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Abstract

Biological systems exhibit complex phenomena owing to interconnected molec-

ular mechanisms underlying their architecture. Graph is an ideal mathematical

abstraction of such systems. The abstract network along with the dynamics of the

system forms a complex network. This thesis focuses on modelling and analysis of

biological networks from control systems perspective. We first model the system

as a directed network and use the technique of maximum matching to identify

driver nodes which help in structurally controlling the system. We investigate the

cancer signalling network and propose that identification of specific molecules as

drivers of regulatory dynamics is a promising step towards targeted cancer ther-

apies. We also capture the role of driver nodes in the HIV-1-human molecular

interactome and show the efficiency with which the virus hijacks the host system

for effective pathogenesis. In order to achieve a higher level of understanding of

control and its implications in biology, we model five different networks ranging

from disease to infection to normal regulation. We find that they are characterized

with distributed control and with a large fraction of nodes acting as driver nodes.

This implies that such networks are difficult to control. We further investigate the

structure of driver nodes in these networks to characterize their control profile.

Based on these investigations, we propose that, structural controllability applied

to networks can lead to novel understanding of disease mechanisms in a more nu-

anced way compared to other network analysis. Our work provides a snapshot

for control in biological systems assuming that the systems operate under home-

ostasis. We believe that this approach that amalgamates engineering concepts

with biological knowledge can provide better insights into cellular mechanisms

of a cell.

Keywords: Control theory, network controllability, driver nodes, maximum

matching in directed graphs, biological networks, drug targets, viral hijack, con-

trol mode, control profile.
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CHAPTER 1

Introduction

1.1 Overview of network biology

Over the last few decades, research in molecular and cell biology has increasingly

looked beyond reductionism and moved towards an integrated understanding of

molecular and cellular systems. In biological systems the functionality of a living

cell is carried out by an intricate network of biochemical, metabolic and infor-

mation signalling processes, which involves interaction between various proteins

and genes which in turn regulate thousands of other genes and proteins forming

complexes that regulate the cell, which none of the individual constituents would

be able to do. Hence, the true functionality of a cell cannot be determined by just

one network but rather a set of interdependent networks ranging from the level

of transcription to the process of metabolism. One can divide the cellular function

into distinct networks [1, 2]:

1. Transcription network or gene regulatory network (GRN) that contains in-

formation concerning the control of gene expression in cells.

2. Protein-protein interaction (PPI) network that contains information of how

different proteins coordinate with each other to enable biological processes

within the cell.

3. Signal transduction network that represents series of interactions between

different bioentities like proteins, macromolecules and chemicals that assist

in signal transmission within and outside the cell.
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4. Metabolic and biochemical network that represents the series of chemical

reactions occurring within a cell at different time points.

Given the availability of high throughput techniques, we now have reliable

data on various interaction maps. Some examples are gene regulatory networks

that contains protein-DNA interaction data [3, 4], PPI networks that are organism

specific like human [5, 6, 7, 8], yeast [9] and drosophila [10]. Signal transduction

and metabolic data are also successfully mapped [11, 12, 13, 14] with the help of

such high throughput experiments.

The approach of representing complex biological systems as networks gives

rise to investigating such systems as a whole rather than as individual compo-

nents and aims at simplification of biological processes for a better understanding

of their behaviour.

Complex networks play an important role in various disciplines ranging from

computer science, engineering, sociology, physics, epidemiology to molecular bi-

ology. Graph theory is a widely diploid and powerful tool for the characterisa-

tion of complex systems. The myriad components of a system and their interac-

tions can be represented as graphs where, interacting components are represented

by nodes/vertices and the interaction between these components as links/edges.

This level of abstraction has made it possible to compare diverse networks and

shown that several important properties are shared by them [15, 16]. Various

models and methods from graph theory have been applied to study biological

networks [2, 17, 18, 19] and has offered possibilities to understand the internal or-

ganization and evolution of a cell, fundamentally altering our view of cell biology

[1]. The application of graph theory can go beyond mapping of the concrete net-

work systems found within the cell and be used as means of organizing biological

information in ways that could lead to new insights. The applications of network

biology include identifying and determining some functions of genes/proteins

[1, 20, 21], identifying disease genes and drug targets [22, 23, 24] thereby offer-

ing various strategies for treatment of diseases and better understanding of the

mechanisms underlying a cell [25].
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Diseases are not just due to abnormality of a single gene or protein but rather

reflects an interplay of multiple molecular processes that are encoded as a net-

work that integrates all physical interactions within a cell, from protein-protein to

regulatory protein-DNA and metabolic interactions [26]. Despite the advances in

interactome mapping and disease gene identification, our knowledge about the

dynamics of the disease remains incomplete. Understanding how cellular sys-

tems are controlled is an important theme in biology and medicine. Given that

biological networks are dynamical where the functional states at any given time

point can be characterized by concentration of molecules like proteins, metabo-

lites or genes. For instance, consider two genes A and B where the activation of

gene A inhibits gene B. There are various such processes that govern the normal

functioning of a cell and one can represent them as a dynamical system. Control

theory deals with the design and analysis of dynamic systems that receive inputs

and have outputs. The need to control engineered systems ranging from electric

circuits, communication systems, manufacturing processes has resulted in a rich

set of mathematical tools [27, 28] that offer ways to control the systems. Issues

of control and regulation are central to biology as various signals within the cell

drives it to a specific functional state suggesting that the need to control biologi-

cal systems play a potential role in understanding the evolution and regulation of

molecular networks.

1.2 Controllability of biological systems

A dynamical system is said to be controllable if with suitable choice of inputs the

system can be driven from any initial state to any final state in finite time [27].

Several graph theory based models are available that can be applied to complex

networks to identify the nodes and edges that can control the system [29, 30, 31, 32].

Studies have shown that biological networks exhibit properties of control systems

such as feed-forward control, feed-back control and proportional action [33, 34, 35].

Recently, the connection between biological networks and structural control

theory has been explored, uncovering interesting biological properties like essen-
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tiality, cellular localisation, evolutionary conservation and more.

Studies on control theory and biological networks have focused on two as-

pects, one describing the general network properties required for identifying the

control nodes or edges and the other describing the biological properties associ-

ated with these control nodes and edges. Application of control theory using the

maximum matching model on transcriptional regulatory networks reveal that it

is difficult to control these networks due to relatively large number of nodes in-

volved in control which are determined by degree distribution [30, 36]. On the

other hand minimum dominating set model shows that heterogeneous networks

with power-law degree exponent smaller than two require fewer nodes to control

than the ones with power law exponent larger than two [31]. While both these

models describe node controllability, dynamical process defined on edges have

also been modelled [32] that have attempted to deepen our understanding of the

interactions in a network. Other graph theoretic properties like closeness and be-

tweenness centralities have been applied to better characterise control nodes in

networks [37, 38, 39]. Few models have also been developed for the control of

non-linear systems. For instance boolean models have been applied for biological

network motifs to bring about a clear understanding of the interaction structure

and non-linear dynamics [40]. Structural control and feedback vertex set control

have been applied on dynamic models of gene-regulatory networks and provided

a framework to identify nodes whose override can steer a network’s dynamics to-

wards any of its natural long term dynamical attractors [41].

Recent studies on control of biological networks have focused on identify-

ing and characterising the minimal number of nodes whose receiving an exter-

nal signal drives the system into a state of interest [30, 31]. These nodes are

called driver nodes. Protein-protein interaction networks have been analysed,

and driver nodes have been shown to be enriched with essential, cancer-related

and virus targeted genes. Further their enrichment with regulatory functions like

transcription factors, phosphorylation events and genetic interactions have also

been studied [42, 43]. These studies have focused on static networks and fail to

capture the underlying disease dynamics. Structural controllability analysis of
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human signalling network has shown the importance of driver nodes as upstream

of signalling network and crucial for control [44]. A study by Uhart et.al. [45] on

controllability of PPI phosphorylation network has shown that certain nodes that

are critical for control are regulated by post-translational modifications. The same

study and also characterised the edges based on these modifications. Controllabil-

ity analysis on non-coding RNA (ncRNA)-protein interactions have been applied

to identify human disease association with ncRNAs [46]. Only few of the studies

have attempted to bring out biological significance among control nodes, while

most of them have concentrated on applying various network science techniques

to elucidate ways of identifying driver nodes using biological networks as merely

examples of real-world networks.

1.3 Contributions of the thesis

From control systems perspective, cellular processes can be viewed as an intri-

cately controlled orchestra of regulatory mechanisms that lend the cell its func-

tional repertoire. Diseases, therefore, can be seen as the result of errors in cellular

information processing. Beyond systems modelling of diseases, the focus has also

been on finding ways of controlling the disease through therapeutic interventions.

Further out reach of this work is an extension of the analogy to ’controllability’ of

cell’s regulatory network, and its implications for control in disease as well as

mechanisms of viral infection. We have bridged the controllability theorems for

complex networks in an attempt to get a deeper understanding of control in bio-

logical networks. Aligned with these objectives, the following is the organization

of the thesis:

Chapter 2: Methodology Description of the maximum matching algorithm

implemented in this thesis.

Chapter 3: Identification of critical regulatory genes in cancer signaling network

This chapter focuses on the controllability analysis of cancer signalling

network.
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Chapter 4: Identification of HIV-1 human molecular interactome Here we

describe about our investigations on the HIV-1 human molecular network

and show how control theory could provide a deeper understanding in viral

hijack.

Chapter 5: Investigation of control configuration in biological networks This

chapter focuses on the study of different control configurations in biologi-

cal networks that determine their ease of control.

Chapter 6: Investigation of control profile in biological networks Here we

investigate the structure of biological networks that determine why a node

acts as a driver node.

Chapter 7: Conclusion In this chapter we give a summary of our findings based

on control theory and the scope for extensions based on this thesis.

Figure 1.1: Pictorial outline of the thesis

We first model each of the systems as directed networks and use the technique

of maximum matching to identify driver nodes [30]. Driver nodes are those nodes

6



that when provided with inputs can steer the system from any initial state to a

given final state in finite time [30, 31]. Figure 1 gives a schematic representation

of various steps involved in the modelling and analysis of biological systems for

investigating their controllability aspects. The following are salient contributions

of this thesis:

• We have investigated the cancer signalling network and propose that iden-

tification of specific molecules as drivers of regulatory dynamics could be a

promising step towards targeted cancer therapies. A special class of nodes

identified as indispensable driver nodes could either steer the network from

healthy state to disorder by means of mutations, or could be leveraged as

drug targets for driving the network into healthy state [47]. We also find that

indispensable nodes are preferentially targeted by anti-neoplastic drugs [48].

• We analysed the HIV-1 human molecular interaction as a dynamic network

with and without viral interactions in order to understand the intricate and

complex nature of viral infection. Existing models have focused on host pro-

teins like hubs that have a direct interactions with viruses in network [49],

while proteins that play an indirect yet crucial role may be poorly charac-

terised. Our study investigates these indirect interactions like the receptors,

that are not all direct viral targets yet important for viral entry, replication

and as efficient drug targets. Further, we also propose the role of indispens-

able nodes as direct viral targets that could be an alternative to identify host

dependent factors. This study attempts to provide insights on mechanisms

involved in viral hijack.

• In order to achieve a higher level of understanding of control and their im-

plications in biology, we modelled different networks ranging from disease

to infection to normal regulation. The ease with which one can control a net-

work primarily depends on the structure of the network. This determines

the number of driver nodes needed for control [36]. We investigated five

types of biological networks and find that they are characterized with dis-

tributed control and with a large fraction of nodes acting as driver nodes.
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This implies that such networks are difficult to control.

• We further investigated the structure of driver nodes in these networks to

characterise their control profile [50]. These studies offer insights into high-

level organization and function of the networks. Control theory provides us

an understanding of why biological networks are closed and help us explain

their distributed nature of control.

Our study focuses on modelling and analysis of biological networks from a

control systems perspective. We have proposed models of cancer and viral in-

fection by considering how the system dynamics change from normal state to a

diseased or infected state by applying the notion of controllability. Further we

have also investigated other network controllability properties that determine the

various control configurations and structures that determine the ease with which

one can control the given biological system. Thus the study of biological networks

from a control systems perspective is a novel method of understanding the reg-

ulatory mechanisms underlying these networks and provide a systematic way to

identify drug targets.
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CHAPTER 2

Methodology

2.1 Introduction

Our ultimate understanding of complex systems is reflected by our ability to con-

trol its behaviour. This requires a map of the network like the interactions be-

tween components, dynamical laws that govern the behaviour of the components

and ability to influence the state of the system components. In most real systems

like biological systems this information is inadequate. With recent advances in

control theory and dynamical systems, notions of control and controllability have

taken a new root in the study of complex networks [51]. This has inspired us to

get an understanding of the mechanisms governing the behaviour of a complex

system by answering questions like: What are the principles that govern the con-

trol of complex systems? Which are the components that can alter the state of the

system? How do systems organize themselves? To address these questions many

mathematical models have been developed some of these models are presented

in this chapter.

Graph theoretical methods have been successfully applied to investigate the

structural and quantitative properties of dynamical systems modeled as networks

using control theory [52]. From a control systems perspective, a system is said to

be controllable if we can drive the system from any initial state to any final state in

finite time [27]. While earlier studies focused on smaller systems, the main inter-

est lies in control of complex networks such as the Internet, WWW, power grids,

gene regulatory networks, protein-protein interaction networks, transportation

systems, communication systems. With recent advances in network science we
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can now characterize the structure of these systems. One of the important ad-

vances in this area is that of ‘structural controllability’ of complex networks, de-

veloped in the 1970s by Lin that offered necessary and sufficient conditions to

check if any network with linear time invariant (LTI) dynamics is controllable [29].

The starting point for most control theoretical approaches is the LTI control

system (A, B).

ẋ(t) = Ax(t) + Bu(t) (2.1)

Consider the above LTI dynamics on a directed weighted network G(A) of N

nodes. Here xi(t) ∈ R is the state variable, which can denote the transcription

factor concentration in a gene regulatory network. A = (aij)N×N ∈ R is the

state matrix which is nothing but the adjacency matrix or wiring diagram of the

network. u(t) = u1, . . . , uM(M ≤ N) is the input signals or control signals applied

to the network. B = (biM)N×M is the input matrix or the nodes that are controlled

by u. According to Kalman [27], an LTI system (A, B) is controllable if and only if

the controllability matrix

C ≡ [B, AB, A2B, . . . , AN−1B] (2.2)

has full rank, i.e.,

rankC = N (2.3)

Kalman’s criterion for controllability can be tested for systems with small dimen-

sionality of controllability matrix. For larger real-world networks, it is harder to

check this condition. Hence, for large systems we need to determine the control-

lability without calculating the rank of the controllability matrix. Further, the link

weights A are usually unknown in most networks. We only know if there is a link

or not like in biochemical reactions and so it is not possible to verify the Kalman’s

rank condition using fixed weights [30, 51]. To overcome a few of these limita-

tions Lin provided a graph theoretic framework to check the controllability of a

network based on its topology [29]. This is called ’structural controllability’.
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2.2 Structural controllability

The graphical interpretation of structural controllability was formulated by Lin

[29]. Consider an LTI system (A, B) represented by a digraph G(A, B) = (V, E)

where, the vertex set V = VA∪VB includes both the state vertices VA = {x1, x2, . . . ,

xN} ≡ {v1, v2, . . . , vN}, corresponding to N nodes in the network and the in-

put vertices VB = {u1, u2, . . . , uM} ≡ {vN+1, vN+2, . . . , vN+M} corresponding to

M input signals called origins or roots of the digraph G(A, B). The edge set

E = EA ∪ EB includes edges among the state vertices EA = {(xj, xi)|ai,j 6= 0}-

the links of network A, and the edges connecting input vertices to state vertices

EB = {(um, xi)|ai,m 6= 0}.

Based on this, Lin’s structural controllability theorem states that an LTI sys-

tem (A, B) is structurally controllable if and only if the digraph G(A, B) has no

inaccessible nodes or dilations. A vertex is inaccessible if there are no directed

paths reaching that node from input vertices (Figure 2.1(a)). This node cannot

be influenced by input signals applied to driver nodes making the network un-

controllable. A digraph G(A, B) contains a dilation if there is a subset of nodes

S ⊆ VA such that the neighbourhood set of S denoted as T(S), has fewer nodes

than S itself. In other words there are more subordinates than superiors (Figure

2.1(b)). If such a structure is present then it is uncontrollable. An alternative graph

theoretical formulation of Lin’s structural controllability theorem is the presence

of cacti structure. A cactus is a structure having (a) stem: an elementary path

originating from an input vertex and (b) bud: an elementary cycle with an ad-

ditional edge that ends but does not begin at a vertex of the cycle. The cactus

is a minimal structure that contains neither inaccessible nodes nor dilations (Fig-

ure 2.1(c)). Thus the Lin’s structural controllability theorem is formulated as fol-

lows; An LTI system (A, B) is structurally controllable if and only if G(A, B) is

spanned by cacti. These conditions can be checked by looking at the topology of

the network thus bypassing the numerical issues involved in Kalman’s control-

lability rank test and the difficulties posed by our incomplete knowledge of the

edge weights of G(A, B). This method has helped formulate efficient methods to
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Figure 2.1: Inaccessibility, dilations and cactus.(a) The red nodes x1, x2 are inacces-
sible from the input node u1 in blue. (b) The nodes shaded red in the set S = x3, x4
cause dilation as their neighbourhood set T(S) = x5 contains only one node that
aims to control two nodes in S (c) A cactus contains no inaccessible nodes nor di-
lations. There is one stem (u1, x5, x4, x6, x7) and 3 buds (u1, x5, x3, x1, x2, x3). From
Liu et al., 2011.

identify a minimum set of inputs that guarantee structural controllability.

In order to control a networked system, we need to identify a set of driver

nodes that, when provided with external inputs can offer full control over the

network. One can control all the nodes in the network and attain full control, but

this is costly and impractical. Hence we are interested in identifying minimum
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a number of driver nodes, whose control is sufficient to obtain full control of the

system. Two well established algorithms to identify minimum inputs are based

on maximum matching set [30] and minimum dominating set [31].

2.3 Maximum matching model to identify minimum

driver nodes

Kalman’s controllability condition cannot identify minimum number of driver

nodes, it tells us if we can control a system through a given set of potential driver

nodes which we need to guess. Further, one must know all the entries in A and

B which are often unknown in most real systems. Even if this information is

available then a brute-force search for the minimum dominating set requires us

to compute the rank of almost 2N distinct controllability matrices, a combinatori-

ally prohibitive task for any network of reasonable size. To overcome this, many

studies have mapped the control problem to a purely graph-theoretical problem

called maximum matching [30, 52, 53].

Matching is a well studied problem in graph theory, with ample applications

[54]. For an undirected graph, matching is a set of edges without common ver-

tices. A maximum matching is a matching of the largest size. The end vertices of a

matching edge are called matched and the rest unmatched. Most graphs can have

multiple maximum matching (Figure 2.2 (b)). If all vertices are matched, then it is

called a perfect matching (Figure 2.2(d)).

In structural control theory, matching was well studied and originally defined

in the bipartite representation of a digraph [52, 53]. The extended definition of

matching on a digraph naturally connects to the cactus structure. Directed paths

and cycles are part of a cactus and hence matchings in digraphs connect to cactus

structures. A matching in a directed graph is defined as set of directed edges that

do not share common start or end vertices [30]. A vertex is matched if it is the end

vertex of a matching edge, otherwise it is unmatched (Figure 2.3(a)). A matching

of the largest size is called a maximum matching. If all the vertices are matched

then it is called perfect matching (Figure 2.3(f)).

13



Figure 2.2: Matching in undirected graphs.(a) representation of graph and (b) its
matching. (c) and (d) Representation of perfect matching. Edges in matching and
matched vertices are coloured in grey.

Liu et.al. showed that a matching of a digraph can be decomposed into set of

directed paths and /or directed cycles that form the basic elements of the cactus

structure. They proved a theorem that provides the minimum number of driver

nodes or inputs called Minimum inputs theorem. To fully control a directed network

G(A), the minimum number of inputs, or equivalently the minimum number of

driver nodes is,

ND = max{N − |M∗, 1|}, (2.4)

where, ND is the size of a minimum set of driver nodes or inputs and |M∗| is the

size of the maximum matching in G(A). In other words the driver nodes corre-

sponds to the unmatched nodes. If all nodes are matched i.e. a perfect matching

(|M∗| = N), then we need at least one input to control the network hence ND = 1.

In this case we can choose any node as a driver node.

Algorithmic solution to identify minimum driver nodes

The maximum matching of a graph can be computed in polynomial time. The

maximum matching of a digraph can be identified by mapping the graph to its bi-

partite representation. A digraph G(A) bipartite representation is given as H(A) ≡

(V+
A ∪ V−A , Γ). We create two disjoint sets of in (V−) and out (V+). Here V+

A =

{x+1 , . . . , x+N} and V−A = {x−1 , . . . , x−N} are the sets of vertices corresponding to the
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Figure 2.3: Matching in directed graphs. (a)-(d) Representation of graph and its
matching. (f) is a perfect matching in a directed cycle. Edges in matching and
matched vertices are coloured in grey.

N columns and rows of the state matrix A. The edge set Γ = {(x+j , x−i )|aij 6= 0}.

Each node xi is split into two x+i and x−i . A directed link from node j to i corre-

sponds to a connection between node j in the out set and node i in the in set (Fig-

ure 2.4). Self loops are allowed. A maximum matching of the bipartite graph can

then be efficiently found using the Hopcroft-Karp algorithm [55]. The unmatched

nodes in the in set are the driver nodes. This can then be mapped back to the nodes

of the original digraph. As there could be multiple maximum matchings for a di-

graph with the same size ND, nodes are further classified as critical, ordinary and

redundant based on their presence in driver node set [36]. A node is critical if it

is never matched, ordinary if occasionally matched and redundant/non-driver if

always matched in the in set.
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Figure 2.4: Maximum matching calculation. Nodes in grey are matched nodes.

Algorithmic solution to identify driver node class

1. Identification of critical driver nodes: A node is critical if it is never matched.

In other words, always present in all driver node sets. A node is critical if

and only if it has no incoming link [36]. A node n in the in set can never be

matched if and only there is no link to n.

2. Identification of redundant and ordinary driver nodes : Redundant/non-

driver nodes are always matched in the bipartite graph. If this is forcibly

unmatched then there would be no alternative matching and the number of

unmatched nodes will decrease. Obtain a set of matched nodes M in the in

by finding the maximum matching of bipartite graph using Hopcroft-Karp

algorithm. Pick an element i from M. Identify the node j from the out set that

matched node i. While keeping the current matching, delete the node i and

all its links. Check for an augmenting path that starts with node j and ends at

an unmatched node and alternates between unmatched and matched links

on a path. If there is no augmenting path found, node i needs to be always

matched and therefore is redundant. If there is an augmenting path, node i

is replaceable and hence is ordinary.

16



2.4 General properties of driver nodes identified by

maximum matching

Studies on various networks [30] and our analysis have shown the following

properties of driver nodes (Table 2.1).

1. The fraction of driver nodes is higher among low degree nodes than among

hubs. Hub nodes are rarely driver nodes.

2. The size of the driver node set ND is mainly determined by degree distribu-

tion. When the fraction of driver nodes nreal
D is compared with nrand-Degree

D

and nrand-ER
D , then nrand-Degree

D is close to nreal
D . Here nrand-Degree

D is degree pre-

served randomization, which keeps in-degree and out-degree of each node

unchanged but randomly selects the nodes that link each other. nrand-ER
D is

complete randomization and turns the network into a directed Erdos-Renyi

random network with N and L unchanged.

3. Sparse and heterogeneous networks are most difficult to control.

Network Nodes Edges nreal
D nrand-Degree

D nrand-ER
D nrand-Joint

D
Cancer Signalling 1232 3060 0.4574 0.4323 0.1387 0.4323
Directed Human PPI 6339 34813 0.3601 0.2654 0.0048 0.2659
HIV-human molecular 6361 40625 0.356 0.2469 0.0019 0.2466
T-cell activation 121 255 0.2892 0.2641 0.194 0.2642
HIV-T-cell activation 137 367 0.2481 0.241 0.1112 0.2361
{E. coli} transcription 424 578 0.7287 0.7295 0.3526 0.73

Table 2.1: Controllability properties of biological networks analysed in this thesis.
Here nrand-Joint

D is joint degree preserved randomization.

2.5 Classifying nodes based on their effect on driver

node set size

Another way to assess a node’s importance for control is to quantify the impact

of its removal on controllability [43, 45, 51]. Consider a network with minimum
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number of driver nodes ND. After a node is deleted or removed, denote the mini-

mum number of driver nodes for this network as N′D. We can classify a node into

any one of the following categories.

1. Indispensable: A node is indispensable if upon its deletion, we have to con-

trol more number of driver nodes, i.e, N′D > ND. Example removing a node

in middle of a path will increase ND

2. Dispensable: A node is dispensable if upon its removal, we have to control

less number of driver nodes, i.e, N′D < ND. For example, removing a leaf

node in a star will decrease ND by 1.

3. Neutral: A node is neutral if its removal has no effect on ND, i.e, N′D = ND.

For instance, removal of central hub node in a star will not change ND.

For a given network N, we delete a node at a time and all its links to create the

new network N′. Compute the minimum number of driver nodes ND using the

maximum matching algorithm for each of these networks and compare ND. Re-

peat this until all nodes in the network are deleted.

2.6 Graph theoretic characterisation of driver nodes

We partially characterised driver nodes based on the topology of the network.

Given a directed network N, we try to characterize the nodes as critical driver

nodes (CDN), ordinary driver nodes (ODN) or redundant/non-driver nodes (NDN)

based on the degrees of the node and its neighbours.

The case when every node has indegree = outdegree = 1 will be the case of

the network being a directed cycle, in which case the nodes will all be ODNs.

We therefore focus on directed networks which are not cycles. In such networks,

those nodes which have in-degree equal to zero will be nodes without any par-

ent and will remain unsaturated in any matching. So such nodes will be CDNs.

Amongst those nodes with in-degree larger than zero, consider those which have

atleast one parent whose out-degree is one. Such nodes will be saturated by ev-

ery maximum matching and will consequently be NDNs. This is so because, if
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the node is unsaturated by some maximum matching say M then by inducing the

arc/edge that connects the node with its parent we obtain a matching containing

exactly one more number of edges than those in M; a contradiction to M being

maximum.

The case that now remains uncharacterised is the case of a node with in-degree

larger than one and no parent with out-degree equal to one. Such nodes cannot

be CDNs. However, at present, we are not able to identify the cases under which

these will be ODNs or NDNs.

2.7 Conclusion

In this chapter we have described the maximum matching method for identify-

ing minimum driver node sets in directed graphs which has been implemented

in our study and partially characterised the driver nodes based on its topology.

An alternative method is the minimum dominating set approach for undirected

networks which can be extended for directed networks as well [31]. For a graph

G(V, E), where V is set of vertices and E is set of edges, a subset S ⊆ V is called

dominating set (DS) if every node in V is either an element of S or is adjacent to

an element of S. That is for any node v ∈ V, v ∈ S holds or there is a node u ∈ S

such that (u, v) ∈ E then we say that v is dominated by u. Then S is dominating

set if each node in V is either in S or dominated by some node in S. A minimum

dominating set (MDS) is a dominating set with minimum number of vertices. The

MDS forms the driver node set [31, 56]. We have implemented this method on the

HIV-1 human molecular interactome (Appendix 2). While each of these methods

identify minimum driver nodes, the choice of method is determined by the kind

of control one wants and the type of network. In some cases, maximum matching

yields fewer driver nodes than the minimum dominating set. For instance in a di-

rected path, there is only one driver node by the matching method, but the MDS

would give more driver nodes. Thus the kind of network would determine the

type of method to be implemented.
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CHAPTER 3

Identification of Critical Regulatory Genes in

Cancer Signaling Network

3.1 Introduction and motivation

Cancer is a complex disease which is characterized by subtle interplay of regu-

latory mechanisms underlying its phenotype [57, 58]. Dysregulation of multiple

pathways governing fundamental cell processes (such as death, proliferation, mi-

gration and differentiation) is known to be a key cause for emergence of cancer.

The crosstalk between signalling pathways reflecting salient aspects of disease

have been used to model this pathology [22, 59]. The focus behind building such

integrative models has been to create a meaningful molecular picture of cancer so

as to find ways for controlling the disease [60, 61, 62].

Systems that exhibit complex phenomena owing to interconnected mecha-

nisms underlying its architecture can be studied using graph theoretical paradigm

[15, 63, 64]. Study of such networked systems of social, technological and biolog-

ical origin has added to the understanding of their structure, function and evolu-

tion. Availability of rich data mapping biological processes in the postgenomic era

has facilitated creation of molecular interaction catalogues (protein interactomes,

gene regulatory networks, metabolic pathways and co-expression networks), and

better understanding of cellular functions [65, 66, 67]. Using these graph theo-

retical approaches, various studies have attempted to identify regulatory mecha-

nisms which are central to the disease [1, 68, 69, 70]. Rapid advances in network

biology have provided a new conceptual framework revolutionizing the view of
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biology and disease pathology.

From control systems perspective, cellular processes can be viewed as an in-

tricately controlled orchestra of regulatory mechanisms that lend the cell its func-

tional repertoire. Diseases, therefore, can be seen as the result of errors in cellular

information processing. Beyond systems modeling of diseases, the focus has also

been on finding ways of controlling the disease through therapeutic interventions.

Recent excitement in controllability of networks and identification of driver nodes

as agents for steering the state of the network has added much needed impetus in

this direction [29, 30, 31, 36, 71]. Control systems theory proposes that the state of

complex networks can be controlled with the help of a set of ‘driver nodes’. Driver

nodes may then be fed with external inputs to steer the state of the network.

Analysis of systems biological models of diseases has provided crucial insights

into their mechanisms and potential drug targets [22, 72]. The understanding gar-

nered through such studies has often taken a static perspective of disease interac-

tomes, ignoring dynamical aspects. Study of controllability of diseases and search

for driver nodes as potential therapeutic targets provides a new dimension. Such

integration of control theory with disease interactomes could pave way for better

strategies to assist drug discovery process as well as improve our understanding

of the disease [43, 44, 73].

Cancer systems biology has proved to be helpful in implementing new ther-

apeutic strategies [60, 74]. While most studies [72, 75, 76] focus on identification

of epigenetic changes and mutations in genes, and target them as means of con-

trolling the disease, control theory offers a framework for arriving at driver genes

that could be used for steering the state of the regulatory network. We propose

that identification of specific molecules as drivers of regulatory dynamics could

be a promising step towards targeted cancer therapies.

Here, we modeled the human cancer signaling network as a directed graph

and probed for its critical regulators using structural controllability. We imple-

mented the maximum matching algorithm to identify driver nodes. The driver

nodes were divided into backbone, peripheral and ordinary based on their role in

regulatory interactions and control of the network. Based on node deletion stud-
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ies that enumerate impact of a node on ease of network control, indispensable

nodes were identified. These indispensable backbone driver nodes were found

to be critical for driving the regulatory network into cancer phenotype (via muta-

tions) as well as for steering into healthy phenotype (as drug targets). Thus they

emerged as central to control, both as causal elements by virtue of mutations and

also as therapeutic agents in the form of cancer drug targets. This study illus-

trates an application of control theory for investigation of regulatory mechanisms

underlying complex diseases.

3.2 Data procurement and network analysis

3.2.1 Human Cancer Signaling Network

We created the Human Cancer Signaling Network (HCSN) starting from the data

of cancer signaling network [77] comprising of 1634 genes and 5089 regulatory

relations by integrating genetically and epigenetically altered cancer associated

genes and signaling pathways for cancer. Thus HCSN embeds molecular cor-

relates associated to cancer. The nodes in HCSN are signaling molecules (such

as genes, proteins and other small molecules) and links represent effector ac-

tions such as activation or inhibition and protein-protein interactions. As a first

step towards construction of HCSN the data was purged to remove all undi-

rected protein-protein interactions, thereby creating a weighted network compris-

ing of 1240 nodes and 3144 directed edges. Consistent with strategies used ear-

lier [44, 43], the directed graph was obtained for performing controllability anal-

ysis. Further, multiple directed edges were merged leaving behind 3065 edges in

the unweighted graph. In the next step, the nodes data were curated for ambigu-

ities in gene names using HUGO symbol and Entrez ID as gene identifiers. The

final HCSN thus constructed had 1232 nodes and 3060 edges (Figure 3.1).

22



Figure 3.1: Human cancer signaling network (HCSN). Using controllability anal-
ysis, driver nodes were identified and characterized based on topology. Driver
nodes were classified as peripheral (PDN, shown in red), ordinary (ODN, shown
yellow) and backbone (BDN, shown in blue). The indispensable BDNs, that
emerged as central to regulatory mechanisms of cancer, are depicted as light blue
diamond shaped nodes. PDN: Peripheral driver node, ODN: Ordinary driver
node and BDN: Backbone driver node.

3.2.2 Identification and classification of driver nodes

Driver nodes provide means for controlling the state of the network [30]. These

nodes when given a certain input can drive the system from any initial state to any

desired final state in finite time. The maximum matching algorithm for digraph

was used to identify driver nodes in the form of the minimum driver node set

(MDNS). MDNS identification was implemented using Controllability Analysis

package by Liu.et.al [30]. The details of method is explained in chapter 2.
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As there could be multiple maximum matchings for a digraph, multiple MDNS

exist with the same size ND. Each node was categorized based on their role as

driver node. Based on presence or absence of driver nodes in MDNS, these were

classified into three categories: Peripheral Driver Nodes (PDN), Backbone Driver

Nodes (BDN) and Ordinary Driver Nodes (ODN). PDNs appeared consistently

in all MDNS and had predominantly low degrees thus were primarily located at

the periphery in the network. BDNs on the other hand did not appear in any of

the MDNS. They were predominantly presented with high degrees and were con-

centrated in the core of the network. ODNs fell under neither of these categories,

inconsistently appeared in MDNS and had no distinct degree characteristics.

Thus every molecule in HCSN was classified into either of the three driver

node categories. Figure 2 depicts the segregation of PDNs, ODNs and BDNs

based on degree centralities (degree (k): total links incident on a node; in-degree

(kin): number of incoming links on a node; and out-degree (kout): number of

out going links from a node). HCSN nodes were divided into four classes (low,

medium-low, medium-high and high) of approximately equal size such that nodes

with equal centrality value were binned into the same class (Table 3.1).

Low Medium-low Medium-high High
k 1 2 3− 5 6− 60

kin 0 1 2− 4 5− 32
kout 0 1 2− 3 4− 49

Table 3.1: The classification of the nodes into bins based on their degree.

3.3 Biological characterization of HCSN nodes

Molecules in HCSN were characterized for their cellular localisation, gene ontol-

ogy and biological essentiality. While cellular localisation study was performed

for all the molecules (genes, proteins and other small molecules), the remaining

two characterization studies were done for only genes. For the latter analyses,

non-gene entities were removed from HCSN leaving behind 1178 genes. Among

these 342 were PDNs, 375 were ODNs and 461 were BDNs.
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Figure 3.2: Degree characterization of driver nodes. Height of bars corresponds
to fraction of driver nodes in each class of degree.

Cellular localization Molecules in HCSN were categorized into five different

classes depending upon their participation in different stages of the signalling

pathway [77]: Ex, extracellular molecules that are ligands; Cm, cell surface recep-

tors located in cell membrane; Cy, intracellular molecules found in the cytoplasm

and cell organelles; Nu, molecules found in nuclear membrane as well as nu-

cleus; and NA, molecules whose cellular localization are indeterminate. Certain

molecules had multiple cellular localizations as they were reported to be involved

in more than one stage of signalling. For each class of cellular localisation, repre-

sentation of driver nodes across all three categories (PDNs, ODNs and BDNs) was

computed. The significance of any over- and under-representation was evaluated

using chi-square statistics (See Appendix 1). The statistics were computed for sig-

nificance level of 0.05 and 0.01 with degree of freedom 2 (Table 3.2). The cellular

characterization of driver nodes reflects its importance or role in signalling path-

way. It was observed that the PDNs were significantly present among extracellu-

lar proteins which follows from the fact that PDNs are mostly ligands. BDNs, on

the other hand, were found predominantly among the intracellular signalling pro-

teins. The results were statistically significant at p-value 0.01 (Figure 3.3). ODNs

were found to have no specific characteristic cellular localization.
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PDN ODN BDN χ2(0.05)5.99/0.01(9.21)
HCSN (1232) 29% 31.21% 39.44%

Ex (88) 53.41 15.91 30.68 25.53
Cm (237) 23.21 39.66 37.13 9.17
Cy (768) 26.04 28.26 45.70 11.95
Nu (252) 25.00 32.14 42.86 2.43
NA (32) 50.00 25.00 25.00 6.73

Table 3.2: Chi-square analysis of cellular localisation of driver nodes. Ex: Extra-
cellular, Cm: Cell membrane, Cy: Cytoplasm and organelles, Nu: Nucleus and
NA-Indeterminate.

Figure 3.3: Percentage of driver nodes across the different localisation. Ex: Extra-
cellular, Cm: Cell membrane, Cy: Cytoplasm and organelles, Nu: Nucleus and
NA-Indeterminate.

Gene Ontology enrichment analysis The gene ontology (GO) enrichment anal-

ysis facilitates identification of biological processes, molecular functions and cel-

lular categories that are significantly overrepresented in a set of target genes rel-

ative to a background. We performed GO enrichment analysis for each class

of driver nodes (target), in the background of HCSN genes, in order to iden-

tify characteristic biological attributes among the PDNs, ODNs and BDNs, using

WebGestalt [78].

The set of BDNs were presented with more significantly enriched GO terms

than the PDNs and ODNs pointing out their distinct ontological character. PDNs

comprised of genes with diverse ontologies and thus did not yield any significant

enrichment in biological processes or molecular functions. Enrichment in extra-
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cellular localization further established characterization of PDNs. ODNs showed

weak molecular enrichment for terms such as Calmodulin binding, actin bind-

ing, neurotransmitter receptor activity and G-protein coupled receptor activity.

This indicates that ODNs function mainly as intermediate messenger proteins.

On the other hand, BDNs showed significant enrichment for all the three ontolog-

ical categories. BDNs participate in apoptosis related processes such as cell death,

regulation of cell death, regulation of apoptosis and response to stress, chemical

response and cellular responses. In terms of molecular functions, BDNs partic-

ipate in enzyme binding activity and were localized within the cytoplasm and

organelles.

Essentiality Essential genes are the genes that are critical for survival of the or-

ganism. Using the DEG (Database of Essential Genes) [79], which contains a list

of essential genes for both prokaryotes and eukaryotes, HSCN genes were di-

vided into essential and non-essential. Driver nodes were further characterized

for biological essentiality. We observed that the BDNs were significantly overrep-

resented by essential genes (Z− score = 4.34) while they did not have significant

representation in PDNs (Z− score = −2.15) and ODNs (Z− score = −2.49). This

indicates to the biological relevance of BDNs and highlights their indispensable

nature.

3.4 Controllability analysis of HCSN

After characterizing driver nodes for their topological and biologically relevant

features, we investigated for possible means by which control of HCSN could be

achieved. We surmise that the network could be controlled from two contrasting

perspectives: (1) to drive the molecular regulatory network into cancer state, or

(2) starting from cancerous state, to drive the network into a healthy state. Here

we take the view that, by virtue of its dynamical state, this network of cancer-

associated regulatory mechanisms could broadly be in either in the state of ‘can-

cer phenotype’ or ‘healthy phenotype’. Cancer associated gene mutations are a

reflection on the functionality of these genes in the absence of which the network
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Figure 3.4: Representation of essential genes among driver nodes. BDNs were
significantly over-represented by essential genes.

is driven into cancer state. On the other hand, gene targets are drivers utilized to

steer the cancer into healthy phenotype via drug interventions. We investigated

the association of driver nodes with empirically reported cancer genes as well as

that with genes that are known to be specifically targeted by anticancer (antineo-

plastic) drugs.

Driving into cancer state: Association of driver nodes with cancer genes HCSN

genes were grouped into two classes based on their association with cancer. The

cancer association was adjudged on the basis of cancer causing mutations as well

as cancer genes ascertained from literature and primary datasets [77]. The cancer-

associated gene list contained 2128 genes in total out of which 440 genes were part

of the HCSN. BDNs were significantly overrepresented ( 47% BDNs as compared

to 27% of PDNs and 26% of ODNs; p = 0.01) among the cancer-associated genes

(Figure 3.5). Among the remaining 738 genes not linked to cancer, all three types

of driver nodes were almost equally represented (223 PDNs, 260 ODNs and 255

BDNs; p = 0.01). This highlights the key role played by BDNs in the regula-

tory mechanisms, in the absence of which the network is steered into cancerous

phenotype.
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Figure 3.5: Driver node representation among cancer associated and non-cancer
associated genes of HCSN. BDNs were significantly enriched with cancer associ-
ated genes.

From Cancer state to healthy state: Drug association studies We considered

antineoplastic drugs as molecular agents that drive the cancer phenotype into

healthy state by controlling/tweaking the mechanisms of target genes. Drug-

target associations linking antineoplastic drugs with HCSN genes were compiled

with the help of DGIdb (The drug gene interaction database) [80]. To ignore spu-

rious drug-target interactions, only highly curated associations were obtained by

using ‘source trust curation level’ as ‘expert curated’. We obtained 298 ANPDs

that target 156 genes in HCSN via 893 drug-targets interactions. It was observed

that the nature of distribution of both ‘number of targets a particular ANPD reg-

ulates’ as well as ‘number of ANPDs with which a HCSN gene is regulated by’

were heterogeneous, indicating dominance of few promiscuous ANPD regulators

as well as few key HCSN targets, respectively (Figure 3.6, in and out degree dis-

tributions).

First, we compared number of HCSN genes that are targeted by ANPDs (Fig-

ure 3.7a). We observed that, compared to random sampling, while the PDNs (Z−

score = −2.54) and ODNs (Z− score = −1.93) were under-represented among the

targets of ANPDs, BDNs were significantly over-represented (Z − score = 4.18).

This implies that ANPDs tend to avoid PDNs and ODNs as their targets, they

preferentially target BDNs. This points at the relevance of BDNs as drivers of
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Figure 3.6: Distribution of number of ANPDs a HSCN gene is regulated by (in-
degree) and number of targets a particular ANPD regulates (out-degree).

the state of regulatory network and their importance as points of control in steer-

ing the cancer into healthy phenotype through ANPDs. Next, we compared the

number of ANPDs that target genes in each of the three driver node categories

(Figure 3.7b). We found that number of PDN genes that were targeted by ANPDs

were comparable to that by chance. ODNs were avoided as their targets by AN-

PDs (Z − score = −2.69). BDNs, on the other hand, were targeted with higher

preference (Z− score = 0.91). Together, these results highlight the importance of

BDNs as means of control of cancer and that they are used as key regulators by

ANPDs to drive the state of regulatory network into a healthy phenotype.

3.4.1 Effect of node deletion on controllability of HCSN

Controllability of a network is dictated by its degree heterogeneity as well as

its edge density [30]. The denser a network, fewer the number of driver nodes

needed for its control. In comparison, sparse and heterogeneous networks have

larger number of driver nodes and hence are more difficult to control. Every node

in a network thus contributes towards controllability to varying degree signifying

its relevance.
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Figure 3.7: Statistics depicting the key role of BDNs in driving the HCSN from
cancer state into healthy phenotype as measured in terms of (a) number of genes
targeted by ANPDs, and (b) number of ANPDs that act through a gene target in
the network.

In order to assess and enumerate the contribution of a node to controllability

of the network, we conducted node deletion studies to measure the altered size of

MDNS (N′D) as compared to that of the original network (ND). Increase in num-

ber of driver nodes (N′D > ND) upon removal of a node implies its importance

to control of the network, and such nodes were named ‘indispensable’. With the

same logic, nodes were named ‘dispensable’ or ‘neutral’ if their removal caused

decrease (N′D < ND) in number of driver nodes or no change (N′D = ND), re-

spectively (See Chapter 2 for method). Table 3.3 depicts statistics of HCSN nodes

characterized for their role as driver node (PDNs, ODNs and BDNs) as well as

their impact on control (Indispensable, Dispensable and Neutral).

BDNs, that were observed to be critical for control of HCSN (Figure 3.5 and

Figure 3.7), comprised of only indispensable and neutral nodes. Interestingly, all
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PDN BDN ODN Total
Indispensable - 209 - 209 (16.96%)
Dispensable 237 - 286 523 (42.45%)

Neutral 125 279 96 500 (40.58%)
Total 362 (29.38%) 488 (39.61%) 382 (31%) 1232

Table 3.3: Statistics of HCSN nodes characterized for their role as driver node
(PDNs, ODNs and BDNs) as well as their contribution to control (Indispensable,
Dispensable and Neutral).

indispensable nodes were BDNs. We surmise that the central role of BDNs in

control mechanisms of HCSN is plausibly lent by indispensable nodes. We scru-

tinized this proposition by further dissecting the BDNs to dissociate contribution

of indispensable nodes vis-á-vis neutral nodes.

Figure 3.8: Association of cancer genes among Indispensable and neutral BDNS.
Indispensable BDNs were associated with cancer than neutral BDNs.

Indispensable BDNs are central to control of cancer We investigated for the

possible differential role of indispensable and neutral BDNs for their associa-

tion with cancer as well as for involvement in drug mechanisms. We observed

that mutations in Indispensable BDNs was strongly associated with cancer (Fig-

ure 3.8). Further, the ANPDs were divided into two categories based on the type

of BDN genes they target to alter the cancer phenotype into healthy one (Fig-

ure 3.9). We, also studied the role of BDN gene types in altering the cancer phe-

notype into healthy one by virtue of action of ANPDs.
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Figure 3.9: Distribution of ANPDs among the indispensable and neutral BDNs.

Among all ANPDs that are known to target BDNs, the mechanism of drug

action of around two third of these anticancer drugs were found to be mediated

through indispensable BDNs (Figure 3.10). This pattern was consistent and in

fact more accentuated among ANPDs that are specific to either class of BDNs.

This brings out the central role of indispensable BDNs in control of cancer. They

have more unique ANPDs targeting them and also are crucial in maintaining the

number of driver nodes in the network. Thus indispensable BDNs quantify to

be important in maintaining the state of the system. They can also be viewed as

molecules for targeted cancer therapeutics.

3.5 Drug-gene interaction in HCSN based on control-

lability analysis

We also looked at the interaction of drugs among the nodes classified based on

their impact on driver node set size alone. We mapped the concept of controlla-

bility of HCSN to empirically tested Antineoplastic drugs that potentially drive

33



Figure 3.10: Distribution of unique ANPDs among the indispensable and neu-
tral BDNs. Indispensable BDNs had significantly more unique ANPDs acting as
cancer regulators through them.

the state of the regulatory network. Using the earlier database DGIdb [80] we

complied the drug-target interactions for the genes in HCSN with ANPDs (Fig-

ure. 3.11). The data obtained involves 298 ANPDs that target 156 genes in HCSN

through 893 drug-target interactions. The ANPDs were segregated further to

identify drugs that exclusively target genes in one class. The fraction of genes

exclusively targeting indispensable genes was compared to those targeting Dis-

pensable and neutral genes. We focused on ANPDs that exclusively target in one

of the driver genes class, ignoring those targeting genes belonging to more than

once class. Among these 171 specific ANPDs, we found that 85 of them target in-

dispensable genes (49.7%), as compared 42 (24.6%) that target dispensable genes

and 44 (25.7%) that target neutral genes (Figure. 3.12). Thus we observed that

indispensable genes are preferentially targeted by ANPDs, indicating their ther-

apeutic relevance for control of cancer. We suggest that anti-cancer drugs poten-

tially act as external signals, primarily through indispensable genes, to drive the
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Figure 3.11: Illustration depicting drug-gene interactions between genes of Hu-
man Cancer Signalling Network and antineoplastic drugs. HCSN genes were
classified into Indispensable, Dispensable and Neutral, based on their contribu-
tion to controllability of the network.

state of the underlying signalling mechanism into the healthy phenotype [48]. Ap-

plication of the engineering concept of structural control in a signalling network

to a complex biological signalling disease-associated network, thus reveals empir-

ically reported anti-cancer drugs to be analogous to external input that drives the

state of the network out of pathological expression pattern.
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Figure 3.12: Venn diagram representing the number of ANPDs that target differ-
ent types of driver genes in HCSN. Among the 298 ANPDs, 73 indiscriminately
targeted all three types of driver nodes, and 54 of them had ambiguous drug-gene
interactions cross-category binding. Among the drugs that exclusively targeted to
either of the three classes of nodes, Indispensable genes were prominent targets
(85), as compared to Dispensable (42) and Neutral (44) genes

3.6 Discussion and Conclusions

Our study integrates the systems biological approach to cancer regulatory mecha-

nisms with control theory to identify biological implications of ‘driver nodes’. We

propose the notion of regulatory network as an underlying molecular framework

that is subject to control through indispensable backbone driver nodes. These

nodes could either steer the network from healthy state to disorder by means of

mutations, or could be leveraged as drug targets for driving the network into

healthy state. These results are based on empirical data of cancer causing muta-

tions and known drug targets. Our finding of indispensable genes to be key in

steering the state of the system is consistent with observations made from other
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biological networks [43]. Further, this observation associating disease control to

nodes in the exclusion sets of MDNS is aligned with Liu et al. [44]. Beyond iden-

tification of nodes central to control of a network, our study involves a system-

atic analysis of biological mechanisms underlying cancer. Consistent with earlier

studies, our observations indicate that cancer mutations occur in signalling pro-

teins that are enriched as BDNs [77].

Figure 3.13: Comparison of BDNs and degree hubs highlighting that controlla-
bility analysis adds to disease network analysis from the perspective of hubs. (a)
While 320 BDNs were also hubs, the former yielded 168 driver genes that were
not identified as hubs. (b) BDNs also returned 49 non-hub genes associated to
cancer. (c) Similarly, BDNs yielded 18 ANPD targets that were not present in the
hub set.

Earlier studies have pointed out relevance of hubs (nodes with high degree

and betweenness) in disease networks [22]. Though the backbone driver nodes

identified from our study are characterized with relatively high degrees when

compared to that of peripheral and ordinary driver nodes, the range of variation

is wide (Figure. 3.2). Between BDNs (487) and comparable number of degree hubs
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(464 with k ≥ 4), we found that 34% of BDNs were unique (non-hubs) control ele-

ments. BDNs also comprise of cancer associated genes (49) and targets of ANPDs

(18) that are unaccounted by degree hubs (Figure. 3.13). These observations imply

that structural controllability offers a complementary method for identification

of genes critical for control of disease. Further, when we probed for genes that

develop resistance to ANPDs from COSMIC database [66], out of 9 genes from

HCSN that were reported to undergo drug based resistance to 8 ANPDs, major-

ity were BDNs. These included 5 Indispensable BDNs and 3 Neutral BDN and 1

PDN (Table 3.4).

Drug Gene
Imatinib ABL1, PDGFRA, KIT
Gefitinib, Afatinib EGFR
Bosutinib, Dasatinib, Nilotinib ABL1
Sunitinib PDGFRA, KIT
Vismodegib SMO
Selumetinib MAP2K1
Endocrine therapy ESR1
PD0325901 MAP2K1, MAP2K2
Dabrafenib BRAF

Table 3.4: The genes that undergo resistance to drugs. The drugs highlighted are
part of ANPDs in our study. The genes highlighted by bold are Indispensable
BDN, italicized are Neutral BDN and rest is PDN.

HCSN shows a small world and scale free architecture, similar to many other

biological regulatory networks. While this implies ease of information flow across

the network, it has been reported that many regulatory networks (such as Yeast,

E. coli.) present large number of driver nodes indicating that achieving ‘structural

control’ in such networks is not easy [30]. The scale free nature of degree distri-

bution is one of the key aspects of network topology that has been shown to be

linked to this feature. Large number of driver nodes indicate that control of infor-

mation flow so as to drive the state of the network to a desired state is arduous

as one would need to provide large number of input signals through these driver

nodes. On one side, consistent with evolutionary arguments, this would mean

that the signalling network is robust to spurious random mutations and resists
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being driven into a cancerous state. On the other hand, from the perspective of

finding control mechanisms (drugs) through which the network could be driven

from cancerous to healthy state, this implies that such a drug-mediated control

may not be easy to achieve through a small number of ‘targets’. Not far from re-

ality, cancerous state does come across as a not-so-easy state to control from ther-

apeutic angles. One of the implications of this conclusion is that one needs to find

alternative ways for achieving therapeutic solutions by mediating through a large

number of genes. Studying network controllability of biological networks is diffi-

cult as the true dynamics of the systems is often unavailable. Here we apply lin-

ear control theory for studying a non-linear system assuming that most biological

systems operate under homeostasis. Identifying driver nodes in a system could

provide a global impact but when to target them in a perturbed system requires

knowledge of underlying dynamics, which is often unknown in most biological

networks [73]. We believe that this approach that amalgamates engineering con-

cepts with biological knowledge could provide better insights into mechanisms

of cancer.
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CHAPTER 4

Investigation of HIV-1 Human Molecular

Interactome

4.1 Introduction and motivation

The rapid emergence of infectious diseases like Ebola, HIV-1, Hepatitis calls for

immediate attention to determine practical solutions and strategies to combat

them. HIV-1 continues to be a serious health issue world wide. HIV-1 is a retro-

virus comprising of 9 genes that code for 21 proteins. HIV-1 like all other viruses

needs to exploit the cellular machinery of the host to replicate. To achieve this,

the viral molecules target many host molecules through a complex network of

mostly protein-protein interactions [81]. In reality, the virus with its minimalistic

genome needs to interact with the host system in a highly complicated manner,

thereby regulate the molecules and the functions to efficiently hijack the host and

replicate successfully.

With the advancement in proteomics and genomics there is an ever-increasing

volume of data generated on the host genes that are modulated by HIV-1 dur-

ing infection. These data have helped in a better understanding of the various

interactions between the host and viral proteins. Further, the data has helped

to construct several viral-host molecular interaction networks. Several databases

like VirusMint [82], VirHostNet [83], JNets [84] and HHPID [85] catalogue these

viral-host interactions and provide a global snapshot of the host-cellular processes

perturbed by HIV-1 infection. Given the availability of this host-pathogen in-

teractions, it is now possible to study such systems as networks. For instance,
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MacPherson et.al. [86] have modelled the HIV-1-host interaction as a network to

identify core processes that are active during infection and also cellular subsys-

tems that are affected by HIV-1. Another study [49] has integrated different vi-

ral and bacterial human protein-protein interactions as networks and provided a

holistic view of strategies used by pathogens to subvert human cellular processes

and infect cells.

Graph theory has been widely used as a model to describe and visualize host

cellular systems at molecular level. Many studies have highlighted that the ’hubs’-

highly connecting proteins and high centrality proteins,are targeted by viruses

[49, 87, 88].Majority of these studies analyse and visualise the viral-host interac-

tions together. To verify these and to get a better understanding of the network

parameters central to HIV-1 human molecular interactome, we performed net-

work analysis on HIV-1 human interaction network. The results are presented

in (Appendix 2). These studies have however ignored the dynamics of infection

while in reality HIV-1 perturbs the host cellular system in an indiscriminate man-

ner. So an interesting question is how does HIV-1 orchestrate its control on the

host system in a order to efficiently hijack the host cell.

Control theory has emerged as a mathematical framework for understanding

the dynamics and how best to control an engineered system. Control theory has

been widely applied to the study of complex networks and to identify ways for

controlling its behaviour [29, 30, 31, 51]. The goal is to identify the minimum

number of inputs, termed ’driver nodes’, that can alter the state of the system.

Past studies have employed control theory to identify minimum number of pro-

teins required to control diseases like cancer [44, 46, 47, 89] and other essential

biological functionalities [42, 43, 90, 91].

In this chapter, we use control theory as a paradigm for investigation of HIV-1

infection and hijack. While past studies have explored the use of control theory

and shown that only a few molecules are associated as viral targets [42, 43], they

do not talk about cause of hijack. Here, we have modelled HIV-1 host interactions

as dynamic network both with and without the HIV-1-host interactions included.

We investigated this network from controllability perspective to explore the util-
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ity of principles of control theory to dissect mechanisms of HIV-1 infection. By

constructing complex networks of molecular events mediated by virus during its

exploitation of host machinery we can improve our current model of HIV-1 infec-

tion and host cell perturbation. This information aids in antiviral treatments.

4.2 Network compilation and characterization

The directed human protein-protein interaction (PPI) network was obtained from

Vinayagam et.al. [43]. This consisted 6339 proteins and 43813 interactions. In-

teraction direction represents potential signal flow between proteins, which was

predicted using a Naive Bayesian classifier [92]. In order to generate an integrated

HIV-1 human molecular network, we first collected HIV-1 interactions with hu-

man from HHPID [85]. A total of 15230 interactions were retrieved and were

further curated by ignoring the number of publications, counting each reaction

type only once and finally selecting only those nodes that had shared nodes with

the directed human signalling network. Among 6339 human proteins, 2529 hu-

man proteins within the PPI network interact with HIV-1, resulting in a total of

5811 additional interactions. The directions in the HIV-1 human molecular net-

work were assigned using the method provided by MacPherson et.al., where each

HHPID interaction was assigned a direction based on the type of interaction. Di-

rection represents whether the viral protein acts upon the host or vice versa. For

instance, Nef inhibits ACHE would be given a forward direction as the viral pro-

tein acts upon the host, whereas Nef is inhibited by ACHE would be attributed

a backward direction, since it is the host protein that acts on the virus one [86].

Thus the HIV-1 human molecular network consisted of 6361 proteins and 40625

interactions (Figure 4.1).
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Figure 4.1: Human HIV-1 molecular network. Using controllability analysis,
driver nodes were identified and characterized as critical (shown in red), ordi-
nary (shown in yellow) and redundant (shown in grey). The HIV-1 proteins are
represented as diamonds.

4.3 Characterization of nodes in directed human PPI

network based on controllability analysis

We analysed the human PPI network for its controllability and characterized nodes

based on their role in control. The maximum matching model was used to identify

the minimum number of driver nodes ND [30] (See Chapter 2). 36% of the nodes

were classified as driver nodes. Though the size of ND is unique, the set is dif-

ferent so we further classified the nodes based on their presence in the minimum

drive node set (MDNS). 6% of the nodes were critical meaning they are present in

all MDNS and have to be controlled. 53% of the nodes were ordinary i.e present

in some MDNS and 42% were redundant i.e never part of MDNS are not required

for control. Based on this classification, we identified the controllers of the net-
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work primarily critical nodes i.e nodes where inputs need to be provided in order

to gain control over the system.

In order to assess the role of human proteins in context to cell signalling, we

characterized them as either signalling proteins, kinases, receptors and transcrip-

tion factors [43]. In total, the proteins were classified into 1006 signalling proteins,

545 receptors, 366 kinases and 1150 transcription factors (Table 4.1).

Critical
Observed Random mean Z-score p-value

Signaling proteins 51 60.32 -1.33 0.1834
Receptors 351 32.25 62.5 p<.001
Kinases 29 21.62 1.7 0.0891
Transcription factor 1 68.57 -9.14 6.25e-20

Ordinary
Observed Random mean Z-score p-value

Signaling proteins 388 528.76 -9.69 3.33e-22
Receptors 112 286.43 -15.29 8.92e-53
Kinases 160 192.18 -3.42 0.0006
Transcription factor 367 603.15 -16.09 3.00e-58

Redundant
Observed Random mean Z-score p-value

Signaling proteins 567 418.19 10.69 1.13e-26
Receptors 82 226.79 -12.89 5.12e-38
Kinases 177 152.2 2.7 0.0069
Transcription factor 782 477.92 20.14 3.29e-90

Table 4.1: Classification of driver nodes based on cellular localization.

The critical nodes were highly enriched as receptors being predominantly in

the upstream of signalling processes, while underrepresented as transcription fac-

tors. On the other hand redundant nodes were enriched as transcription factors

and signalling proteins mainly being in the downstream of signalling processes

and under represented as receptors. Ordinary nodes did not show any specific

cellular characterization.

4.4 Role of receptors in viral entry

Viruses replicate within living cells and use the host cellular machinery for the

synthesis of their genome and other components. To gain access into the cell, they
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have evolved different mechanisms to deliver their genes and accessory proteins

into host cells. Viruses take advantage of receptors to gain entry into the cell [93].

The first step of HIV-1 replication is binding and entry into the host cell with the

help of primary cellular receptors that plays a major role in determining viral

tropism and ability of HIV-1 to degrade the host immune system. To infect cells,

the HIV envelope protein (Env) binds to CD4 receptors and then other coreceptors

to trigger fusion of viral and host cell membranes, initiating infection [94].

Here we analogise virus as an external input to the cell, that gains entry into

the cell through receptors that were observed to be predominantly critical nodes.

In order to access the role of receptors for viral entry, we looked at it from con-

trol perspective and calculated control centrality. It is a measure that tells us how

powerful a node is in controlling the network. Mathematically, control centrality

of a node captures the dimension of controllable subspace or the size of control-

lable subsystem when we control node i only [38]. Out of 6339 proteins from

the signalling network, about 40% of the nodes are targets of HIV-1 in which 114

are receptors. We compared the control centrality among the different driver node

class. The mean control centrality for receptors was higher compared to signalling

proteins, kinases and transcription factors (Table 4.2). We validated the differ-

ence in mean using one way ANOVA at significance level p<0.0001 and F score of

442.68. Further post-hoc test also showed significant difference in mean control

centrality between receptors and other class of proteins but no significant differ-

ence between the mean control centrality of signalling proteins and kinases was

seen. Control centrality measure reveals the importance of receptors for viral en-

try that has profound implications for viral tropism, transmission, pathogenesis

and therapeutic interventions.

Mean Standard deviation
Signalling proteins (1006) 0.239 0.049

Receptors (545) 0.257 0.006
Kinases (366) 0.242 0.041

Transcription factors (1150) 0.173 0.113

Table 4.2: Mean control centrality measure among different class of signalling
proteins.
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4.5 Controllability analysis of HIV-1 human molecu-

lar network

To better understand the pathogenesis of HIV-1, we modelled it as a dynamic

network with viral interactions involved in forming the HIV-1 human molecular

network and without viral interactions in the directed human PPI network. We

termed these networks as infected and uninfected to perform controllability anal-

ysis in order to investigate how viruses alter the state of the network and drive

into infection.

Driver nodes were classified and compared in the uninfected and infected

network (Table 4.3). In the HIV-1 infected network the number of driver nodes

ND = 2264 whereas the same was ND = 2283 prior to HIV-1 infection. The num-

ber of driver nodes did not change significantly. We further characterized all the

nodes in the network and identified the preserved critical nodes that could be

leveraged as potential drug targets for antiviral therapy.

Network N E N_D Critical Ordinary Redundant
Uninfected 6339 34813 2283 377 3330 2632

HIV Human HIV Human HIV Human
Infected 6361 40625 2264 1 266 2 3443 19 2630

Table 4.3: Comparison of driver nodes in uninfected and infected network.

Among the HIV-1 proteins, p51 was the only node classified as critical, nu-

cleocapsid and p1 as ordinary and remaining 19 proteins as redundant. One can

observe a difference in critical nodes upon infection among the human proteins.

Initially 377 proteins were characterized as critical which subsequently reduced to

266 upon HIV-1 interaction. Among the critical proteins 111 changed to ordinary

nodes in the infected network. ICAM-1 which was initially classified as ordinary

changes to redundant upon infection. Three proteins namely MAD2L1, SCNN1A

and TRIM6 which were initially redundant changes to ordinary in the infected

network.

The critical nodes consisted of 127 proteins that were exclusively targeted by

HIV-1. Upon infection, 15 proteins preserved their critical node status. We pro-
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pose that these 15 proteins could be possible targets for anti-viral drugs (Table

4.4). Some of these have been experimentally identified as RNAi screens and

druggable genes [43]. By comparing the two networks and looking at the nodes

that control the system provides us with an better understanding of HIV-1 patho-

genesis.

Critical node Cellular localization RNAi screen Druggable
ADORA2A Receptor Yes
KIR3DL1 Receptor
SIGMAR1 Receptor
NRXN1 Receptor Yes
PTH1R Receptor Yes Yes
KLRC2 Receptor Yes
PFKM Signalling protein Yes
NTRK3 Receptor Yes
TFR2 Receptor Yes
CD97 Receptor Yes Yes
LPAR2 Receptor Yes Yes
PTPRN2 Receptor Yes Yes
IL22RA1 Receptor
LPAR3 Receptor Yes Yes
OPN4 Receptor Yes Yes

Table 4.4: Preserved critical nodes that are HIV-1 targets.

4.6 HIV-1 target indispensable nodes

We also investigated the network by looking at the importance of a protein upon

its removal on controllability. The proteins/nodes in the network were classified

based on their impact on size of driver nodes ND. In order to efficiently control

a system, we need to steer inputs to minimum number of driver nodes. If the

number of driver nodes increases, controlling such systems is difficult. In order to

enumerate the importance of a node on ND, we classified each nodes as indispens-

able, dispensable and neutral as mentioned in chapter 2. A node is indispensable

if the number of driver nodes increases, dispensable if there is decrease in number

of driver nodes and neutral if there is no change in the number of driver nodes.

21% of the proteins were classified as indispensable, 37% dispensable and 42% as

neutral in the uninfected network. Further, we characterized these nodes based on

their degree distribution. We observed that the indispensable nodes had high in,
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out and total degree. Dispensable nodes were predominantly low degree nodes

while neutral nodes had no distinct degree characterization.

Figure 4.2: Degree characterization of nodes. Height of bars corresponds to frac-
tion of driver nodes in each class of degree. K= Total degree, Kin=In-degree,
Kout=Out-degree.

Figure 4.3: HIV-1 targets among different class of proteins based on their impact
on ND.

We also categorized the proteins in HIV-1 infected network (Table 4.5) and ob-
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served no change in the classification of nodes in the infected and uninfected net-

work. While this comparison does not reflect the change in state from healthy to

normal, it does highlight the importance of indispensable nodes for HIV-1 targets.

Among the HIV-1 targeted proteins, 58% were indispensable, 29% were dispens-

able and 41% were neutral (Figure: 4.3). This shows that HIV-1 target indispens-

able nodes that have high degree and are viral targets that have direct interactions

with virus proteins. This is in accordance with other studies which have shown

that viruses target high degree nodes [49, 81, 95].

Network Indispensable Dispensable Neutral
Uninfected 1330 2347 2662

HIV Human HIV Human HIV Human
Infected 19 1331 1 2346 2 2662

Table 4.5: Classification of proteins based on their impact on ND.

4.7 Controllability analysis of T-cell activation network

Of all immune cells, CD4+ T lymphocytes are the most important cell type in-

volved in HIV-1 infection. HIV-1 enters into these cells through the interaction

of its envelope protein with CD4 receptor and CXCR4 or CCR5 co-receptors [96].

Apart from viral entry, this interaction of HIV-1 and receptors triggers signals that

activate multiple pathways stimulating cellular responses within the host cell. We

have analysed the signalling pathways essential for T-cell activation through the

T-cell receptor complex (TCR), its co-stimulators and co-inhibitors by constructing

a networks prior to HIV-1 interaction and post interaction from data of Oyeyemi

et.al [97] that contains 137 nodes (16 HIV and 121 human proteins) and 336 inter-

actions. The T-cell activation network comprised of 121 proteins and 255 edges,

while the HIV-1 T-cell activation network has 137 proteins and 367 interactions.

All the interaction type either inhibit or activate a protein and hence represent

state change of nodes in the network.

We classified the proteins/nodes in both the networks based on their role as

driver node and as well as their role in altering the number of driver nodes ND.

Upon activation with HIV-1, the critical and dispensable proteins reduced

while there was an increase in ordinary and neutral proteins (Table 4.6). We
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Before Infection (N=121) After Infection (N=137)
N % N %

Critical 16 13.22 14 10.22
Ordinary 42 34.71 55 40.15

redundant 63 52.07 68 49.64
Indispensable 36 29.75 41 29.93
Dispensable 30 24.79 26 18.98

Neutral 55 45.45 70 51.09

Table 4.6: Classification of proteins based on controllability analysis.

also looked at the classification of HIV-1 proteins. Env gene glycoprotein namely

gp120 was classified as indispensable. This could possible answer its importance

in viral entry. Vpu and gp41 were classified critical, meaning they act as driver

nodes. gp41 serves to anchor gp120 to which it remains attached and to effect

membrane fusion. On the other hand, vpu accessory gene contribute virus repli-

cation by facilitating the assembly, binding and release of mature virus particles.

Thus one assists in viral entry and the other in replication that leads to infection.

Critical Ordinary Redundant
Indispensable gp120
Dispensable nucleocapsid,rev,p6,rt

Neutral vpu,gp41 protease, nef, vif, vpr,tat,gp160 capsid, matrix,in

Table 4.7: Classification of HIV proteins based on controllability analysis.

When compared the driver nodes in both the networks, 12 nodes preserved

their critical node status. Out of these CD45 and DLGH1 interact with gp120,

gp160 and nucleopcapsid. Interestingly, logical steady state dynamic studies have

shown that switching off DLGH1 activated gp160 and deactivates nucleocapsid

thus showing that viral cells may control host signal transduction dynamics by

inhibiting or activating host proteins to favour viral replication needs at various

stages of infection [97]. CD4, loses its critical node status upon interaction with

gp160, gp120, nef, vpr, vpu, vif, B-arrestin and protease.

Since the type of interaction determines the course of signal transduction, we

also looked at the role of the edges/interactions in control. We classified links as

critical: If on its removal the number of driver nodes increases, redundant: It can

be removed without affecting the current set of diver nodes and ordinary: If it is
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neither critical nor redundant [30].

T-cell activation E=287 HIV-1 infected E=401
Activation Inhibition Activation Inhibition

Critical 31 4 36 7
Ordinary 135 29 155 40

Redundant 78 10 129 34

Table 4.8: Classification of edges based on control.

A difference in number of edges is due to the fact that while identifying driver

nodes, the weights of the edges is not considered, i.e, in the presence of activation

and inhibition reaction between same proteins simultaneously, the edge was con-

sidered only once in driver node identification. While in the case of edge control-

lability, the reactions are considered different and hence the increase in number.

The critical edges are more of activation type in both the networks compared

to inhibition 4.8. A detailed list of the critical edges are provided in Appendix 2.

In the HIV-1 T-cell activation network, 7 interactions were critical out of which

5 were activation and 2 inhibition type of reaction A6. Our results suggests that

viral-host interactions contribute more towards activation of host proteins and

hence aid in activation of other downstream cellular process of these proteins.

Also, the critical viral-host interactions, could be useful check points for antiviral

therapy. This suggests that virus does not impede signals but rather amplifies

them [97].

4.8 Conclusion

Viruses act by exploiting their host cellular machinery in order to replicate. We

have applied control theory to show how HIV-1 hijacks the host cells in order to

enhance its replication. We investigated two networks, viz., uninfected and in-

fected, from the perspective of control and used different measures of complex

networks like degree, centrality to identify nodes critical in control. We found

that receptors were part of driver nodes and had higher capacity to reach sub-

systems based on their control centrality measure. This explains the role of recep-

tors in viral entry and how efficiently they facilitate the virus to activate specific
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pathways required for successful infection. Further, we propose preserved criti-

cal driver nodes as potential drug targets since they do not change their critical

driver node status upon HIV-1 infection. These nodes were predominately re-

ceptors, few of them being RNAi screens and verified drug targets. By targeting

these, one could potentially suppress HIV-1 replication. As mentioned earlier, re-

ceptors facilitate viral entry and is the first step in HIV-1 replication thus is target

for several antiretroviral agents: attachment inhibitors, chemokine receptor an-

tagonists and fusion inhibitors [98, 99]. The indispensable nodes/protein were

found to be crucial for controlling the network as they had higher degree and

were HIV-1 targets. Based on this study, we propose that viruses efficiently use

their minimalistic genome to replicate in the host cell.

Analysis of the T-cell activation pathways adds to a better understanding of

the viral hijack which can be further extended to other pathways involved in HIV-

1 infection to better understand signal information flow and to identify drug in-

tervention points. We also analysed the uninfected and infected networks using

minimum dominating set model (MDS) [31], to gain further insights on the vi-

ral hijack mechanism. These results are provided in Appendix 2. From control

systems perspective cellular processes can be viewed as an intricately regulated

system and viruses can be seen as ’attacks’. Our work provides a conceptual and

technical framework for incorporating signalling pathways to get more insights

on mechanism of pathogenesis. This method to analyse complex biological net-

works has the potential for furthering systems biology research.
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CHAPTER 5

Investigation of Control Configuration in

Biological Networks

5.1 Introduction and motivation

Biological processes are governed by physical and chemical interactions between

proteins. Cells respond to environmental changes that influence the signalling

network. For instance, in order to drive the human cancer signalling network

from a cancerous state to a healthy state, a natural conversion of a cancer cell into

a normal cell is not possible. This can be achieved by perturbing the system using

drugs or other external hues.

The maximum matching model developed to identify driver nodes, nodes

with which we can achieve full control, predict the existence of multiple con-

trol configurations, in turn prompting us to classify each node in the network

based on its role in control. In Chapter 2, we classified a node as critical, ordinary,

redundant/non-driver according as its presence in all, some, none of the sets of

driver nodes. This classification of driver nodes has lead to identification of two

distinct control modes/configurations for a network. The control mode of a net-

work can be altered through small structural perturbations [36]. In this chapter

we perturb the network configuration, classify the driver nodes in the perturbed

network to gain insights into the dynamics of the system represented by the initial

network. We use this technique to identify the control modes of some biological

networks.
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5.2 Control modes in networks

The role of each node in controlling a network is identified by classifying each

node into one of the three categories based on its presence in minimum driver

node set (MDS). Critical, meaning the node is always a driver node, i.e. it is

present in all MDS; redundant if it never acts as a driver node and therefore not

a part of any MDS; ordinary if it acts as driver node in some but not all MDS.

This classification leads to bifurcation phenomenon, predicting that a bimodal be-

haviour determines the controllability of many real world networks [36]. This

bimodality uncovers two control modes, centralized and distributed. The control

modes are determined by fraction of redundant nodes.

Studies on network models have shown that for networks with symmetric

in- and out-degree distributions, the fraction of redundant nodes ( nr = NR/N,

where NR is number of redundant nodes and N is total nodes in the network)

undergoes a bifurcation at a critical mean degree 〈k〉c. In particular it has been

shown that for low mean degree 〈k〉 nr is uniquely determined by 〈k〉, but when

〈k〉 exceeds 〈k〉c there exist two different values for nr, one with very high and the

other with low values leading to bimodal behaviour (Figure 5.1). Hence for large

〈k〉 two control modes coexist [36]. These modes are:

1. Centralized control : For networks that follow the upper branch of the bifur-

cation diagram (Figure 5.1), most nodes are redundant nodes (Figure 5.1(c))

and nr is very high. In these networks, only a small fraction of nodes are

required for control, i.e., nc + ni is small, where nc is the fraction of critical

nodes and ni is the fraction of ordinary nodes in the network. This mode of

control is like that of an organisational setting where leadership is concen-

trated in the hands of a few supervisors and the employees are only execu-

tors.

2. Distributed control: In networks that follow the lower branch of the bifur-

cation diagram nc + ni can exceed 90% of the nodes, meaning most nodes

participate as driver nodes in some control configuration. This mode of con-
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Figure 5.1: Emergence of bimodality in controlling complex networks. (a) Bi-
modality in network for symmetric in- and out-degree distribution (γin = γout =
3) for high 〈k〉. The plot is of nr and nc) vs 〈k〉 in scale-free networks. (b) nr in net-
works with asymmetric degree distribution (γin = 2.67, γout = 3, upper branch
and γin = 3, γout = 2.67 lower branch). the control mode is predetermined by
their degree asymmetry. (c) and (d) are networks representing centralized or dis-
tributed control. Both networks have ND = 4 and Nc = 1 (red node) but different
number of redundant nodes (uncoloured node), Nr = 23 in (c) and Nr = 3 in (d).
From Y.Liu et.al., 2016.

trol is like that of an organisation where different employees take leadership

roles at different times as in case of change in shift.

5.3 Identification of control modes in biological

networks

Identification of control mode and altering the state of a network can be achieved

by its transpose. The transposed network of a given network is obtained by re-
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versing the direction of each link of the given network. The control mode is cap-

tured by comparing nr of the network with that of its transposed network nT
r . If

∆nr = nr − nT
r > 0 then the network is said to be in centralized mode. If ∆nr < 0

then the network is said to be in distributed and if ∆nr = 0 then the mode of con-

trol of the network cannot be determined. For some biological networks we have

determined the control mode as tabulated below (Table 5.1).

Network Nodes Edges nr nT
r ∆nr Control mode

Cancer
signaling

1232 3060 0.396104 0.350649 0.045455 centralized

Directed
human PPI

6339 34813 0.41505 0.425304 -0.010254 undetermined

HIV-human
molecular

6361 40625 0.416352 0.427449 -0.011097 undetermined

T-cell
activation

121 255 0.520661 0.528926 -0.008265 undetermined

HIV-T-cell
activation

137 367 0.49635 0.613139 -0.116789 distributed

E. coli
transcription

423 578 0.096926 0.269504 -0.172578 distributed

Table 5.1: Control mode of some biological networks

The human signalling network follows a centralized mode of control. One

possible reason could be the nature of the network. In this network, cells receive

information from neighbouring cells through receptors which in turn activates or

inhibits proteins down stream of it. In this way many proteins coordinate with

one another to maintain cellular information processing. Since there is a kind of

hierarchy among the proteins, this could be a reason for why such systems follow

a centralized mode of control.

The HIV-1 t-cell activation and the E. coli transcription networks have dis-

tributed control. In the case of HIV-1 t-cell activation network, the HIV-1 proteins

interact with human proteins for its replication. Further due to infection, the hu-

man proteins independently activate the immune system to combat the virus, thus

allowing for a distributed mode of control. So is the case with the E. coli transcrip-

tion network which comprises motifs that have a specific function in determining

different gene expressions. In the case of the directed human PPI network, HIV-

1 human molecular network and T-cell activation network, the mode of control

cannot be determined.
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5.4 Conclusion

Identifying the control mode of a network throws light on its dynamics. This tells

us the ease with which one can control such systems. Biological networks are in

general difficult to control due to their underlying complexity. By identifying the

mode, we can perhaps find ways to effectively control the system. Further, iden-

tifying the control mode of a biological network will add to better understand-

ing of mechanisms underlying its nature. For most biological networks, many

molecular details like function, interactions, kinetic parameters among genes and

proteins are unknown. Despite the lack of a thorough knowledge of the entities

in the network, the control mode can shed some light on the mechanisms of the

network.

The fact that control modes are suited for different task raises an important

question as to what is the least modification required to change the mode of a

network from centralized to distributed and vice versa? It is to be noted that if the

original network is centralised then its transpose is distributed [36]. It is of interest

to identify as few edges as possible that when reversed can change the mode of

control. Biological processes can now be reversed at a cellular level. For instance

tumorigenesis can be reversed through targeted inactivation of oncogenes [100].

Study by Cho et.al. have shown that the network can be rewired by inducing

reshaping of the attractor landscape (a molecular phase portrait describing the

dynamics of a molecular regulatory network) and phenotype landscape (that is

determined by the steady states of particular output molecules) in the attractor

landscape [101]. One should bear in mind that, the purpose of control determines

the control mode best suited for the system.
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CHAPTER 6

Investigation of Control Profile in Biological

Networks

6.1 Introduction and motivation

Studying control properties of a complex network provides insights into how the

dynamical system represented by the network can be influenced to achieve de-

sired behaviour. Many biological systems which are important for the normal

regulation of a cell are dynamic systems. Undesirable behaviour of such systems

is observed in the form of diseases and has lead to interest in studying the control

of such complex systems through the corresponding networks. In the preced-

ing chapters, we have established the connection between driver nodes which

when provided with an external input can trigger the system to a desired state

and their biological implications. The mathematical models implemented therein

have shown the minimum number of controls required to control the system [30].

While topological properties of a network like its degree distribution is correlated

with the minimum number of controls, it does not provide an explanatory detail

of each control. For example a financial system and a biological system may re-

quire the same number of controls, but the structures giving rise to these controls

may be different. Understanding the control properties of a complex network

requires more than just knowing the number of controls [102]. For an effective

control strategy, it is also important to characterize the functional origin of each

control. To know why a node is a driver node, we look at the control profile of

the network. It is a statistic that quantifies the different proportions of control-
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inducing structures present in the networks [50].

Structural controllability formalized the idea that propagation of control is

influenced by a backbone of directed paths/stems and cycles/buds that form a

structures called cacti [29]. Each stem requires at least one control [53]. A cycle

can be controlled by exactly one node lying on it. Ultimately it is the stem that

dictates the number of controls. In this chapter, we determine why a node is a

driver node based on its position in the network, and identify the control profile.

Further, based on the control profile we deduce the control strategy for each of the

networks studied in the preceding chapters.

Figure 6.1: Control structure of a network constructed with stems (red) and cycles
(blue and green). There is one source node A, and two sink nodes F and G giving
rise to one external dilation and one internal dilation due to A-B-C-D topology.
There are three controls, control 1 for nodes A and K, control 2 for node B and
control 3 for node F. Black lines indicate links not involved in control structure.
From Ruths and Ruths, 2014.
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6.2 Identification of control profile

Since the controllability of a network is determined by the presence of cacti struc-

ture, this would mean that the number of stems in the network would determine

the number of controls. The location of a stem is dictated by two topological fea-

tures: sources which are at the origin of the stem (node A in Figure 6.1) and sinks

which are nodes with no outgoing links that lie at end of the stem (node F and G

in Figure 6.1). If Ns and Nt denote the number of sources and sinks respectively in

a complex system then the number of stems in the system is given by max(Ns, Nt).

To understand why a node is a driver node, we decompose the driver nodes

into three groups [50]: (1) source nodes- since these appear at the origin of the stem

they must be directly controlled, (2) external dilations which arise due to surplus of

sink nodes- since each source node can control only one sink node, the number of

external dilation Ne is max(0, Nt − Ns), and (3) internal dilations- a structure that

occurs when a path branches into two or more paths in order to reach other nodes

(Figure 6.1); Ni denotes the number of internal dilations in a network. Thus the

minimum number of independent controls ND required to gain full control is the

sum of the number source nodes, the external dilations and the internal dilations

i.e. ND = Ns + Ne + Ni. The classification described above gives rise to a control

profile for a network given by (ηs = Ns/ND, ηe = Ne/ND, ηi = Ni/ND), which

quantifies the different proportions of control-inducing structures present in the

network.

As in previous chapters, ND is computed using the maximum matching algo-

rithm. Degree analysis is used for computing Ns and Ne. Now, Ni can be solved

as a function of Ns, Ne and ND. The table below summarizes the control profile

for the networks described in the previous chapters (Table 6.1).

The control profile plots for these networks (Figure 6.2) are presented as trian-

gular plots in which the corners correspond to the points (1,0,0), (0,1,0) and (0,0,1)

in the three-dimensional (ηs, ηe, ηi) space. These heat maps also capture over-

lapping data points. These plots were generated using ZEN package in python

(http://zen.networkdynamics.org/).
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Network Nodes Edges Driver nodes ηs ηe ηi
Cancer Signalling 1232 3060 47% 0.29 0 0.18

Directed Human PPI 6339 34813 36% 0.06 0.02 0.28
HIV-human molecular 6361 40625 36% 0.04 0.04 0.28

T-cell activation 121 255 29% 0.13 0 0.16
HIV- T-cell activation 137 367 25% 0.41 0 0.59
E. coli transcription 423 578 73% 0.11 0.62 0.002

Table 6.1: Control profile of some biological networks

(a) Human cancer signaling (b) Directed Human PPI (c) HIV-Human molecular

(d) T-cell activation (e) HIV-1 T-cell activation (f) E. coli transcription

Figure 6.2: Control profile plots of some biological networks

6.3 Interpretation of control profile in biological

networks

The control profile results offer insights into high-level organization and function

of complex networks. They categorise real networks into three clusters based on

whether the network is dominated by source nodes, or by external dilations or by

internal dilations. Random networks cannot be dominated by any set of nodes

and hence cannot have any control profile [50]. We analyse the control profile of

networks in our study and characterise them based on the cluster they belong to.

The human cancer signalling network is source dominated (Figure 6.2 (a)). This
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means the ratio of sinks to sources is less than one i.e., there are fewer sinks than

sources. These networks have no external dilation. But this does not mean that

there are no sink nodes. It means there is at least one distinct source which reaches

a sink through a directed path. Since the source nodes lie at the boundary they are

easily accessible and therefore are control targets. For example, receptor proteins

responsible for transducing extracellular stimuli into intracellular signals which

were in chapter 3, characterised as PDNs (peripheral driver nodes) in the human

cancer signalling network are the source nodes [103]. Since these source nodes

are readily accessible and influence the protein interactions within the cell, they

are used as potential drug targets [104]. This procedure which is in practise is in

synchronisation with the results of our theoretical study.

The T-cell activation and HIV-1 T-cell activation networks are internal dilation

dominated. They have no external dilation (Figure 6.2 (d) and (e)). In such sig-

nalling networks, the source and certain intra-cellular molecules drive the signal

transduction within the cell. For instance the HIV-1 virus attacks the CD4 recep-

tor which in turn activates other down-stream proteins, for the release of T-helper

cells. Thus the source and some internal dilation nodes are responsible for control.

The Human PPI network and HIV-1 human molecular network are also inter-

nal dilation dominated networks (Figure:6.2 (b),(c)). Such networks lack sources

which indicate clear input and sinks that indicate clear system output. The top-

down architecture generally implies that control at the source cannot drive the

system to any desired state. This means that the system is closed or mostly closed

[50]. The PPI network and the HIV-1 molecular network also have feedback loops.

Like a protein ’a’ can activate protein ’b’ and excess of protein ’b’ could inhibit

protein ’a’. This gives rise to feedback loops and forms a closed system.

The E. coli transcription network is external- dilation dominated (Figure:6.2 (f)).

This implies that sinks outnumber the sources. So, controls applied to sources will

yield correlated behaviour within the network. The genes in a transcription net-

work exhibit high degree of correlation expression. For instance a particular gene

can co-express or down-regulate the expression of another gene. Now, if we seek

to fully control such a system, we need to add controls beyond the sources.
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6.4 Conclusion

Control profiles offer a way to capture the origin of control in networks and to

understand why a node acts as a driver node. Studying control profile of biolog-

ical networks helps in improved understanding of the system and in identifying

those nodes that can efficiently control the system. For the networks studied in

this thesis, we can deduce, based on the control profile that the source dominated

networks like human cancer signalling and T-cell signalling network can be ef-

ficiently controlled through the source nodes. In the case of internal dilated net-

works like HIV-human molecular network and the human PPI network which are

closed systems and obey certain conservation laws, some non-source nodes are

also required to gain control. We conclude that the control profile of a network

adds insights about the structure of the network which could then offer strategic

ways to control the system. This is helpful particularly in biological networks that

are highly constrained and require large sets of control nodes to gain full control.
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CHAPTER 7

Conclusions and Future Work

"Our imagination is the only limit to what we can have in the future."

- Charles F. Kettering,

The study of complex networks has promoted the development of systems biol-

ogy. By building the complex network for a biological system, and through the

study of network characteristics, we try to elaborate how molecules, interactions

and structures of the network determine biological functions. This provides us

insights about the cellular organisation, function and is also helpful in disease di-

agnosis, treatments and drug design. In recent years, control of complex networks

has been revisited, inspiring several fundamental questions like what are the con-

trol principles of complex networks and how are they organised to balance control

and functionality? To address these question several graph theoretic methods are

available in complex networks as discussed in chapter 2. This motivates us to

study the control of biological networks as well.

7.1 Salient contributions of the thesis

The objective of this thesis is to model and analyse biological networks from a

control systems perspective. While a detailed conclusion is provided at the end

of each chapter, here we provide an overall summary of the thesis. We have pro-

posed that the ideas of structural controllability can be used, to capture how mu-

tations caused by external perturbations changes the normal state of a cell into

disease state and triggering back to desired normal state by drugs. We have also
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captured the role of driver nodes in the HIV-1-human molecular interactome and

showed the efficiency with which the virus hijacks the host system for effective

pathogenesis.

The dynamical properties of a cell are hardwired in the genome and influenced

by environmental and epigenetic changes. Thus the cell is naturally receptive to

external cues and this provides us an opportunity for its manipulation to achieve

desired outcomes. In order to take the best advantage of this property we require

a deeper understanding of when and where to apply these external influences. By

looking at the control configuration and control profile of networks, one can get

a better understanding of the ease with which the network can be controlled and

the nature of driver nodes. Thus, the application of network controllability can be

a systematic reasoning about which nodes to target to achieve a desired outcome

in perturbed systems like cancer and viral infection. It also shows the strategy of

these networks to circumvent external control and maintain its function even if

the number of nodes being influenced is large. The above findings suggest that

control theory is a promising approach to analyse complex biological networks

composed of data from proteomics to transcriptomics. The integration of sig-

nalling data and viral interaction data have led to novel findings. The enrichment

observed by driver nodes with disease association suggests them as important

target molecules for future development and design of drugs.

7.2 Future research directions

Future work concerns deeper analysis of particular mechanisms, new proposals

to try different methods and anything exciting in this field inspired by sheer cu-

riosity. This thesis has been mainly focused on directed networks, leaving the

study of undirected networks outside the scope of this thesis. The following ideas

are to be explored.

1. It would be interesting to consider undirected networks like PPI networks

and bipartitie networks like ncRNA-protein interaction networks relating to

diseases and perform controllability analysis using the minimum dominat-
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ing set method [105].

2. The current model focuses on nodal dynamics, while this can also be ex-

tended to controlling the edges that determine the kind of interaction. We

have performed preliminary analysis of edge dynamics using switchboard

model [32] on the biological networks considered in this thesis and present

it in Appendix 3. The biological implications of this analysis are yet to be

investigated.

3. Multi-layer networks may also be considered such that gene-disease-drug

interactions are captured to better understand the influence of one network

on the other [90]. An extension could be to identify the disease modules and

look for association between driver nodes and these modules.

4. In Chapter 4 the focus was on HIV-1. This study can be extended to other

viral-host molecular interaction networks to get a global map of the way

different pathogens interact with the human cell.

5. Graph theoretic characterisation of driver nodes based on graph parameters

like tenacity, maxflow-mincut can be applied to get more efficient control

nodes.
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Appendix 1: Supplementary information for

human cancer signaling network

Data curation: Removing ambiguities in gene names For six genes

the Entrez ID were updated and 3 genes had animal orthologs and were replaced

with it human orthologous genes. We also deleted duplicated gene that had same

approved name but were reported by different symbols. For such genes if they

had the same interaction we removed the duplicated one and added one if it was

a new interaction and retained any one gene among them. Out of 1186 genes from

Gene name Original ID Remark
AA 8 Updated ID 7003

MEF2B 4207 Updated ID 100
PKC 50818 Updated ID 11

p65 55566 This Id is withdrawn but the gene symbol matches
5970, RELA.

PDE 64414 Updated ID 50

Actin 280979 This is of Bos Taurus, its human ortholog is ACTB
with ID 60

CP1 50820 Replaced with 23314 by NCBI

MUNC-18 282378 This is of Bos Taurus, its human ortholog is STXBP1
with ID 6812

P35611 27360 This is of mouse, its human ortholog is ADD3 with
ID 12

Table A1: List of genes that had different/ Updated Entrez ID.

the original network we wanted to query for HUGO symbols. We queried the

HGCN database. Initially 1131 approved symbols were obtained. For remaining

55 manual curation was done by looking up the Entrez ID at NCBI and second by

gene symbol using multi-symbol checker http://www.genenames.org/cgi-bin/

symbol_checker. For certain genes the Entrez ID and gene symbol did not match,

in which case we retained the gene symbol and updated the corresponding Entrez
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ID. For three genes the ID were not of human gene and hence its corresponding

human ortholog were considered.

Statistical tests
Following are the statistical analysis implemented in this work.

1. Chi-square test :The chi-square is used to determine if there is significant

difference between expected and observed data in one or more categories.

Observed data is denoted as Oi,where i = 1, 2, ....N where N is number of

categories. Expected data is denoted as Ei and is calculated by, Ei = pi ∗

∑N
i=1 Oi, were pi is expected percentage. The chi-square formula is defined

as follows χ2 = ∑N
i=1(Oi − Ei)

2/Ei. The degree of freedom is calculated

as N − 1, if the number of categories is N and the corresponding value for

that particular degree of freedom with a predetermined level of significance

is looked from the chi-square table. If the value obtained from the table

is less than the calculated chi-square value then the difference between the

percentages among different sets is not due to chance.

2. Z-score statistics: Z-score was calculated to find significant over represen-

tation of genes among each category than that by chance alone. Random

sampling of genes was done based on the size of observed number of genes

in each category for 1000 instances. The mean and standard deviation was

calculated for each instance and then the Z-score was calculated based on

the following formula. Z − score = O f − E f /(S.D) where O f is observed

frequency, E f is expected frequency and S.D is standard deviation.
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Statistical test results

Cancer associated
Category O p E (O− E)2/E χ2 0.05sig 0.01sig

PDN 119 29.03 127.74 0.6 11.72 5.99 9.21
ODN 115 31.83 140.07 4.49
BDN 206 39.13 172.19 6.64

Non- cancer associated
Category O p E (O− E)2/E χ2 0.05sig 0.01sig

PDN 223 29.03 214.26 0.36 6.99 5.99 9.21
ODN 260 31.83 234.9321 2.67
BDN 255 39.13 288.8098 3.96

Table A2: The statistics of association of cancer among driver nodes.

Chi-square for indispensable BDN
Category O p E (O− E)2/E χ2 0.05sig 0.01sig

CA 110 44.69 88.03 5.48 9.91 3.84 6.63
Non-CA 87 55.31 108.97 4.43

Chi-square for neutral BDN
Category O p E (O− E)2/E χ2 0.05sig 0.01sig

CA 96 44.69 117.97 4.09 7.4 3.84 6.63
Non-CA 168 55.31 146.03 3.31

Table A3: The statistics of association of cancer among indispensable and neutral
BDN.
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Chi-square test for All ANPDs
Category O p E (O− E)2/E χ2 0.05sig 0.01sig

Indispensable 190 42.73 126.92 31.35 54.75 3.84 6.63
Neutral 107 57.27 170.08 23.4
Chi-square test for unique ANPDs among indispensable and neutral

Category O p E (O− E)2/E χ2 0.05sig 0.01sig
Indispensable 129 42.73 74.78 39.31 68.64 3.84 6.63

Neutral 46 57.27 100.22 29.33

Table A4: Statistics for total and unique number of ANPDs targeting indispens-
able and neutral BDNs.
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Appendix 2: Supplementary information for

HIV-human molecular interactome

Complex network parameter which determine HIV-human molec-
ular interactome

Holistic view of the complex host-pathogen interactome is necessary for the

understanding of complex diseases. With the plethora of omics data available it

is now possible to study these complex systems at network level. In this study,

we explore different complex network parameters for the HIV-1 human protein

interaction network with an aim to understand how these biological networks

interact with each other. Some questions that we hope to answer through this

study are: What class or module of proteins does HIV interact with? How can we

identify these proteins through network parameters?

Methods

Network construction We used HPRD (Human Protein Reference Database),

one of the most comprehensive resources of human protein-protein interactions

(PPIs), to construct the human interactome [6]. The database is manually curated,

contains the maximum number of binary non-redundant human PPIs, gene anno-

tations and largest citations of PPIs curated. This human interactome comprises

9587 proteins and 39240 interactions. The data for HIV-1 human interaction net-

work was complied from BioGRID. BioGRID is a general repository for interac-

tion datasets. The database is complied through comprehensive curation efforts

and captures data from published experimental results. The HIV-1 human inter-

actome has 1020 proteins with 1811 interactions (Figure A1, A2).
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Figure A1: HIV-1 Human Protein interactome.Size of node corresponds to the
degree.

Interactome analysis We performed network analysis of the HPRD and HIV-

1 Human interactome to compute various graph theoretic parameters. We com-

puted network centrality measures like degree, betweenness, stress, average short-

est path length, clustering coefficient and topological coefficient. Identification of

Hub nodes: We ranked the proteins based on the degree in the human interac-

tome. Then we compiled them into ten hub sets (top 100-top 1000) containing the

proteins with ranks above certain cutoffs.

Results and Conclusion
We identified that 812 proteins out of 1028 were targeted by HIV-1 from the

HPRD(Figure A3). The hub sets classified top 100, top 200, top 300 had 39, 61,

88 hub proteins respectively targeted by HIV. Similarly we classified sets based

on the betweenness centrality and had 32, 62, 85 bottleneck proteins in top 100,

200, 300 respectively targeted by HIV-1. We randomly sampled a corresponding
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Figure A2: Strategy implemented for identification of HIV-1 specific targets.

number of proteins from the human interactome for 100 instances and found that

around 8% as expected are found to be targeted by the virus (Figure A4).

In this study we provide an overview of the human proteins

interaction with HIV-1 and demonstrate that the viruses target hubs (nodes/proteins

that interact with many other proteins). We also demonstrated the results for bot-

tleneck (proteins that lie on many shortest paths) and obtained the same result

that HIV-1 targets hub and bottleneck proteins. Through this study we identify

certain network parameters through graph theoretic metrics that could be useful

in identifying certain class of proteins and help identifying drug targets.
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Figure A3: Venn diagram depicting the number of proteins targeted by HIV-1
from the human interactome.

(a) Hubs of human interactome targeted by
HIV-1.

(b) bottlenecks of human interactome tar-
geted by HIV-1.

Figure A4: Network parameters central to HIV-1 human molecular interactome.
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Classification of edges based on controllability

source target Reaction type
BAD BCL2L1 inhibits
GRAP2(GADS) LCP2(SLP76) activates
Cam CaN activates
GAB2 PTPN11(SHP2) activates
GRB2 GAB2 activates
IP3 Ca2+ activates
MAPK8(JNK) JUN activates
MAPK14(p38) PXN activates
PAG CSK activates
RAF MAP2K1/2(MEK1/2) activates
RAS RAF activates
RPS6KA1(RSK) CREB activates
RASGRP1 SOS activates
MAP3K7(TAK1) MAP2K7(MKK7) activates
PDCD1(PD-1) PTPN6(SHP1) activates
PPP2R4(PP2A) AKT inhibits
MAP3K8(COT) MAP3K14(NIK) activates
SHC GRB2 activates
VAV1 RHOA activates
Chemokine CCR5/CXCR4 activates
GRKL GRK activates
CCR5/CXCR4 JAK3 activates
Gai AC inhibits
AC cAMP activates
cAMP PKA activates
Gby PLCB activates
PKA P-REX1 inhibits
PTK2B(Pyk2) Src activates
NCF1 NOX4 activates
JAK3 STAT activates
RHOA ROCK activates
RAP CDC42 activates
RASGRP2 RAP activates
CD4 PTK2 activates
CBLB PTEN activates

Table A5: Critical links in T-cell activation network.
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source target Reaction type
BAD BCL2L1 inhibits
GRAP2(GADS) LCP2(SLP76) activates
GSK3 CYC1 inhibits
GADD45 MAPK14(p38) inhibits
Cam CaN activates
GAB2 PTPN11(SHP2) activates
GRB2 GAB2 activates
IP3 Ca2+ activates
MAPK8(JNK) JUN activates
MAPK14(p38) PXN activates
PAG CSK activates
PIP2 PIP3 activates
RAF MAP2K1/2(MEK1/2) activates
RAS RAF activates
RPS6KA1(RSK) CREB activates
RASGRP1 SOS activates
MAP3K7(TAK1) MAP2K7(MKK7) activates
PDCD1(PD-1) PTPN6(SHP1) activates
PPP2R4(PP2A) AKT inhibits
MAP3K8(COT) MAP3K14(NIK) activates
SHC GRB2 activates
VAV1 RHOA activates
Chemokine CCR5/CXCR4 activates
GRKL GRK activates
CCR5/CXCR4 JAK3 activates
Gai AC inhibits
cAMP PKA activates
PTK2B(Pyk2) Src activates
NCF1 NOX4 activates
JAK3 STAT activates
RHOA ROCK activates
RAP CDC42 activates
RASGRP2 RAP activates
CD4 PTK2 activates
PI3K BAD activates
CBLB PTEN activates
protease B-arrestin activates
STAT capsid activates
PAK matrix activates
vif CD4 activates
CDKN1A(p21) in inhibits
vpu CTNNB1(bcat) inhibits
CD45 gp120 activates

Table A6: Critical links in HIV T-cell activation network.
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MDS model MM model
Uninfected Infected Uninfected Infected

HIV Human HIV Human
Driver nodes 1398 1232 2283 2264

Critical 874 12 688 377 1 266
Ordinary 1250 5 1231 3330 2 3443

Redundant 4215 5 4420 2632 19 2630

Table A7: Classification of minimum dominating set (MDS) and maximum match-
ing driver nodes.

Identification of driver nodes using minimum dominating set method
To further gain insights in the hijack mechanism we identified driver nodes

in the uninfected and HIV-1 infected network using the minimum dominating set

model (MDS) [31]. For a directed graph, a set of nodes S is said to be a dominating

set if for any node v ∈ V, v ∈ S holds or there is a node u ∈ S such that there

exists a directed edge (u, v). A minimum dominating set (MDS) is a dominating

set with the minimum number of nodes. For a given graph the MDS need not be

unique. Each MDS forms the driver node set. Because there are multiple MDS

configurations, nodes are classified as critical driver node, if a node is always

present in all MDS, occasionally present in MDS then it is an ordinary driver node

and if a node is never part of any MDS then it is a redundant/non-driver node

[106]. After classifying the driver nodes based on MDS model, we compared it

with the maximum matching (MM) model. Since MDS computation is NP-hard

we should consider the network individually to find an MDS in it or we should

use approximation algorithms to compute an MDS in an arbitrary network.

The analysis classified 1398 (22%) nodes as driver nodes based on MDS method,

compared to 2282 (36%) of them classified by the maximum matching in the unin-

fected network. In the HIV-1 infected network, MDS classified 19% of the nodes as

driver nodes compared to 36% of them classified by the MM model. This captures

the ease with which the network can be controlled and that MDS yielded fewer

driver nodes compared to maximum matching. Since the driver node set is not

unique for both the models, driver nodes are classified further as critical, ordinary

and redundant. In the uninfected network,the MDS classified 14% of the nodes as
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critical compared to only 6% of the nodes classified as critical by the MM model.

Similarly, the MDS classified more nodes as redundant compared to MM. On the

other hand MM model classified most of the nodes as ordinary (53%) compared to

MDS (20%) (Table A7). This explains why fewer overall driver nodes are required

to control the network with MDS. A similar trend in the classification of driver

nodes is observed in the infected network. As was observed in Chapter 4 for the

MM model, we see that in the MDS model also there is a decrease in the num-

ber of critical driver nodes, while the number of ordinary and redundant nodes

remain almost the same for the infected and uninfected states. These results in-

dicate that inclusion of the virus has increased the controllability of the network,

i.e., the virus set of interactions increases the number of interactions facilitating

the hijacking of the cell, and controlling the network more efficiently.

We also looked at the association of the virus proteins with the driver nodes to

identify if they are preferentially targeted by the virus. Out of the 6339 proteins in

the uninfected human PPI network, 2529 nodes have been reported to be targeted

by HIV-1. Of the different driver node classified by the MDS model, 50% of the

critical driver nodes were significantly targeted by HIV-1 (Z-score=6.50) (Table

A8). The critical driver nodes identified by MDS are mostly high degree nodes.

In terms of understanding infection, the virus is mainly driving the network by

targeting the critical driver nodes.

Node type Observed Percentage Random mean Z-score P-value
Critical 438 50.11 349.38 6.5 8.03E-011

Ordinary 489 39.12 498.4 -0.61 0.542
Redundant 1602 38.01 1681.45 -4.41 1.03E-005

Table A8: HIV-1 targets among driver nodes. Numbers of observed critical, inter-
mittent or redundant nodes.

We also analysed both the networks for robustness to control based on MDS

model and, classified each node into (1) indispensable, i.e., if we have to control

more driver nodes in its absence; (2) dispensable, if we have to control fewer

driver nodes and (3) neutral, if in its absence there is no change in the number

of driver nodes. We compared this classification with that obtained using MM

model in Chapter 4.
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Interestingly, MDS classified a much smaller number of nodes as indispensable

(503) or dispensable (770) compared to MM (1330 versus 2347 respectively), with

twice the number of neutral nodes identified by MDS compared to MM (Table

A9). As a consequence MDS performs much more efficiently than MM. A similar

trend was seen in the HIV-1 infected network with a smaller number of nodes

classified as indispensable (397 human and 11 HIV) or dispensable (719 human

and 3 HIV-1) compared to MM (1331 human and 19 HIV-1 proteins verses 2346

human and 1 HIV-1). In addition, on comparing the difference in node character-

isation in both states (uninfected and infected), the indispensable nodes reduced

by about 20% to 397 for the MDS model but showed no change for the MM model

(Table A9).

MDS model MM model
Uninfected Infected Uninfected Infected

HIV Human HIV Human
Indispensable 503 11 397 1330 19 1331
Dispensable 770 3 719 2347 1 2346

Neutral 5066 8 5223 2662 2 2662

Table A9: Control robustness analysis: Classification of nodes based on deletion
studies between normal/uninfected and HIV-1 infected networks.

Our preliminary analysis on the HIV-1 human molecular interactome using

the minimum dominating set model shows that the results obtained by this model

better reflects the viral hijack mechanism than the maximum matching model.

Further analysis is required to understand the robustness of this model.
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Appendix 3: Controllability analysis using switch-

board model

Identifying nodes based on switchboard model

Structural controllability has widely focused on nodal dynamics, i.e., identify-

ing driver nodes that when provided with certain input can change the state of

a network from any initial state to desired final state. While in many systems, it

is interesting to know how the signals flow along the connections and the nodes

do something with these signals. For instance, a transcription network, where in-

formation flow across the pathways influences genes and proteins or a neuronal

network where signals received triggers the activation of certain neurons. In such

cases, it is useful to understand the dynamics on the edges. Nepusz and Vicsek

[32] proposed a model that studies dynamical process on edges termed switch-

board model. The model identifies minimum set of driver nodes that can driver

certain edges to maintain structural controllability. Here the nodes acts as a small

switchboard- like device mapping the signals of incoming edges to the outgoing

edges.

To identify the driver nodes using the switchboard model, a directed graph

is converted to its equivalent line graph. A line graph L(G) of a graph G is a

graph, where the each vertex in L(G) represents a edge of G and two vertices

in L(G) are adjacent if and only if their corresponding edges are incident in G.

The minimum input theorem described in Chapter 2 is then applied on the line

graph L(G). This gives set of control paths and driven nodes in line digraph or

equivalently a set of driven edges in the original graph (G). The set of driven

nodes is those nodes/vertices that have at least one out-going driven edge. The

maximum matching on L(G) consists of vertex-disjoint open and closed paths
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(stems and buds), mapping these paths back to G yields edge-disjoint open and

closed walks in G. The walks together form a complete edge cover of G. As the

first vertex of each stem has to be driven in L(G), the driver nodes in G are those

from which the corresponding open edge-disjoint walks originate. Thus we need

to find an edge cover that minimizes the number of nodes from which open walks

originate in G.

We identified the driver nodes for networks in our study and compared it with

Liu et.al. nodal dynamics model [107]. The switchboard model was implemented

using netctrl package obtained from https://github.com/ntamas/netctrl.

Comparison of driver nodes

Network Nodes Edges NSBD Nliu
Cancer Signalling 1232 3060 576 (0.468) 584 (0.474)
Directed Human PPI 6339 34813 2269 (0.358) 2283 (0.360)
HIV-human molecular 6361 40625 2083 (0.327) 2265 (0.356)
T-cell activation 121 255 42 (0.347) 35 (0.289)
HIV-T-cell activation 137 367 44 (0.321) 34 (0.248)
E. coli transcription 423 578 98 (0.232) 308 (0.728)

Table A10: Driver node comparison between switchboard and Liu model.

The cancer signalling and directed human PPI network have no difference

in the number of driver nodes. The Liu’s model identifies few driver nodes for

the T-cell activation and HIV-T-cell activation networks. The switchboard model

identifies fewer driver nodes in the E. coli transcription network compared to Liu

model. One reason could be that in the transcription network a particular gene

can up-regulate or down-regulate another gene. The driven node can indepen-

dently influence its subordinates in the switchboard model thus yielding fewer

driver nodes compared to linear nodal dynamics. Our analysis are at preliminary

stage and further investigation on what it means to control edges in biological

networks is to be done.
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• Vandana Ravindran, V Sunitha, Ganesh Bagler. Identification of critical
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Physica A-Statistical Mechanics and its Applications Vol 474,pp.134-143, 2016.

Peer-reviewed conferences

• Vandana Ravindran, V Sunitha, Ganesh Bagler. Investigation of control pro-

file in biological networks. In the proceedings of the 6th International Con-

ference on Complex Networks and Their Applications, pp.69-71, 2017.

• Vandana Ravindran, V Sunitha, Ganesh Bagler. Controllability of human

cancer signaling network- Signaling as a paradigm for disease control through

drug-gene interactions. In the proceedings of IEEE International Conference
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