature learning

algorithm and has been successfully used in regularizing the solution, for exam-

ple, in denoising [128] and inpainting [134] giving superior performance when

compared to the use of K-SVD based dictionary learning. Sparse autoencoders

can be easily generalized to represent complex models. In our work, we consider

a simple structure of sparse autoencoder comprising of a single hidden layer.

In our previous approach that was based on K-SVD, the learning of dictionary

was carried out at every iteration based on the current estimate of the disparity

map, and it added to the computational complexity of the algorithm. In this ap-

proach, we train our sparse autoencoder using a set of ground truth disparity

patches. Since the autoencoder is trained in an offline way, it does not add to the

computational complexity.

4.4.2 Sparse Model for Disparity

An autoencoder is an artificial feed forward neural network which sets the desired

output same as the input and has one hidden layer. It comprises of an encoder

that maps an input vector to a hidden representation and a decoder that maps

this hidden representation back to a reconstructed input.

Consider a lexicographically ordered disparity patch d(x,y) ∈ Rn at a pixel

location (x, y) in disparity map d. Let the input to an autoencoder be a disparity

patch d(x,y), its corresponding representation at hidden layer be a(x,y) ∈ RK, and

the reconstructed output be d̃(x,y) ∈ Rn. The input and the hidden layers have one

extra unit referred as bias unit. With this, the input, hidden and output layers have

n + 1 input, K + 1 hidden, and n output units, respectively. The autoencoder has
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Figure 4.2: An example of an autoencoder with n = 3 and K = 4. Here, +1
represents a bias unit.

the weights (W, U, r, s) where W ∈ Rn×K represents the encoder weight matrix

between the input and the hidden layer, U ∈ RK×n is the decoder weight matrix

between the hidden and the output layer, and r ∈ RK and s ∈ Rn are the bias

weight vectors for hidden and output layer, respectively. An element W(i, j) in

W denotes the weight associated with the connection between units i and j in the

input and the hidden layers, respectively. Similarly, any U(i, j) in U denotes the

weight associated with the connection between units i and j of hidden and output

layers, respectively. The element r(i) denotes the weight associated with the bias

unit in the input layer and unit i in the hidden layer. Similarly, the element s(i)

denotes the weight associated with the bias unit in the hidden and unit i in the

output layer. An example of an autoencoder is shown in Figure 4.2.

For a fixed set of weights (W, U, r, s), the a(x,y) and d̃(x,y) can be computed by

forward propagation as:

a(x,y) = f (WTd(x,y) + r), (4.18)

d̃(x,y) = f (UTa(x,y) + s), (4.19)

where f is an activation function and it is applied element wise on its input as

vector. We choose f to be a “sigmoid” function. For any value z ∈ R, it is defined
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as,

f (z) =
1

1 + e−z .

The activation value f (.) ranges between 0 and 1, increasing monotonically. As it

maps a very large domain of inputs to a small range of outputs, it is often referred

as a “squashing function”. The advantage of choosing sigmoid is that it is a non-

linear and a differentiable function.

The autoencoder learns an approximation to the identity function. Learning

an identity function is a trivial task but by placing constraints on the hidden layer,

one can discover interesting structure about the input data. An autoencoder is

called as sparse autoencoder when the sparsity constraint is imposed on its hid-

den layer. It learns an overcomplete sparse representation of input when the num-

ber of hidden units K is greater than the number of input units n i.e., K > n. Let

a(x,y)
j be the activation value of hidden unit j. A sparsity constraint on the acti-

vation of hidden units (neurons) is imposed by forcing them to be inactive most

of the time. A unit is active when its activation value is close to one and inac-

tive when it is close to zero. Let us define ρ as a global sparsity parameter for

all hidden units, typically a small value close to zero. Further, let ρ̂j be the aver-

age activation of hidden unit j (averaged over a training set of disparity patches).

Then the sparsity constraint for each jth hidden unit is enforced by a penalty term

which penalizes ρ̂j deviating significantly from ρ as:

K

∑
j=1

KL(ρ||ρ̂j) =
K

∑
j=1

ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j
, (4.20)

where KL(ρ||ρ̂j) is the Kullback Leilbler (KL) divergence between two Bernaulli

random variables with mean ρ and mean ρ̂j, respectively. KL-divergence is a stan-

dard function for measuring how different two distributions are. KL(ρ||ρ̂j) = 0 if

ρ̂j = ρ, and otherwise it increases monotonically as ρ̂j diverges from ρ.
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4.4.3 Training the Sparse Autoencoder

Consider a training set Gd={d(1), d(2), . . . , d(ng)} consisting of large number of dis-

parity patches with each patch d(i) ∈ Rn. One can extract these disparity patches

from the available ground truth disparity maps, and let the number of training

patches are ng. Using the training set Gd, we can train the sparse autoencoder to

learn the weights (W, U, r, s). To do this, first the following objective function is

formed:

1
ng

ng

∑
i=1

(
1
2
||d(i) − f (UT( f (WTd(i) + r)) + s)||22

+
η

2
(

n

∑
i=1

K

∑
j=1

(Wij)
2 +

K

∑
i=1

n

∑
j=1

(Uij)
2)

+β
K

∑
j=1

KL(ρ||ρ̂j). (4.21)

Here, the first term represents the average reconstruction error over all training

inputs and is formed using Eqs. (4.18) and (4.19). The second term is a regular-

ization term on the weights to prevent the overfitting by making them smaller

in magnitude, and η controls the relative importance of this term. β controls the

weightage of the third term which corresponds to sparsity penalty term given by

Eq. (4.20). Note that the ρ̂j in sparsity term is a function of W and r because it is the

average activation of hidden unit j, and the activation of a hidden unit depends

on the weights W and r i.e.,

ρ̂j =
1

ng

ng

∑
i=1

[
a(i)j (d(i))

]
,

where a(i)j (d(i)) denotes the activation of a hidden unit j when the sparse autoen-

coder is given ith input i.e., d(i). In order to train the sparse autoencoder, the

objective function defined in Eq. (4.21) is minimized w.r.t. (W, U, r, s) using well

known back propagation algorithm [93].
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Figure 4.3: Block schematic of the proposed approach for dense disparity esti-
mation. Here, the sparseness is learned using the sparse autoencoder, and the
algorithm starts with the use of an initial estimate and iterates until convergence.
Note that except K-SVD block all other blocks are the same as in Figure 4.1.

4.4.4 Defining Sparsity Prior Esparse(d)

The sparsity prior is defined using the disparity patches extracted at each location

(x, y) in d where each patch is encoded via a sparse representation inferred using

the learned weights of autoencoder. Once the sparse autoencoder is trained, d can

be modeled by the sparsity prior Esparse(d) as follows:

Esparse(d) = ∑
(x,y)

∣∣∣∣∣∣d(x,y) − f (UTa(x,y) + s)
∣∣∣∣∣∣2

2
. (4.22)

For the input disparity patch d(x,y), its corresponding sparse representation a(x,y)

is inferred from the trained sparse autoencoder using the forward propagation

given in Eq. (4.18).

4.4.5 Dense Disparity Estimation

We now estimate the dense disparity map based on the formulation discussed in

section 4.2. The block diagram of the proposed method is shown in Figure 4.3.
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Using Eqs. (4.6), (3.22) and (4.22) defined for ED(d), EIGMRF(d) and Esparse(d)

terms, respectively our final energy function is given by,

E(d) = ∑
(x,y)

(
min{F f wd

(x,y)(d(x, y)), Frev
(x,y)(d(x, y), τ)}

)
+ ∑

(x,y)
bX
(x,y)(d(x− 1, y)− d(x, y))2 + ∑

(x,y)
bY
(x,y)(d(x, y− 1)− d(x, y))2

+γ ∑
(x,y)

∣∣∣∣∣∣d(x,y) − f (UTa(x,y) + s)
∣∣∣∣∣∣2

2
. (4.23)

Our algorithm proceeds with the use of an initial estimate of disparity map, and

iterates and alternates between two phases until convergence. We use the same

method of obtaining initial estimate of disparity map as discussed in section 4.3.4.

The proposed algorithm can be described in following steps:

1. Input: Stereo image pair IL and IR, and a set of ground truth disparity

patches Gd={d(1), d(2), . . . , d(ng)}.

2. Sparse autoencoder training: Train the sparse autoencoder using Gd by min-

imizing Eq. (4.21), and obtain weights (W, U, r, s).

3. Initialization: Obtain an initial disparity map d0 and initialize d = d0.

4. Repeat until convergence,

(a) Phase 1: With d being fixed, infer the sparse vector a(x,y) for each dis-

parity patch d(x,y) in d using trained sparse autoencoder (Eq. (4.18)).

Compute IGMRF parameters bX
(x,y) and bY

(x,y) at each pixel location us-

ing Eqs. (3.31) and (3.32).

(b) Phase 2: With a(x,y), bX
(x,y), and bY

(x,y) fixed as obtained in phase 1, mini-

mize the Eq. (4.23) for d using graph cuts [69].

4.5 Experimental Results

In this section, we demonstrate the efficacy of our proposed approaches. In or-

der to estimate the dense disparity maps, we conducted various experiments and

evaluated our results on the Middlebury stereo datasets [113].
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Figure 4.4: Learned overcomplete dictionary for “Cones” image. Here, each col-
umn of dictionary has a size of 64× 1, and is displayed by a 8× 8 block in the
figure.

4.5.1 Parameter Settings

We first give the parameters used for learning our overcomplete dictionary using

K-SVD algorithm. Our dictionary was trained using the overlapping disparity

patches of the estimated disparity map (for example, when testing for “Cones”

stereo image of size 375× 450, we use nd = 163024 disparity patches). The size of

the dictionary D was chosen as 64× 256 with the size of a patch and dimension

of a sparse vector as 8× 8 = 64 and 256, respectively. The K-SVD algorithm used

orthogonal matching pursuit (OMP) algorithm for sparse coding with t = 16 and

converged within approximately 30 iterations. As an example, the learned over-

complete disparity dictionary for “Cones” stereo image is shown in Figure 4.4.

One can observe that the dictionary learns Gabor like filters and hence can cap-

ture edge like features of disparity patches.

In our second proposed approach, a sparse autoencoder is used for modeling

the sparseness in disparity map. We trained the sparse autoencoder using a set

of ng = 5× 105 true disparity patches extracted from the ground truth disparity

maps of Middlebury 2005 and 2006 stereo datasets [113]. Note that the training

set used here is different from the one used for testing. Here, also the size of each

disparity patch set to 8× 8 i.e., n = 64 and the dimension of sparse vector to K =

256. The parameters in Eq. (4.21) were empirically chosen as: η = 10−4, β = 0.1

and ρ = 0.01. With these parameter settings, the sparse autoencoder was trained

to obtain the weights (W, U, r, s). The learned weights W are shown in Figure 4.5.

We see that the different hidden units have learned to detect edges at different
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Figure 4.5: Learned weights W between the input and the hidden layer in the
trained sparse autoencoder. Here, each square block is of size 8× 8 which shows
the weights between a hidden unit and each input unit. Note that there are 256
hidden and 64 input units.

positions and orientations in the disparity patches.

Both of our algorithms for disparity map estimation were initialized with the

initial estimate and converged with in 5− 10 iterations for all the stereo pairs used

in our experiments. The parameter γ was initially set to 10−4 and exponentially

increased at each iteration from 10−4 to 10−1. We used the same parameters for all

the experiments and this demonstrates the robustness of our methods. Note that

in our first approach, the dictionary was learned using the estimated disparity

map. Since the dictionary was refined at each iteration based on the current esti-

mate of the disparity map, it added to the computational complexity. In the sec-

ond approach, the sparse autoencoder was trained from the set of ground truths.

Since it was an offline operation, it did not add to the computational complexity

of the algorithms. The average run time of our first approach based on dictionary

learning was 300 seconds, and was 130 seconds for the second one.

4.5.2 Quantitative Comparison

In order to perform the quantitative evaluation, we used the percentage of bad

matching pixels (B%) as the error measure with a disparity error tolerance δ. The

performance of the proposed approaches was tested under different scenarios. We

first estimated the disparity map using only the IGMRF prior. We then combined

IGMRF and sparsity priors but the sparseness of disparity was obtained using

fixed DCT dictionary. Finally, we tested the two methods in which the sparseness

was represented by the learned overcomplete dictionary and by trained sparse

autoencoder, respectively. In these four experiments, we used the initial estimate
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Method Venus Teddy Cones
Initial estimate 3.47 19.65 16.43
IGMRF based prior 1.78 18.1 14.42
IGMRF+DCT based prior 1.61 16.9 13.1
IGMRF+KSVD based prior (Proposed) 1.43 12.5 11.42
IGMRF+autoencoder based prior (Proposed) 0.22 10.7 9.64

Table 4.1: Evaluation results on the Middlebury datasets [113] in terms of % of
bad matching pixels computed over the entire image with δ=1. Comparisons are
made among different cases: (1st row): Initial Estimate. (2nd row): Using IGMRF
prior only. (3rd row): Using IGMRF and sparsity prior with DCT dictionary. (4th

row): Using IGMRF and sparsity prior learned using overcomplete dictionary
via K-SVD (Proposed). (5th row): Using IGMRF and sparsity prior learned using
sparse autoencoder (Proposed).

which was obtained from the method discussed in section 4.3.4. The Table 4.1

summarizes the disparity estimation results under these experimented cases.

The results in Table 4.1 show that the performance using the proposed meth-

ods are better when compared to other experimented cases. We can see that incor-

poration of sparsity prior in addition to IGMRF prior significantly improves the

performance or in other words, using the combination of sparsity with IGMRF

prior always performs better than the use of IGMRF prior alone. This is expected

because IGMRF and sparsity priors together capture the disparity characteristics

in different ways, and their combination serves as a better regularizer. It can be

clearly observed that the use of learned sparseness gives better results than the

use of fixed DCT dictionary. This shows the effectiveness of the learned sparse-

ness over the sparseness represented by fixed bases. Finally, the results in Table

4.1 indicate that method based on sparse autoencoder gives superior performance

when compared to that using the K-SVD based learning. This is because the

sparseness is better captured by the learned weights of autoencoder. Overall, the

results show the effectiveness of the learned sparseness using the overcomplete

dictionary and sparse autoencoder with the combination of IGMRF for accurate

disparity estimation.

We also tested the performance of our first method where we learned the dic-

tionary using the set of ground truth disparity patches rather than using the es-

timated disparities from a given stereo pair. We observed that the results were
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Left Image Ground Truth Initial IGMRF IGMRF+KSVD IGMRF+autoencoder

Figure 4.6: Disparity maps estimated for the datasets of [113], “Venus” (1st row),
“Teddy” (2nd row) and “Cones” (3rd row). (1st column): Left Image. (2nd column):
Ground Truth. Results for different experimented cases, (3rd column): Initial Es-
timate, (4th column): Using IGMRF prior only, (5th column): Using IGMRF and
sparsity prior learned using overcomplete dictionary via K-SVD (Proposed), and
(6th column): Using IGMRF and sparsity prior learned using sparse autoencoder
(Proposed).

not better and hence we considered the dictionary learned using the given stereo

pair. Contrary to this, in our second method, we used a set of ground truths for

training the sparse autoencoder because the sparse autoencoder works efficiently

for a large amount of training data.

Note that we do not include the results where the sparsity prior Esparse(d) is

used alone as a prior term in our energy function. We observed through our ex-

periments that if EP(d) is formed using Esparse(d) only then the solution converges

towards the initial estimate and no improvement is found. Hence, in order to ob-

tain better solution, we combine the Esparse(d) with EIGMRF(d) to form our prior

term.

4.5.3 Qualitative Analysis

Figure 4.6 shows the disparity maps obtained using different experimented cases.

One can see that the final disparity maps estimated by both the proposed methods

are piecewise smooth and visually plausible and show improvement in the qual-

ity over the initial estimate and the disparity maps computed using IGMRF prior
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Method Venus Teddy Cones
GraphCuts [21] 3.44 25.0 18.0
MultiGC [68] 3.13 17.6 11.8
SecondOrderMRF [133] 0.49 15.4 10.8
BeliefProp [143] 0.45 8.30 8.78
Mumford [10] 0.76 14.3 9.91
LearnedSparse [123] - 8.14 11.98
GroundPoints [131] 0.53 11.5 9.49
LearnedCRF [111] 1.3 11.1 10.8
CompressSensing [42] 0.68 13.30 9.79
TwostepGlobal [94] 1.49 9.40 7.66
ConsistencyPrior [59] 0.61 12.4 9.35
IGMRF+KSVD based prior (Proposed) 1.43 12.5 11.42
IGMRF+autoencoder based prior (Proposed) 0.22 10.7 9.64

Table 4.2: Comparison with the state of the art global dense stereo methods eval-
uated on the Middlebury stereo 2001 and 2003 datasets [113] in terms of % of bad
matching pixels computed over the entire image with δ=1.

only. Results show the effectiveness of learned overcomplete dictionary as well

as learned sparse autoencoder used for capturing the disparity characteristics in

a larger neighborhood. We can clearly observe that the proposed method based on

sparse autoencoder results in better disparity estimates in homogeneous/textureless

regions as well as in textured regions while preserving the sharp discontinuities

at object boundaries when compared to the method based on K-SVD dictionary

learning.

4.5.4 Comparison with the State of the Art Methods

In order to validate the results of both the proposed methods, we compare them

with the state of the art global dense disparity estimation methods in terms of

percentage of bad matching pixels (B%) as shown in Table 4.2. We see that our

methods perform significantly better when compared to the state of the art meth-

ods based on edge preserving smoothness priors [21, 68, 111]. Our method based

on sparse autoencoder gives superior performance when compared to that using

second order smoothness prior [133]. This shows the effectiveness of the learned

sparsity prior which captures the disparity characteristics in a larger neighbor-

hood without the need of computationally expensive higher order cliques used in
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Method Adiron Jadep Motor PianoL Pipes Playrm Playt Recyc Shelvs Vintage

AdaptSmooth [65] 14.3 24.5 9.82 31.3 9.80 28.9 22.4 17.8 45.4 31.8
MeshStereo [152] 20.6 35.3 20.6 37.9 23.4 39.5 34.1 25.9 53.0 35.6
HiddenMarkov
[104]

26.1 33.6 24.4 44.0 19.3 41.1 50.4 27.5 59.5 51.4

MultiDisparity [79] 25.0 35.9 30.4 41.7 29.0 42.7 47.8 31.3 54.5 43.6
PlaneSweep [115] 29.9 34.7 12.3 59.6 15.8 41.4 33.4 33.6 51.5 45.8
TwostepGlobal [94] 55.9 73.3 52.3 74.7 50.9 72.3 66.2 52.4 71.0 76.6
IGMRFAutoencoder
(Proposed)

62.4 67.5 60.2 69.1 34.9 71.2 79.9 65.9 79.9 60.1

Table 4.3: Quantitative evaluation on Middlebury stereo 2014 datasets [113], and
comparison with current better performing global dense stereo methods. Evalua-
tion is in terms of % of bad matching pixels in non-occluded regions with δ=1.

Markov random fields (MRF). It can be clearly seen from Table 4.2 that our method

based on sparse autoencoder works well for all the three datasets and gives the

least bad matching error for the “Venus” stereo pair. These results reflect the ef-

fectiveness of using IGMRF and learned sparseness for disparity estimation.

Before we end this section on experimental results, we discuss the experiments

on the recently released Middlebury stereo 2014 datasets. As seen from Table 4.2,

our method based on sparse autoencoder performs superior than the method that

uses K-SVD. Hence, here we compare the performance of our sparse autoencoder

based method with few of the latest global dense stereo methods discussed in

chapter 2. Table 4.3 shows the performance evaluation and the comparisons in

terms of B% using few of these datasets. Results indicate that the performance

of our method is comparable to the latest global stereo methods. We see that our

approach is not the best because the accuracy of our method is sensitive to the

parameters of the model, and one can enhance the results by carefully choosing

the parameters.

4.6 Conclusion

In this chapter, we have proposed the use of IGMRF and overcomplete sparsity

priors for dense disparity estimation. The IGMRF prior captures the spatial vari-

ation among disparities locally as well as it preserves sharp discontinuities while

the sparsity prior accounts for redundancy in disparities, and captures the sparse-

87



ness in the disparity map. The combination of these two priors better constrains

the solution. In our first method, the sparse representation of disparities is ob-

tained by using an overcomplete dictionary which is learned using the K-SVD

algorithm. Though, this kind of learning is adaptive and do not require a large set

of ground truths while training, it is a linear model. Our second approach based

on a sparse autoencoder is non-linear and better captures the sparseness. Both the

approaches are iterative and use alternate minimization until convergence. Our

method based on K-SVD is computationally expensive since the dictionary is also

refined in the two-phase algorithm. We have shown that the combination of spar-

sity and IGMRF priors always perform better than the use of IGMRF prior alone.

We have also demonstrated the effectiveness of learning the sparseness instead of

using fixed basis. Our methods show the superior performance over the state of

the art and comparable preformance with the latest methods global stereo meth-

ods.

In the next chapter, we propose a different energy minimization framework

for disparity estimation where we introduce feature matching as an additional

matching cost in the data term.
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CHAPTER 5

Use of Hierarchical Feature Matching

We solve the dense disparity estimation problem in an energy minimization frame-

work. However, solutions with lower energy do not always correspond to better

performance [120]. It is important to define a proper energy function in order to

obtain a better solution. To arrive at the energy function, a set of constraints are

incorporated that assigns minimum energy to the solution satisfying these con-

straints. For example, an energy function which is a combination of data and

prior terms is commonly used for disparity estimation. In chapter 3, we used an

energy function with IGMRF prior, and in chapter 4, a combination of IGMRF and

sparsity priors was incorporated in the energy function. In these chapters, we fo-

cused on arriving at a proper energy function by using suitable priors. The choice

of appropriate data constraint also plays an important role. Hence in this chapter,

we propose to use a new data term keeping the prior as IGMRF.

5.1 Motivation and Related Work

In an energy function, data term measures how well the disparity map to be es-

timated agrees with the observation i.e., left and right images of a scene. The

data term is generally defined by using the pixel based matching cost between

the intensities of corresponding pixels in the left and right images. It is built on

the brightness constancy assumption. In chapter 3, we used the data term as a

sum of squared intensity differences at corresponding pixels. Due to the effects

of image sampling, noise, depth discontinuities, occlusion, view-point and illu-

mination variation, etc., corresponding pixels may have different intensities, and
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hence various robust matching costs are used to reduce such effects [114, 110, 47,

21, 117, 143, 68]. In chapter 4, we considered a data term that is insensitive to im-

age sampling using the technique proposed in [13]. In addition, robust window

based matching costs have been commonly used in stereo methods. A pixel based

matching cost can be extended to window based matching cost by integrating the

pixel based costs within a certain neighborhood, and such costs include: normal-

ized cross correlation [114], rank and census transform [92], bilateral filtering [94],

etc. However, these costs assume that every pixel in a patch has the same dispar-

ity and such an assumption does not hold in practice. To overcome this limitation,

Jung et al. [58] propose to use a data term based on higher order likelihood model

of stereo images. This method results in robust estimates around disparity dis-

continuities but it is computationally very expensive.

Although, the conventional pixel or window based matching costs are robust

against the outliers, occlusion, discontinuities, view-point variation, etc., they rely

only on the raw pixel values (intensities). Therefore, the use of data term defined

using intensity matching results in ambiguous estimates. One can represent stereo

images in a better way by using a feature space where they are robust, distinct

and view-point invariant [39, 6, 56]. The basic features, for example, edges, gra-

dients, corners, segments, and learned features are commonly used for matching

the stereo images. Since these features are extracted at few locations, the meth-

ods based on feature matching yield sparse disparity maps [56, 23, 132, 25, 102].

The dense map can be obtained by simply interpolating the sparse disparity map.

However, interpolation is not a good choice because it results in inaccurate dis-

parities. In our work, we use feature matching to obtain the dense disparity map

by using it in the data term in a global framework.

Hong et al. [48] and Klaus et al. [66] use non-overlapping segments of the

stereo images as features and cast the dense stereo matching problem as an en-

ergy minimization in segment domain instead of pixel domain where the dispar-

ity plane is assigned to each segment via graph cuts or belief propagation opti-

mization technique. Their approaches assume that the disparities in a segment

vary smoothly which is not true in practice due to the depth discontinuities. Also,
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the solution here relies on the accuracy of segmentation which is a non-trivial task.

Hirschmuller [46] uses the mutual information (MI) based feature matching in an

MRF framework for estimating the dense disparities. Wang and Zhang [76] ob-

tain dense correspondences from sparse matches using the propagation and seed

growing methods. The accuracy in such approaches depends on the initial sparse

disparity estimates. However, matching based on basic features still results in

ambiguities, especially in textureless areas. Hence to reduce the ambiguities, one

needs to use more descriptive features. Hand crafted features of stereo images

are designed and then embedded in an MRF model for disparity estimation in

[109]. Recently, Liu et al. [82] propose a scale invariant feature transform (SIFT)

flow algorithm for finding the dense correspondences by matching the pixel-wise

SIFT descriptors while preserving spatial discontinuities using MRF regulariza-

tion. Similarly, a deformable spatial pyramid model is proposed in a regulariza-

tion framework using multiple SIFT features by Kim et al. [64]. The drawback

of these approaches is that designing such features is computationally expensive,

time consuming, and requires domain knowledge of the data.

Recently, there has been a considerable progress in feature learning using ma-

chine learning methods in order to estimate disparity [111, 147]. Feature learning

is attractive as it exploits the availability of large amount of data and avoids the

need of feature engineering. Zhang and Shen [153] propose unsupervised feature

learning for dense stereo matching. They learn the features from a large num-

ber of image patches using K-SVD dictionary learning approach. The drawback

here is that the features are learned using image patches and not the entire im-

age i.e., global contextual constraint is not considered while learning the features.

Also, higher level features are not learned, instead they are estimated using a

simple max pooling operation from the layer beneath. Here, the higher layer cor-

respondence matches are used to initialize the matching at lower layer and hence

the accuracy depends on the higher layer matches only. Currently, deep learn-

ing approaches have been developed [11] and achieved excellent performance in

solving many computer vision problems such as image classification [74], image

restoration [128], super-resolution [29], object detection [37], semantic segmen-
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tation [97], visual tracking [49], action recognition [55], etc. Deep learning is a

branch of machine learning based on a set of algorithms that attempt to model

high-level abstractions in data by using deep architectures composed of multiple

linear/non-linear transformations [11]. Deep learning is more than a traditional

supervised learning where label information is readily available in training. That

is, rather than focusing on feature engineering which is often labor-intensive and

varies from one task to another, deep learning methods are focused on end-to-end

learning based on raw data. To accomplish end-to-end optimization starting with

raw features and ending in labels, layered structures are used for example, neu-

ral networks. At each layer different intermediate representation (abstraction) of

raw input are learned. Many deep learning algorithms are framed as unsuper-

vised learning problems. Because of this, these algorithms can make use of the

unlabeled data that supervised algorithms cannot. Unlabeled data is abundant,

making this an important benefit of these algorithms. Hence using deep learning,

one can obtain hierarchical features of input images from the unlabeled data. Few

such approaches include: deep autoencoders [78], deep belief networks [44, 12],

deep convolutional network [60] and deep deconvolutional network [150, 151],

etc.

Deep learning field has also attracted the attention of stereo vision researchers

in recent years. Zbontar and Lecun [149] use the deep convolutional neural net-

work for learning similarity measure on small patches of left and right images.

They train the network in a supervised manner by constructing a binary classi-

fication dataset with examples of similar and dissimilar pair of patches. Based

on the learned similarity measure, the disparity map is estimated using the tradi-

tional stereo methods, for example, cross based aggregation [154] and semi global

matching [46] methods. Here, the learning is done on small size patches instead

of entire image i.e., global contextual constraint is not taken into account while

learning the similarity measure. The method does not provide a single frame-

work for dense disparity estimation though it improves the results of state of the

art stereo methods. In [91], a convolutional neural network is used to directly

predict the disparity map from a pair of stereo images. Given a large dataset
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consisting of stereo image pairs as input and the corresponding ground truths as

output, the network is trained end to end for learning the disparities for the in-

put stereo image pair. In their architecture, features of left and right images are

learned separately at lower level and then at higher level these feature maps are

matched or compared using the correlation layer. The layers on top of the correla-

tion layer learn predicting disparities from matches. In other words, their method

learns the image feature representations and also learn to match them at different

locations in the two images.

In this chapter, we propose yet another approach for dense disparity estima-

tion in a global energy minimization framework. Inspired by the recent develop-

ment in deep learning methods, we propose to use a feature matching cost which

is defined using the learned hierarchical features of given left and right stereo

images. The hierarchical features are learned using the deep deconvolutional net-

work [150] which is trained in an unsupervised way using a database consisting

of large number of stereo images. Since the intensity values are available at every

pixel location, we combine our learned feature matching cost with the pixel based

intensity matching cost and estimate the dense disparity map. The combination

of these two matching costs form the data term in our energy function, better con-

strains the solution. As a regularization prior, we use IGMRF in our energy func-

tion that captures the smoothness as well as preserves the sharp discontinuities in

the disparity map. As in the previous chapter, an iterative two phase algorithm

is proposed to estimate the dense disparity map. IGMRF prior parameters are

computed in phase one keeping the disparity map fixed, and in phase two the

disparity map is refined by minimizing the energy function using graph cuts by

fixing IGMRF parameters. We demonstrate the effectiveness of the use of learned

feature matching on the disparity estimation by conducting experiments on the

standard datasets.
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5.2 Problem Formulation

As done in the earlier chapters, the disparity map d is obtained by minimizing the

energy function:

E(d) = ED(d) + EP(d). (5.1)

In this work, the data term ED(d) consists of both the intensity matching EI(d)

and the feature matching costs EF(d) i.e.,

ED(d) = EI(d) + µEF(d), (5.2)

where µ controls the weight of EF(d). For a given d, the terms EI(d) and EF(d)

measure the dissimilarity among corresponding pixel intensities and correspond-

ing features in IL and IR, respectively. Using the Eqs. (4.2), (4.3) and (4.6), EI(d)

can be expressed as,

EI(d) = ∑
(x,y)

(
min{F f wd

(x,y)(d(x, y)), Frev
(x,y)(d(x, y), τ I)}

)
. (5.3)

where τ I is the truncation threshold which is used to make EI(d) robust against

outliers and occlusion. For defining the feature matching cost EF(d), we extract

the features of stereo image pair at multiple layers of deep deconvolutional net-

work, and the same is discussed in next section. We consider the search from left

to right as well as from right to left for finding the disparities, as done in chap-

ter 4. In order to perform the regularization, we use the same prior as used in

chapter 3 i.e., we model d as IGMRF and form EP(d). The final energy function

is minimized using graph cuts optimization. An iterative optimization is carried

out and at every iteration the IGMRF parameters are refined in order to obtain a

better estimate of the disparity map.
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5.3 Deep Deconvolutional Network for Extracting Hi-

erarchical Features

Deconvolutional network [150] is an unsupervised feature learning model that

is based on the convolutional decomposition of images under sparsity constraint

and generates sparse, overcomplete features. Stacking such network in a hierar-

chy results in a deep deconvolutional network. In our approach, we train a deep

deconvolutional network using a large set of stereo images, and learn both the

filters and the features as done in an image deconvolution problem. The learned

filters capture the image information at different layers in the form of low-level

edges, mid-level edge junctions, and high-level object parts. The deep deconvo-

lutional network is quite different from the deep convolutional neural networks

(CNN). The Deep CNN [60] is a bottom-up approach where an input image is

subjected to multiple layers of convolutions, non-linearities, and subsampling

whereas deep deconvolutional network is a top down approach. Here, an input

image is generated by a sum over convolutions of the feature maps with learned

filters. Unlike deep CNN, the deep deconvolutional network does not spatially

pool features at successive layers and hence preserves the mid-level cues emerg-

ing from the data such as edge intersections, parallelism, and symmetry. Con-

trary to deep autoencoders [78] and deep belief networks [44], they scale well to

the entire image and hence learn the features for the full input image instead of

small size patches. This makes them consider global contextual constraint while

learning. In chapter 4, we used K-SVD and sparse autoencoder for learning the

sparseness of disparities. Both these approaches consider the disparity patches

and cannot scale well to entire disparity map. Hence, here we use the deep decon-

volutional network which considers the entire stereo image for feature learning.

5.3.1 Training the Deep Deconvolutional Network

We first consider a deconvolutional network having a single layer. To train this

network, a training set consisting of a large number of stereo images I={I1, . . . , Ins}
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are used where each image Ii is considered as an input to the network. Here, ns

is the number of images in the training set I and we consider only left images

of different scenes for training the network. Note that one may use right stereo

images as well. Let P1 be the number of 2D feature maps in the first layer. Con-

sidering the input at layer 0, we can write each image Ii ∈ I as composed of P0

channels {Ii
1, . . . , Ii

P0
}. For example, if we consider a color image, we have P0=3.

Each channel c of input image Ii can be represented as a linear sum of P1 feature

maps si
p convolved with filters fp,c i.e.,

P1

∑
p=1

si
p ⊕ fp,c = Ii

c, (5.4)

where ⊕ represents the 2D convolution operator. In our work, we have used gray

scale stereo images only and hence P0=1. If Ii is an M× N stereo image and the

filters are of size H × H then each feature map has a size of (M + H − 1)× (N +

H − 1). We see that Eq. (5.4) represents an under-determined system since both

the features and filters are unknown and hence to obtain a unique solution to both

the features and filters, a regularization term is also added that encourages spar-

sity in the latent feature maps. This gives us an overall cost function for training

a single layer deconvolutional network with input training set I as:

C1(I) =
ns

∑
i=1

[
α

2

P0

∑
c=1

∣∣∣∣∣
∣∣∣∣∣ P1

∑
p=1

si
p ⊕ fp,c − Ii

c

∣∣∣∣∣
∣∣∣∣∣
2

2

+
P1

∑
p=1

∣∣∣∣∣∣si
p

∣∣∣∣∣∣
1

]
. (5.5)

Here,
∣∣∣∣∣∣si

p

∣∣∣∣∣∣
1

is the l1-norm on the vectorized version of si
p that encourages sparsity

in si
p. The relative weighting of the reconstruction error of each Ii and the sparsity

of their feature maps si
p is controlled by the parameter α. The network is learned

by minimizing C1(I) with respect to si
p’s and fp,c’s when the input to network is

I . Note that the set of filters fp,c are the parameters of the network, common to

all images in the training set while each image has its own set of feature maps si
p.

The single layer network described above can be stacked to form a deep decon-

volutional network consisting of multiple layers. Let the deep network is formed

by NL number of layers, (l = 1 . . . NL). This hierarchy is achieved by considering
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Figure 5.1: A deep deconvolutional network illustrating learning of lth layer.

the feature maps of layer l − 1 as the input to layer l, l > 0. In this case, the P0

channels of an input image are considered as feature maps at layer 0. Let Pl−1 and

Pl are the number of feature maps at layer l − 1 and l, respectively. The cost func-

tion for training the lth layer of a deep deconvolutional network can be written as

a generalization of Eq. (5.5) as:

Cl(I) =
ns

∑
i=1

[
α

2

Pl−1

∑
c=1

∣∣∣∣∣
∣∣∣∣∣ Pl

∑
p=1

gl
p,c(s

i
p,l ⊕ f l

p,c)− si
c,l−1

∣∣∣∣∣
∣∣∣∣∣
2

2

+
Pl

∑
p=1

∣∣∣∣∣∣si
p,l

∣∣∣∣∣∣
1

]
, (5.6)

where si
c,l−1 and si

p,l are the feature maps of image Ii at layer l − 1 and l, respec-

tively and thus it shows that layer l has as its input coming from Pl−1 channels. f l
p,c

are the filters at layer l and gl
p,c are the elements of a fixed binary matrix that deter-

mine the connectivity between the feature maps at successive layers i.e., whether

si
p,l is connected to si

c,l−1 or not. For l = 1, we assume that gl
p,c is always 1 but

for l > 1, we make this connectivity as sparse. Since Pl > 1, the model learns

overcomplete sparse feature maps. This structure is illustrated in Figure 5.1.

A deep deconvolutional network having NL number of layers (l = 1 . . . NL)

is trained upwards in a layer wise manner starting with the first layer (l = 1)

where the inputs at layer l=0 are the training images I . Each layer l is trained in

order to learn a set of filters f l
p,c which is shared across all images in I and infer

the set of feature maps si
p,l of each image Ii in I . To learn the filters, we alternately

minimize Cl(I) w.r.t. the filters and feature maps by keeping one of them constant
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while minimizing the other.

5.3.2 Feature Encoding

Our goal here is to extract the hierarchical features of the given left IL and the right

IR stereo images using the trained deep deconvolutional network. The network

described above is top-down in nature i.e., given the latent feature maps and the

filters, one can synthesize an image. But unlike the deep autoencoder [103] or

deep belief networks [44], there is no mechanism (for example, encoder) for di-

rectly generating the feature maps from the given input apart from minimizing

the cost function Cl in Eq. (5.6). Hence, once the network is learned/trained, we

apply the given IL and IR separately as input to the trained deep deconvolutional

network with the fixed set of learned filters and infer the feature maps sIL
p,l and sIR

p,l

of IL and IR at layer l, respectively by minimizing the cost functions Cl(IL) and

Cl(IR), respectively. For IL, we stack its Pl number of inferred feature maps sIL
p,l

and obtain a single feature map ZIL
l thereby we get a feature vector of size Pl × 1 at

every pixel. Similarly for IR, we obtain a feature map ZIR
l thereby we get a feature

vector of size Pl × 1. These two vectors represent lth layer features of IL and IR,

respectively at pixel (x, y).

5.3.3 Deriving Feature Matching Cost EF(d)

Once the features of IL and IR are obtained at each layer of the deep deconvolu-

tional network, we arrive at our learned feature matching cost EF(d) as follows:

EF(d) =
NL

∑
l=1

∑
(x,y)

min(|ZIL
l (x, y)− ZIR

l (x + d(x, y), y)|, τF). (5.7)

At each pixel location (x, y) having disparity d(x, y), Eq. (5.7) measures the abso-

lute distance between the feature vector ZIL
l (x, y) and the corresponding matched

feature ZIR
l (x + d(x, y), y). Similar to intensity matching cost, τF represents the

truncation threshold.

Note that in our problem formulation, we do not use the feature matching cost

alone to define the data term. As the deconvolutional network learns the sparse
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features i.e., it results in the significant features at few locations in the image.

Now, if one uses only the feature matching cost as a data term then at those pixel

locations where the features are not significant, it results in ambiguous disparity

estimates. Since the intensity values are available at every pixel location, we de-

fine our data term using a combination of intensity and feature matching costs.

The combination of intensity and learned feature matching better constrains the

solution space and hence results in unambiguous and dense disparities.

5.4 Dense Disparity Estimation

Our proposed method for obtaining the dense disparity map can be explained

using a block schematic, shown in Figure 5.2. As discussed in section 5.2, in order

to obtain the dense disparity map, we minimize the energy function given in Eq.

(5.1). Our data term given in Eq. (5.2) consists of intensity and feature matching

costs that are given in Eqs. (5.3) and (5.7), respectively. Similarly, our prior term

uses IGMRF as given by Eq. (3.22). The final energy function to be minimized is

then given by,

E(d) = ∑
(x,y)

(
min{F f wd

(x,y)(d(x, y)), Frev
(x,y)(d(x, y), τ I)}

)
+µ

NL

∑
l=1

∑
(x,y)

min
(
|ZIL

l (x, y)− ZIR
l (x + d(x, y), y)|, τF)

+ ∑
(x,y)

bX
(x,y)(d(x− 1, y)− d(x, y))2 + ∑

(x,y)
bY
(x,y)(d(x, y− 1)− d(x, y))2. (5.8)

Note that although we do not consider the occlusions explicitly, they are handled

by clipping the matching costs using thresholds {τ I , τF}. Our algorithm proceeds

with the use of an initial estimate of disparity map, and iterates and alternates

between the following two phases until convergence. As already discussed in

Chapter 4, the two phase minimization is done as follows:

Phase 1:With d being fixed, compute IGMRF parameters bX
(x,y) and bY

(x,y) using

Eqs. (3.31) and (3.32), at each pixel location.
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Figure 5.2: Block schematic of the proposed approach for dense disparity estima-
tion. Here, the algorithm starts with the use of an initial estimate and iterates until
convergence. Note that the given IL and IR are applied separately as input to the
trained deep deconvolutional network in order to obtain the hierarchical features.

Phase 2: With {bX
(x,y), bY

(x,y)} fixed as obtained in phase 1, minimize the Eq. (5.8)

for d using graph cuts optimization based on α-β swap moves [69].

5.5 Experimentations

In this section, we demonstrate the efficacy of our proposed method by conduct-

ing various experiments and also testing our results on the Middlebury stereo

datasets [113].

5.5.1 Parameter Settings

We first provide the details of various parameters used in training the deep decon-

volutional network. In our experiments, a 2-layer deep deconvolutional network

was trained over ns=60 left stereo images downloaded from the Middlebury 2005
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Figure 5.3: Filters learned at first and second layers of the deep deconvolutional
network. (a.) Filters learned at first layer (9). (b.) Filters learned at second layer
(81) where 36 filters in pair are shown in color and remaining 9 filters are shown
as gray scale.

and 2006 datasets [113]. Considering NL=2, we set the number of feature maps

at layer 1 and layer 2 as P1=9 and P2=45, respectively. We experimented on gray

scale stereo images only and hence P0=1. In our network, the feature maps at

layer 1 were fully connected to the input. In order to reduce the computations, 36

feature maps in layer 2 were connected to a pair of maps in layer 1 and remaining

9 were singly connected. In this way, we have 9 and 36 ∗ 2 + 9 = 81 filters at

layer 1 and 2, respectively. The parameter α in Eq. (5.6) was set to unity and the

filters of size 7× 7 were learned. These parameters were manually set as per the

experimental settings done in [150] except that we used gray scale stereo images

for training. With these parameter settings, our deep deconvolutional network

was then trained to obtain a set of filters. The learned filters at the first and the

second layers are shown in Figure 5.3 where the first layer learns Gabor like fil-

ters, and the learned filters in the second layer lead to mid-level features such as

center-surround corners, T and angle-junctions, and curves.

In order to estimate the dense disparity map, we experimented on the Mid-

dlebury stereo 2001 and 2003 datasets [113] which are different from the training

datasets used earlier. While minimizing Eq. (5.8), the data cost thresholds {τ I , τF}

and the parameter µ were chosen manually for best performance. Our proposed

algorithm for disparity map estimation was initialized with the initial estimate of

disparity map and converged with in 5− 10 iterations for all the stereo pairs used

in our experiments. We used the same parameters for all the experiments, and

this demonstrates the robustness of our methods. The average run time of our al-

gorithm was 150 seconds. Note that the training of deep deconvolutional network
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Method Venus Teddy Cones
Initial Estimate 3.47 19.65 16.43
AD 1.90 16.49 12.14
EI(d) 0.95 15.67 11.89
EI(d)+gradient 0.89 14.9 11.32
Proposed 0.40 11.41 9.98

Table 5.1: Performance evaluation in terms of % of bad matching pixels computed
over the entire image with δ=1. Here, the optimization of energy function is car-
ried out using different data terms ED(d) with IGMRF as prior term EP(d). (1st

row): Initial Estimate. (2nd row): Using ED(d) as absolute differences (AD) be-
tween corresponding pixel intensities. (3rd row): Using ED(d) as EI(d). (4th row):
Using ED(d) as EI(d)+gradient matching. (5th row): Proposed method where
ED(d) is EI(d)+EF(d).

is an offline operation and hence do not add to the computational complexity.

5.5.2 Quantitative Evaluation

In order to perform the quantitative evaluation, we used the percentage of bad

matching pixels (B%) as the error measure with a disparity error tolerance δ. The

performance was tested under different scenarios. We first estimated the dispar-

ity map by considering the energy function with the use of truncated absolute

differences of corresponding pixel intensities (AD) [114] as data term. We then

considered the energy function with the robust data term which is insensitive to

image sampling as given in Eq. (4.6). Note that this data term represents our in-

tensity matching cost EI(d) (see Eq. (5.3)). In the third scenario, we considered

the energy function with the data term derived using the combination of our EI(d)

and gradient based feature matching cost which is given as the truncated absolute

distances between the corresponding gradient features in the stereo image pair. In

these three experimented scenarios, we used the IGMRF prior for regularization.

Finally, we estimated the disparity map using our proposed method. For all these

experimented cases, we used the same initial estimate and minimize the energy

function using the two phase iterative algorithm. The quantitative results of these

experiments are summarized in Table 5.1.

These results indicate that the performance of our proposed method is su-
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Figure 5.4: Results in terms of % of bad matching pixels by varying the number of
layers NL in deconvolutional network. Here, NL=0 means EF(d) is not been used
in optimization of Eq. (5.8).

perior when compared to the other experimented cases i.e., the performance is

significantly improved when we use the data term which is a combination of in-

tensity EI(d) and feature matching EF(d) costs, and outperforms those which use

traditional data terms based on intensity matching. One can clearly observe that

we get better results when EF(d) is added to EI(d) in comparison to the use of

EI(d) only. This clearly shows the effectiveness of the learned feature matching in

our approach. The efficacy of hierarchical feature learning using deep deconvo-

lutional network is shown in the results. The characteristics of the stereo images

are better represented by the learned hierarchical features, and matching of these

features in addition to matching of raw intensities would better constrain the so-

lution, and hence results in accurate disparity estimate at each pixel location. The

results also show that the use of learned hierarchical features gives better dispar-

ities when compared to the use of basic gradient features.

We now demonstrate the performance of our proposed approach by varying

the number of layers in the deep deconvolutional network. We first obtained the

disparity map when EF(d) was derived using the learned features extracted only

at the first layer of deep deconvolutional network. Next, the results were obtained

using the learned features at both the first and the second layers. In other words,

we considered NL=1 and NL=2 in Eq. (5.8) for these two cases. Note that the other

terms in Eq. (5.8) remain same. Figure 5.4 shows that the performance improves

when we use learned features of both the layers. This shows the effectiveness of
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Left Image Ground Truth Initial IGMRF+EI(d) Proposed

Figure 5.5: Disparity maps estimated for the datasets of [113], “Venus” (1st row),
“Teddy” (2nd row) and “Cones” (3rd row). (1st column): Left Image. (2nd column):
Ground Truth. Results for different experimented cases, (3rd column): Initial esti-
mate, (4th column): Using ED(d) as EI(d), and (5th column): Proposed.

stereo matching using hierarchical features. We also experimented with the use

of three layers but we did not find significant improvement when the number

of layers NL is greater than 2 (see Figure 5.4). Based on these observations, we

trained only 2-layer deep deconvolutional network in our work. This shows the

effectiveness of the use of deep learning with limited number of layers.

5.5.3 Qualitative Analysis

In order to show the visual quality of our results, we now display the computed

disparity maps. Each row of Figure 5.5 displays the left image of the stereo pair,

ground truth, initial estimate obtained, disparity map obtained using IGMRF

prior with the data term using only the intensity matching cost EI(d), and the

final disparity map obtained using our proposed method. One can see that the

final disparity maps obtained using the proposed method are piecewise smooth

and visually plausible, and show improvement in the quality over the initial esti-

mate as well as that computed using only EI(d) as the data term. Looking at the

results, one can see that the accuracy of estimated disparities is better in the planar
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Method Venus Teddy Cones
GraphCuts [21] 3.44 25.0 18.0
MultiGC [68] 3.13 17.6 11.8
BeliefProp [143] 0.45 8.30 8.78
SegmentBeliefProp [66] 0.21 7.06 7.92
FeatureExpansion [76] 0.45 12.6 10.1
SemiGlobal [46] 1.57 12.2 9.75
LearnedCRF [111] 1.3 11.1 10.8
Proposed 0.40 11.41 9.98

Table 5.2: Comparison with the state of the art global dense stereo methods eval-
uated on the Middlebury stereo 2001 and 2003 datasets [113] in terms of % of bad
matching pixels computed over the entire image with δ=1.

and textureless regions for the proposed approach. These results show the effec-

tiveness of learned hierarchical feature matching in addition to intensity matching

for disparity estimation. Use of learned filters to capture sparse features in an un-

supervised way makes our method to better handle the outliers and hence results

in accurate disparity maps.

5.5.4 Comparison with the State of the Art Methods

We now compare our results with the state of the art global dense stereo methods.

Once again the comparisons are shown in terms of percentage of bad matching

pixels (B%), and the same are shown in Table 5.2. Here, we do not show the com-

parison with few of the global stereo methods which are based on hand crafted

and learned features [82, 64, 109, 153, 91] since their results are not available using

the Middlebury datasets. The results in Table 5.2 show that our method achieves

better performance and is comparable to the other state of the art global stereo

methods. Our method gives superior performance except those proposed in [143]

and [66]. This is because these methods handle the occlusions explicitly and use

belief propagation for minimization of their energy functions.

In order to compare the performance of our method with the latest best per-

forming global stereo methods, we experimented on the recently released Mid-

dlebury stereo 2014 datasets [113]. These comparisons are shown in Table 5.3. We

can observe that our results are comparable to the methods listed in Table 5.3.
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Method Adiron Jadep Motor PianoL Pipes Playrm Playt Recyc Shelvs Vintage

AdaptSmooth [65] 14.3 24.5 9.82 31.3 9.80 28.9 22.4 17.8 45.4 31.8
DeepCNN [149] 11.6 24.5 9.66 30.0 8.84 30.2 25.9 16.1 42.7 41.2
MeshStereo [152] 20.6 35.3 20.6 37.9 23.4 39.5 34.1 25.9 53.0 35.6
HiddenMarkov [104] 26.1 33.6 24.4 44.0 19.3 41.1 50.4 27.5 59.5 51.4
MultiDisparity [79] 25.0 35.9 30.4 41.7 29.0 42.7 47.8 31.3 54.5 43.6
PlaneSweep [115] 29.9 34.7 12.3 59.6 15.8 41.4 33.4 33.6 51.5 45.8
TwostepGlobal [94] 55.9 73.3 52.3 74.7 50.9 72.3 66.2 52.4 71.0 76.6
Proposed 63.7 68.6 60.4 71.9 37.1 71.7 80.7 66.7 81.9 61.8

Table 5.3: Quantitative evaluation on Middlebury stereo 2014 datasets [113] and
comparison with current better performing global dense stereo methods. Evalua-
tion is in terms of % of bad matching pixels in non-occluded regions with δ=1.

Though, our results are not better than the deep learning based method [149],

one can improve the results by using better hierarchical features learned via an

efficient deep learning method.

5.6 Conclusion

In this chapter, we have proposed a dense disparity map estimation approach us-

ing learned feature matching in a regularization framework. A feature matching

cost derived using the learned hierarchical features from the given left and the

right stereo images were used. We combined this with the pixel-based intensity

matching cost to form our data term in our energy function. The matching by

combining both these would better constrain the solution and hence results in

robust and accurate disparity map. Inspired by the recent development and suc-

cess of the deep learning methods, we used the deep deconvolutional network for

learning the hierarchical features of stereo images. The deep deconvolutional net-

work is trained using a large set of stereo images in an unsupervised way which

in turn results in a diverse set of filters. These learned filters capture the image

characteristics at different levels in the form of low, mid and high-level features.

In order to perform the regularization, we used the IGMRF prior in our energy

function that captures the smoothness as well as preserves sharp discontinuities

in the disparity map. The energy function was minimized using graph cuts in

an iterative two phase algorithm where the IGMRF parameters and the disparity
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map were refined alternatively.

Experimentations on the Middlebury datasets validate the performance of our

proposed approach. Our results demonstrate the effectiveness of the use of learned

feature matching, and the results significantly improved when the learned hierar-

chical features are used for matching when compared to the use of basic features.

Similarly, the improvement was observed when the feature matching is combined

with intensity matching. The power of deep learning in stereo matching is demon-

strated in our results. The performance of the proposed method was comparable

to many of the state of the art and the latest global methods.

In the next chapter, we propose a different energy minimization framework

for disparity estimation where we use feature matching in an IGMRF and spar-

sity based regularization framework.
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CHAPTER 6

Feature Matching in an IGMRF and Sparse-

ness based Regularization Framework

The dense disparity estimation is a difficult problem due to depth discontinuities,

photometric variation, lack of texture, repetitive texture, occlusions, etc. To handle

these issues, the problem is solved using a data model that relates the disparity

with the acquired left and right images and a prior model based on theoretical

deduction about the disparity. An energy minimization framework is then used

to get a solution. However, the quality of solution depends on the assumed mod-

els. In chapter 3, we used an energy function with IGMRF prior, and in chapter

4, a combination of IGMRF and sparsity priors was incorporated in the energy

function. In these chapters, we focused on arriving at a proper energy function

by using suitable priors. In Chapter 5, we used an energy function consisting of

pixel intensity as well as feature matching costs as data term with IGMRF prior.

We derived our feature matching cost from the learned hierarchical features of

given left and right stereo images, and these hierarchical features were learned

using the deep deconvolutional network.

In this chapter, we propose a better energy function to be used in an energy

minimization framework. We use the same data term as derived in chapter 5 i.e.,

the combination of intensity and learned feature matching. In order to perform

the regularization, in this chapter, we use sparseness as prior in addition to the

IGMRF prior. A sparse autoencoder is used for learning and inferring the sparse

representation of disparities. Use of additional prior should better constrain the

solution and hence we expect a better estimate of the disparity map. As done
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in earlier chapters, an iterative two phase algorithm is proposed to estimate the

dense disparity map. Experiments on the Middlebury stereo datasets demon-

strate that our proposed method leads to better disparity maps than the other

proposed methods discussed in previous chapters, and also the performance is

comparable to the state of the art global stereo methods.

6.1 Proposed Method

The proposed technique of dense disparity estimation is illustrated by the block

diagram shown in Figure 6.1. The problem is once again formulated in an energy

minimization framework where the energy function consists of sum of data term

ED(d) and prior term EP(d). Our data term remains the same as Eq. (5.2) as used

in chapter 5 i.e.,

ED(d) = EI(d) + µEF(d), (6.1)

We use the pixel based symmetric measure for EI(d) as given in Eq. (5.3) and the

feature matching term EF(d) derived using the learned and hierarchical features

of stereo image pair as given in Eq. (5.7). We form the prior term EP(d) as a sum

of IGMRF and sparsity priors and it is given by,

EP(d) = EIGMRF(d) + γEsparse(d). (6.2)

The formation of EIGMRF(d) is given in Eq. (3.22). In chapter 4, we demonstrated

that the sparse representation of disparities learned using sparse autoencoder is

more effective than the use of overcomplete dictionaries trained via K-SVD, and

using it significantly improves the performance of disparity estimation. There-

fore, here we use the sparse autoencoder for learning and inferring the sparseness

of disparities, and the formation of Esparse(d) is given by Eq. (4.22).

Using Eqs. (5.3), (5.7), (3.22) and (4.22) defined for EI(d), EF(d), EIGMRF(d)
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Figure 6.1: Block schematic of the proposed approach for dense disparity estima-
tion. Here, the algorithm starts with the use of an initial estimate and iterates until
convergence.

and Esparse(d) terms, respectively, our final energy function is given by,

E(d) = ∑
(x,y)

(
min{F f wd

(x,y)(d(x, y)), Frev
(x,y)(d(x, y), τ I)}

)
+µ

NL

∑
l=1

∑
(x,y)

min
(
|ZIL

l (x, y)− ZIR
l (x + d(x, y), y)|, τF)

+ ∑
(x,y)

bX
(x,y)(d(x− 1, y)− d(x, y))2 + ∑

(x,y)
bY
(x,y)(d(x, y− 1)− d(x, y))2

+γ ∑
(x,y)

∣∣∣∣∣∣d(x,y) − f (UTa(x,y) + s)
∣∣∣∣∣∣2

2
. (6.3)

The above energy function is semi-metric and hence we minimize it using the α−

β swap move based graph cuts optimization. We do not consider the occlusions

explicitly but they are handled by clipping the matching costs using thresholds

{τ I , τF} that prevent the outliers from disturbing the estimation. For finding the

correspondences, we consider search from left to right as well as from right to left

and hence relax the traditional ordering constraint used in disparity estimation.

We propose an iterative two phase algorithm. It proceeds with the use of an

initial estimate of disparity map, and iterates and alternates between two phases
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Algorithm 1: Proposed Algorithm
Input: Stereo image pair IL and IR, a set of ground truth disparity patches

Gd={d(1), d(2), . . . , d(ng)}, and a set of stereo images I={I1, I2 . . . , Ins}.
1 Train a deep deconvolutional network consisting of NL number of layers,

by minimizing Eq. (5.6) for each layer l and learn a set of filters;
2 Infer the hierarchical features ZIL

l and ZIR
l of IL and IR, respectively

(l = 1 . . . NL) using the method discussed in section 5.3.2 ;
3 Train the sparse autoencoder using Gd by minimizing Eq. (4.21) and obtain

weights (W, U, r, s);
4 Obtain an initial disparity map d0 and set d = d0 ;
5 do
6 Phase 1: With d being fixed, infer the sparse vector a(x,y) for every

disparity patch d(x,y) in d using trained sparse autoencoder (Eq. (4.18)).
Compute IGMRF parameters bX

(x,y) and bY
(x,y) at every pixel location

using Eqs. (3.31) and (3.32);
7 Phase 2: With a(x,y), bX

(x,y), and bY
(x,y) fixed at every (x, y), as obtained in

phase 1, minimize the Eq. (6.3) for d using graph cuts [69].;
8 while convergence;

until convergence as given in Algorithm 1. We use the same method of obtaining

an initial estimate of disparity map as used by our methods proposed in chapters

4 and 5. However, any other suitable disparity estimation method can also be

used in obtaining the initial estimate.

6.2 Experimentations

In this section, we demonstrate the efficacy of the proposed method by conducting

various experiments and evaluating our results on the Middlebury stereo bench-

mark images [113]. In our experiments, a 2-layer deep deconvolutional network

was trained using ns=60 left stereo images, and a sparse autoencoder was trained

using a set of ng = 5× 105 true disparity patches extracted from the ground truth

disparity maps obtained from the Middlebury 2005 and 2006 datasets [113]. The

details of the parameters used for training the sparse autoencoder and the deep

deconvolutional network are given in the experimental sections of chapter 4 and

5, respectively. In order to estimate the dense disparity map, we experimented on

the Middlebury stereo 2001 and 2003 datasets [113] which are different from the
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training datasets used earlier.

While minimizing Eq. (6.3), the data cost thresholds {τ I , τF} and the param-

eter µ were chosen on a trial and error basis until a better solution was obtained.

The parameter γ was initially set to 10−4 and increased exponentially at every it-

eration from 10−4 to 10−1. We used the same parameters for all the experiments

and this demonstrates the robustness of our method. Our algorithm was initial-

ized with the initial estimate of disparity map and it converged within 5 − 10

iterations for all the stereo pairs used in our experiments. The average run time

of our algorithm was 200 seconds. Note that the training of deep deconvolutional

network and the autoencoder were an offline operation and hence they did not

add to the computational complexity.

6.2.1 Quantitative Comparison

In order to perform the quantitative evaluation, we used the percentage of bad

matching pixels (B%) as the error measure with a disparity error tolerance δ. We

compare the performance of our proposed method with our other methods pro-

posed in previous chapters. To perform a fair comparison, we used two phase

iterative algorithm for all our methods, and also use the same initial estimate ob-

tained from the method discussed in chapter 4. The quantitative comparisons

are summarized in Table 6.1. We also tested our proposed approach for the case

where Esparse(d) in Eq. (6.2) was learned using the K-SVD algorithm. We observed

that the results using this case were not better than the one obtained using sparse

autoencoder, and hence we do not include these results in Table 6.1.

The results in Table 6.1 show that the performance of the method in this

chapter is best among all our earlier approaches. Our results demonstrate the

effectiveness of the stereo matching using learned hierarchical features and the

regularization using IGMRF and sparsity priors. The combination of feature and

intensity matching combining the IGMRF and the sparsity priors would better

constrain the solution and resulting in accurate dense disparity map.
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Method Venus Teddy Cones
Initial estimate 3.47 19.65 16.43
IGMRF based prior (chapter 3) 1.78 18.1 14.42
IGMRF-KSVD based prior (chapter 4) 1.43 12.5 11.42
IGMRF-Autoencoder (chapter 4) 0.22 10.7 9.64
Intensity+Feature Match (chapter 5) 0.40 11.41 9.98
Proposed 0.20 9.76 8.46

Table 6.1: Evaluation results on the Middlebury datasets [113] in terms of % of bad
matching pixels computed over the entire image with δ=1. Comparisons include
different cases: (1st row): Initial Estimate. (2nd row): Using IGMRF prior. (3rd

row): Using IGMRF and sparsity prior learned using K-SVD dictionary. (4th row):
Using IGMRF and sparsity prior learned using sparse autoencoder. (5th row):
Using intensity and learned feature matching. (6th row): Proposed Method.

6.2.2 Qualitative Analysis

We have till now discussed the quantitative performance where we use true dis-

parity map as a reference to find the bad matching pixels. We now show the

perceptual quality assessment of the proposed method experimented using Mid-

dlebury stereo 2001 and 2003 datasets [113]. In Figure 6.2, we show the estimated

disparity maps using the stereo images of these datasets. We also show the error

maps associated with the disparity maps in the last column of Figure 6.2. The er-

ror maps show the regions where the estimated disparities differ from the ground

truth (black and gray regions correspond to errors in occluded and non-occluded

regions, respectively and white indicates no error). We can see that the proposed

method has higher accuracy in discontinuous as well as non-occluded regions.

This is because the IGMRF prior preserves the discontinuities and the sparsity

prior learns the edge-like sparse features in disparity map and the use of these two

with the learned feature and intensity matching results in accurate disparities. As

can be seen from Figure 6.2, our method not only preserves geometrical details

near depth discontinuities but performs better in textureless and homogeneous

regions as well. We mention here that although we do not consider occlusions in

our problem formulation, our method works well in these regions as well. Per-

formance improvement in occluded regions is due to the presence of data term

truncation thresholds τ I and τF.
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Figure 6.2: Experimental results for the Middlebury stereo 2001 and 2003 datasets
[113], “Venus” (1st row), “Teddy” (2nd row) and “Cones” (3rd row). The left image
IL and the ground truth disparity map are shown in first and second columns,
respectively. The third column shows the initial disparity map used in optimizing
the energy function given in Eq. (6.3). The final disparity and the error maps esti-
mated using the proposed method are shown in the fourth and the fifth columns,
respectively.

6.2.3 Comparison with the State of the Art Methods

In order to validate the results of our method, we compare it with the state of the

art global dense stereo methods. The compared approaches include edge preserv-

ing first order MRF prior [21, 68, 143], higher order MRF [133], learned regular-

ization parameters [111], sparsity regularization [42, 123], learned data cost [147],

higher order likelihood [58], feature matching [66, 76, 46], Mumford Shah regu-

larization [10], consistency prior [59], bilateral filtering [94] and ground control

points [131]. The Table 6.2 shows the results and comparison done in terms of bad

matching pixels (B%) computed over the entire image as well as in the non oc-

cluded regions. As seen from the Table 6.2, the performance of our method is best

among all the other methods, when measured in non-occluded regions. It also

gives the least number of bad matching pixels over the entire image as well as in

the non-occluded regions for the “Venus” stereo pair. Although, our method does

not handle the occlusions explicitly, it gives better or comparable performance

measured when compared to the other state of the art global stereo methods.
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Method Venus Teddy Cones
all nonocc all nonocc all nonocc

SegmentBeliefProp [66] 0.21 0.10 7.06 4.22 7.92 2.48
BeliefProp [143] 0.45 0.13 8.30 3.53 8.78 2.90
GroundPoints [131] 0.53 0.16 11.5 6.44 9.49 3.59
FeatureExpansion [76] 0.45 0.27 12.6 7.42 10.1 4.09
SemiGlobal [46] 1.57 1.00 12.2 6.02 9.75 3.06
SecondOrderMRF [133] 0.49 0.24 15.4 10.9 10.8 5.42
CompressSensing [42] 0.68 0.31 13.30 7.88 9.79 3.97
MultiGC [68] 3.13 2.79 17.6 12.0 11.8 4.89
Mumford [10] 0.76 0.28 14.3 9.34 9.91 4.14
GraphCuts [21] 3.44 1.79 25.0 16.5 18.0 7.70
LearnedCRF [111] 1.3 - 11.1 - 10.8 -
LearnedSparse [123] - - 8.14 - 11.98 -
HighLikelhood [58] - 0.22 - 5.62 - 2.40
LearnedSVM [147] - - - 8.15 - 3.77
TwostepGlobal [94] 1.49 0.88 9.40 6.24 7.66 2.77
ConsistencyPrior [59] 0.61 0.34 12.4 7.67 9.35 3.33
Proposed 0.20 0.10 9.76 3.44 8.46 2.36

Table 6.2: Quantitative evaluation on Middlebury stereo 2001 and 2003 datasets
[113] and comparison with the state of the art global dense stereo methods in
terms of % of bad matching pixels over the entire image as well as in non-occluded
regions. Here, δ=1 and ’-’ indicates the result not reported.

6.2.4 Experiments on the Latest Middlebury Datasets

We now discuss the experiments on the recently released Middlebury stereo 2014

(version 3) datasets that consists of 15 training and 15 test stereo pairs. Here, we

submitted the estimated disparity maps online to the server available on Middle-

bury website [113] which in turn returned the evaluation of our method in terms

of bad matching pixels and also the comparison with the latest stereo methods.

Since the test datasets do not have ground truth, evaluation is done by submitting

the estimated disparity maps only. We mention here that one cannot adjust the

parameters for test datasets because the submission can be done only once. Our

results were ranked at 53 and 60, respectively for training and test sets. Although,

the proposed method is not ranked among the top, the results indicate that it is

comparable to the other latest stereo methods.

Since our method corresponds to a global approach based on regularization
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Method Adiron Jadep Motor PianoL Pipes Playrm Playt Recyc Shelvs Vintage

AdaptSmooth [65] 14.3 24.5 9.82 31.3 9.80 28.9 22.4 17.8 45.4 31.8
DeepCNN [149] 11.6 24.5 9.66 30.0 8.84 30.2 25.9 16.1 42.7 41.2
MeshStereo [152] 20.6 35.3 20.6 37.9 23.4 39.5 34.1 25.9 53.0 35.6
HiddenMarkov
[104]

26.1 33.6 24.4 44.0 19.3 41.1 50.4 27.5 59.5 51.4

MultiDisparity [79] 25.0 35.9 30.4 41.7 29.0 42.7 47.8 31.3 54.5 43.6
PlaneSweep [115] 29.9 34.7 12.3 59.6 15.8 41.4 33.4 33.6 51.5 45.8
TwostepGlobal [94] 55.9 73.3 52.3 74.7 50.9 72.3 66.2 52.4 71.0 76.6
IGMRFAutoencoder
(chapter 4)

62.4 67.5 60.2 69.1 34.9 71.2 79.9 65.9 79.9 60.1

LearnedFeatureMatch
(chapter 5)

63.7 68.6 60.4 71.9 37.1 71.7 80.7 66.7 81.9 61.8

Proposed 60.1 66.2 60.0 70.8 32.6 66.8 75.3 63.2 77.2 56.8

Table 6.3: Quantitative evaluation on Middlebury stereo 2014 datasets [113], and
comparison with the current better performing global dense stereo methods and
our methods proposed in previous chapters. Evaluation is in terms of % of bad
matching pixels in non occluded regions with δ=1.

and deep learning, we show the performance comparison in terms of quantitative

measures with the few of the best performing latest global and learning based

dense stereo approaches. From Table 6.3, one can see that the performance of our

method is comparable to the latest stereo methods. We see that our approach is

not the best. This is because the accuracy of our method is sensitive to the param-

eters of the model and the choice of an initial estimate. Also, it does not handle

the occlusions explicitly which is still a great challenge in stereo research. How-

ever, one may carefully choose the parameters and make a proper choice of the

initial estimate to improve the accuracy. However, this results in increased time

complexity.

6.3 Conclusion

In this chapter, we have proposed the use of learned feature and intensity match-

ing for dense disparity estimation in an IGMRF and sparsity regularization frame-

work. Our data term was formed using the combination of pixel based intensity

and learned feature matching costs. Our regularization term included IGMRF

as well as the sparsity prior. Once again, an iterative two phase algorithm was

used to estimate the dense disparity map. The results on the Middlebury stereo
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datasets have demonstrated that the proposed method in this chapter leads to bet-

ter disparity maps than the other methods proposed in previous chapters. These

results indicate that the performance is superior compared to other the state of

the art methods when measured in non-occluded regions and comparable when

measured over the entire disparity map. The comparable performance is also

seen with the latest global stereo methods. Our results show the effectiveness of

using the intensity and feature matching along with the combination of IGMRF

and sparsity prior in the energy function.
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CHAPTER 7

Conclusions and Future Research Work

7.1 Conclusions

In this thesis, we have addressed the problem of dense disparity estimation using

a pair of rectified stereo images with known camera calibration. In general, dis-

parities are obtained by comparing pixel intensities or their features in the left and

right images. However, estimation of disparities is an ill-posed problem, and this

problem is formulated and solved using a global energy minimization framework

by incorporating regularization. An energy function represents a combination of

data term and prior terms that restricts the solution space. The data term ensures

that the disparity map is in consent with the observed data i.e., the given stereo

pair while the prior term confines it to have a form matched with the advance

knowledge about the true disparity map. It is important to design a proper en-

ergy function that embeds the constraints. In addition, it is necessary to find a

good minimization technique that leads to global optimal solution. Selection of

the appropriate data and prior models help us to obtain an accurate dense dis-

parity map. In this thesis, we have proposed various approaches for disparity

map estimation using the energy minimization framework. We have employed

graph cuts, an efficient and fast optimization technique to minimize our energy

functions.

We began by proposing a dense disparity estimation method using inhomo-

geneous Gaussian Markov random field (IGMRF) as a prior in chapter 3. The

IGMRF prior captures the spatial dissimilarity among disparities at every pixel

location while preserving the sharp discontinuities. In practice, edge preserv-
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ing homogeneous MRF prior models have been used in global stereo methods in

which a limited number of global parameters capture the spatial variations. These

parameters are usually either set by trial and error or estimated when working on

a set of images. Although, these homogenous priors result in piecewise smooth

solution, they regularize disparities by the same set of limited number of param-

eters. This assumption does not hold good in reality because the variation among

disparities at each pixel is different and hence such methods fail to better capture

the spatial dependency among disparities. This motivated us to use an IGMRF

prior that captures the variations at each pixel location using the adaptive IGMRF

parameters. To form our energy function, we defined the data term using the

pixel-based intensity matching cost based on the brightness constancy assump-

tion and the prior term was defined using IGMRF prior. The IGMRF parameters

were computed using the initial estimate of disparity map that was obtained using

a learning based method. To start with, we used the initial estimate of disparity

map to compute the IGMRF parameters at every pixel location which were then

used to estimate the final disparity map by minimizing our energy function. Our

experimental results showed that the use of IGMRF prior leads to accurate dis-

parity map when compared to those using edge-preserving homogeneous MRF

priors. Disparity maps obtained using the proposed method were less noisy in

homogeneous areas and preserved the textures and sharp details in other regions.

However, the limitation of this approach was that the quality of the final solution

strongly dependent on the accuracy of the IGMRF parameters. We observed that

the initial estimate obtained using our learning based method resulted in noisy

disparities in homogeneous regions and near the edges that affected the perfor-

mance. In order to take care of the same in our subsequent approaches, we have

used a classical local stereo method with disparity refinement techniques for ob-

taining an initial disparity map.

Although, IGMRF prior captures the smoothness as well as discontinuities,

it fails to capture higher order dependencies in the disparity map. One of the

characteristics of natural scenes is that there exists significant amount of redun-

dancy in disparity map. Due to this, the disparity maps are generally sparse in
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a transform domain which can be obtained either by using a fixed set of basis or

can be learned using a set of training examples. We considered the sparseness

of disparities as a prior knowledge and used it for regularization. Instead of us-

ing fixed bases, we learned an efficient sparse representation of disparities. We

then proposed the use of IGMRF and sparsity priors in our approach for dense

disparity estimation in chapter 4. The sparsity prior is defined using the learned

overcomplete sparseness of disparity patches which captures the higher order de-

pendencies in the disparity map. The combination of IGMRF and sparsity priors

better constrains the solution. In this case, we considered a data term using the

pixel-based intensity matching cost which is robust to outliers and insensitive to

image sampling. Based on this, we proposed two methods for dense disparity es-

timation. In our first method, sparse representation of disparities were obtained

by a learned overcomplete dictionary where we used training via K-SVD algo-

rithm. The advantage of our K-SVD based dictionary learning method is that the

learned dictionary is adaptive to the disparities of the given stereo pair and hence

avoids the use of ground truth disparities while training. However, overcomplete

dictionary model uses a linear structure. Hence, in our next approach, we used

a non linear model, sparse autoencoder to infer better sparse representation of

disparities. We trained our sparse autoencoder using a large number of ground

truth disparity patches. In order to estimate the dense disparity map, we started

with the use of an initial estimate of disparity map and iterated and alternated be-

tween two phases until convergence. In phase one, sparseness of disparities were

inferred and IGMRF parameters were computed based on the current estimate

of disparity map while in the second phase, the disparity map was refined by

minimizing the energy function keeping the other parameters fixed. Our exper-

imental results demonstrated the effectiveness of both the proposed approaches

showing better performance with the use of a combination of sparsity and IGMRF

priors. Our results also verify the effectiveness of using the learned sparseness us-

ing overcomplete dictionary and the sparse autoencoder when compared to the

use of fixed basis. The results obtained using the method based on sparse autoen-

coder have shown a significant improvement when compared to the other method
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based on K-SVD. The two methods have also shown the superior and comparable

performance when compared to many of the state of the art and the latest global

stereo methods, respectively.

The combination of IGMRF and sparsity priors serve as a better regularizer

but the choice of an appropriate data model also plays a key role in obtaining a

better disparity map. Although, the data term used in chapter 4 is robust against

outliers, image sampling, view-point variation, etc., it rely on the raw pixel values

(intensities) only and it’s use may result in ambiguous and erroneous disparities

in the textureless areas and near the depth discontinuities. The stereo images can

be represented in a better way by using a feature space where they are robust, dis-

tinct and invariant to view point. Motivated by the significant progress in solving

the disparity estimation problem using the machine learning, our next work used

the self learned features which are obtained in a different way when compared

to hand crafted features. Using this, in chapter 5 we proposed a method using

feature matching where we derived a feature matching cost using the learned

hierarchical features of the given left and right stereo images and combined it

with the pixel-based intensity matching cost to form our data term. Self learned

hierarchical features were obtained using the deep deconvolutional network, a

deep learning model which was trained in an unsupervised way using a database

consisting of large number of stereo images. An IGMRF prior was used in regu-

larizing the solution. Once again, an iterative two phase algorithm was used to

obtain the final solution. Our experimental results demonstrated that the combi-

nation of feature and intensity matching and the use of this IGMRF prior in the en-

ergy function better constrain the solution, and this results in robust and accurate

disparity maps. We observed that the results were significantly improved when

compared to the use of basic and hand crafted features. Improved performance

was also seen when the feature matching was combined with intensity matching.

The power of deep learning i.e., the use of hierarchical features in stereo matching

were clearly seen in our results. Performance of the proposed method was com-

parable to many of the state of the art and the latest global stereo methods.

Finally, in chapter 6, we proposed a method using a better constrained energy
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function. We used our data term as a combination of learned feature matching

and pixel-based intensity matching costs, and form the prior term using the com-

bination of IGMRF and sparsity priors. Since the use of sparse autoencoder has

shown superior performance in representing the sparseness of disparities when

compared to the use of learned K-SVD dictionary, we used sparse autoencoder

for learning the sparse representation of disparities. An iterative two phase al-

gorithm was proposed to estimate the dense disparity map. The experimental

results on the Middlebury stereo datasets have demonstrated that this method

leads to better disparity maps when compared to our other proposed methods.

The comparison with the state of the art methods also showed that the perfor-

mance of our method is superior when measured in non-occluded regions and

comparable when measured over the entire disparity map. The comparable per-

formance of our method was also seen with the latest global stereo methods. All

these results reflect the effectiveness of the combination of intensity and feature

matching and the combination of IGMRF and sparsity prior resulting in better

and accurate disparities. Since the influence of the data term and the prior term

in getting better results is controlled by the set of model parameters, we can con-

clude that every term in the energy function has equal significance in achieving a

better solution.

7.2 Future Research Work

Dense disparity estimation is an ill-posed problem. A solution to this problem re-

quires information available from the stereo image pair and the prior knowledge

about the true disparity map. It is a challenging task to compute the accurate dis-

parities at occluded points, near depth discontinuities, and in textureless regions.

Therefore, several of these issues are to be appropriately addressed in order to get

better disparity estimates. In this section, we discuss the future research works in

this direction.

• In our work, we have estimated the disparities using the left and right rec-

tified views of a scene. In order to better constrain the solution, one can
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use multiple rectified views/images of a scene in our proposed energy min-

imization framework for disparity estimation.

• The disparities are estimated using various stereo matching constraints, and

in our methods, we have employed few of the constraints such as epipo-

lar constraint, photometric similarity constraint, geometric/feature similar-

ity constraint, smoothness constraint, and sparsity constraint. However, one

can incorporate the “uniqueness constraint” as well in the energy function in

order to obtain unique and unambiguous matches. According to the unique-

ness constraint, for any location in one image, there should be at most one

matching location in the other image, and vice versa.

• Occlusions are a major challenge for the accurate computation of visual cor-

respondence. Occluded pixels are visible in only one image, so there is no

corresponding pixel in the other image. In our work, we have not handled

the occlusions explicitly. Most of the dense stereo approaches check for the

occluded regions as a post processing operation. However, the occluded re-

gions can be explicitly modeled along with the disparity map by using an

occlusion term in the energy function. An occlusion term imposes a penalty

for the pixels which are occluded.

• Our proposed methods are flexible to work for the color images also. One

can use color images for improving the estimation accuracy since color im-

ages provide more information.

• Most of the disparity estimation techniques have high computational com-

plexity. This limits the use of the algorithms for real-time applications. Since

our proposed methods are based on iterative process, the time complexity

increases. In order to make our algorithms suitable for the real-time ap-

plication, one can use the graphics processing unit (GPU) for running the al-

gorithms. One can also use extreme learning machines for reducing the time

complexity.

• In our work, we have proposed the disparity estimation approaches for rec-

tified stereo images. However, the rectified images are obtained after ap-
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plying a set of transformation on the stereo images captured from different

view-points, resulting in the information loss. Hence, one can consider the

real stereo images as input for disparity estimation. In this case, the dispar-

ity is estimated in x as well as y directions. However, estimation of this in a

global energy minimization framework is computationally expensive.

• Recently, many of the computer vision problems are addressed effectively

by using machine learning approaches. Hence, one can explore the use

of deep learning based techniques in order to estimate the disparities in a

global framework. Here, the mapping between the stereo image pair (left

appended with right image) and the disparity can be learned using a set of

stereo images and their corresponding true disparity maps. Once the net-

work is trained, we may apply the given test stereo image pair as input to

the network and infer the disparity map.

• Given left and right views of a scene, one may use single image depth es-

timation techniques to obtain two separate depth maps; one for each im-

age and then obtain the disparity maps dl and dr for left and right images,

respectively using the known camera calibration. These disparity maps

are closed to the disparity map obtained using the stereo pair. These two

slightly different disparity maps can then be used in a minimization frame-

work by adding the following constraint to get the final disparity map d:

∑
(x,y)

(dl(x, y)− d(x, y))2 + (dr(x, y)− d(x, y))2.

• The proposed approaches for disparity estimation using stereo image pair

can be extended to stereo video disparity estimation. This results in a video

disparity or 3D disparity map which can be further used in the applications

such as, 3D TV, 3D cinema, or telepresence.
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