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Abstract

Bio-computing uses the complexes of biomolecules such as DNA (Deoxyribonu-

cleic acid), RNA (Ribonucleic acid) and proteins to perform the computational

processes for encoding and processing the data. In 1994, L. Adleman introduced

the field of DNA computing by solving an instance of the Hamiltonian path prob-

lem using the bunch of DNA sequences and biotechnology lab methods. An idea

of DNA hybridization was used to perform this experiment. DNA hybridiza-

tion is a backbone for any computation using the DNA sequences. However, it

is also cause of errors. To use the DNA for computing, a specific set of the DNA

sequences (DNA codes) which satisfies particular properties (DNA codes con-

straints) that avoid cross-hybridization are designed to perform a particular task.

Contributions of this dissertation can be broadly divided into two parts as 1) De-

signing the DNA codes by using algebraic coding theory. 2) Codes for DNA data

storage systems to encode the data in the DNA.

The main research objective in designing the DNA codes over the quaternary

alphabets {A, C, G, T}, is to find the largest possible set of M codewords each of

length n such that they are at least at the distance d and satisfies the desired con-

straints which are feasible with respect to practical implementation. In the litera-

ture, various computational and theoretical approaches have been used to design

a set of DNA codes which are sufficiently dissimilar. Furthermore, DNA codes

are constructed using coding theoretic approaches using fields and rings. In this

dissertation, one such approach is used to generate the DNA codes from the ring

R = Z4 + wZ4, where w2 = 2 + 2w. Some of the algebraic properties of the ring

R are explored. In order to define an isometry from the elements of the ring R to

DNA, a new distance called Gau distance is defined. The Gau distance motivates
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the distance preserving map called Gau map φ. Linear and closure properties of

the Gau map are obtained. General conditions on the generator matrix over the

ring R to satisfy reverse and reverse complement constraints on the DNA code are

derived. Using this map, several new classes of the DNA codes which satisfies the

Hamming distance, reverse and reverse complement constraints are given. The

families of the DNA codes via the Simplex type codes, first order and rth order

Reed-Muller type codes and Octa type codes are developed. Some of the general

results on the generator matrix to satisfy the reverse and reverse complement con-

straints are given. Some of the constructed DNA codes are optimal with respect

to the bounds on M, the size of the code.

These DNA codes can be used for a myriad of applications, one of which is

data storage. DNA is stable, robust and reliable. Theoretically, it is estimated that

one gram of DNA can store 455 EB (1 Exabyte = 1018 bytes). These properties

make the DNA a potential candidate for data storage. However, there are various

practical constraints for the DNA data storage system. In this work, we construct

DNA codes with some of the DNA constraints to design efficient codes to store

data in DNA.

One of the practical constraints in designing DNA codes for storage is the re-

peated bases (runlengths) of the same DNA nucleotides. Hence, it is essential that

each DNA codeword should avoid long runlengths. In this thesis, codes are pro-

posed for data storage that will dis-allow runlengths of any base to develop DNA

data storage error-free codes.

A fixed GC-weight u (the occurrence of G and C nucleotides in a DNA code-

word) is another requirement for DNA codewords used in DNA storage. DNA

codewords with large GC-weight lead to insertion and deletion (indel) errors in

DNA reading and amplification process thus, it is crucial to consider a fixed GC-

weight for DNA code.

In this work, we propose methods that generate families of codes for the DNA

data storage systems that satisfy no-runlength and fixed GC-weight constraints

for the DNA codewords used for data storage. The first is the constrained codes

which use the quaternary code and the second is DNA Golay subcodes that use
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the ternary encoding.

The constrained quaternary coding is presented to generate DNA codes for the

data storage. We give a construction algorithm for finding families of DNA codes

with the no-runlength and fixed GC-weight constraints. The number of DNA

codewords of fixed GC-weight with the no-runlength constraint is enumerated.

We note that the prior work only gave bounds on the number of such codewords

while in this work we count the number of these DNA codewords exactly. We

observe that the bound mentioned in the previous work does not take into account

the distance of the code which is essential for data reliability. Thus, we consider

distance to obtain a lower bound on the number of codewords along with the

fixed GC-weight and no-runlength constraints.

In the second method, we demonstrate the Golay subcode method to encode

the data in a variable chunk architecture of the DNA using ternary encoding. N.

Goldman et al. introduced the first proof of concept of the DNA data storage

in 2013 by encoding the data without using error correction in the DNA which

motivated us to implement this method. While implementing this method, a bot-

tleneck of this approach was identified which limited the amount of data that can

be encoded due to fix length chunk architecture used for data encoding. In this

work, we propose a modified scheme using a non-linear family of ternary codes

based on the Golay subcode that includes flexible length chunk architecture for

data encoding in DNA. By using the Golay ternary subcode, two substitution er-

rors can be corrected.

In a nutshell, the significant contributions of this thesis are designing DNA

codes with specific constraints. First, DNA codes from the ring using algebraic

coding by defining a new type of distance (Gau distance) and map (Gau map)

are proposed. These DNA codes satisfy reverse, reverse complement and com-

plement with the minimum Hamming distance constraints. Several families of

these DNA codes and their properties are studied. Second, DNA codes using

constrained coding and Golay subcode method are developed that satisfy no-

runlength and GC-weight constraints for a DNA data storage system.
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CHAPTER 1

Introduction

If you don’t work on important problems, it’s not likely that you’ll do important work.

-Richard Hamming,

You and Your Research, Bell Communications Research Colloquium Seminar, 7 March 1986 [36]

1.1 Bio-molecular Computing: Introduction

Computation and biology have attained incredible breakthroughs by developing

the Bio-Nano things [6] where these devices perform the computation that is pos-

sible due to the technological paradigm shift in communication, coding and infor-

mation theory. Information Theory studies the amount of information that can be

transmitted and stored through a channel and coding theory deals with correcting

the errors during communication of the data through a noisy channel. Mathemat-

ics has been used powerfully to solve problems in engineering, communication

theory and recently in biological science at a large scale giving rise to the field

of mathematical biology and biological mathematics [68]. In particular, modeling

the biological systems uses knowledge of biological mathematics to understand

the behavior of a complex system involving different biological entities.

Bio-molecular computing is a branch of biological mathematics that includes

the study of the biological molecules to perform a computation. The biocomput-

ing employs biological molecules such as DNA (Deoxyribonucleic Acid), RNA

1



Figure 1.1: Different directions of DNA computing.

(Ribonucleic Acid) and proteins (peptides) for computation. From all of these

natural media, a DNA had been the most promising candidate for the genetic ma-

nipulations and experimental studies. Tom Head in 1987 [60] proposed the idea

of computing using the DNA, however, in 1994 L. Adleman [3] used the DNA

sequences to solve a popular instance of the Hamiltonian path problem and pio-

neered the field of DNA computing. Subsequently Erik Winfree [135] has shown

that self-assembly of DNA is Turing universal which has paved the way to all the

current innovative directions of DNA computing [116] as shown in Figure 1.1.

The identification of mathematical properties of the DNA sequences [87], [113]

inspired many researchers to explore this new amalgamation of biology and cod-

ing theory [55] to study the computational aspects of DNA.

1.2 DNA: A Computing Material

DNA computing includes computation using the DNA sequences. DNA is a

double-stranded molecule formed by the pairing of four basic building units A-

(Adenine), C-(Cytosine), G-(Guanine), T-(Thymine) which are called nucleotides.

The DNA sequence is held by the hydrogen bond which connects the Watson-

Crick complementary bases with each other denoted by Ac = T and Gc = C

2



Figure 1.2: DNA structure with its four nucleotides A-Adenine, G-Guanine, C-
Cytosine and T-Thymine. These are the basic building unit of DNA which forms
a double helical structure via hydrogen bonds. Each DNA base is paired with the
complementary bases such that A (red band) is connected to its complementary
base T (green band) while C (yellow band) is paired with G (brown band).

(see Figure 1.2). An alternating chain of sugar and phosphate forms the back-

bone of DNA. Due to its properties such as robustness, high density and its self-

replicating property, DNA is an ideal source of computing [30]. All the necessary

instructions of the human life are stored in the human genome of size around 3

billion base pairs. DNA can be stable in extreme conditions and can survive in an

adverse environment. DNA is dense, as 1 gram of it can store about 455 exabytes

(1 EB = 1018 bytes) of digital information [24]. DNA can replicate in every form of

life accurately, and it can be amplified in a lab using Polymerase Chain Reaction

(PCR). All these properties of DNA makes it suitable for computation.

Necessary steps of DNA computation are: i.) The first step is to encode the

input data to DNA sequences ii.) Next, performing the molecular computation

using DNA operations iii.) Decoding the encoded DNA sequences. The first step

is executed using data encoding techniques to encode the data to DNA sequences.

Once the data is encoded into DNA, DNA sequences are synthesized using DNA

synthesis. DNA synthesis is producing DNA naturally or artificially. It is a regular

practice to synthesize DNA sequences using different DNA synthesis platforms

(explained briefly in Chapter 2). DNA can be read and decoded by using DNA

sequencing protocols (described in Chapter 2).

The core of the DNA computing is the DNA hybridization; however, it pro-

vokes errors in DNA computation. During computation, unwanted DNA base

3



pairing leads to errors because DNA sequences may not bind with its perfect

complementary sequence and forms mismatch pairs (See Figure 1.3). The set

of DNA sequences in the solution, instead of reacting to the other sequence, it

gets a fold and forms different loops and bulges. These structures are called sec-

ondary structures. During the computation, in an inappropriate condition, the

DNA sequences form secondary structures which interfere with the subsequent

computational steps and introduce errors in the computation. Thus, the DNA

computing success depends on a designing the DNA sequences that avoid errors

during computation.

These errors can be controlled by designing the DNA sequences using error

correcting codes [86]. A set of these DNA sequences (also known as DNA code-

words) is called a DNA code [87]. For DNA computing, a specific set of the DNA

codes satisfying particular properties (called DNA constraints) that avoid cross-

hybridization are designed to perform a particular task. Sufficiently dissimilar set

of DNA codes have been constructed by using different approaches in the litera-

ture [83].

Figure 1.3: Types of errors in designing of DNA code are: (a.) Mis-hybridization
of two sequences of DNA in which one of the bases have not perfectly paired with
the other sequence. (b.) It is the formation of secondary structure by a pairing of
DNA on itself. It shows a hairpin-like structure. (c.) Repetition of long runs of
same bases leads to sequencing errors. (d.) During DNA synthesis process, the
DNA base is misplaced by another base. (e.) The base may get inserted or (f.)
deleted during DNA reading and writing process.
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An objective of DNA code design problem is to construct the largest possible

set of codewords M of length n that are at least at some distance d on alphabet A,

C, G, T feasible with respect to some DNA constraints. Different approaches have

been used to design the DNA codewords which can be classified as computational

and theoretical approaches (discussed in chapter 2.2). In the theoretical approach,

coding theoretic approaches [42] have been widely used to design DNA codes by

using codes over finite fields and finite rings. This dissertation focuses on one

such theoretical approach to construct DNA codes. We propose families of DNA

codes satisfying certain combinatorial constraints.

The data encoded DNA codewords can be used in different applications such

as DNA nanostructures [108] [115], Molecular barcodes for chemical libraries [20],

data encryption [65], DNA circuits [103] [75], data storage [81] and many more.

From all the applications, the data storage is the most blooming application. DNA

has outperformed and have emerged as the most promising candidate compared

to other emerging storage technologies. As an application of DNA codes, codes

for data storage are presented in this thesis.

DNA is a promising archival data storage due to its high information density

[37], persistence [48] and easy maintenance. Unlike disk storage, it can store the

data for about 1000 years and recover it back. DNA has self-repair and an er-

ror correction mechanism which has been witnessed by many researchers [55].

Nonetheless, the cost of writing and reading data on DNA is a major concern.

However, biotechnological improvements [50] urge to desire that DNA storage

will be a future data archival storage technology.

There are three necessary steps for DNA data storage: (i) A binary data is con-

verted to DNA codewords. (ii) DNA synthesizer is used to synthesize data en-

coded DNA codewords (data writing on DNA). These data encoded DNA code-

words are stored. (iii) DNA sequencing is used to decode these DNA codewords

(reading the data from DNA). However, there are practical challenges for DNA

storage. To overcome these technological challenges, data encoding schemes with

error correcting codes are designed, which can detect and correct errors in DNA

storage.
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Most popular errors as substitution, insertion, deletion, runlengths (repeated

bases) of the base occur in the DNA data storage. Out of which, in this thesis,

we focus on DNA codes with the substitution error and no runlengths since they

have the higher probability than other errors [37].

The main problems addressed in this thesis are to construct the DNA codes

with some constraints. The first contribution includes the development of DNA

codes by using the algebraic structure of the ring which satisfies the combinatorial

constraints. A unique correspondence between the elements of the rings and the

DNA codes by defining a new Gau map φ such that the distance is preserved. For

this matter, we propose a new distance called the Gau distance. These results in

the classes of DNA codes where some of them give optimal results. The second

contribution presents ternary and quaternary encoding schemes which generate

families of DNA codes with important DNA constraints for DNA data storage

systems. We give a theoretical bound on DNA codewords satisfying these DNA

constraints.

1.3 Background on Algebraic Structures

Coding theory and data storage systems are two different sides of the same coin.

Evolution of coding theory has improved the performance of data storage devices

and development in storage systems have encouraged research in coding theory.

As this dissertation contributes in both areas, it is essential to study elementary

aspects of these domains.

Coding theory is the mathematical cornerstone for handling errors during the

process of the information transmission through a noisy channel. It deals with de-

tection and correction of errors while information is transferred through a chan-

nel. The foundation of coding theory is to develop efficient encoding and decod-

ing schemes for data such that a maximum number of errors can be detected and

corrected. For which, error detecting and correcting codes are designed with some

properties discussed later in this chapter. Codes are a combinatorial object which

are constructed using a wide range of mathematical tools from binary arithmetic
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to algebra.

Mainly these codes are algebraic which are constructed by using fields and

rings. In earlier days, fields were widely used for designing the codes that can be

linear or nonlinear. Due to its rich mathematical features, linear codes attracted

many researchers. But in 1994, the breakthrough paper by Hammons et al., [58]

showed that the non linear families of codes can be represented as linear codes

over the ring Z4 via Gray map that leads to the development of many exciting

codes over rings. These codes have several applications in lattice designing, cryp-

tography and combinatorial designs. Not surprisingly, it was also applied to de-

sign DNA sequences for DNA computing.

Basic definitions are given to get familiar with algebraic aspects of codes.

1.3.1 Ring and its Properties

Ring is a fundamental algebraic structure used for developing codes in coding

theory.

Definition 1.1. A non-empty set R is an algebraic structure with two binary operations

addition (+) and multiplication (.), a set R is called a Ring if ∀ a, b, c ∈ R

1. a + b ∈ R, ab ∈ R (Closure).

2. (a + b) + c = a + (b + c), (ab)c = a(bc) (Associative).

3. a + b = b + a (Commutative).

4. ∃ 0 ∈ R, ∀ a ∈ R, a+ 0 = 0+ a = a (Additive Identity), ∃ 1 ∈ R, ∀a ∈ R, a1 = a

(Multiplicative Identity).

5. ∀ a ∈ R, ∃ − a ∈ R, a + (−a) = (−a) + a = 0 (Additive inverse).

6. a(b + c) = ab + ac, (a + b).c = a.c + b.c (Distributive).

Definition 1.2. Commutative Ring: A ring R is commutative if the multiplication is

commutative. That is, if ab = ba ∀ a, b ∈ R.

Example 1.1. For the ring Z4 given in Example 1.2, ab = ba ∀ a, b ∈ Z4. Hence it is a

commutative ring.
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Through out this thesis, our rings will be commutative rings with unity.

Definition 1.3. Finite Ring: A ring with the finite number of elements is called finite

ring.

Example 1.2. The set Z4 = {0, 1, 2, 3} is a ring of integers modulo 4. Z4 is a finite ring

with four elements.

Definition 1.4. Zero Divisor: A non zero element a ∈ R is called a zero divisor if there

exists a non-zero element b ∈ R such that ab = 0 in R.

Example 1.3. For the ring Z4 given in Example 1.2, 2 is a zero divisor. Since 2.2 = 0

Definition 1.5. Unit: For the ring R with unity 1( 6= 0), a ∈ R, is the unit element, if

∃ b ∈ R, such that ab = ba = 1.

Example 1.4. For the ring Z4 given in Example 1.2, 1 and 3 are units.

Definition 1.6. Ring with Unity: If the ring R has a multiplicative identity, then R is

called a ring with unity denoted by 1.

Example 1.5. For the ring Z4 given in Example 1.2, 1 ∈ Z4 is a unity.

Definition 1.7. Ideal of the Ring: Any non empty subset I of R is called ideal if (i)

a + b ∈ I ∀a, b ∈ R (ii) a.g (left), g.a (right) ∈ I, where a ∈ R, g ∈ I.

Definition 1.8. Generator of an Ideal: If g ∈ R generates the Ideal I then g is called a

generator of an ideal I. We denote the generator of an Ideal I by
[
g
]
.

Example 1.6. For the ring Z4 given in Example 1.2, Ideal I = {0, 2} ⊂ R is left and

right ideal hence, it is ideal of the ring R generated by
[
2
]
.

Definition 1.9. Proper Ideal: A proper ideal I is an ideal of the ring R such that I is a

proper subset of R and I 6= R.

Definition 1.10. Maximal Ideal: A proper ideal I is called a maximal ideal if there

exists no other proper ideal J with I a proper subset of J.

Example 1.7. For the ring Z4 given in the Example 1.2, Ideal I = {0, 2} ⊂ R is a

maximal ideal of the ring R.
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Definition 1.11. Local Ring: A ring R is a local ring if it has a unique maximal ideal µ.

Remark 1.8. For the local ring R with a unique maximal ideal µ, R \ µ forms the set of

units of R.

Note that the ring Z4 given in Example 1.2 is a local ring with one maximal

ideal.

Example 1.9. The ring Z12 is not a local ring as it has two maximal ideal
[
2
]

=

{0, 2, 4, 6, 8, 10} and
[
3
]
= {0, 3, 6, 9}.

Definition 1.12. Principal Ideal: An ideal I generated by a single element g ∈ R is

called principal ideal.

Example 1.10. For the ring Z4 given in Example 1.2, Ideal I = {0, 2} ⊂ R is principal

ideal.

Definition 1.13. Principal Ring: If all ideals of the ring are principal, then the ring is a

principal ring.

Definition 1.14. Chain Ring: If ideals of a ring can be linearly ordered by inclusion

(arranged in ascending order such that minimal ideal contains in maximal ideal) then it

is said to be a chain ring.

Definition 1.15. Sub Ring: A non-empty subset S of a ring R is a sub ring of R if S is

itself a ring with the operations of R.

Definition 1.16. Field: A Field F is a nonempty set of elements with two binary op-

erations addition (+) and multiplication (.) satisfying the following axioms. For all

a, b, c ∈ F: (i) F is closed under + and . i.e. a + b ∈ F and a.b ∈ F ∀ a, b ∈ F.

(ii) a + b = b + a, a.b = b.a ∀ a, b ∈ F. (Commutative).

(iii) (a + b) + c = a + (b + c), a.(b.c) = (a.b).c. (Associative).

(iv) a.(b + c) = a.b + a.c, (a + b).c) = a.c + b.c (Distributive).

(v) a + 0 = a ∀a ∈ F (Additive Identity).

(vi) For any a ∈ F, ∃ −a ∈ F an additive inverse of a.

(vii) a.1 = a and a.0 = 0 ∀a ∈ F (Multiplicative Identity).

(viii) For any a 6= 0 ∈ F, ∃ a−1 ∈ F a multiplicative inverse of a such that a.a−1 =

a−1.a = 1.

9



Example 1.11. A set Z2 = {0, 1} with two binary operations addition (+) and multi-

plication (.) modulo 2 is a field with 2 elements.

Definition 1.17 (Linear Codes over the field). A linear code C of length n and dimen-

sion k over the finite field Fq with q elements is called (n, k) linear code over Fq.

The main objective of coding theory is to design codes of given length and size

such that each element of code has maximal pairwise distance. There are different

types of distance studied in the literature, but the most common is the Hamming

distance. The Hamming distance between two codewords x and y is the number

of places in which two codewords differ from one another and it is denoted by

dH(x, y).

Definition 1.18 (Codes over the Ring). Let R be the ring. Any subset C of Rn is called

a code over the ring R.

Definition 1.19 (Linear Code over the Ring). Any R-submodule C of Rn is called a

linear code over the ring R.

For a given ring R, let a code C with the length n, size M and the minimum

Hamming distance be denoted by C (n, M, dH). The elements of code C are called

codewords..

Definition 1.20 (Generator Matrix G). For a linear code C (n, M, dH) over the ring

R, a generator matrix G of C is a k × n matrix G such that the rows of G are linearly

independent.

1.4 Structure of the Thesis

The thesis is divided into seven chapters which are described in Figure 1.4. Chap-

ters 1 and 2 include the introduction and preliminaries on DNA editing methods

and DNA codes, respectively. First, along with the introduction, a short summary

on algebraic structure is given in Chapter 1 to get familiar with the terminologies

used in later chapters. In the next chapter a brief background on DNA manipu-

lation techniques as DNA synthesis, sequencing and mathematical prospects of
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DNA codes and related constraints are given in Chapter 2. As the research areas

are flourishing and paving new ways to different technologies, it is important to

have an extended survey. Chapter 2 and 5 describe reviews on DNA codes and

DNA data storage systems, respectively. Chapters 3, 4 and 6 are the main contri-

butions of this thesis. Chapter 7 concludes the contributions of this dissertation

and summarize results. It also discusses the future scope.

Figure 1.4: Thesis Outline

1.5 Thesis Contributions

This dissertation has the following contributions:

Chapter 3 includes the introduction to the codes over the ring R = Z4 + wZ4 =

{a + bw : a, b ∈ Z4 and w2 = 2 + 2w}. It discusses the orthogonal properties of

codes over the ring R. Rings of the ring R are also introduced.

Chapter 4 gives the constructions of the DNA codes via the ring R [80]. We de-
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fine a Gau distance dGau on the ring R that motivated us to propose a new distance

preserving map φ called the Gau map from the elements of the ring to the DNA

nucleotides. The properties of the Gau map are discussed including the linear-

ity and closure under the reverse and reverse complement constraints. Families

of the DNA codes are developed via the Simplex type codes, Reed-Muller type

codes (first order and rth order) and Octa type codes. These DNA codes satisfy

the minimum Hamming distance, reverse and reverse complement constraints.

The DNA codes designed from the Reed-Muller type codes attain the better size

of the codes compared to that exist in the literature for some values of n and d.

For an instance, the DNA code CDNA(n = 16, M = 8192, dH = 4) is better than

CDNA(n = 16, M = 28, dH = 4) [92]. Also the DNA code CDNA(n = 8, M =

64, dH = 4) is better than CDNA(n = 8, M = 16, dH = 4) [78]. One can ob-

serve that the Reed-Muller type codes attains the lower bound for AGC
4 (n, d, u)

and ARC,GC
4 (n, d, u) [73] on the DNA code for some values of n, dH and u = n/2.

For the DNA code with n = 8, dH = 4 and u = 4, the lower bound obtained

for ARC,GC
4 (8, 4) is 224 which is greater than the lower bound observed in [22] as

128. Some of the general results for the conditions on reversible and reversible-

complement DNA codes are derived. We also obtain some results of the DNA

codes constructed from the rings.

Chapter 6 proposes DNA codes with two additional constraints for DNA data

storage. The first constraint is no-runlength, and the other is fixed GC-weight.

For a designing of error-free codes for DNA data storage, it is essential to study

the source of occurrence of errors. The long runs of the same nucleotides (some-

times also called as homopolymer runs) is one of the primary origins of errors in

DNA storage [37]. Hence, it is vital that each DNA codeword should avoid the

occurrence of repeated bases (runlengths). Such DNA codewords are called DNA

codes with no-runlength constraints.

In particular, repeated bases in DNA may be read as a single base which may

result in the missing of reading these repeated bases during DNA synthesis and

sequencing. For example, in the DNA codeword ACCCCTACAGTA, C is re-

peated. The DNA sequencer may read the repeated runs of C’s as a single base.
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Hence, the long runs of bases lead to an increment of the dropout rates and decre-

ment in the DNA read coverage [114] during DNA sequencing. In this chapter,

DNA codes that satisfy no-runlength constraint for data storage are proposed.

The second necessity for DNA codewords is to have fixed GC-weight u (the

number of positions in a DNA codeword where G and C are present) [87]. For

example, TCGCAGCCT is a DNA codeword with GC-weight u = 6. A higher

GC-weight triggers errors like insertion and deletion of the base in the DNA code-

words in the polymerase chain reaction (PCR). It also leads to the low DNA base

coverage in DNA sequencing. DNA codes with fixed GC-weight (ranging from

50%− 60%) are more stable than DNA codes with higher GC-weight (greater than

60%). Thus, it is significant to consider DNA codes with a fixed GC-weight.

Next in Chapter 6, we present a constraint based and Golay subcode meth-

ods for a DNA archival data storage which avoids runs of nucleotides and has

fixed GC-weight u [82]. First, an altruistic algorithm which generates DNA code-

words with the above constraints is given. It is further used to find the bound on

the number of DNA codewords and with a guarantee on the minimum distance

between the codewords for better error correction for DNA codes with these con-

straints.

The second method proposed in Chapter 6 is using a Golay subcode to encode

the data in the DNA [79]. In this method, the non-linear family of the DNA sub-

codes is developed, and a DNA code with length n = 11 and dH = 5 is used to

encode the data in the DNA sequences. By using this approach, an overall length

of the data encoded DNA is reduced by avoiding the redundancy of the data.

A DNA chunk architecture with variable length is proposed which resulted in

achieving better DNA data storage capacity while the Goldman’s approach [47]

used fixed length DNA chunk architecture. The proposed method allows 2 bit

flips error correction in the DNA data storage. The scalability and code rate of the

Golay subcode method is determined. It achieves the theoretical DNA net infor-

mation density 115 EB (1 Exabyte = 1018 bytes) per gram of DNA with the length

n = 11.
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CHAPTER 2

DNA Synthesis, Sequencing and Coding

As usual, nature’s imagination far surpasses our own, as we have seen from the other theories

which are subtle and deep.

-Richard P. Feynman

In The Character of Physical Law (1965, 2001) [36]

This chapter introduces DNA manipulation techniques and preliminaries on

DNA codes which are essential for understanding the contributions of this disser-

tation. The first section describes preliminaries on DNA wetlab techniques that

includes groundwork for DNA sequencing and synthesis that is necessary for in-

terpreting DNA storage systems. The later gives an introduction to DNA codes

which includes definition on DNA constraints with relevant examples.

2.1 DNA Synthesis and Sequencing

DNA synthesis is the process of manufacturing DNA using different synthesis

platforms. DNA sequencing is a process of reading the order of DNA bases in a

given DNA sequence. There are different methods and platforms for DNA syn-

thesis and sequencing. In this section, a brief introduction to DNA manipulation

techniques is given. Terminologies from molecular biology, biotechnology and re-

lated to DNA storage system are described briefly. For more details on molecular

biology, DNA synthesis and sequencing, a reader is referred to [106]. Schematic
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representation of a DNA is presented in Figure 1.2 given in the introduction chap-

ter.

2.1.1 Basic Terminologies of DNA

1. Nucleotides: Basic building blocks of DNA which consist of a nitrogen base,

sugar and phosphate.

2. Codon: DNA of length three which codes for amino acids that are building

blocks of proteins. For example, AUG is a start codon which triggers protein

synthesis. There are 64 codons which code for 20 amino acids.

3. Oligonucleotides: A short DNA sequence typically of 15-20 length.

4. DNA hybridization: A process of forming double-stranded DNA (dsd) via

hydrogen bonds between complementary bases.

5. DNA Melting (Denaturation): At a melting temperature, double-stranded

DNA sequence segregates into single sequences by breaking the hydrogen

bonds.

6. Annealing: It is a process of binding two single-stranded DNA (ssDNA).

For instance, primer binding to ssDNA.

7. DNA Amplification: The process of copying DNA sequences by using tech-

niques outside the living cells.

8. Polymerase Chain Reaction (PCR): It is a temperature dependent machine

used to amplify the DNA sequence using primers, DNA polymerase and

nucleotides which includes three basic steps: denaturation (at 90-96 degree

Celsius), annealing (at 55-65 degree Celsius) and extension (at 72 degree

Celsius). The extension is to repeat the cycles of PCR. For a given DNA

sequence and for l number of cycles it will generate 2l amount of DNA.

9. Primers: A short DNA sequence used for DNA amplification in PCR and

DNA sequencing. Generally, it is of length 18-20 nucleotides.
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10. Gel Electrophoresis: A process of segregation of DNA sequences with re-

spect to the length of the DNA. DNA sample is loaded on the gel and the

basis of the length of DNA, it travels across the pores of the agar gel to the

positive end of the electrode as the DNA is negatively charged. The phos-

phate group on the DNA is a reason for its negative charge.

11. Sequencing Coverage/Depth: Number of times each base is read during the

sequencing. For instance, 15x coverage represents that each nucleotide is

read for at least 15 times.

2.1.2 DNA Synthesis

DNA can be synthesized naturally or by using the chemical. In nature, DNA is

replicated in cells by with the help of DNA polymerase enzyme using a template

sequence. This enzyme reads the DNA and adds bases from one end to other

end making a copy of template sequences. Another method to replicate DNA

is by using molecular biology techniques such as PCR and chemicals. The most

popular method is chemical synthesis (also called Denovo synthesis) of artificial

DNA by adding each nucleotide by using synthesis by sequencing [41]. Design-

ing oligonucleotides using phosphoramidite chemistries is the most robust which

allowed scalable oligonucleotides synthesis. Phosphoramidite-based synthesis of

oligonucleotides consists of four basic steps which are: (a.) Deprotection, (b.)

Coupling, (c.) Capping (d.) Oxidation. Each base is added to growing oligonu-

cleotides sequences attached on the solid support. Once the DNA is synthesized,

it is detached from the solid substrate. DNA sequences are synthesized using col-

umn based synthesizers or microarray-based synthesizers [74]. A column based

synthesizer can typically synthesize DNA of 100 nt approximately with error rates

less than 0.5% and have efficient productivity. However, it decreases with the in-

crease in the length of the oligonucleotide. The typical cost of a DNA base range

from $0.05 − $0.17 depending on the length of synthetic DNA and the service

provider which synthesize the DNA [74]. In the microarray method, a series of

distinct probes are attached on microarray chips to which the growing DNA base

is synthesized using light-activated chemistries. It is cost effective compared to
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column base method. Nevertheless, the custom array, a chip-based technology

designed by Agilent and CombiMatrix [45] has revolutionized the synthesis be-

cause these technologies are cheaper ($0.00001 − $0.0001 per nt), accurate and

facilitate multiplexing for large-scale synthesis that was not possible with column

based method.

Chemical synthesis of synthetic DNA is required for different applications like

for using as a probe for DNA hybridization detection in some molecular biology

techniques, synthesizing parts of a gene fragment, to induce a mutation artifi-

cially, to study effect of mutation on gene, also for designing primer and adapter

sequences for PCR, DNA sequencing and plasmid transformation. Modern day

application of a chemical DNA synthesis is DNA based data storage. Data en-

coded in DNA sequences are synthesized artificially and stored. However, syn-

thesis of small DNA sequences (50-150 bps) is done smoothly and efficiently.

While the synthesis of longer DNA sequences (>250 bps) is challenging, there-

fore in DNA data storage, smaller DNA sequences are used to encode data as

they are less error-prone. The significant drawbacks of these synthesis technolo-

gies are the cost associated with the synthesis methods and less yield. They are

also time-consuming and less efficient. These limitation hinders the DNA storage

to be a regular storage medium. Nevertheless, researchers are working on techno-

logical innovations to facilitate this feat which will allow large-scale and low-cost

production of synthetic DNA.

2.1.3 DNA Sequencing

DNA sequencing is a process to identify the specific position of the DNA base

in the sequence. The recent explosion in biological data has urged the sustain-

able improvement in DNA sequencing methods, cost and productivity. DNA

synthesis by sequencing has evolved as the first generation sequencing (whole

genome shotgun sequencing), next-generation sequencing (NGS high through-

put sequencing) [126] and the third generation of sequencing (single molecule

long read [19] and nanopore sequencing [134]). Since the Human Genome was

sequenced in 2001 [133], DNA reading/writing technologies have shown extraor-
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dinary progress in analyzing the complex genetic architecture. Some of these tech-

nologies focus on specific goals. A brief introduction to these methods is given in

this section.

2.1.3.1 First Generation Sequencing

The first method invented by Sanger in 1977 was based on the Sanger chain ter-

mination method such that an inhibitor terminates a DNA sequence extension at

specific points [118]. The method includes amplification of each DNA sequence

by cloning it in E.coli bacteria. The cloned sequences are amplified by using PCR

primers during which a fluorescent-labeled dideoxyribonucleotide (ddNTP), cor-

responding to the nucleotide identified at the terminal position is added. These

DNA sequences are separated by using a Polyacrylamide gel and the fluorescent

labels are read through emission spectrum which depicts the particular nucleotide

at the particular position. This method can typically read 400− 100 bps with a

99.99 % accuracy. Merits of this approach are that it produces high-quality DNA

sequences and reads longer length DNA sequences while demerits are higher cost

and lower productivity.

A decade later this process was automated by the invention of capillary elec-

trophoresis based machines which allowed sequencing of DNA with Kilobases

(kb) in a single run. Later, in order to read the sequences with the length greater

than 1 Kb, a shotgun sequencing method was adapted that determined the or-

der of DNA sequence by reading the overlapping ends of cloned DNA fragments

[88]. However, the assembly of these cloned DNA fragments for large-scale DNA

sequencing is challenging. Thus, a second generation method using pyrosequenc-

ing which involves identifying the DNA bases in determining the production of

pyrophosphate [95]. Pyrosequencing was then commercialized by Roche to pro-

duce large-scale parallel DNA sequencing facility in a single run which gave birth

to next-generation sequencing [112].

2.1.3.2 Next Generation Sequencing

Next Generation Sequencing (NGS) is massive parallel sequencing [123] which

avoids using electrophoresis, laborious preparation of DNA clones and produces
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large scale high throughput data, that were limited in previous sequencing meth-

ods. A large number of NGS platforms such as IIlumina, SOLiD emerged by

using the concept of bridge amplification [101] which allow efficient (error rates

less than 1%) and high yield DNA sequencing [111]. NGS reads short as well as

long length DNA for different applications. Short reads are of low cost and give

high accuracy while long reads are costly, with high error rates and low efficiency.

Later, other sequencing methods like single molecule sequencing (SMS) [59] and

single-molecule real-time (SMRT) sequencing [35] that reads a single molecule

avoiding the requirement of bridge amplification were discovered. However, the

most promising and recently emerging DNA sequencing [29] is by using nanopore

developed by Oxford Nanopore Technologies [25].

Nanopore sequencing platforms [66] is the most exciting field on interest which

infers the order of DNA by measuring the electric current intensity varying with

the length of DNA when the molecule is passed through a nanochannel [28]. It

does not need fluorescent labeling which enables cheaper and rapid DNA se-

quencing. A first portable, pen drive sized DNA sequencer called MinION [84]

was released by Oxford Nanopore Technologies which paves the way for devel-

oping on-spot DNA reading and writing machines. Such High throughput DNA

sequencing has revolutionized the process of DNA reading and thus it is antici-

pated that the advancements in DNA reading machines will aid in achieving the

commercial success of DNA data storage systems [137].

2.2 On DNA Codes

In this section, we give an introduction to DNA codes and its constraints. We

describe methods to construct DNA codes. In general, there are two methods to

design DNA codes which are computational and theoretical approaches. We give

a survey on different rings which are used to construct DNA codes.
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2.2.1 Introduction to DNA Codes

DNA code design deals with a designing of the DNA codes that satisfies the set

of constraints. There are different constraints (discussed in Section 2.3) proposed

in the literature for the DNA codes.

In order to use DNA sequences for DNA computation, they must be error-

free [69]. There are two sources of errors in DNA computation which are mis-

hybridization and secondary structure formation like the formation of bulges,

loops and hairpin structures occurs, that will hinder the computation process

(shown in Figure 1.3). There are some types of common errors like insertion,

deletion, substitution of a DNA base. During the DNA synthesis and sequencing

process, DNA base may get substituted by another base just like bit-flip errors.

Also, DNA base may get inserted or deleted in the reading and writing process

of DNA. Together, insertion and deletion errors are called indel errors. By taking

those DNA codewords that are distinct in at least d places, these types of errors

can be prevented.

Definition 2.1. Let ΣDNA = {A, G, T, C}. The set of M distinct DNA sequences each

of length n such that the Hamming distance dH between any two DNA sequences is at

least dH is called DNA code.

We denote minimum Hamming distance dH = min{dH(x, y) : x 6= y, ∀ x, y ∈

CDNA}.

Mathematically, we denote the DNA code as CDNA(n, M, dH) ⊆ Σn
DNA =

{A, T, G, C}n.

Example 2.1. CDNA = {AGTC, GAAG, GAGA, AGAG, AGGA, AGCT, GACT,

TCAG, TCGA, TCCT, GATC, CTCT, CTTC, TCTC, CTAG, CTGA} is a DNA

code CDNA with parameters n = 4, M = 16 and dH = 2.

Generally, the Hamming distance between the DNA codewords defines the

dissimilarity measure used for the DNA codewords. However, to ignore the cross-

hybridization between the DNA codewords, it is essential to consider a distance

between the given DNA codewords, its reverse and reverse complement DNA
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codewords. The notion of distance between DNA codewords propels researchers

to define the combinatorial constraints on DNA codes.

For a given DNA codeword x = (x1 x2 . . . xn−1 xn), the reverse of the DNA

codeword is defined as xr = (xn xn−1 . . . x2 x1), the Watson - Crick complement

or simply complement of the DNA codeword is defined as xc = (xc
1 xc

2 . . . xc
n−1 xc

n),

the reverse complement of the DNA codeword is defined as xrc = (xc
n xc

n−1 . . . xc
2 xc

1),

where xi ∈ {A, C, G, T} for each i = 1, 2, . . . , n and Ac = T, Tc = A, Gc = C,

Cc = G. For example, if x = ATCT then xr = TCTA, xrc = AGAT. It ensures

that the DNA hybridizes with the perfect complementary base and thus, prevent

errors in the computation [87, 73].

In the next section, we discuss combinatorial constraints of DNA codes.

2.3 Constraints on DNA Codes

DNA constraints are categorized as combinatorial constraints and thermodynamic

constraint constraints. In this thesis, we consider combinatorial constraints for the

construction of the DNA codes. Combinatorial constraints are related to distance

between DNA codes, its reverse and reverse complement sequence. These con-

straints prevent mis-hybridization that may lead to errors in the computation.

1. Hamming distance constraint: The Hamming distance constraint for a DNA

code CDNA is that dH(x, y) ≥ dH, ∀ x, y ∈ CDNA with x 6= y, for a given

minimum Hamming distance dH.

2. Reverse constraint: The reverse constraint for a DNA code is that dH(x, yr) ≥

dH, ∀ x, y ∈ CDNA (may be x = y). Let x = y = AACC, yr = CCAA then

dH(x, yr) = 4

Definition 2.2 (Reversible Code). A DNA code CDNA is reversible if for all x ∈

CDNA, xr ∈ CDNA.

Example 2.2. In Table 2.1, the DNA code CDNA(n = 4, M = 16, dH = 2) is a re-

versible code. Note that AAAA, ATTA, TTTT, GTTG, CCCC, CAAC, GGGG, TCCT

are self reversible.
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AACC TTGG AAAA ATTA GGTT CCAA TTTT GTTG
GTCA ACTG CCCC CAAC TGAC CAGT GGGG TCCT

Table 2.1: Example of Reversible DNA Code

3. Complement constraint: The complement constraint is that dH(x, yc) ≥ dH,

∀ x, yc ∈ CDNA (sometime x = y). Let x = y = AACC, yc = TTGG then

dH(x, yc) = 4.

Definition 2.3 (Complement Code). A DNA code CDNA is complement if for all

x ∈ CDNA, xc ∈ CDNA.

Example 2.3. A DNA code CDNA(n = 4, M = 8, dH = 2)

{AACC, TTGG, AAAA, CCCC, ATGC, TACG, TTTT, GGGG} is complement

code.

Remark 2.4. Note that for complement CDNA DNA code, x 6= xc.

4. Reverse complement constraint: The reverse complement constraint for a DNA

code is that dH(x, yrc) ≥ dH, ∀ x, yrc ∈ CDNA. Note that x may be equal to y.

Let x = y = AACC, yrc = GGTT then dH(x, yrc) = 4.

Definition 2.4 (Reversible-Complement Code). A DNA code CDNA is reversible-

complement code if for all x ∈ CDNA, xrc ∈ CDNA.

Example 2.5. In Table 2.2, DNA code CDNA(n = 4, M = 20, dH = 2) is

reversible-complement code.

Note that ACGT, TGCA, GATC, CTAG, GTAC, CATG, AGCT, TCGA are self

reversible-complement.

AACC TTGG AAAA ACGT TGCA
GGTT GTCA ACTG CCCC GTAC
CATG TGAC CCAA TTTT GATC
CTAG CAGT GGGG AGCT TCGA

Table 2.2: Example of Reversible-Complement DNA Code

5. GC-weight constraint: For a DNA code, if the total occurrence of Gs and

Cs nucleotides in each codeword is constant integer u then the DNA code

22



CDNA(n, M, dH, u) satisfies the u GC-weight constraint. Generally, for a DNA

code CDNA, the GC-weight is bn/2c.

Example 2.6. In Table 2.3, DNA code CDNA(n = 4, M = 16, dH = 2, u = 2) is

a DNA code with fixed GC-weight u = 2

AGAG AGGA AGCT AGTC GAAG GAGA GACT GATC
CTAG CTGA CTCT CTTC TCAG TCGA TCCT TCTC

Table 2.3: Example of DNA Code with fixed GC-weight u = 2.

6. No-Runlength constraint: For a DNA code C (n, M, dH), no-runlength con-

straint implies that no two consecutive elements in a codeword are the same

ie. For x ∈ CDNA(n, M, dH), xi 6= xi+1. These kind of DNA codes are also

denoted as forbidden sequences in the literature.

Example 2.7. In Table 2.4, DNA code CDNA(n = 4, M = 12, dH = 2, u = 2) is

a DNA code with no repeated nucleotides and with a fixed GC-weight u = 2

AGAG AGCT AGTC GAGA GACT GATC
CTAG CTGA CTCT TCAG TCGA TCTC

Table 2.4: Example of DNA code with fixed GC-weight u = 2 and no-runlength
constraints.

Following associations between the reversible, complement and reversible-

complement codes are obvious.

• Reversible-Complement ; Reversible

Example 2.8. If CDNA = {AAAA, AAGG, CCTT, TTTT} then ∀ x ∈ CDNA, xrc ∈

CDNA but xr /∈ CDNA i.e. GGAA, TTCC /∈ CDNA.

• Reversible-Complement ; Complement.

Example 2.9. If CDNA = {AAAA, AAGG, CCTT, TTTT} then ∀ x ∈ CDNA, xrc ∈

CDNA but xc /∈ CDNA i.e. TTCC, GGAA /∈ CDNA.

• Reversible ; Reversible-Complement
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Example 2.10. If CDNA = {AAAA, AAGG, GGAA, TTTT} then ∀ x ∈ CDNA, xr ∈

CDNA but xrc /∈ CDNA i.e. CCTT, TTCC /∈ CDNA.

• Complement ; Reversible-Complement

Example 2.11. If CDNA = {AAAA, AAGG, TTCC, TTTT} then ∀ x ∈ CDNA, xc ∈

CDNA but xrc /∈ CDNA i.e. CCTT, GGAA /∈ CDNA.

• Reversible and Complement⇒ Reversible-Complement

• Reversible and Reversible-Complement⇒ Complement

• Complement and Reversible-Complement⇒ Reversible

Example 2.12. If CDNA = {AAAA, AAGG, CCTT, TTTT, GGAA, TTCC}

then ∀ x ∈ CDNA, xr and xc ∈ CDNA =⇒ ∀ x ∈ CDNA, xrc ∈ CDNA.

We will utilize these interconnections to construct reversible and reversible- com-

plement code. For any given x, y ∈ CDNA, note that dH(xr, yc) = dH(xrc, y) =

dH(x, yrc) = dH(xc, yr).

It is desirable to have a DNA code to be either reversible, complement or

reversible-complement. The DNA code given in Example 2.1 is reversible, com-

plement and reversible-complement.

Given a length n and a distance d, the main DNA coding problem is to con-

struct a DNA code CDNA (either reversible, complement or reversible-complement)

that has maximum codewords, which motivates to define these functions on the

size of the code. For a given length n and a distance d, ARC
4 (n, d) denotes the max-

imum size of reversible-complement DNA code. Similarly, AR
4 (n, d) denotes the

maximum size of reversible DNA code. The maximum size of DNA code with fix

GC-weight u in each codeword is indicated by AGC
4 (n, d, u). For the each DNA

codeword with a fix GC-weight u in each codeword, reversible and reversible-

complement code is denoted by AR,GC
4 (n, d, u) and ARC,GC

4 (n, d, u) respectively.

Different bounds have been studied on these functions [87] using various ap-

proaches for construction of DNA codes.
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2.4 Approaches for the Construction of DNA Codes

Many researchers introduced different approaches for the construction of the DNA

codes with finite length n, defined distance d and set of constraints with respect

to the application [83, 130]. The set of constraints essential for the DNA codes is

subject to the application. There are few attempts made to design the DNA se-

quences using groups [120] and graphs [99, 129]. The construction of the DNA

codes can obtain an optimal DNA code in a way that every codeword in the set

follows a maximum number of constraints for a large value of n and large mini-

mum distance d with minimum errors in DNA computation. In the next section,

computational and theoretical approaches are discussed.

2.4.1 Computational Approaches

Coding theory has been fortunate to use several computational approaches [71]

for the constructions of the record-breaking codes thus it was natural to use sim-

ilar approaches for the construction of the DNA codes. Many such approaches

such as Tabu search, greedy method, stochastic local search and genetic algo-

rithms, seed building [91], clique search, hybrid search [105], greedy [12], Vari-

able neighborhood search (VNS), Lexicographic Approach, Simulated Annealing

Approach, Stochastic Local Search Approach [131] have been used to develop

DNA codes. Although DNA codes constructed using computational approach

achieved bounds, but they have high computational complexity and hence does

not allow to construct codes for higher lengths. Therefore, theoretical methods are

used which gives flexibility for developing DNA codes with higher lengths and

distance.

2.4.2 Theoretical Approaches

The theoretical approaches have received much attention. Theoretical construc-

tions like algebraic coding theory [42], algebraic number theory [62] and formal

language [60] have been used in the literature to develop DNA codes.
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Out of which, algebraic coding theory approach has been widely used by

many researchers for constructing DNA codes from different fields and rings.

Construction through this approach has achieved the lower bounds on a differ-

ent set of constraints. For constructing the DNA codes, a mapping is defined in

such a way that all the elements of fields and rings are in one-to-one correspon-

dence with the elements of DNA of the certain lengths.

2.4.2.1 DNA Codes from Finite Fields

Linear codes over the field GF(4) with four elements {0, 1, ω, ω2} are directly

mapped to the DNA elements {A, C, G, T} respectively to construct linear DNA

codes [42, 132]. These DNA codes have improved the lower bounds on GC-weight

constraints with the length of DNA code n ≤ 30. By using the field GF(4), non-

linear cyclic codes BCH type DNA codes were studied in [38]. In [94], N. Aboluion

used the computer algebra systems to construct the DNA codes satisfying GC-

weight and Hamming distance constraints. DNA codes of higher lengths 4 ≤ n ≤

30 were obtained using additive codes over GF(4). Bounds on the size of DNA

codes satisfying these constraints were improved by shortening and puncturing of

DNA codes. Using the linear and additive codes of odd lengths over GF(4), DNA

codes satisfying the Hamming distance and reverse complement constraints were

generated by defining an alternative mapping as mentioned in [1]. The mapping

used for DNA codes is 0, ω, ω, 1 to {A, C, G, T} respectively with ω2 + ω + 1 = 0

[2].

In [98], the concept of lifted polynomial over F4 was used that generated the re-

versible codes of odd length from F16. To construct DNA codes of an even length,

special kind of mapping that preserves Hamming distance and reverse constraints

was defined. For example, the element corresponding to GC is mapped to the

fourth power of the element of F16 viz. α2 → GC then (α2)4 → CG. DNA codes

using F16 using lifted polynomial were also studied in [98].

Although codes over fields pioneered to develop DNA codes by algebraic cod-

ing concept, researchers explored their interest in using different ring structures

to construct good DNA codes with rich algebraic properties.
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2.4.2.2 DNA Codes from Rings

The advancement of DNA codes from an algebraic coding has driven the inter-

est of coding theorist for developing the DNA codes using finite rings [83]. In

2001, V.V Rykov et al. developed the reversible cyclic DNA codes using the qua-

ternary alphabets in [117]. However, it considered only the reverse constraint for

the DNA codes. P. Gaborit and O. D. King in the year 2005, constructed the linear

DNA codes from the ring Z4 [42] that satisfies reverse and reverse complement

constraints. Researchers explored notion of cyclic codes to DNA codes which re-

sulted into series of interesting constructions of DNA codes.

I. Siap et al. proposed an idea of using cyclic codes from the finite ring F2 +

uF2 with similarity measures (a special kind of distance similarity) instead of the

Hamming distance [124]. The cyclic DNA codes from the similar ring F2 + uF2,

where u2 = 1 based on the deletion distance was also introduced by I. Siap et al.

in [125]. By using the ring, F2 + uF2 with u2 = 0, Liang and Wang constructed

the DNA cyclic codes of an even length in [78]. K. Guenda and T.A. Gulliver

studied the DNA cyclic irreversible odd length codes of the type Simplex, BCH

codes and Reed-Muller type codes from the ring F2 + uF2 in [52]. Odd length

DNA codes were given which satisfies the Hamming distance constraints from

the commutative ring F2[u]/ < u4 − 1 > with u4 = 1 in [53].

A ring Z4 + uZ4, where u2 = 0 with 16 elements was introduced by B. Yildiz

and S. Karadeniz in [138] and DNA codes of odd lengths from the ring were stud-

ied in [100]. Bayram et al. [11] constructed DNA codes using skew constacyclic

over the ring F4 + vF4. A direct map between 64 elements of the ring to 64 DNA

codons (three nucleotides) were given in [13] over the ring R = F2[u]/(u6). The

ring F4[u]/ < u2 + 1 > with u2 = 1 was used for DNA codes of the length 6 in

[85]. Reversible-complement DNA codes were developed Srinivasulu B and M.

Bhaintwal using the ring F4 + uF4, u2 = 0 in [127] by defining the gray map form

the ring to F2
4. Using the similar approach, very recently, cyclic DNA codes of odd

length were studied from the commutative ring F2 + uF2 + vF2 + uvF2 + v2F2 +

uv2F2, where u2 = 0, v3 = v, uv = vu [33] in which they presented correspon-
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dence between elements of the ring to DNA codon by using a gray map from the

ring to F2 + uF2, where u2 = 0.

For the DNA codes designing, the reversible DNA codes from the skew cyclic

codes, a non-commutative rings were used. Generalized non-chain ring F16 +

uF16 + vF16 + uvF16 was used to construct the reversible DNA codes in [56], [57].

In the past year, Oztas et al. developed the reversible DNA codes using the ring

F2[u]/(u2k − 1) [97] by using a novel concept of coterm polynomials.

The properties of the ring R = Z4 +wZ4 was studied by Choie and Dougherty

for the first time in [23]. Using the structure of the ring, recently the DNA cyclic

codes of odd lengths from the ring Z4 +wZ4, where w2 = 2 was proposed in [31].

These results motivate us to investigate the structure of the ring R = Z4 +wZ4

from [23] and use it to construct the DNA codes of even lengths. In Chapter 3, the

ring Z4 + wZ4, where w2 = 2 + 2w with 16 elements is proposed. A correspon-

dence between the ring elements and the DNA codewords of length 2 is defined

via a distance preserving Gau map φ (described in Chapter 4). We present a new

type of distance called the Gau distance on the ring R. Several new families of the

DNA codes are obtained which satisfies the Hamming distance, reverse and re-

verse complement constraints. For each family of code, the generator matrix over

the ring R is defined and DNA codes are developed by using defined mapping.
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CHAPTER 3

Codes over the Ring Z4 + wZ4

The art of doing mathematics consists in finding that special case which contains all the germs of

generality.

-David Hilbert

Bulletin of the American Mathematical Society (Jan 1966), 72, No. 1, Part 2, 65. [36]

This chapter introduces the structure of the ring R = Z4 + wZ4, where w2 =

2 + 2w. Some of the properties of codes over the ring R are given. It also includes

discussion on rings R1, R2 and R3 of the ring R. It presents some of the results on

the orthogonality of codes over the ring and derives its orthogonal properties.

The ring R = Z4 + wZ4 = {a + bw : a, b ∈ Z4 and w2 = 2 + 2w} is a finite ring

with 16 number of elements. It is a commutative ring. For the ring R, the set of

zero divisors is {a+ bw : a ∈ 2Z4, b ∈ Z4} = {0, 2, w, 2+w, 2w, 2+ 2w, 3w, 2+ 3w}

and the set of units is {a + bw : a ∈ 2Z4 + 1, b ∈ Z4} = {1, 3, 1 + w, 3 + w, 1 +

2w, 3 + 2w, 1 + 3w, 3 + 3w}. The ring R has 5 distinct ideals as follows.
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[
0
]
= {0}

[
2w
]
= {0, 2w}

[
2
]
= {0, 2, 2w, 2 + 2w} =

[
2 + 2w

]
[
w
]
= {0, 2, w, 2 + w, 2w, 2 + 2w, 3w, 2 + 3w} =

[
2 + w

]
=
[
3w
]
=
[
2 + 3w

]
[
1
]
= R =

[
3
]
=
[
1 + w

]
=
[
3 + w

]
=
[
1 + 2w

]
=
[
3 + 2w

]
=
[
1 + 3w

]
=
[
3 + 3w

]
Note that the ring is a chain ring because ideals are linearly ordered as

[
0
]
⊂[

2w
]
⊂
[
2
]
⊂
[
w
]
⊂ R. The ring R is a local ring as it has one maximal ideal

generated by w, 2 + w, 3w or 2 + 3w. Observe that all ideals are principal ideals

hence, the ring is a principal ring.

The standard form of the generator matrix G of the linear code C over the ring

R = Z4 + wZ4 is given by:

G =


Ik0 A0,1 A0,2 A0,3 A0,4

0 wIk1 wA1,2 wA1,3 wA1,4

0 0 2Ik2 2A2,3 2A2,4

0 0 0 2wIk3 2wA3,4

 , (3.1)

where the matrices Ai,j are defined over the ring R for 0 ≤ i < j ≤ 4. A generator

matrix defined in this form for the code C is of type {k0, k1, k2, k3} and the code

has 16k08k14k22k3 codewords [23]. We denote the row span of the matrix G on the

ring R by < G >R.

Codes over rings have been discussed in various papers [34] and are applied

to different applications in coding theory and communication. In this work, we

develop codes over the ring R and showcase some of its properties. In order to

study the behavior of the ring with respect to set of zero divisors and units asso-

ciated with DNA nucleotide pairs, rings of the ring R is explored. An interesting

relation between the ring R and its rings are discussed in the next section.
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3.1 Codes over Rings R1, R2 and R3

Consider R1 = Z2 + w1Z4 = {a + bw1 : a ∈ Z2, b ∈ Z4 and w2
1 = 2w1}, R2 =

Z4 + w2Z2 = {a + bw2 : a ∈ Z4, b ∈ Z2 and w2
2 = 2} and R3 = Z2 + w3Z2 =

{a + bw3 : a, b ∈ Z2 and w2
3 = 0}.

For the ring R1, the set of zero divisors is {0, w1, 2w1, 3w1} and set of units is

{1, 1+w1, 1+ 2w1, 1+ 3w1}. For the ring R2, the set of zero divisors is {0, 2, w2, 2+

w2} and set of units is {1, 3, 1 + w2, 3 + w2}. For the ring R3, the zero divisors are

{0, w3} and units are {1, 1 + w3}.

Any subset of Rn
i (1 ≤ i ≤ 3) is called a code over the ring Ri. Any Ri sub-

module of Rn
i is a linear code C over the ring Ri. The linear code over rings R, R1,

R2 and R3 are denoted by C ≤ Rn, CR1 ≤ Rn
1 , CR2 ≤ Rn

2 , CR3 ≤ Rn
3 respectively

[54].

The standard form of a generator matrix GR1 of a linear code CR1 over the ring

R1 = Z2 + w1Z4, where w2
1 = 2w1 is

GR1 =


Ik0 A0,1 A0,2 A0,3

0 w1 Ik1 w1A1,2 w1A1,3

0 0 2w1 Ik2 2w1A2,3

 , (3.2)

where the matrices Ai,j are matrices over the ring R1 for 0 ≤ i < j ≤ 3. For

the code CR1 , a generator matrix of type {k0, k1, k2} and the code has 8k04k12k2

codewords.

The standard form of a generator matrix GR2 of a linear code CR2 over the ring

R2 = Z4 + w2Z2, where w2
2 = 2 is

GR2 =


Ik0 A0,1 A0,2 A0,3

0 w2 Ik1 w2A1,2 w2A1,3

0 0 2Ik2 2A2,3

 , (3.3)

where the matrices Ai,j are matrices over the ring R2 for 0 ≤ i < j ≤ 3. A generator

matrix of the code CR2 is of form {k0, k1, k2} and the code has 8k04k12k2 codewords.

The standard form of a generator matrix GR3 of a linear code CR3 over the ring
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R3 = Z2 + w3Z2, where w2
3 = 0 is

GR3 =

 Ik0 A0,1 A0,2

0 w3 Ik1 w3A1,2

 , (3.4)

where the matrices Ai,j are matrices over the ring R3 for 0 ≤ i < j ≤ 2. A code

CR3 with a generator matrix is of type {k0, k1} and the code has 4k02k1 codewords.

Dual codes are an important class of codes widely studied for different rings.

In the next section, we define orthogonal codes over the ring R, R1, R2 and R3.

Conditions for the existence of the orthogonality of the codes over the ring is also

given.

3.2 Inner Product and Orthogonal Codes

To study the orthogonal properties of the codes over the ring R, R1, R2 and R3,

the inner product can be defined as < x, y > = x1y1 + x2y2 + · · · + xnyn. C is

self orthogonal if and only if C ⊂ C⊥, where the dual code is defined as C⊥ =

{x ∈ Rn| < x, y > = 0 ∀ y ∈ C } [138]. Moreover, C is self dual if and only if

C = C⊥ [23].

Definition 3.1. For a codeword x = (x1 x2 . . . xn) ∈ C , let σi denote the occurrence of

i ∈ R in a codeword x.

Example 3.1.

For x = (w 1 + 2w 2w w 3w 2w 0 w) the occurrence of each element in x are

σw = 3, σ2w = 2, σ1+2w = σ0 = σ3w = 1.

Theorem 3.2. A linear code C over the ring R, is self-orthogonal if and only if generator

matrix G of the code C satisfies the following.

1. Each row of the generator matrix G has σw + σ2+w + σ3w + σ2+3w ≡ 0 (mod 2)

and σ1 +σ3 +σ1+2w +σ3+2w + 2(σw +σ2+w +σ3w +σ2+3w)+ 3(σ1+w +σ3+w +

σ1+3w + σ3+3w) ≡ 0 (mod 4).

2. Every pair of rows of the generator matrix G, is orthogonal.
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Proof. For x ∈ R,

x2 =



0 x = 0, 2, 2w, 2 + 2w,

2 + 2w x = w, 3w, 2 + w, 2 + 3w,

1 x = 1, 3, 1 + 2w, 3 + 2w,

3 x = 1 + w, 3 + w, 1 + 3w, 3 + 3w.

If σx be the occurrence of the ring element x in a vector x ∈ Rn then < x, x > = 0 if

and only if (2 + 2w)(σw + σ3w + σ2+w + σ2+3w)+(σ1 + σ3 + σ1+2w+3+2w)+3(σ1+w +

σ3+w + σ1+3w + σ3+3w) = 0 (mod 4).

Example 3.3. Let

G =

 w 2 + w 3w 2 + 3w

2 + 3w 3w 2 + w w


be the generator matrix of the code C over the ring R. For x = (w 2 + w 3w 2 + 3w),

y = (2 + 3w 3w 2 + w w), one can observe that < x, y >= 0 with σw + σ2+w + σ3w +

σ2+3w = 0 (mod 2) and 2(σ2+3w) + 2(σ3w) + 2(σ2+w) + 2(σw) = 0 (mod 4), where

x, y ∈ G.

Example 3.4. Let

G =

 w 2 + w 3w

3w 3 w


be the generator matrix of the code C over the ring R. For x = (w 2 + w 3w), y = (3w

3 w), one can observe that < x, y > 6= 0 with σw + σ2+w + σ3w 6= 0 (mod 2) and

2(σ3w) + σ3 + 2(σ3) 6= 0 (mod 4), where x, y ∈ G.

Proves of Theorems 3.8, 3.5, 3.11 are similar to the proof of Theorem 3.2.

Theorem 3.5. A linear code CR1 over the ring R1 with w2
1 = 2w1 is self-orthogonal if and

only if each generator matrix GR1 of code CR1 satisfies the following.

1. Each row of the generator matrix GR1 has σ1 + σ1+w1 + σ1+2w1 + σ1+3w1 ≡ 0

(mod 2) and σw1 + σ3w1 ≡ 0 (mod 2).

2. Every pair of rows of the generator matrix GR1 is orthogonal.
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Example 3.6. Let

GR1 =

 w 3w1 1 + w1 1 + 3w1

1 + 3w1 1 + w1 3w1 w1


be the generator matrix of the code CR1 over the ring R1. For x = (w1 3w1 1 + w1

1 + 3w1), y = (1 + 3w1 1 + w1 3w1 w1), one can observe that < x, y >= 0 with

σw1 + σ3w1 + σ1+w1 + σ1+3w1 = 0 (mod 2), where x, y ∈ GR1 .

Example 3.7. Let

GR1 =

 1 0 w1

1 + w1 1 0


be the generator matrix of the code CR1 over the ring R1. For x = (1 0 w1), y =

(1 + w1 1 0), one can observe that < x, y > 6= 0 with σ1 + σ0 + σw1 6= 0 (mod 2)

and σ1+w1 + σ1 + σ0 6= 0 (mod 2), where x, y ∈ GR1 .

Theorem 3.8. A linear code CR2 over the ring R2 with w2
2 = 2 is self-orthogonal if and

only if each generator matrix GR2 of the code CR2 satisfies the following.

1. Each row of the generator matrix GR2 has σ1 + σ3 + 2(σw2 + σ2+w2) + 3(σ1+w2 +

σ3+w2) ≡ 0 (mod 4).

2. Every pair of rows of the generator matrix GR2 is orthogonal.

Example 3.9. Let

GR2 =

 1 w2 3

3 w2 1


be the generator matrix of the code CR2 over the ring R2. For x = (1 w2 3), y = (3

w2 1), one can observe that < x, y >= 0 with σ1 + 2(σw2) + σ3 = 0 (mod 4), where

x, y ∈ GR2 .

Example 3.10. Let

GR2 =

 1 w2 1 + w2

3 2 + w2 3 + w2


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be the generator matrix of the code CR2 over the ring R2. For x = (1 w2 1 + w2), y = (3

2 + w2 3 + w2), one can observe that < x, y > 6= 0 with σ1 + 2(σw2) + 3(σ1+w2) 6= 0

(mod 4), where x, y ∈ GR2 .

Theorem 3.11. A linear code CR3 over the ring R3 is self-orthogonal if and only if each

generator matrix GR3 of the code CR3 satisfies the following.

1. Each row of the generator matrix GR3 has σ1 + σ1+w3 ≡ 0 (mod 2).

2. Every pair of rows of the generator matrix GR3 is orthogonal.

Example 3.12. Let

GR3 =

 1 1 + w3 w3

1 + w3 1 w3


be the generator matrix of the code CR3 over the ring R3. For x = (1, 1 + w3, w3),

y = (1 + w3, 1, w3), one can observe that < x, y >= 0 with σ1 + σ1+w3 = 0 (mod 2),

where x, y ∈ GR3 .

Example 3.13. Let

GR3 =

 1 w3 0

1 1 + w3 w3


be the generator matrix of the code CR3 over the ring R3. For x = (1 w3 0), y = (1

1 + w3 w3), one can observe that < x, y > 6= 0 with σ1 + σ1+w3 6= 0 (mod 2), where

x, y ∈ GR3 .

Motivated from the above results, following are the observations on the self

dual codes over the rings R, R1, R2 and R3 [23].

Remark 3.14. Let C be code over R of type {k0, k1, k2, k3} and C⊥ of type {n− k0 −

k1 − k2 − k3, k3, k2, k1}. If C is self dual, then k1 = k3 and k0 + k1 +
k2
2 = n

2 .

Let l = {n− k0 − k1 − k2 − k3} and w2 = 2 + 2w. Then, the generator matrix

G⊥ of C⊥ in Remark 3.14 is given as

G⊥ =


BT

01 BT
02 BT

03 BT
04 Il

−w(A01(A12 A23 − A13) + A02 A23 − A03)
T w(A12 A23 − A13)

T −wAT
23 wIk3 0

2(A01 A12 − A02)
T −2AT

12 2Ik2 0 0

−2wAT
01 2wIk1 0 0 0


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where B04 = −A34, B03 = A23A34 − A24, B02 = −A12(A23A34 − A24) + A13A34 −

A14 and B01 = A01(−B02)− A02(A23A34− A24) + A03A34− A04. Note that Aij are

in the form of the generator matrix in Equation 3.1.

Remark 3.15. Let CR1 and CR2 be the code over R1 and R2 of type {k0, k1, k2}, respec-

tively. Then dual code C⊥R1
and C⊥R2

of type {n− k0 − k1 − k2, k2, k1} for CR1 and CR2 ,

respectively. If CR1 and CR2 are self dual, then k1 = k2 and k0 + k1 = n
2 .

Let l = n− k0 − k1 − k2 and w2
1 = 2w1. Then, the generator matrix G⊥R1

of C⊥R1

in Remark 3.15 is given as

G⊥R1
=


−(A01(A12A23 − A13) + A02A23 − A03)

T (A12A23 − A13)
T −AT

23 Il

w1(A01A12 − A02)
T −w1AT

12 w1 Ik2 0

−2w1AT
01 2w1 Ik1 0 0


Note that the Aij are in the form of the generator matrix given in Equation 3.2.

Let l = n− k0 − k1 − k2 and w2
2 = 2. Then, the generator matrix G⊥R2

of C⊥R2
in

Remark 3.15 is given as

G⊥R2
=


−(A01(A12A23 − A13) + A02A23 − A03)

T (A12A23 − A13)
T −AT

23 Il

w2(A01A12 − A02)
T −w2AT

12 w2 Ik2 0

−21AT
01 2Ik1 0 0


Note that the Aij are in the form of the generator matrix given in Equation 3.3.

Remark 3.16. Let CR3 be the code over R3 of type {k0, k1} and C⊥R3
of type {n− k0 −

k1, k1}. If CR3 is self dual, then k0 +
k1
2 = n

2 .

In the next chapter, we give a mechanism via the Gau map to construct the

DNA codes from the ring R that satisfies the Hamming distance, reverse and re-

verse complement constraints.
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CHAPTER 4

DNA Codes using Z4 + wZ4

Biology - DNA - is technology. It is coding. It is physical coding, but still code.

Ryan Bethencourt [18]

In this chapter, we introduce the DNA codes from the ring R = Z4 + wZ4,

where w2 = 2+ 2w. We present a distance preserving Gau map φ. To construct the

DNA codes that satisfy the Hamming distance, reverse and reverse complement

constraints, we give general conditions on the generator matrix of the code over

the ring R. Some of the constructed DNA codes are optimal. To obtain the DNA

codewords with constant GC weight, DNA codes on these rings are developed.

Part of this chapter is published in [80] 1.

4.1 Gau Distance on the Ring Z4 + wZ4

A correlation between the ring R elements and the DNA alphabets is required to

construct the DNA codes using the ring R. We give an isometry (distance pre-

serving map) between the codes over the ring and the DNA codes. To define a

distance on the ring R (hence eventually on Rn), the elements of the ring and the

DNA alphabets can be arranged in a manner (see the Matrix M in Equation 4.1)

such that the Hamming distance dH between any two distinct DNA nucleotides

1© [2018] IEEE. Reprinted, with permission, from Dixita Limbachiya, Krishna Gopal Benerjee,
Bansari Rao and Manish K Gupta, On DNA Codes using the Ring Z4 + wZ4, In Proceedings of IEEE
International Symposium on Information Theory (ISIT), pp. 2401-2405, 2018
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pairs in the same row or same column is 1, otherwise it is 2. This impels to define

a new distance called the Gau distance on the elements of the ring R such that this

property is conserved.

M =

A G C T

A

G

C

T


0 1 2 + 3w 3 + 3w

3 2 1 + 3w 3w

2 + w 3 + w 2w 1 + 2w

1 + w w 3 + 2w 2 + 2w


(4.1)

For x, y ∈ R, let x = mi,j ∈ M , y = mi′ ,j′ ∈ M for some 0 ≤ i, j ≤ 3 and

0 ≤ i
′
, j
′ ≤ 3 (sum of the indices is modulo 4) then, the Gau distance dGau can be

defined as

dGau(x, y) = min{1, i + 3i
′}+ min{1, j + 3j

′}. (4.2)

Example 4.1. For x = 2, i = 1, j = 1 and y = 2+ 2w, i
′
= 3, j

′
= 3, the Gau distance

dGau(2, 2 + 2w) = 2.

Lemma 4.2. The Gau distance dGau is a metric on the elements of the ring R.

Proof. For x, y ∈ R let x = mi,j ∈ M , y = mi′ ,j′ ∈ M for some 0 ≤ i, j ≤ 3 and

0 ≤ i
′
, j
′ ≤ 3, dGau(x, y) = min{1, i + 3i

′}+ min{1, j + 3j
′}, (sum of the indices is

modulo 4) satisfies the following properties:

1. If x = y then dGau(x, y) = 0. For

x = y ⇐⇒ i = i
′

and j = j
′

⇐⇒ i + 3i
′
= 0 and j + 3j

′
= 0

⇐⇒ min{1, i + 3i
′} = 0 and min{1, j + 3j

′} = 0

⇐⇒ min{1, i + 3i
′}+ min{1, j + 3j

′} = 0

⇐⇒ dGau(x, y) = 0.

(4.3)

2. For dGau(x, y) = dGau(y, x), one can observe that if i, i
′ ∈ Z4 with i 6= i

′
then

i + 3i
′ 6= 0 and i

′
+ 3i 6= 0. Therefore, min{1, i + 3i

′} = 1 and min{1, i
′
+
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3i} = 1. Hence,

min{1, i + 3i
′} = min{1, i

′
+ 3i}. (4.4)

Similarly, for j, j
′ ∈ Z4 with j 6= j

′
, one can show that

min{1, j + 3j
′} = min{1, j

′
+ 3j}. (4.5)

Now

dGau(x, y) = min{1, i + 3i
′}+ min{1, j + 3j

′}

= min{1, j + 3j
′}+ min{1, i + 3i

′}

= min{1, j
′
+ 3j}+ min{1, i

′
+ 3i} (by Equations 4.4 and 4.5)

= dGau(y, x).

3. For x, y, z ∈ R, dGau(x, y) ≤ dGau(x, z) + dGau(y, z). Consider these different

cases.

• Case 1: For x = y, from Equation 4.3, it is clear that 0 ≤ dGau(x, z) +

dGau(y, z).

• Case 2: For x 6= y, x = z and y 6= z, dGau(x, z) = 0 and dGau(x, y) =

dGau(z, y), hence dGau(x, y) ≤ dGau(x, z) + dGau(y, z).

• Case 3: If x 6= y, x 6= z and y 6= z then

1 ≤ dGau(x, y) ≤ 2 (4.6)

1 ≤ dGau(x, z) ≤ 2 and 1 ≤ dGau(z, y) ≤ 2 (4.7)

Hence, by Equations 4.6 and 4.7

2 ≤ dGau(x, z) + dGau(z, y) ≤ 4 (4.8)

Therefore, by Equations 4.6, 4.7 and 4.8, it can be verified that dGau(x, y) ≤

dGau(x, z) + dGau(y, z).
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Thus, by cases 1, 2 and 3, it is proved that dGau satisfies all the properties of dis-

tance. Hence, dGau(x, y) = min{1, i + 3i
′}+ min{1, j + 3j

′} is a distance over the

ring R.

Using the set of zero divisors Z = {0, 2, w, 2 + w, 2w, 2 + 2w, 3w, 2 + 3w} and

set of units U = {1, 3, 1 + w, 3 + w, 1 + 2w, 3 + 2w, 1 + 3w, 3 + 3w} of R, one can

simplify the formula for the Gau distance dGau. For both x and y ∈ Z or both x

and y ∈ U we have,

dGau(x, y) =


0 i f x = y,

1 i f x 6= y and x + 3y ∈ {2 + w, 2 + 3w},

2 otherwise.

For any x ∈ {0, 2, 2w, 2 + 2w} and y ∈ U,

dGau(x, y) =


0 i f x = y,

1 i f x 6= y and x + 3y ∈ {1, 3, 1 + w, 3 + 3w},

2 i f x 6= y and x + 3y ∈ {1 + 3w, 3 + w, 1 + 2w, 3 + 2w}.

For any x ∈ {w, 3w, 2 + w, 2 + 3w} and y ∈ U,

dGau(x, y) =


0 i f x = y,

1 i f x 6= y and x + 3y ∈ {1, 3, 3 + w, 1 + 3w},

2 i f x 6= y and x + 3y ∈ {3 + 3w, 1 + w, 1 + 2w, 3 + 2w}.

For any two arbitrary vectors x = (x1 x2 . . . xn) ∈ Rn and y = (y1 y2 . . . yn)

∈ Rn, the Gau distance dGau(x, y) = ∑n
i=1 dGau(xi, yi) is a metric on Rn induced by

the metric on the elements of the ring R. We use the same notation dGau for both

the metrics on R and Rn. For a linear code C on R, one can define a minimum

Gau distance dGau = min{dGau(x, y) : x, y ∈ C and x 6= y}.

Example 4.3. For x = (2 2 + 2w 0 2w) and y = (0 2 2w 2 + 2w), the Gau distance

dGau(x, y) = 8.
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Ring element DNA image Ring element DNA image
x φ(x) x φ(x)
0 AA 1 AG
2 GG 3 GA
w TG 1 + w TA

2 + w CA 3 + w CG
2w CC 1 + 2w CT

2 + 2w TT 3 + 2w TC
3w GT 1 + 3w GC

2 + 3w AC 3 + 3w AT

Table 4.1: A bijective mapping φ: R → Σ2
DNA is illustrated. © [2018] IEEE.

Reprinted, with permission, from Dixita Limbachiya, Krishna Gopal Benerjee,
Bansari Rao and Manish K Gupta, On DNA Codes using the Ring Z4 + wZ4, In
Proceedings of IEEE International Symposium on Information Theory (ISIT), pp.
2401-2405, 2018.

4.2 Gau Map and its Properties

Here, we define a Gau map φ (as shown in Table 4.1) from the elements of R to all

DNA vectors of length 2 as:

φ : R→ Σ2
DNA (4.9)

One can observe the following properties of the Gau map φ.

1. The additive inverse of each element x ∈ R is unique, similarly the reverse

φ(x)r of each φ(x) ∈ Σ2
DNA is unique.

2. Four elements 0, 2, 2w, 2 + 2w ∈ R are self invertible under the addition op-

eration. One can observe that the DNA nucleotides, φ(0) = AA, φ(2) =

GG, φ(2w) = CC, φ(2 + 2w) = TT are also self reversible.

3. For each φ(x) ∈ Σ2
DNA, ∃ φ(y) 6= φ(x) such that φ(x)c = φ(y) and φ(y)c =

φ(x). Similarly, for any x ∈ R there exists y ∈ R (y 6= x) such that y =

x + a = a + x and x = y + a = a + y, for some a ∈ R. In this work, we have

considered a = 2 + 2w.

4. The Gau map φ has a property φ−1(φ(x)c) = x+(2+ 2w) and x + φ−1(φ(x)r)

= 0 for each x ∈ R.
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5. For the ring R, ∃ four distinct elements 3+ 3w, 1+w, 3+w, 1+ 3w ∈ R such

that x + a is additive inverse of x, where a = 2 + 2w. From Table 4.1, one

can observe that φ(x)r = φ(x)c for only x ∈ {3 + 3w, 1 + w, 3 + w, 1 + 3w}.

4.3 Properties of DNA Codes from the Ring Z4 +wZ4

For any x = (x1 x2 . . . xn−1 xn) ∈ Rn, we define φ(x) = (φ(x1) φ(x2) . . . φ(xn−1) φ(xn))

∈ ∑2n
DNA and φ−1(φ(x)) = ((φ−1(φ(x1))( φ−1(φ(x2)) . . . φ−1(φ(xn))) ∈ Rn. The

reverse of x ∈ R is denoted by φ−1(φ(x)r) = (φ−1(φ(xn)r) (φ−1(φ(xn−1)
r) . . .

φ−1(φ(x1)
r)) ∈ Rn. The complement of x ∈ R is indicated as φ−1(φ(x)c) =

(φ−1(φ(x1)
c) (φ−1(φ(x2)

c) . . . φ−1(φ(xn)c)) ∈ Rn.

For any subset C ⊆ Rn, the DNA code CDNA = φ(C ) = {φ(x) : ∀ x ∈ C } ⊆

∑2n
DNA.

4.3.1 Distance Preserving Gau Map

Theorem 4.4. φ : (Rn, dGau) to (Σ2n
DNA, dH) is a distance preserving map.

Proof. We prove it for n = 1. Higher case is similar. For x, y ∈ R, let x = mi,j ∈M ,

y = mi′ ,j′ ∈M for some 0 ≤ i, j ≤ 3 and 0 ≤ i
′
, j
′ ≤ 3. Let us discuss the different

cases of x, y ∈ R.

1. If i = i
′

and j = j
′
, then x = y and φ(x) = φ(y) =⇒ dH(φ(x), φ(y)) = 0

and dGau(x, y) = 0.

2. If i 6= i
′

and j = j
′
, then dH(φ(x), φ(y)) = 1 and dGau(x, y) = 1.

3. If i = i
′

and j 6= j
′
, then dH(φ(x), φ(y)) = 1 and dGau(x, y) = 1.

4. If i 6= i
′

and j 6= j
′

then dH(φ(x), φ(y)) = 2 and dGau(x, y) = 2.

Considering all the above cases, it is obvious that φ : (Rn, dGau) to (Σ2n
DNA, dH) is

an isometry.

Example 4.5. For x = (2 0 2+ 2w 2), y = (2+ 2w 0 2w 2), φ(x) = (GG AA TT GG),

φ(y) = (TT AA CC GG), the Gau distance dGau(x, y) = 4, one can observe that the

Hamming distance dH(φ(x), φ(y)) = 4.
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4.3.2 Closure Properties of DNA Codes

Remark 4.6. For any x ∈ C , φ−1(φ(x)r) ∈ C if and only if the DNA code φ(C ) is

reversible.

Example 4.7. An example of a reversible DNA code φ(C ) is given in Table 4.2. For

x, φ−1(φ(x)r) ∈ C , let x = (1 2w), φ−1(φ(x)r) = (2w 3) then φ(x) = (AG CC),

φ(x)r = (CC GA) ∈ φ(C ) which implies that the DNA code φ(C ) is a reversible as for

each x ∈ C , φ−1(φ(x)r) ∈ C .

C φ(C )
(0 0) AA AA
(1 2w) AG CC
(2w 3) CC GA
(2 2) GG GG

Table 4.2: Reversible Code Example

Remark 4.8. For any x ∈ C , φ−1(φ(x)c) ∈ C if and only if the DNA code φ(C ) is

complement code.

Example 4.9. An example of a complement DNA code φ(C ) is given in Table 4.3. For

x, φ−1(φ(x)c) ∈ C , let x = (1 2w), φ−1(φ(x)c) = (3 + 2w 2), φ(x) = (AG CC),

φ(x)r = (TC GG) ∈ φ(C ). Hence, the DNA code φ(C ) is a complement code as for

each x ∈ C , φ−1(φ(x)c) ∈ C .

C φ(C )
(0 0) AA AA

(2 + 2w 2 + 2w) TT TT
(1 2w) AG CC

(3 + 2w 2) TC GG

Table 4.3: Complement Code Example

Remark 4.10. For any x ∈ C , if φ(x)r ∈ φ(C ) and (φ(x)c ∈ φ(C ) then φ−1(φ(x)rc) ∈

φ(C ).

Example 4.11. An example of a reversible-complement DNA code φ(C ) is given in Table

4.4. For x, φ−1(φ(x)rc) ∈ C , let x = (1 2w), φ−1(φ(x)rc) = (2 1 + 2w) φ(x) =

(AG CC), φ(x)r = (GG CT) ∈ φ(C ). Thus, the DNA code φ(C ) is a reversible-

complement code as for each x ∈ C , φ−1(φ(x)rc) ∈ C .
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C φ(C )
(0 0) AA AA

(2 + 2w 2 + 2w) TT TT
(1 2w) AG CC

(2 1 + 2w) GG CT

Table 4.4: Reversible-Complement DNA Code Example

4.3.3 Linearity on DNA Codes

Lemma 4.12. For any x, y ∈ Rn, φ−1(φ(ax + by)r) = aφ−1(φ(x)r) + bφ−1(φ(y)r),

where a, b ∈ R.

Proof. For any x, y ∈ Rn, x = (x1 x2 . . . xn) and y = (y1 y2 . . . yn).

Consider φ(ax + by)r =(φ(axn + byn)
r φ(axn−1 + byn−1)

r . . . φ(ax1 + by1)
r). Thus

φ−1(φ(ax + by)r) =(φ−1(φ(axn + byn)
r) φ−1(φ(axn−1 + byn−1)

r) . . . φ−1(φ(ax1 + by1)
r))

=((3axn + 3byn) (3axn−1 + 3byn−1) . . . (3ax1 + 3by1))

=(aφ−1(φ(xn)
r) + bφ−1(φ(yn)

r) aφ−1(φ(xn−1)
r) + bφ−1(φ(yn−1)

r) . . .

. . . aφ−1(φ(x1)
r) + bφ−1(φ(y1)

r))

=a(φ−1(φ(xn)
r) φ−1(φ(xn−1)

r) . . . φ−1(φ(x1)
r))

+ b(φ−1(φ(yn)
r) φ−1(φ(yn−1)

r) . . . φ−1(φ(y1)
r))

=aφ−1(φ(x)r) + bφ−1(φ(y)r).

Example 4.13. Let a = 2, b = 3, x = (2 + 3w 2) and y = (1 1 + w) then ax + by =

(3 + 2w 3 + 3w). For φ(ax + by) = (TC AT), φ(ax + by)r = (TA CT).

φ−1(φ(ax + by)r) = (1 + w 1 + 2w) (4.10)

• φ(x) = (AC GG) and φ(y) = (AG TA)

• φ(x)r = (GG CA) and φ(y)r = (AT GA)

• φ−1(φ(x)r) = (2 2 + w) and φ−1(φ(y)r) = (3 + 3w 3)

• aφ−1(φ(x)r) = (0 2w) and bφ−1(φ(y)r) = (1 + w 1)

aφ−1(φ(x)r) + bφ−1(φ(y)r) = (1 + w 1 + 2w) (4.11)
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By Equations 4.10 and 4.11, φ−1(φ(ax + by)r) = aφ−1(φ(x)r) + bφ−1(φ(y)r).

One can obtain similar result for the higher order in Remark 4.14 on the linear-

ity of the reversible code.

Remark 4.14. For any positive integer k and 1 ≤ i ≤ k, if xi ∈ Rn, then φ−1(φ(∑k
i=1 aixi)

r) =

∑k
i=1 aiφ

−1(φ(xi)
r), where ai ∈ R.

Corollary 4.15. For any x, y ∈ Rn, φ−1(φ(ax + by)c) = aφ−1(φ(x)c) + bφ−1(φ(y)c)

if a + b ∈ {1, 1 + 2w, 3, 3 + 2w}, where a, b ∈ R.

Proof. Note that for any a+ b ∈ {1, 3, 1+ 2w, 3+ 2w}, (a+ b)(2+ 2w) = 2+ 2w. For any x, y ∈ Rn,

x = (x1 x2 . . . xn) and y = (y1 y2 . . . yn).

Consider φ(ax + by)c =(φ(ax1 + by1)
c φ(ax2 + by2)

c . . . φ(axn + byn)
c). Thus

φ−1(φ(ax + by)c) =(φ−1(φ(ax1 + by1)
c) φ−1(φ(ax2 + by2)

c) . . . φ−1(φ(axn + byn)
c))

=(ax1 + by1 + 2 + 2w ax2 + by2 + 2 + 2w . . . axn + byn + 2 + 2w)

=(ax1 + by1 + (a + b)(2 + 2w) ax2 + by2 + (a + b)(2 + 2w) . . .

. . . axn + byn + (a + b)(2 + 2w))

=(a(x1 + 2 + 2w) + b(y1 + 2 + 2w) a(x2 + 2 + 2w) + b(y2 + 2 + 2w) . . .

. . . a(xn + 2 + 2w) + b(yn + 2 + 2w))

=(aφ−1(φ(x1)
c) + bφ−1(φ(y1)

c) aφ−1(φ(x2)
c) + bφ−1(φ(y2)

c) . . .

. . . aφ−1(φ(xn)
c) + bφ−1(φ(yn)

c))

=a((φ−1(φ(xn)
c) φ−1(φ(xn−1)

c) . . . φ−1(φ(x1)
c))

+ b(φ−1(φ(yn)
c) φ−1(φ(yn−1)

c) . . . φ−1(φ(y1)
c))

=aφ−1(φ(x)c) + bφ−1(φ(y)c).

Example 4.16. Let a = 2, b = 3, x = (2 + 3w 2) and y = (1 1 + w) then ax + by =

(3 + 2w 3 + 3w). For φ(ax + by) = (TC AT), φ(ax + by)c = (AG TA)

φ−1(φ(ax + by)c) = (1 1 + w) (4.12)

• φ(x) = (AC GG) and φ(y) = (AG TA)

• φ(x)c = (TG CC) and φ(y)c = (TC AT)
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• φ−1(φ(x)c) = (w 2w) and φ−1(φ(y)c) = (3 + 2w 3 + 3w)

• aφ−1(φ(x)c) = (2w 0) and bφ−1(φ(y)c) = (1 + 2w 1 + w)

aφ−1(φ(x)c) + bφ−1(φ(y)c) = (1 1 + w) (4.13)

By Equations 4.12 and 4.13, φ−1(φ(ax + by)c) = aφ−1(φ(x)c) + bφ−1(φ(y)c).

Similarly, observe Remark 4.17 on the linearity for higher order on the DNA

codes for the complement constraint.

Remark 4.17. For any positive integer k and 1 ≤ i ≤ k, if xi ∈ Rn, then φ−1(φ(∑k
i=1 aixi)

c) =

∑k
i=1 aiφ

−1(φ(xi)
c) if ∑k

i=1 ai ∈ {1, 1 + 2w, 3, 3 + 2w}, where ai ∈ R.

4.3.4 Closure of Reversible, Complement and Reversible-Complement

Codes

Lemma 4.18. For any row x of G over the ring R, the DNA code φ(< G >R) is closed

under reverse if and only if φ−1(φ(x)r) ∈ < G >R, the row span of G over R.

Proof. Let φ(y) ∈ φ(< G >R) = φ(C ) for some y ∈ C . Thus y = ∑k
i=1 aixi for rows xi

of G. Consider φ−1(φ(y)r) = φ−1(φ(∑k
i=1 aixi)

r) = ∑k
i=1 aiφ

−1(φ(xi)
r) ∈ C (by using

Remark 4.14). Thus φ−1(φ(y)r) ∈ C which directs φ(y)r ∈ φ(C ). Hence the DNA

code is closed under reverse (by Remark 4.6). The otherside is obvious.

Example 4.19. For

G =

 2 2 2 2

3 + w 3 + w 3 + w 3 + w

 ,

the DNA code φ(< G >R) is closed under reverse (see Table 4.5 ). For x = (3 + w 3 + w

3 + w 3 + w), φ(x) = (CG CG CG CG) =⇒ φ−1(φ(x)r) = (1 + 3w 1 + 3w 1 + 3w

1 + 3w), φ(x)r = (GC GC GC GC) =⇒ φ(x)r ∈ φ(< G >R).

Lemma 4.20. For x = (x1 x2 . . . xn) ∈ Rn, φ(x) = φ(x)r if and only if xi + xn−i+1 = 0

for i = 1, 2, . . . , n.
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No. < G >R φ(< G >R)
1 (0 0 0 0) (AA AA AA AA)
2 (3 + w 3 + w 3 + w 3 + w) (CG CG CG CG)
3 (2 + 2w 2 + 2w 2 + 2w 2 + 2w) (TT TT TT TT)
4 (1 + 3w 1 + 3w 1 + 3w 1 + 3w) (GC GC GC GC)
5 (2 + w 2 + w 2 + w 2 + w) (CA CA CA CA)
6 (1 + 2w 1 + 2w 1 + 2w 1 + 2w) (CT CT CT CT)
7 (3w 3w 3w 3w) (GT GT GT GT)
8 (3 3 3 3) (GA GA GA GA)
9 (2w 2w 2w 2w) (CC CC CC CC)

10 (3 + 3w 3 + 3w 3 + 3w 3 + 3w) (AT AT AT AT)
11 (2 2 2 2) (GG GG GG GG)
12 (1 + w 1 + w 1 + w 1 + w) (TA TA TA TA)
13 (2 + 3w 2 + 3w 2 + 3w 2 + 3w) (AC AC AC AC)
14 (1 1 1 1) (AG AG AG AG)
15 (w w w w) (TG TG TG TG)
16 (3 + 2w 3 + 2w 3 + 2w 3 + 2w) (TC TC TC TC)

Table 4.5: Example of Closure of Reversible Code

Proof. For x = (x1 x2 . . . xn) ∈ Rn, consider

φ(x) = φ(x)r

⇔ φ(xi) = φ(xn−i+1)
r (φ(x)r = (φ(xn)

rφ(xn−1)
r . . . φ(x1)

r))

⇔ xi = φ−1(φ(xn−i+1)
r) (φ is bijective)

⇔ xi = 3xn−i+1 (x + φ−1(φ(x)r) = 0)

⇔ xi + xn−i+1 = 0.

Lemma 4.21. For a matrix G over the ring R, the DNA code φ(< G >R) is closed under

complement if and only if 2+2w ∈< G >R, where 2+2w is a string with each element

2 + 2w.

Proof. Let φ(x) ∈ φ(< G >R) = φ(C ) for some x ∈ C and 2+2w = (2 + 2w 2 +

2w 2 + 2w . . . 2 + 2w) ∈ C . Thus x + 2+2w ∈ C but φ−1(φ(x)c) = x + 2+2w (by

using Table 4.1). Thus φ−1(φ(x)c) ∈ C and therefore φ(x)c ∈ φ(C ). Hence, the

DNA code CDNA is closed under complement using Remark 4.8. For the other

side of the statement, if φ(C ) is closed under complement, then φ−1(φ(0)c) ∈ C
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(Since 0 ∈ C ). But φ−1(φ(0)c) = 0 + 2+2w = 2+2w. Hence 2+2w ∈ C .

Example 4.22. If G = (2 2 2 2), then < G >R= {(2 2 2 2), (2w 2w 2w 2w), (0 0 0 0),

(2 + 2w 2 + 2w 2 + 2w 2 + 2w)}. Thus, φ(< G >R) = {(GG GG GG GG), (CC CC

CC CC), (AA AA AA AA), (TT TT TT TT)}. Let x = (2 + 2w 2 + 2w 2+2w 2 +

2w) and φ(x) = (TT TT TT TT) =⇒ φ−1(φ(x)c) = (0 0 0 0), φ(x)c = (AA AA AA AA)

=⇒ φ(x)c ∈ φ(< G >R)

Lemma 4.23. For x = (x1 x2 . . . xn) ∈ Rn, φ(x) = φ(x)rc if and only if xi + xn−i+1 =

2 + 2w for i = 1, 2, . . . , n.

Proof. For x = (x1 x2 . . . xn) ∈ Rn, consider

φ(x) = φ(x)rc

⇔ φ(xi) = φ(xn−i+1)
rc (φ(x)rc = (φ(xn)

rcφ(xn−1)
rc . . . φ(x1)

rc))

⇔ xi = φ−1(φ(xn−i+1)
rc) (φ is bijective)

⇔ xi = 3xn−i+1 + 2 + 2w (φ−1(φ(x)r) = x + 2 + 2w)

⇔ xi + xn−i+1 = 2 + 2w.

The following Theorem is obtained using Lemmas 4.12, 4.18 and 4.21.

Theorem 4.24. Let C (n, M, dGau) be a code over the ring R with the length n, the num-

ber of the codewords M and the minimum Gau distance dGau, such that each rows of the

generator matrix of C satisfy the conditions given in Lemma 4.18 and 4.21, then φ(C ) is

a CDNA(2n, M, dH) DNA code with the length 2n, the number of the codewords M and

the minimum Hamming distance dH. The DNA code CDNA is reversible, complement

and reversible-complement.

Proof. Every x of R is mapped to an ordered pair of DNA alphabets through the

bijective mapping φ : R → Σ2
DNA and CDNA = {φ(x) : ∀ x ∈ C }, thus the DNA

code has length 2n. One can observe that φ is a bijective map from R to Σ2
DNA im-

plies that CDNA has M codewords. Moreover, from Theorem 4.4, φ is the distance

preserving from R to CDNA leads to CDNA has the minimum Hamming distance

dH = dGau.
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Using the results of Theorems 4.18, 4.21 and 4.24, families of the DNA codes

from Octacodes types codes, Simplex type code and Reed-Muller type codes are

developed over the ring R which satisfies the Hamming distance, reverse and

reverse complement constraints in the next section.

4.4 Families of DNA Codes from the Ring Z4 + wZ4

In this section, using the results discussed in Section 4, we give new classes of

the DNA codes that satisfies the Hamming, reverse and reverse complement con-

straints.

4.4.1 DNA Codes from Octacodes Type Codes

There has been an interesting history of connecting two non-linear binary codes

(Kerdock and Preparata) with linear codes over Z4 [40]. The Octacode (a linear

self dual code of length n = 8, code size M = 256 and minimum Lee weight 8

over Z4) turns out to be a special case connecting the binary non-linear codes (the

Nordstrom-Robinson code) [40]. In this section, we construct a code similar to

the original Octacode from the ring Z4 + wZ4. The self dual code is generated

by a generator matrix consisting of the cyclic shifts of the vector (0 2 2w 2 + 2w

0 2 2w 2 + 2w) over R. The DNA code is generated from the generator matrix O

of the Octacode in Example 4.25. It satisfies the reverse and reverse complement

constraints.

Example 4.25. The DNA code CDNA(n = 16, M = 64, dH = 8) can be obtained from

cyclic shifts of the vector (0 2w 2 2 + 2w 0 2w 2 2 + 2w).

O =


0 2w 2 2 + 2w 0 2w 2 2 + 2w

2 + 2w 0 2w 2 2 + 2w 0 2w 2
2 2 + 2w 0 2w 2 2 + 2w 0 2w

2w 2 2 + 2w 0 2w 2 2 + 2w 0


(4.14)
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AAAAAAAAAAAAAAAA TTAACCGGTTAACCGG CCAAAACCCCAAAACC GGAACCTTGGAACCTT

CCGGTTAACCGGTTAA GGGGGGGGGGGGGGGG AAGGTTCCAAGGTTCC TTGGGGTTTTGGGGTT

AACCCCAAAACCCCAA TTCCAAGGTTCCAAGG CCCCCCCCCCCCCCCC GGCCAATTGGCCAATT

CCTTGGAACCTTGGAA GGTTTTGGGGTTTTGG AATTGGCCAATTGGCC TTTTTTTTTTTTTTTT

GGTTAACCGGTTAACC CCTTCCTTCCTTCCTT TTTTAAAATTTTAAAA AATTCCGGAATTCCGG

TTCCTTCCTTCCTTCC AACCGGTTAACCGGTT GGCCTTAAGGCCTTAA CCCCGGGGCCCCGGGG

GGGGCCCCGGGGCCCC CCGGAATTCCGGAATT TTGGCCAATTGGCCAA AAGGAAGGAAGGAAGG

TTAAGGCCTTAAGGCC AAAATTTTAAAATTTT GGAAGGAAGGAAGGAA CCAATTGGCCAATTGG

CCCCAAAACCCCAAAA GGCCCCGGGGCCCCGG AACCAACCAACCAACC TTCCCCTTTTCCCCTT

AATTTTAAAATTTTAA TTTTGGGGTTTTGGGG CCTTTTCCCCTTTTCC GGTTGGTTGGTTGGTT

CCAACCAACCAACCAA GGAAAAGGGGAAAAGG AAAACCCCAAAACCCC TTAAAATTTTAAAATT

AAGGGGAAAAGGGGAA TTGGTTGGTTGGTTGG CCGGGGCCCCGGGGCC GGGGTTTTGGGGTTTT

TTGGAACCTTGGAACC AAGGCCTTAAGGCCTT GGGGAAAAGGGGAAAA CCGGCCGGCCGGCCGG

GGAATTCCGGAATTCC CCAAGGTTCCAAGGTT TTAATTAATTAATTAA AAAAGGGGAAAAGGGG

TTTTCCCCTTTTCCCC AATTAATTAATTAATT GGTTCCAAGGTTCCAA CCTTAAGGCCTTAAGG

GGCCGGCCGGCCGGCC CCCCTTTTCCCCTTTT TTCCGGAATTCCGGAA AACCTTGGAACCTTGG

Table 4.6: DNA codewords generated from the matrix φ(O) with n = 16, M =
64, dH = 8 obtained from Octacode in Example 4.25 satisfies reverse and reverse
complement constraints.

Let

O =


x1

x2

x3

x4


be a generator matrix for the Octacode in Example 4.25. By Lemma 4.21, the

DNA code CDNA = φ(< O >) is closed under complement because 2+2w ∈

< O >, (because 2+2w = (1 + w)(x1 + x3)). For the rows xi ∈ O (1 ≤ i ≤ 4),

φ−1(φ(xi)
r) = 2+2w+ xi, for i = 1, 3 and φ−1(φ(xi)

r) = 2w+ xi, for i = 2, 4. Thus

by using Lemma 4.18, the DNA code CDNA satisfies the reverse constraint.

Remark 4.26. On the similar lines, one can obtain Octacodes type DNA codes with

parameters listed in Table 4.7 using the different first row vector.

First Row Vector DNA Code CDNA(n, M, dH)
(0 2 2w 2 + 2w) (8, 16, 4)
(0 2w 2 2 + 2w) (8, 64, 4)

(0 2w 2 2 + 2w 0 2w 2 2 + 2w) (16, 64, 8)
(0 2 2w 2 + 2w 0 2 2w 2 + 2w) (16, 16, 8)

Table 4.7: Octacodes types DNA code CDNA.
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DNA codewords generated from the Octacodes have interesting properties

from the application point of view. By removing the trivial codewords (code-

words with no GCs or all GCs), one can obtain the DNA codewords with 50%

GC-weight which are essential for the DNA computation.

4.4.2 DNA Codes from Simplex Type Codes

Binary simplex codes have a unique geometrical significance (being the dual of

the Hamming codes and each having a fixed weight) and were known in 1945

[39] in statistical connections before the actual discovery of the Hamming codes

by R. Hamming in 1948. Many researchers have considered simplex codes over

rings [54]. The simplex codes of type α and β over the ring Z4 have been studied

in [14]. The simplex codes over the ring F2 + uF2 were given in [7]. Recently, K.

Chatouh et al. generalized the simplex codes over the ring Rq in [21]. It is natural

to study the DNA codes using the simplex codes. DNA codes that avoid the

secondary structure formation were designed in [90] by using the cyclic simplex

codes. DNA codes satisfying the GC-weight constraint were also studied using

simplex codes in [52]. In this section, we have designed the DNA codes using

the simplex type codes over the ring R. We give a generator matrix Gβ
k for the

simplex type β over the ring R. The DNA codes which satisfies the reverse and

reverse complement constraints are given in Example 4.29.

Let Gβ
k be a matrix over R defined inductively by

Gβ
k =

 0 . . . 0 2 . . . 2 2w . . . 2w 2 + 2w . . . 2 + 2w

Gβ
k−1 Gβ

k−1 Gβ
k−1 Gβ

k−1

 , k ≥ 3 (4.15)

with

Gβ
2 =

 1 1 1 1 0 2 2w 2 + 2w

0 2 2w 2 + 2w 1 1 1 1

 . (4.16)

Let Sβ
k be a code generated by the generator matrix of type β simplex type code

over the ring R then for k > 1, n = 22k−1, M = 22k+4 and dGau = 22k−1.

Remark 4.27. If Ak−1 denotes an array of codewords in Sβ
k−1 and if i = (i i . . . i),
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where, i ∈ {2, 2w, 2 + 2w} then an array of all codewords of Sβ
k is given by


Ak−1 Ak−1 Ak−1 Ak−1

Ak−1 2 + Ak−1 2w + Ak−1 2+2w + Ak−1

Ak−1 2w + Ak−1 Ak−1 2w + Ak−1

Ak−1 2+2w + Ak−1 2w + Ak−1 2 + Ak−1

 (4.17)

Theorem 4.28. If Sβ
k (n, M, dGau) is a simplex β type code over the ring R = Z4 + wZ4

then the parameters of the corresponding DNA code CDNA(n, M, dH) are n = 22k, M =

22k+4 and dH = 22k−1. CDNA(n, M, dH) satisfies the reverse and reverse complement

constraints.

Proof. The proof has two parts. The first part contains the proof for the parameters

of the DNA code CDNA = φ(Sβ
k ). The second part proves that the DNA code

satisfies reverse and reverse complement constraints.

1. By using the induction on k, one can observe that the length of the DNA

code CDNA is n = 22k with the initial condition on Gβ
2 . The matrix Gβ

k is type

{2, 0, k − 2, 0} matrix. Hence, the number of DNA codewords M = 22k+4.

For Gβ
k , the minimum Gau distance is proved by using induction on k. For

k = 2, the base case Gβ
2 is trivial. For some positive integer k − 1, let the

minimum Gau distance of Sβ
k−1 is 22(k−1)−1. For each z ∈ {0, 2, 2w, 2 + 2w},

note that (z z . . . z) ∈ Sβ
k−1. Thus, by the matrix structure, the minimum Gau

distance of Sβ
k can not be more than four times of (22(k−1)−1) i.e. 22k−1. But,

dGau(0, zxk) = 22k−1, where 0 is all zero vector and xk is the last row of the

matrix Gβ
k . Hence, the minimum Gau distance of Sβ

k is 22k−1. Using Theorem

4.24, the result holds for the Hamming distance of the DNA code CDNA.

2. To prove the closure of complement, observe that 2+2w is 2 + 2w times the

sum of the last two rows of Gβ
k . Hence 2+2w ∈ Sβ

k . Thus by Lemma 4.21, the

DNA code CDNA is closed under complement. The closure of CDNA with

respect to the reverse can be proved by using Lemma 4.18. Let xi be the ith

row of the matrix Gβ
k , where i = 1, 2, . . . , k. For each xi ∈ Gβ

k , observe that
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φ−1(φ(xi)
r) =


(2 + 2w)(xk + xk−1) + xi if i = 1, 2, . . . , k− 2,

(2 + 2w)xk−1 + 3xk if i = k− 1,

(2 + 2w)xk + 3xk−1 if i = k.

As 2+ 2w, xk, xk−1 ∈ Sβ
k , φ−1(φ(xi)

r) ∈ Sβ
k . Thus, CDNA satisfies the reverse

constraint (from Remark 4.18). Hence, by using Remark 4.10, the DNA code

satisfies reverse and reverse complement constraints.

Example 4.29. From the matrix Gβ
2 , the DNA codes with parameters (16, 256, 8) satis-

fying the reverse and reverse complement constraints can be generated. Inductively from

Gβ
3 , DNA codes with length n = 64, M = 1024, dH = 32 is constructed.

The DNA codes obtained from the simplex class have purine rich DNA code-

words (composition of AGs in the DNA codeword). These DNA codewords are

essential for the DNA motifs (a small length of functional DNA codewords). They

also play a significant role in the transcription of genes.

4.4.3 DNA codes from the First order Reed-Muller Type Codes

The Reed-Muller codes (RM) are one of the best known oldest error correcting

codes discovered by Reed and Muller in 1954 [93]. First, the binary Reed-Muller

codes were introduced and then it was generalized to any q−ary alphabets [70].

DNA codes from the Reed-Muller codes have been constructed in [52] from the

ring F2 + uF2 with u2 = 0 satisfying reverse and reverse complement and GC-

weight using the defined Gray map. In [52], only odd lengths codes were consider.

In this thesis, we construct even length DNA codes using a special type of Reed-

Muller codes via the proposed Gau map φ. These DNA codes follows the reverse

and reverse complement and GC-weight constraints.

In this work, we define a few kinds of Reed-Muller type code over the ring R.

The Reed-Muller code is denoted asR(r, m), where r is the order of the code, and

m determines the length of the code, n = 2m.
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For each positive integer m (r ≤ m), the first order Reed-Muller Type code

R(1, m) over R where, w2 = 2 + 2w, is defined by the generator matrix:

G1,m+1 =

 G1,m G1,m

0 . . . 0 z . . . z

 , m ≥ 1

with

G1,1 =

1 1

0 z

 ,

where z ∈ {2, w, 2 + w, 2w, 2 + 2w, 3w, 2 + 3w}.

Theorem 4.30. For the first order Reed-Muller Type code R(1, m) over Z4 + wZ4, ∃

the DNA code CDNA(n, M, dH) that satisfies reverse and reverse complement constraints

with n = 2m+1,

M =


2m+4 i f z ∈ {2w},

22m+4 i f z ∈ {2, 2 + 2w},

23m+4 i f z ∈ {w, 2 + w, 3w, 2 + 3w},

and

dH =

 2m i f z ∈ {2w, 2, 2 + 2w},

2m−1 i f z ∈ {w, 2 + w, 3w, 2 + 3w}.

Proof. The proof has two parts. The first part contains the proof for the parameters

of the DNA code CDNA = φ(R(1, m)). The second part proves that the DNA codes

satisfy reverse and reverse complement constraints.

1. Using induction on m, one can observe that the length n = 2m+1 of CDNA

with the base case G1,1. For z ∈ {w, 2 + w, 3w, 2 + 3w}, the matrix G1,m is

of type {1, m, 0, 0}, for z ∈ {2, 2 + 2w}, the matrix G1,m is of type {1, 0, m, 0}

and for z ∈ {2w}, the matrix G1,m is of type {1, 0, 0, m}, hence the result

holds for number of codewords M (using Theorem 4.24). Due to the sym-

metry of the matrix G1,m, note that any two codewords differ at least at

2m−1 positions. Hence, the minimum Gau distance dGau is d2m−1, where
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d = min{dGau(x, y) : x 6= y and x, y ∈< z >}. Therefore for all the different

cases of zero divisors z, the results hold.

2. For each integer m ≥ 1, the codeword 2+2w is obtained by multiplying

2 + 2w to the row 1 of the matrix G1,m over the ring R, where 1 = (1 1 . . . 1).

From Lemma 4.21, the DNA code CDNA is closed under complement. The

closure of CDNA with respect to reverse can be proved by using Lemma 4.18.

If xi is the ith row of the matrix G1,m, then for each xi ∈ G1,m, observe that

φ−1(φ(xi)
r) =

 3 if i = 1,

3z + xi if i = 2, 3, . . . , m + 1.

Therefore, φ−1(φ(xi)
r) ∈ R(1, m) because xi, 3, z ∈ R(1, m) for each i =

1, 2, . . . , m + 1. Thus from Lemma 4.18, the DNA code CDNA is closed under

reverse. Hence, by using Remark 4.10, the DNA code satisfies reverse and

reverse complement constraints.

Example 4.31. The DNA code CDNA(n = 16, M = 8192, dH = 4) of Reed-Muller

Type codeR(1, 3) obtained by the generator matrix

G1,3 =


1 1 1 1 1 1 1 1

0 0 0 0 w w w w

0 0 w w 0 0 w w

0 w 0 w 0 w 0 w

 (4.18)

satisfies the reverse and reverse complement constraints.

One can obtain various DNA codes of type Reed-Muller using different m and

z as shown in Table 4.8.

4.5 Improved Results on the DNA Codes

We achieve several improvements on the lower bound of size of the reversible and

reversible-complement DNA codes. We compare the lower bound on ARC,GC
4 (n, d, u)
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m Zero divisor z DNA Code CDNA(n, M, dH)
1 2 (4, 64, 2)
2 2 (8, 256, 4)
3 2 (16, 1024, 8)
2 w (8, 1024, 2)
3 w (16, 8192, 4)

Table 4.8: DNA code CDNA generated by Reed-Muller Type code for the zero
divisor z with the different values of m. © [2018] IEEE. Reprinted, with permis-
sion, from Dixita Limbachiya, Krishna Gopal Benerjee, Bansari Rao and Manish
K Gupta, On DNA Codes using the Ring Z4 + wZ4, In Proceedings of IEEE Inter-
national Symposium on Information Theory (ISIT), pp. 2401-2405, 2018.

for some instances with n, d and u with the DNA codes constructed using the

similar rings in the literature (see Table 4.9). Some of them are listed here. For

n = 8, d = 4 and u = 4 from R(1, 2) (for the zero divisor z = 2, see Table 4.8),

the lower bound obtained for ARC,GC
4 (8, 4, 4) is 224 which is greater than 128, the

lower bound observed in [22, 104]. We observe that the DNA codes derived in

this thesis are better than the examples described in [78, 33, 104, 127]. For ex-

ample, the DNA code CDNA(n = 16, M = 8192, dH = 4) which is better than

CDNA(n = 16, M = 28, dH = 4) [92, 127]. Another instance is the DNA code

CDNA(n = 8, M = 256, dH = 4) which is better than CDNA(n = 8, M = 16, dH =

4) [78, 104]. It can be concluded that the Reed-Muller type codes attains the lower

bound on size M for AGC
4 (n, dH, u) and ARC,GC

4 (n, dH, u) [73] on the DNA code for

some values of n, dH and u = n/2. For example, if z = 2 or z = 2w, the first

order Reed-Muller type code for (n, dH, u) = (4, 2, 2) bound achieving code with

respect to AGC
4 (n, dH, u) and ARC,GC

4 (n, dH, u) respectively. Table 4.10 summarizes

improvements of the results obtained and its comparison with the literature.

n dH u M M
Our Work Previous Work

16 4 - 8192 28 [92]
8 4 - 256 16 [104]
8 4 4 224 128 [104, 22]

Table 4.9: Comparison of our results for DNA codes. © [2018] IEEE. Reprinted,
with permission, from Dixita Limbachiya, Krishna Gopal Benerjee, Bansari Rao
and Manish K Gupta, On DNA Codes using the Ring Z4 + wZ4, In Proceedings of
IEEE International Symposium on Information Theory (ISIT), pp. 2401-2405, 2018.
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n/d 2 3 4 5 6 7 8 9 10
4 B 16 6 2

A 64 . 4
6 B 1024 62 28 4 4

A 1024 16 . 4
8 B 8192 643 128 30 16 2 4

A 4096 . 256* . 16 4
10 B 2786 8064 2016 496 120 17 8 2 4

A 4096* . 256 . . . 8 . 4
12 B 2734 2609 32640 4032 2016 120 31 12 4

A 2048 . 4096 . 64 . . . 4

Table 4.10: Table of lower bounds for ARC
4 (n, dH) on DNA codes using rings. The

entry A presents our results. The entry B presents the best results of previous
study of DNA codes from rings. * is improvement by our method on the previous
bound and bold are results matching the values of the bound with previous DNA
codes from rings.

In the next section, we define the rth order Reed-Muller type codes.

4.6 The rth order Reed-Muller Type Codes

For the given zero divisor z ∈ R and each integers r, m (0 ≤ r ≤ m), the rth order

Reed-Muller codeR(r, m) over the ring R is defined by the generator matrix

Gr,m =

Gr,m−1 Gr,m−1

0 Gr−1,m−1

 , 1 ≤ r ≤ m− 1

with

Gm,m =

 Gm−1,m

0 0 . . . 0 z


and G0,m = (1 1 . . . 1) is the all one matrix with length 2m.

Theorem 4.32. For the rth order Reed-Muller code R(r, m) over the ring R, the DNA

code CDNA = φ(R(r, m)) satisfies the reverse and reverse complement constraints. The
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(n, M, dH) parameters of the DNA code CDNA are n = 2m+1,

M =


24b−3a i f z ∈ {2w},

24b−2a i f z ∈ {2, 2 + 2w},

24b−a i f z ∈ {w, 2 + w, 3w, 2 + 3w},

and

dH =

 2m−r+1 i f z ∈ {2w, 2, 2 + 2w},

2m−r i f z ∈ {w, 2 + w, 3w, 2 + 3w},

where a = ∑r−1
i=0 (

m−1
i ) and b = ∑r

i=0 (
m
i ).

Proof. The proof follows in two parts. The first part proves the parameters of the

DNA code CDNA and the second part proves the reverse and reverse complement

constraints.

1. Using induction on m, one can observe that the length n = 2m+1 of CDNA

with the base case G1,1. Note that in the matrix Gr,m, the total number of

rows which contain the zero divisor z is b = ∑r
i=0 (

m
i ) and the total number

of rows is a = ∑r−1
i=0 (

m−1
i ). For z ∈ {w, 2 + w, 3w, 2 + 3w}, the matrix Gr,m

is of type {b− a, a, 0, 0}, for z ∈ {2, 2 + 2w}, the matrix Gr,m is of type {b−

a, 0, a, 0} and for z ∈ {2w}, the matrix Gr,m is of type {b− a, 0, 0, a}, hence

the result holds for number of codewords M. Due to the symmetry of the

matrix Gr,m, note that any two distinct codewords are differ at least at 2m−1

positions. Hence, the minimum Gau distance dGau is d2m−1, where d =

min{dGau(x, y) : x 6= y and x, y ∈< z >}. Therefore for all the different

cases of zero divisor z, the result holds for the distance by using Theorem

4.24.

2. For each integers r, m (0 ≤ r ≤ m), the codeword 2+2w is obtained by

multiplying 2 + 2w to the row 1 of the matrix G1,m over the ring R, where 1

= (1 1 . . . 1). For the DNA code CDNA, the reverse constraint can be proved

using induction on r. For any integer m ≥ 0, the matrix G0,m = (1 1 . . . 1)

with 2m columns and therefore (3 3 . . . 3) ∈ R(0, m). Using Lemma 4.18, the
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DNA code φ(R(0, m)) is closed under the reverse constraint. Now, assume

that the DNA code φ(R(r − 1, m)) is closed under reverse for each integer

m ≥ r − 1. For the given integer r, the reverse constraint of φ(R(r, m)) can

be proved using induction on m (≥ r). For the base case m = r, we will

prove that φ(R(r, r)) is closed under reverse. Note that

Gr,r =

 Gr−1,r

0 0 . . . 0 z

 =

 Gr−1,r−1 Gr−1,r−1

0 Gr−1,r−1


Using Lemma 4.41, φ(R(r, r)) is closed under reverse. By recurrence con-

struction of the matrix, each row of the matrix Gr−1,m−1 is the row of the

matrix Gr,m−1. Using Lemma 4.41, the DNA code CDNA is closed under re-

verse.

Example 4.33. The DNA code CDNA(n = 8, M = 1024, dH = 2) of Reed-Muller Type

codeR(2, 2) obtained by the generator matrix

G2,2 =


1 1 1 1

0 2 0 2

0 0 2 2

0 0 0 2

 (4.19)

is reversible and reversible-complement DNA code.

4.7 General Results

The results obtained on the reverse and reverse complement constraints for the

families of DNA codes suggest the following general theorems and remarks.

For a positive integer k, let P be a matrix over the ring R with 4k length vector

(2 2 . . . 2) ∈ < P >R. For i = 1, 2, 3, 4, all the four elements zi ∈ {0, 2, 2w, 2 + 2w}

are distinct and all the four vectors zi = (zi zi . . . zi) have same length k. Now,
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consider the matrix

G =

 z1 z2 z3 z4

P

.

For the matrix G, parameters and constraints are discussed in the following theo-

rems 4.34 and 4.36.

Theorem 4.34. If the parameters of the DNA code φ(< P >R) are (8k, MP, dP
H) then the

parameters of the DNA code φ(< G >R) are (8k, MG, dG
H), where dG

H ≤ min{4k, dP}

and

MG =

 MP if (z1 z2 z3 z4) ∈< P >R,

4MP if (z1 z2 z3 z4) /∈< P >R .

Proof. Both the matrices G and P have 4k number of columns so, by using The-

orem 4.24, the length of a codeword of the DNA code φ(< G >R) is 8k. Let the

matrix P be of type {k0, k1, k2, k3}. If (z1 z2 z3 z4) ∈< P >R then the matrix G is

of type {k0, k1, k2, k3} and if (z1 z2 z3 z4) /∈< P >R then the matrix G is of type

{k0, k1, k2 + 1, k3}. Hence, the result holds for the code size M. The minimum Gau

distance for < z1 z2 z3 z4 >R, is 4k and the minimum Gau distance for < P >R, is

dP
Gau. Hence, the minimum Gau distance for < G >R is bounded by min{4k, dP}.

Using Theorem 4.24, the result holds.

Example 4.35. For k = 1, s = 2 and the matrix

P2×4 =

 0 0 2w 2w

2 2 2 2

 (4.20)

then a DNA code CDNA(n = 8, MP = 8, dP
H = 4) is generated by the matrix P. The

matrix

G =


0 2 2w 2 + 2w

0 0 2w 2w

2 2 2 2

, (4.21)

generates the DNA code CDNA(n = 8, MG = 32, dG
H = 4).

Theorem 4.36. If the DNA code φ(< P >R) is closed under the reverse constraint then

the DNA code φ(< G >R) will be closed under the reverse and reverse complement

constraints.

60



Proof. For the complement constraint, note that (2 + 2w 2 + 2w . . . 2 + 2w) ∈<

G >R because (2 2 . . . 2) ∈< P >R. Using Lemma 4.21, the DNA code φ(<

G >R) is closed under complement constraint. For the reverse constraint, con-

sider φ−1(φ(z1 z2 z3 z4)
r) = (z4 z3 z2 z1) because φ−1(φ(z)r) = z, for any z ∈

{0, 2, 2w, 2 + 2w}. For the elements 0, 2, 2w, 2 + 2w of the ring R, note that the

sum of any two distinct elements is equal to the sum of the another two distinct

elements. If the length of the vectors z1, z2, z3, z4 is same then z1 + z4 = z2 + z3.

If z1 + z4 = z2 + z3 = z then (z1 z2 z3 z4) + (z4 z3 z2 z1) = (z z z z) for some

z ∈ {2, 2w, 2+ 2w}, where z = (z z . . . z) is a k length codeword. But, (2 2 . . . 2) ∈<

P >R so (z z z z) ∈< P >R and therefore (z4 z3 z2 z1) = (z z z z)− (z1 z2 z3 z4) ∈<

G >R which directs φ−1(φ(z1 z2 z3 z4)
r) ∈ < G >R. By using Lemma 4.18, the

DNA code φ(< G >R) is closed under reverse constraint. Thus by using Remark

4.10, the results holds.

Example 4.37. For k = 1, s = 3 and the matrix

P3×4 =


0 0 2w 2w

2 2 2 2

2w 2w 0 0

 (4.22)

then a DNA code CDNA(n = 8, MP = 8, dP
H = 4) is generated by the matrix P. The

matrix

G =


0 2 2w 2 + 2w

0 0 2w 2w

2 2 2 2

2w 2w 0 0

, (4.23)

generates the DNA code CDNA(n = 8, MP = 32, dP
H = 4).

Lemma 4.38. For a matrix G1 over the ring R, if the DNA code φ(< G1 >R) is closed

under reverse constraint then the DNA code φ(< Gk >R) will be closed under reverse

constraint, where Gk = (Gk−1 G1) for k > 1.

Proof. For each x∈< G1 >R, φ−1(φ(x)r) ∈< G1 >R. Note that, the matrix Gk

is k times block repetition of the matrix G1, so (x x . . . x)∈ Gk and (φ−1(φ(x)r)
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φ−1(φ(x)r) . . . φ−1(φ(x))r) ∈ Gk, for every x∈ G1. But, (φ−1(φ(x)r) φ−1(φ(x)r)

. . . φ−1(φ(x))r) = φ−1(φ(x x . . . x)r) which directs φ−1(φ(x x . . . x)r) ∈< Gk >R.

Using Remark 4.6, the result holds.

Lemma 4.39. For a matrix G1 over the ring R, if 2+2w = (2 + 2w 2 + 2w . . . 2 +

2w) ∈< G1 >R then (2+2w 2+2w...2+2w)∈< Gk >R, where Gk = (Gk−1 G1) for

k > 1. Hence, if the DNA code φ(< G1 >R) is closed under complement constraint then

the DNA code φ(< Gk >R) will be closed under complement constraint.

Proof. The DNA code φ(< G1 >R) is a complement code (by Lemma 4.21). Hence,

for 2+2w ∈< Gk >R, it is closed under complement constraints by using the result

of Lemma 4.21.

An example of Lemmas 4.38 and 4.39 is shown in Example 4.40.

Example 4.40. For k = 2, if the reversible and reversible-complement DNA code φ(<

G1 >R) = (n = 4, M = 4, dH = 4) is obtained by the generator matrix

G1 =

 2 2

2 + 2w 2 + 2w

 (4.24)

then

G2 =

 2 2 2 2

2 + 2w 2 + 2w 2 + 2w 2 + 2w

 (4.25)

generates φ(< G2 >R) = {AAAAAAAA, TTTTTTTT, GGGGGGGG, CCCCCCCC}

is reversible and reversible-complement code with (n = 8, M = 4, dH = 8).

One can observe the following general result for the rth order Reed-Muller type

code.

Lemma 4.41. Let G and H be two matrices over the ring R such that both the DNA codes

φ(< G >R) and φ(< H >R) are closed under reverse constraint. If each row of H is a

row of G then the DNA code φ(< T >R) will be closed under reverse, where

T =

G G

0 H

 .
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Proof. Any row of T is the row of either matrix (G G) or the matrix (0 H). Now

consider two cases for this:

Case: 1 If (x x) is the row of the matrix (G G) then x will be the row of the matrix G.

Using Lemma 4.18, φ−1(φ(x)r) ∈< G >R and therefore (φ−1(φ(x)r) φ−1(φ(x)r))

∈< G G >R by using Lemma 4.38 for each row of the matrix G.

Case: 2 If (0 y) is the row of the matrix (0 H) then y will be the row of H. By using

Lemma 4.18, φ−1(φ(y)r) ∈< H >R. Therefore, (0 φ−1(φ(x)r)) ∈ < 0 H >R⊆<

T >R. But y is also the row of G so from the case 1, (φ−1(φ(y)r) φ−1(φ(y)r))

∈< G G >R⊆< T >R. Thus (φ−1(φ(y)r) 0) ∈< T >R for each row y of the matrix

H. Now by the case 1 and case 2, it is concluded that φ−1(φ(t)r) ∈< T > for each

row t of the matrix T. Hence, by using Lemma 4.18, the DNA code φ(< T >R) is

closed under reverse.

Example 4.42. If the matrices G and H over the ring R are given as

G =


w 1

2w 2w

2 2

 (4.26)

and

H =

 2 2

2w 2w

 (4.27)

then

T =



w 1 w 1

2 2 2 2

2w 2w 2w 2w

0 0 2 2

0 0 2w 2w


, (4.28)

by Lemma 4.18 on closure of reversible code, φ(< T >) is reversible code.

Remark 4.43. For any matrix G over the ring R, the DNA code φ

(〈 G

2+2w

〉
R

)
is closed under complement, where the vector 2+2w = (2 + 2w 2 + 2w . . . 2 + 2w).
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4.8 DNA Codes from Rings R1, R2 and R3

In this section, we propose DNA codes over rings R1, R2 and R3. It is interesting

to observe that the relation between the elements of rings and the DNA alphabets

over these rings. It is exciting to define the Gau map φ over these rings. In order

to give a distance preserving map, the Gau distance should be defined on rings.

We can also define an isometry (distance preserving map) between the codes over

these rings and DNA codes. One can also define Gau distances dR1
Gau, dR2

Gau, dR3
Gau

on rings R1, R2 and R3, respectively.

The Gau distance dR1
Gau, dR2

Gau, dR3
Gau is a metric on the elements of the ring

R1, R2, R3, respectively. One can use the Gau distance for rings R1, R2, R3 as fol-

lows.

Let ΓDNA = {AA, AT, TT, TA, CC, CG, GG, GC}n denote the 2-mer DNA code-

words.

To construct the DNA codes using rings R1, R2, R3, a relation is required be-

tween the elements of the rings and the 2-mer DNA codewords ΓDNA. To define

a distance on rings, the elements of the ring and the 2-mer ΓDNA can be arranged

in a manner (see the matrix MR1 (MR2) in Equation 4.29 (4.32) respectively) such

that the Hamming distance dH between any two distinct pair of DNA nucleotides

in the same row or same column is 1, otherwise it is 2. This motivates us to de-

fine a Gau distance on elements of rings. For x, y ∈ R1, let x = mi,j ∈ MR1 ,

y = mi′ ,j′ ∈ MR1 for some (i, j), (i
′
, j
′
) ∈ {(0, 0), (0, 3), (1, 1), (1, 2), (2, 1), (2, 2),

(3, 0), (3, 3)} then, the Gau distance dR1
Gau can be defined as in Equation 4.2.

MR1 =

A G C T

A

G

C

T


1 − − 1 + w1

− 2w1 w1 −

− 3w1 0 −

1 + 3w1 − − 1 + 2w1


(4.29)

One can also define the Gau distance as follows:

For the ring R1, the set of zero divisors Z = {0, w1, 2w1, 3w1} and the set of
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units U = {1, 1+ w1, 1+ 2w1, 1+ 3w1}. For both x and y ∈ Z or both x and y ∈ U

we have,

dR1
Gau(x, y) =


0 i f x = y,

1 i f x 6= y and x + y ∈ {w1, 3w1},

2 otherwise.

(4.30)

For any x ∈ Z and y ∈ U,

dR1
Gau(x, y) =

 0 i f x = y,

2 i f x 6= y and x + y ∈ U.
(4.31)

MR2 =

A G C T

A

G

C

T


0 − − 1

− w2 1 + w2 −

− 3 + w2 2 + w2 −

3 − − 2


(4.32)

For the ring R2, the set of zero divisors Z = {0, 2, w2, 2 + w2} and the set of

units U = {1, 3, 1 + w2, 3 + w2}. For both x and y ∈ Z or both x and y ∈ U we

have,

dR2
Gau(x, y) =

 0 i f x = y,

2 i f x 6= y and x + y ∈ Z.
(4.33)

For any x ∈ Z and y ∈ U,
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dR2
Gau(x, y) =


0 i f x = y,

1 i f x 6= y and x + y ∈ {1, 3},

2 otherwise.

(4.34)

For the ring R3, the set of zero divisors Z = {0, w3} and the set of units U =

{1, 1 + w3}. For any x and y in R3

dR3
Gau(x, y) =

 0 i f x = y,

1 i f x 6= y.
(4.35)

Remark 4.44. It is easy to observe that Gau distance dR3
Gau over the ring R3 coincides the

Hamming distance dR3
H over the ring R3.

The map φ1 (φ2) is defined from the elements of R1 (R2) to the DNA strands

of length 2. For φ3, the straight forward map is A → 0, T → 1, G → w3, C →

1 + w3 such that xc = x + 1. The maps φ1 and φ2 are given in Tables 4.11 and 4.12

respectively.

Ring element DNA image Ring element DNA image
x φ1(x) x φ1(x)
0 CC 1 AA

w1 GC 1 + w1 AT
2w1 GG 1 + 2w1 TT
3w1 CG 1 + 3w1 TA

Table 4.11: A bijective mapping φ1: Rn
1 → Γn

DNA is given such that φ−1(φ(x)c) =
x + 2w1 and x + φ−1(φ(x)r) = 0.

Theorem 4.45. φ1 : (Rn
1 , dR1

Gau) to (Γn
DNA, dR1

H ) is a distance preserving map.

Proof. We prove it for n = 1. The higher case is obvious. Consider the following

cases.

• Case 1: For x, y ∈ R1, if x = y then dR1
Gau(x, y) = 0 =⇒ dR1

H (φ1(x), φ1(y)) =

0.
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• Case 2: For x 6= y, if x + y ∈ {w1, 3w1}, then dR1
Gau(x, y) = 1. Observe that

x + y = w1 if

x ∈{0, 1, 2w1, 1 + 2w1}

y ∈{w1, 1 + w1, 3w1, 1 + 3w1} then

φ1(x) ∈{CC, AA, GG, TT}

φ1(y) ∈{GC, AT, CG, TA}.

Hence dR1
H (φ1(x), φ1(y)) = 1. Similarly, for x + y = 3w1 if

x ∈{0, w1, 1 + w1, 1}

y ∈{3w1, 2w1, 1 + 2w1, 1 + 3w1} then

φ1(x) ∈{CC, GC, AT, AA}

φ1(y) ∈{CG, GG, TT, TA}.

Hence, dR1
H (φ1(x), φ1(y)) = 1.

• Case 3: For x ∈ {0, w1, 2w1, 3w1}, y ∈ {1, 1+ w1, 1+ 2w1, 1+ 3w1} if x + y ∈

{1, 1 + w1, 1 + 2w1, 1 + 3w1} then dR1
Gau(x, y) = 2. Note that x + y = 1 if

x ∈{0, w1, 2w1, 3w1}

y ∈{1, 1 + 3w1, 1 + 2w1, 1 + w1} then

φ1(x) ∈{CC, GC, GG, CG}

φ1(y) ∈{AA, AT, TT, TA}.

Hence, dR1
H (φ1(x), φ1(y)) = 2. Similarly, one can proof for x + y ∈ {1 +

w1, 1 + 2w1, 1 + 3w1}

Thus by observing all these cases, it is verified that φ1 : (Rn
1 , dR1

Gau) to (Γn
DNA, dR1

H )

is an isometry.

Lemma 4.46. For any row x of GR1 over the ring R1, the DNA code φ(< GR1 >) is

closed under reverse if and only if φ−1(φ(x)r) ∈ < GR1 >, the row span of GR1 over R1.
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Proof. The proof is similar to the proof of Lemma 4.18.

Lemma 4.47. For a matrix GR1 over the ring R1, the DNA code φ(< GR1 >) is closed

under complement if and only if 2w1 ∈< GR1 >, where 2w1 is a string with each element

2w1.

Proof. The proof is similar to the proof of Lemma 4.21.

The map φ2 from the elements of the ring R2 to the DNA nucleotides is de-

scribed in Table 4.12. The proof of Theorems 4.48 and 4.51 is similar to the proof

of Theorem 4.45.

Ring element DNA image Ring element DNA image
x φ2(x) x φ2(x)
0 AA w2 GG
1 AT 1 + w2 GC
2 TT 2 + w2 CC
3 TA 3 + w2 CG

Table 4.12: A bijective mapping φ2: Rn
2 → Γn

DNA is given such that φ−1(φ(x)c) =
x + 2 and x + φ−1(φ(x)r) = 0

Theorem 4.48. φ2 : (Rn
2 , dR2

Gau) to (Γn
DNA, dR2

H ) is a distance preserving map.

Lemma 4.49. For any row x of GR2 over the ring R2, the DNA code φ(< GR2 >) is

closed under reverse if and only if φ−1(φ(x)r) ∈ < GR2 >, the row span of GR2 over R2.

Proof. The proof is similar to the proof of Lemma 4.18.

Lemma 4.50. For a matrix GR2 over the ring R2, the DNA code φ(< GR2 >) is closed

under complement if and only if 2 ∈< GR2 >, where 2 is a string with each element 2.

Proof. The proof is similar to the proof of Lemma 4.21.

Theorem 4.51. φ3 : (Rn
3 , dR3

Gau) to (Σn
DNA, dR3

H ) is a distance preserving map.
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Example 4.52. A DNA code CDNA(n = 16, M = 512, dR2
H = 8) is obtained by the

generator matrix

GR2 =


1 1 1 1 1 1 1 1

0 0 0 0 w2 w2 w2 w2

0 0 w2 w2 0 0 w2 w2

0 w2 0 w2 0 w2 0 w2

 (4.36)

from the ring R2 = Z4 + w2Z2 using the map φ2.

This chapter gives an interesting construction of the DNA codes using the ring

R = Z4 +wZ4, where w2 = 2+ 2w. A new distance called the Gau distance on the

ring R is introduced. We have also proposed a new distance preserving Gau map

φ from the elements of the ring R to all the DNA 2-mers. Some of them are optimal

with respect to the bounds and are better than the DNA codes from rings obtained

in the literature. Also, different rings R1, R2 and R3 and their corresponding Gau

maps are discussed.

In the next chapter, the literature on DNA data storage systems is discussed.
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CHAPTER 5

On DNA based Data Storage Systems

Our own genomes carry the story of evolution, written in DNA, the language of molecular genet-

ics, and the narrative is unmistakable.

-Kenneth R. Miller [18]

Data storage is an ancient practice performed by humans to pass the infor-

mation from one generation to another. Stemming from the early day’s storage

medium to the modern days distributed cloud data storage [32] and Graphene-

quantum-dot data storage [67]; there is a drastic advancement in the data storage

devices. With the extensive use of social networking and cloud computing, there

is a paradigm shift in the volume of data produced. It is predicted that in the

era of an internet of things (IoT), the future unit of the big data will be Geopbyte

(1030 bytes), which highlights a big concern of storing and maintaining a rapid

growth of the data that enforces the data storage experts to design a new architec-

ture to store the data [77]. Digital data storage devices are expensive, consume a

tremendous amount of energy and releases much heat that is harmful to the envi-

ronment. The existing data storage media needs to be maintained regularly and

are prone to decay. Scientists are trying to miniaturize the size of silicon chips up

to many folds, but this makes it more expensive. Alternatively, researchers insti-

gated the use of source from nature to preserve the data which gave rise to the

field of biomolecular storage. The biomolecular storage system [10] is an art of

storing and retrieving the information to and from the natural medium using bio-
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molecules. Many researchers for data storage [81, 89] have explored DNA, RNA

and proteins. Looking at the success stories of the biomolecular data storage, in

particular, the DNA based data storage systems is considered to be a future data

storage technology.

The concept of data storage includes the representation of the data such that

it allows the mapping of binary 0′s and 1′s to individual states. For instance, 0′s

and 1′s are represented as pits and lands respectively on CD. Specific properties

as storage capacity, data access rate, read/write speed, portability, durability and

reliability characterize data storage devices. In order to use bio-molecules as the

storage medium, it should have the following properties.

• Monomer units that can encode bits is essential for data storage. For DNA

(Deoxyribonucleic acid) based storage systems, nucleotides A, T, G, C serve

as monomer units to encode 0’s and 1’s. For protein, amino acids act as

monomer units that can be mapped to binary digits. For bacterial storage,

two states of genes as on and off condition of genes can be considered as the

flipping of 0 to 1 and vice-versa.

• Coded sequence of biomolecular units used to encode the data must have

writing and reading technology. For instance, data stored in DNA can be

written and read by using DNA synthesis and sequencing technology re-

spectively. For protein, peptide synthesis and sequencing technology are

available. To use any bio-molecule as information storage, synthesis and

sequencing must be practically well developed. Bacterial cloning and Re-

combinant DNA technology may be used for bacterial storage.

These properties of biomolecules such as DNA, RNA and protein enables them

to perform as the storage medium. DNA in each cell of human encodes the infor-

mation which is processed via genes and proteins using molecular machinery.

DNA being the oldest data storage medium, it is obvious to think of using DNA

as a digital data storage medium.
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5.1 DNA as Storage Device

Different channel models for DNA storage has been proposed in [15, 63, 72, 76,

139]. These DNA data storage systems have different properties as described

in Figure 5.2. An archival DNA data storage model is presented in Figure 5.1.

There is an encoder which converts binary data to DNA nucleotides using error

correcting codes. Data is converted to DNA units A, T, G and C. For instance;

one can represent each base pair by using 2 bits, (00 → AT, 01 → GC, 10 → TA

and 11→ CG). Coding potential is the maximum amount of bits encoded per nu-

cleotide. The theoretical limit of coding potential is 2 bits per nucleotide. Different

kinds of encoding schemes [43, 44, 107, 119] are used as differential coding [47],

Reed-Solomon codes [48], XOR encoding [17], fountain codes [37] for encoding

the data. Next, DNA synthesis and sequencing channel include DNA synthesis,

amplification, storage and DNA sequencing. Net information density is the ratio

of input data to a total number of DNA bases used to encode the data (excluding

the adapter sequences). In the final step, the decoder retrieves the original data

from DNA by decoding methods. The physical amount of information stored in

DNA is measured by DNA data storage capacity that indicates the number of

bytes divided by DNA bases used to decode the stored data. There are chances of

errors during DNA synthesis and sequencing channel. Most common errors like

substitution, insertion and deletion of the base occur. From these, substitution

has the higher probability than others. In this thesis, we propose codes for DNA

storage that can correct substitution errors (described in Chapter 6).

In this chapter, we summarize DNA data storage methods proposed in the

literature.

DNA bases data storage has few pieces of evidence in the history. Microvenus

project was initiated by Joe Davis to convert an image in DNA that alludes to the

idea of storing abiotic data in DNA. Microvenus [27], a small organism comprises

a short piece of synthetic DNA used to encode visual icon in the bacteria E.coli.

In Clelland encoding models [9, 26], microdots were used to cipher the data in

human genomic DNA. By using simple DNA coding schemes many researchers
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Figure 5.1: Model for Archival DNA storage channel. Archival DNA storage
channel is divided into two parts. First is the data encoding channel that includes
encoding the data into DNA sequences using encoding methods with error correc-
tion which help to detect and correct errors in the data encoded DNA sequences.
Second is the storage channel that includes the reading and writing of the data on
DNA using DNA synthesis and sequencing technologies.

have encoded English alphabets, mathematical expressions [136], Latin text and

simple musical notations [4] to DNA [8].

Although the pioneering work laid the cornerstone for storing data to DNA,

each one was successful on a small scale by encoding small bits of data. Later,

the large-scale DNA data storage systems were developed. Some of the primary

encoding approaches proposed for DNA-based information storage systems are

described in this chapter.

The G. Church et al. in 2012 at Harvard University did the first successful

work using a next-generation synthesis and sequencing technology. Their team

proposed an efficient data encoding algorithm (1 bit per base) into a fixed length of

DNA chunks (99 bases). In writing and reading DNA, 10 bits error occurred from

5.27 MB. It has the limitation of lacking error correction scheme that was taken

care of by N. Goldman et al. [47] in 2013 by including error correction writing

and reading the data. Their group used base 3 encoding Huffman coding (trits

0, 1 and 2), where each ternary codeword is of length 5 or 6 trits. In this, ternary

Huffman was converted to the DNA code. DNA was divided into chunks. Four

fold redundancy was included by overlapping 75 bases for each DNA information

chunks that can help to recover the data loss which may occur during synthesis

and sequencing DNA. As proof of concept, they used four different file types (739
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Figure 5.2: DNA Data Storage System Properties

kilobytes file size) and achieved 2.2 PB/g DNA storage capacity.

Over the extended period, data encoded DNA may get damaged in an inap-

propriate condition, for that matter, a long-term data storage in DNA was demon-

strated by Grass et al. [48] that showcased the storage of DNA for long-term

in a sphere. To witness long-term storage of DNA and the DNA stability, re-

searchers have developed chemical based [48] method to encapsulate DNA into

glass sphere and preserve it from environmental damage for long-term archival.

They used very prominent error correcting code Reed Solomon (RS) codes, which

are used in digital storage devices like CD and DVD.

All the above methods are archival DNA storage systems and do not allow

random access of data from the file. Also, all the described methods are only

write-once read-once methods. To overcome these issues, Yazdi et al. [128] and J.

Bornolt et al. [17] proposed re-writable and random access DNA based data stor-

age systems using prefix-synchronized and XOR encoding respectively, in which

they used unique mutually uncorrelated addresses by which data can be ran-

domly accessed. Recently, large scale random access method was proposed by

L. Organick et al. in [96].

I. Holmes introduced the modular encoding for DNA storage in which non-
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repeating DNA codes applicable to DNA storage is designed [61]. Also, an effi-

cient and two-dimensional interleaved error-correcting code (ECC) scheme which

can correct all the types of error is developed by M. Blawat et al. in [15]. W. L.

Hughes et al. in [139] demonstrated a DNA data storage system terms as Nu-

cleic Acid Memory (NAM). A compelling article on DNA as memory device is

elucidated by introducing the properties like Read/write latency, a retention and

volumetric density for DNA. E. Marcotte et al. in [5] introduced method to en-

code the data in DNA by defining a Levenshtein distance less than equal to 3

between the DNA codewords. Advancement in the DNA sequencing encouraged

the researchers to develop the error-free portable DNA data storage system [137],

which employs the most advanced nanopore DNA sequencing for reading the

DNA encoded data.

In the past year, researchers have introduced the concept of DNA fountain [37]

which use fountain codes to encode the data. Fountain Code is symbolic to a foun-

tain which supplies endless data packets from senders end to a receiver just as

water droplets (encoded data) which fill the empty bucket. The encoding method

achieved highest net information density per nucleotide as 1.57 bits/nucleotide.

This method recorded the highest data storage capacity of 214 Petabyte/gram of

DNA. A fundamental theoretical limits have been discussed by Kanan et al. in

[110].

Very recently, R. Heckel et al., studied the distribution of error probabilities

at the different levels of DNA data storage systems by analyzing the data sets of

DNA data storage experiments from different researchers [109].

It is concluded that errors occur at each level of DNA storage and the source

of errors are highly subjected to the kind of processes which is used for read-

ing/writing the data on DNA. A high physical redundancy of the data encoded

in DNA is required for reliable data storage, but this decreases the information

density. Hence to have a better trade-off, it is recommended to use better error

correcting schemes that can correct the errors.

This motivated us to develop codes for DNA storage such that it can avoid

high GC-weight and long runlengths in a DNA codeword.
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CHAPTER 6

Codes for DNA based Data Storage Systems

Human DNA is like a computer program but far, far more advanced than any software we have

ever created.

Bill Gates

The Road Ahead, page 228 (Viking, Penguin Group, 1996, Revised Edition [18]

In this chapter, codes for archival DNA data storage systems are introduced.

The objective of the DNA data storage system is to design the encoding methods

to convert the digital data (binary codes) to DNA sequences (quaternary codes)

such that it can correct the maximum number of errors (increasing the data re-

silience). Two methods for encoding the data in the DNA are proposed in this

dissertation. The first method uses a constrained codes which is described in sec-

tion 6.1. The constrained codes proposed for DNA data storage is published in

[82] 1. The second method is a DNA Golay subcode for DNA data storage which

is discussed in the Section 6.2. The section 6.2 is published in [79] 2.

1© [2018] IEEE. Reprinted, with permission, from Dixita Limbachiya, Manish K. Gupta, and
Vaneet Aggarwal, Family of Constrained Codes for Archival DNA Data Storage, accepted in IEEE Com-
munication Letters, July 2018, Early Access, doi:10.1109/LCOMM.2018.2861867.

2© [2018] IEEE. Reprinted, with permission, from Dixita Limbachiya, Vijay Dhameliya, Mad-
hav Khakhar, and Manish K. Gupta, On Optimal Family of Codes for Archival DNA storage, In Pro-
ceedings of IEEE Seventh International Workshop on Signal Design and its Applications in Com-
munications (IWSDA), pp. 123-127. 2015.
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6.1 Constraint Codes Method

Many researchers have proposed different encoding schemes for DNA based data

storage such that it satisfies either of no-runlength or GC-weight constraints. Specif-

ically, DNA codes with the no-runlength constraint for DNA based data storage

have been studied in [16, 47, 48, 64, 79]. Although the DNA codes proposed in

[73] have included GC-weight for DNA codewords but it did not consider the no-

runlength constraint for DNA codes. A fountain code based methods for DNA

data storage were proposed by Y. Erlich and D. Zielinski that developed DNA

codes with runlength ≤ 3 and GC-weight constraints [37]. However, there is no

evidence in the literature for such theoretical bounds on DNA codes for both these

constraints.

Therefore in this work, we develop DNA codewords with both these con-

straints. We present a lower bound on number of codewords by considering

DNA codewords with these constraints and a particular distance. The proposed

altruistic algorithm first forms a list of all codewords of fixed GC-weight with the

no-runlength constraint for which an exact characterization has been given.

6.1.1 Constrained Coding for the DNA Storage

The constrained coding method is considered to generate DNA codes with both

no-runlength and fixed GC-weight u constraints. In [47] and [79], the ternary

codewords were used to encode the data in the DNA. The idea of an altruistic

algorithm from [51] is used, which results in a different set of codes with length n

and minimum Hamming distance d. The modified algorithm generates the DNA

codes with the no-runlength constraint and a fixed GC-weight using the quater-

nary encoding. Once the DNA codes are generated, the codebook can be used to

encode the data.

Algorithm 1 first lists all the codewords to develop families of constrained

DNA codes with different length n and minimum Hamming distance d satisfying

no-run lengths and a fixed GC -weight u = bn/2c. Next, until the codebook has

codewords with a minimum Hamming distance d, an altruistic algorithm greedily

77



Algorithm 1 Altruistic Algorithm to generate DNA codes
Input: DNA code length n, GC-weight u, minimum Hamming distance d
Output: Altruistic DNA codebook

1 Enumerate 4× 3n−1 codewords in which there are no consecutive runlengths.
2 Screen the above list of codewords and remove the codewords that do not
have GC-weight u. Theorem 6.2 gives the number of such codewords with
fixed GC-weight u.
3 Count all the codewords at the distance d− 1 in a sphere for each codeword
in the generated list.
4 Delete the codeword with a maximum number of codewords in radius d− 1.
Reduce the number of codewords at distance d− 1 by 1 for all codewords that
were within the distance d− 1 of this deleted codeword.
5 Repeat the process in the Step 4 till the maximum number of codewords
within distance d− 1 is at most 1 for each element of the list.
6 Generate DNA codewords by mapping each quaternary code in the list to
DNA alphabets {0, 1, 2, 3} → {A, T, G, C} respectively.

remove the codewords with the maximum number of codewords within a radius

d− 1 iteratively. Table 6.1 shows results obtained for 4 ≤ n ≤ 13 and 1 ≤ d ≤ 10.

For instance, 289 codewords are obtained for n = 8 and d = 3.

The compressed data is indexed from {1, 2, . . . , N} and map coded sequence

of length n to index n of the compressed data. The coded sequences are converted

to DNA sequence by mapping A → 0, T → 1, G → 2, C → 3. The codebook

satisfies the no-repetition, GC-weight u, and minimum distance d constraints. A

distance of d implies that b(d− 1)/2c substitution errors can be corrected.

6.1.2 Bounds on DNA Codes

In this section, the number of codewords with no-runlength and fixed GC-weight

constraints is given. Let us denote the number of such codewords by B(n, u),

where n is the length and u is GC-weight of the codeword. Then, with an addi-

tional distance constraints is added to this number to give a lower bound on such

number of codewords. We will first ignore the distance, and find the number of

codewords of GC-weight u with no-runlength constraints.

The following lemma will help us with the derivation of the result on the num-

ber of codewords with no-runlength and fixed GC-weight constraints.

Lemma 6.1. The number of possibilities for d positive integers to sum to u is the same
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as the number of possibilities for d non-negative integers to sum to u− d, and is given as

(u−1
d−1) .

Proof. The standard results of combinatorics can be used to prove the statement

and can be referred from [102].

Theorem 6.2. The number of codewords of GC-weight u with no-runlength constraint

is given by

B(n, u) =
v−1

∑
y=0

22v+1−2y
(

v− 1
y

)(
n− v
v− y

)

+
v−2

∑
y=0

22v−1−2y
(

v− 1
y

)(
n− v− 1
v− y− 2

)
, (6.1)

for v > 0, where v = min(u, n− u). Further, B(n, u) = 2 for min(u, n− u) = 0.

Proof. The proof for v = 0 is straightforward and is thus omitted. For v > 0, to

derive the results for GC-weight u of the codeword, we need to consider scenario

the following cases. For this, divide the proof into three cases based on the ranges

of n and u which are

1. Case 1: n > 2u

2. Case 2: n < 2u

3. Case 3: n = 2u

By proving the result of the Theorem for all these cases, the result follows. For no-

tations, let 1A be equal to one if the condition A is satisfied, and is zero otherwise.

Case 1: n > 2u

For any location of G/C at u positions, there occur u + 1 A/T runs between ev-

ery of the G/C locations (including the start and the end). We denote these run

lengths be x1, . . . , xu+1. For instance ACTAGCATAG has n = 10, u = 4, and the

runs are x1 = 1 (A), x2 = 2 (TA), x3 = 0 (C follows G), x4 = 3 (ATA), and x5 = 0

(ending in G/C).

For any codeword with given x1, . . . , xu+1, the number of codewordss with no-

runlength constraint are 22u+1−1x1=0−1xu+1=0−2 ∑u
i=2 1xi=0 . To understand this, first
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note that if all xi > 0, then in each of the u + 1 runs, we can have any possibility

of ATAT· · · or TATA· · · giving two possibilities in each of the u + 1 runs. Further,

each location of C or G has two possibilities. As they could be either C or G

giving additional 2u possibilities. Hence, the total number of codewords are 22u+1.

Next, consider that if certain runs are zero, the number of codeword decreases. If

the first or last run is zero, the only change that happens is that the additional

possibility of 2 choices that can happen in that run are missed thus reducing the

possibilities to 22u+1−1x1=0−1xu+1=0 . However, if any of xi = 0 for 2 ≤ i ≤ u, then

the possibilities of A/T run cannot be added and in addition, the extra flexibility

of having C or G for the next element is removed due to no-runlength constraint.

Thus, we see that the total number of codewords for a given x1, · · · , xu+1 are

22u+1−1x1=0−1xu+1=0−2 ∑u
i=2 1xi=0 . In order to obtain the total number of codewords,

we can sum this expression over all possible choices of x1, · · · , xu+1.

Thus the overall number of codewords are given as

B(n, u) = ∑
(x1,··· ,xu+1)∈G

(22u+1−1x1=0−1xu+1=0−2 ∑u
i=2 1xi=0), (6.2)

where G = {(x1, · · · , xu+1) : xi ≥ 0, ∑u+1
i=1 xi = n− u}, which denotes the runs of

A/T’s and the total number of A/Ts in the codeword is n − u. It is also known

that |G| = (n
u). We split G into three parts - the first is when both x1 and xu+1 are

non-zero, which we call G1. The second is when exactly one of x1 or xu+1 is zero,

which we call as G2. The third part of G is when x1 = xu+1 = 0, which we denote

by G3. We note that G1, G2, and G3 are disjoint and their union is G. Thus,

B(n, u) = ∑
(x1,··· ,xu+1)∈G1

(22u+1−1x1=0−1xu+1=0−2 ∑u
i=2 1xi=0)

+ ∑
(x1,··· ,xu+1)∈G2

(22u+1−1x1=0−1xu+1=0−2 ∑u
i=2 1xi=0)

+ ∑
(x1,··· ,xu+1)∈G3

(22u+1−1x1=0−1xu+1=0−2 ∑u
i=2 1xi=0)

We will now evaluate each of these three terms one by one. We label the three
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terms from left to right as R1, R2, and R3, respectively. The first term is given as

R1 = ∑
(x1,··· ,xu+1)∈G1

(22u+1−2 ∑u
i=2 1xi=0)

=
u−1

∑
y=0

∑
(x1,··· ,xu+1)∈G1

(22u+1−2 ∑u
i=2 1xi=0)×

1exactly y out of (x2,··· ,xu) are zero (6.3)

In the last step, we note that some of (x2, · · · , xu) could be zero. We let y of

them be zero, where all possibilities of y varying from 0 till u− 1 are accounted.

Using this way of summation, we will obtain ∑u
i=2 1xi=0 = y and would simplify

the expression, as seen below.

R1 =
u−1

∑
y=0

∑
(x1,··· ,xu+1)∈G1

(22u+1−2y)×

1exactly y out of (x2,··· ,xu) are zero (6.4)

=
u−1

∑
y=0

22u+1−2y ∑
(x1,··· ,xu+1)∈G1

1exactly y out of (x2,··· ,xu) are zero

=
u−1

∑
y=0

22u+1−2y
(

u− 1
y

)
×

(Number of possibilities for u + 1− y positive

integers to sum to n− u) (6.5)

The last step follows since the sum can be split as all the sequences that have

exactly y out of u − 1 terms zero, and the u + 1 − y non-zero integers sum to

n− u. Then, using Lemma 6.1, we can simplify the expression as follows.

R1 =
u−1

∑
y=0

22u+1−2y
(

u− 1
y

)(
n− u− 1

u− y

)
(6.6)

We now consider the second part, which is sum over G2, and is given as follows.
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The steps are similar and thus the detailed explanations are skipped.

R2 = ∑
(x1,··· ,xu+1)∈G2

(22u−2 ∑u
i=2 1xi=0) (6.7)

=
u−1

∑
y=0

∑
(x1,··· ,xu+1)∈G2

(22u−2 ∑u
i=2 1xi=0)×

1exactly y out of (x2,··· ,xu) are zero (6.8)

=
u−1

∑
y=0

∑
(x1,··· ,xu+1)∈G2

(22u−2y)×

1exactly y out of (x2,··· ,xu) are zero (6.9)

=
u−1

∑
y=0

22u−2y ×

∑
(x1,··· ,xu+1)∈G2

1exactly y out of (x2,··· ,xu) are zero (6.10)

=
u−1

∑
y=0

22u−2y2
(

u− 1
y

)
(Number of possibilities for

u− y positive integers to sum to n− u) (6.11)

=
u−1

∑
y=0

22u+1−2y
(

u− 1
y

)(
n− u− 1
u− y− 1

)
(6.12)

Now consider the third part, which is sum over G3, and is given as follows.

R3 = ∑
(x1,··· ,xu+1)∈G3

(22u−1−2 ∑u
i=2 1xi=0) (6.13)

=
u−1

∑
y=0

∑
(x1,··· ,xu+1)∈G3

(22u−1−2 ∑u
i=2 1xi=0)×

1exactly y out of (x2,··· ,xu) are zero (6.14)

=
u−1

∑
y=0

∑
(x1,··· ,xu+1)∈G3

(22u−1−2y)×

(6.15)
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1exactly y out of (x2,··· ,xu) are zero (6.16)

=
u−1

∑
y=0

22u−1−2y ×

∑
(x1,··· ,xu+1)∈G3

1exactly y out of (x2,··· ,xu) are zero (6.17)

=
u−1

∑
y=0

22u−1−2y
(

u− 1
y

)
(Number of possibilities for

u− y− 1 positive integers to sum to n− u) (6.18)

=
u−2

∑
y=0

22u−1−2y
(

u− 1
y

)(
n− u− 1
u− y− 2

)
(6.19)

Adding R1, R2, and R3, we have

B(n, u) =
u−1

∑
y=0

22u+1−2y
(

u− 1
y

)(
n− u
u− y

)

+
u−2

∑
y=0

22u−1−2y
(

u− 1
y

)(
n− u− 1
u− y− 2

)
, (6.20)

where we have used the combinatorial identity (n
k) + ( n

k−1) = (n+1
k ) for simplifica-

tions.

Case 2: 2u > n

In this case, we change the proof technique by fixing A/C and considering the

runs of C/G. This way, all the expressions work as in Case 1, by replacing u by

n− u. Thus, we can replace u by min{n, u} in the Equation (6.20) for all u 6= n/2

to combine the expressions of Case 1 and Case 2.

Case 3: 2u = n

Case 3 differs from Case 1 in the first calculation of G1, y = 0 does not occur in this

case. Since the ( l
l−1) = 0, does not effect the result. Next, using the combinatorial

identity even alleviates the issue of having the term of the form ( l
l−1) in the overall

expression. Hence the statement of the Theorem holds.

Theorem 6.2 gives an exact expression for the number of codewords without

any distance constraints. So in the next result, the minimum distance d of the
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codewords is incorporated along with the two constraints. Recall that AGC
4 (n, d, u)

the maximum number of codewords that satisfies with the length n, a minimum

distance d and GC-weight u. Here, the function AGC
4 (n, d, u) also satisfies no-

runlength constraint.

The next theorem gives a lower bound on AGC
4 (n, d, u) in the following theo-

rem.

Theorem 6.3. The maximum number of codewords of length n with GC-weight u with a

minimum distance d satisfying no-runlength constraint is lower bounded by

A4
GC(n, d, u) ≥ B(n, u)

∑d−1
r=0 ∑min{br/2c,u,n−u}

i=0 (u
i )(

n−u
i )(n−2i

r−2i)2
2i

. (6.21)

Proof. To obtain the lower bound on the number of codewords, we give an upper

bound on the number of the codewords that have distance at most d− 1 from any

fixed codeword x by ignoring the no-runlength constraint, and this is given as

d−1

∑
r=0

minbr/2c,u,n−u

∑
i=0

(
u
i

)(
n− u

i

)(
n− 2i
r− 2i

)
22i

[73]. Hence, the result of the theorem holds.

We compare the number of codewords in the lower bound of Theorem 6.3

with the codes obtained by the proposed altruistic code in Table 6.1. A remark-

ably higher number of codewords satisfying both these constraints are obtained

as compared to the derived lower bound on the DNA constraints. Theorem 6.2

gives an exact expression for d = 1, thus it is not compared in Table 6.1.

To summarize this section, constraint based codes for archival data storage in

DNA are proposed, which uses an altruistic approach for generating DNA codes

with both the constraints.

In the next section, another method for constructing codes satisfying the con-

straints for DNA data storage is discussed. The seven families of non linear

ternary codes with the parameters (9, 256, 3)3, (11, 256, 5)3, (15, 256, 7)3, (18, 256, 9)3,
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d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10
n c l c l c l c l c l c l c l c l c l
4 32 11 11 2 4 0 - - - - - - - - - - - -
5 68 21 17 3 7 1 2 0 - - - - - - - - - -
6 216 60 44 7 16 1 6 0 4 0 - - - - - - - -
7 528 130 110 13 36 2 11 0 4 0 2 0 - - - - - -
8 1704 372 289 33 86 6 29 1 9 0 4 0 4 0 - - - -
9 4336 857 662 68 199 11 59 2 15 0 8 0 4 0 0 0 - -

10 13688 2473 1810 174 525 25 141 4 43 1 7 0 5 0 4 0 4 0
11 35936 5964 4320 382 1235 49 284 8 82 1 29 0 9 0 4 0 4 0
12 112712 17289 12068 1007 3326 119 662 18 190 3 58 1 22 1 8 0 4 0
13 302064 43062 41867 2318 7578 251 1432 34 1201 6 123 1 39 1 13 1 6 1

Table 6.1: The derived lower bounds are compared with the codes obtained us-
ing altruistic coding. c indicates codewords generated using altruistic method.
l denotes the lower bounds on the codes for n and d obtained from Theorem
6.3. © [2018] IEEE. Reprinted, with permission, from Dixita Limbachiya, Man-
ish K. Gupta, and Vaneet Aggarwal, Family of Constrained Codes for Archival
DNA Data Storage, accepted in IEEE Communication Letters, July 2018, Early Access,
doi:10.1109/LCOMM.2018.2861867.

(21, 256, 11)3, (24, 256, 13)3 and (26, 256, 15)3 respectively [49] are constructed. Among

these, (11, 256, 5)3 is a subcode of ternary Golay code [46].

6.2 DNA Golay Subcode Method

Let CZ3(n, M, dH) be a ternary code with a length n, the number of codewords

M and the minimum Hamming distance dH. In this section, we use a non-linear

ternary error correction code for encoding the data, instead of Huffman codes that

was used in [47]. We discuss encoding of data in DNA using the ternary Golay

subcode (11, 256, 5)3 with the length n = 11 and the minimum Hamming distance

dH = 5 that can correct 2 bit-flips (substitution) errors.

The input file is encoded byte-wise the ternary Golay subcode by the method

presented in Figure 6.2. In particular, we give a method to encode the ternary

codewords into DNA for archival storage. First, any arbitrary digital file is con-

verted into the list of ASCII values. Therefore, to encode any such file into DNA

string, we need a set of 256 codewords such that each can be mapped to one of

the ASCII values.

The list of designed codewords of the code (11, 256, 5)3 for data storage are

listed in Table 6.7. It consists of 243 codewords from 729 Golay codewords such

that the minimum Hamming distance between any two codewords is 5. These 243
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Table 6.2: Conversion of ternary codewords to DNA codewords developed by N.
Goldman et al. [47] which avoids runlengths.

ψ =

0 1 2
A C G T
C G T A
G T A C
T A C G

codewords were assigned ASCII values with the higher probability of occurrences

of the alphabet. The rest of 13 ASCII values were assigned ternary Golay code-

words randomly i.e., these 13 codewords will have the minimum Hamming dis-

tance dH = 5 with other 243 codewords. It assures that by a maximum likelihood

decoding, two substitution errors can be corrected. It is challenging to construct a

code with size at least 256 codewords such that the length of each codeword is 11

and the minimum Hamming distance dH > 5. Because it is only possible to have

243 codewords in the set of 311 codewords such that the minimum Hamming dis-

tance is dH = 6. Hence, we use the code (11, 256, 5)3 to encode the data. Next,

the ternary codewords is converted to DNA such that runlengths of DNA bases

can be prevented. It is desirable to have DNA with length 100-250 bases because

the long DNA bases is not feasible for DNA sequencing. Thus, the resulting DNA

codeword was divided into chunks each of length 99 bases as shown in Figure

6.1. We have modified the chunk architecture given in [47] for the DNA data stor-

age by adding flexibility to the length of the chunk. In [47], only the fix length

of chunk (l = 99) is possible while in this method, we can vary the chunk length

based on the size of input file.

In Figure 6.1, (i = 99) denotes the number of bases used for encoding the

original file. λ is the number of bases required to store file index (number of file

index trits = 2 which allow the maximum of 9 files to be differentiated). The µ

indicates the DNA bases required for chunk index (no of segment index trits µ =⌈
log3 ( total no of segments)

⌉
) and an odd parity-check is appended at the end of

each segment. This parity is obtained by summing odd bits of a file identifier and

a chunk index.
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Figure 6.1: DNA Storage Chunk Architecture: Given chunk architecture has two
parts. It has information (i) bits (Yellow color) and the chunk header. A chunk
information bits contains original data to be encoded and a chunk header. The
chunk header includes a file index for file identification and index of the chunk
to identify a particular chunk. An odd parity check bit is appended at the
end. © [2018] IEEE. Reprinted, with permission, from Dixita Limbachiya, Vijay
Dhameliya, Madhav Khakhar, and Manish K. Gupta, On Optimal Family of Codes
for Archival DNA storage, In Proceedings of IEEE Seventh International Workshop
on Signal Design and its Applications in Communications (IWSDA), pp. 123-127.
2015.

6.2.1 Algorithm for Encoding and Decoding Data Files

The sequential procedure for encoding and decoding the data from a file into the

DNA and vice versa is described in the respective Algorithm 2 and 3 respectively.

For encoding and decoding, it assumes that base A is a previous base at the start

position.

Example 6.4. A simple example is demonstrated to understand the encoding and de-

coding procedure. The message data is "DA". The corresponding ASCII values for ’D’

and ’A’ are 68 and 65 respectively. The codes for the letter ’D’ is 02221221120 and for

’A’ is 10111000101 referred from Table 6.7. DNA codeword corresponding to "DA" is

CATGATGCTGAGTCTCGTAGTC. This DNA is divided into two chunks C1 is CAT-

GATGCTGA and C2 is GTCTCGTAGTC (here each chunk is of length 11). Let the

chunk index (i1 and i2 ) for each DNA chunk be 0 and 1 respectively. Let the file iden-

tifier ID for the text be 00. A parity bit P is added which is calculated by summation

of odd positions in ID and i. Now each DNA chunk is appended by with chunk iden-

tifier bases (concatenating ID.i.P). A chunk index for each DNA chunk C1 and C2 is

CGTA and CGAG respectively. So the final DNA chunks are CATGATGCTGACGTA

and GTCTCGTAGTCCGAG.

Some results on error correction for the proposed codes for DNA data storage
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Figure 6.2: Schematic representation of the proposed DNA Golay subcode is pre-
sented. The steps of converting input files into DNA codewords by using the
ternary DNA Golay subcode Table 6.7. First step in blue color is to convert the
binary code were mapped to a base 3 non-linear ternary code (indicated in or-
ange color). Next, these ternary codewords were converted to DNA codewords
(green color) using the conversion Table 6.2. This helps in avoiding runlengths.
DNA was divided into DNA chunks, each of length 99. © [2018] IEEE. Reprinted,
with permission, from Dixita Limbachiya, Vijay Dhameliya, Madhav Khakhar,
and Manish K. Gupta, On Optimal Family of Codes for Archival DNA storage, In
Proceedings of IEEE Seventh International Workshop on Signal Design and its
Applications in Communications (IWSDA), pp. 123-127. 2015.
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Algorithm 2 Algorithm for Encoding
Input: Any arbitrary computer file
Output: DNA sequences in which data is encoded

1.1 Any computer file is read , and each bit is converted to base 3 using ternary
Golay subcode (mentioned in Table 6.7). It gives a ternary codeword of length
11 for each bit in the string which is denoted S1.
1.2 The file extension of a file is converted to the ternary code (using Table 6.7),
and it is denoted as S3.
1.3 To mark the input file and its extension, the separators S2 and S4 comma (,)
and colon (:) respectively is used. String N is encoded into code and stored in
S5.
1.4 In order to have chunks of the same length, the string S1 is padded with
zeros. The number of zeros is denoted as S6.
1.5 Strings S7 = S1.S2.S3.S4.S6.S5 is concatenated in string S7. Size of the string
S7 is denoted as n.
1.6 The string S7 is encoded to a DNA string using the ψ map (see Table 6.2).
1.7 The chunk index is added to each chunk. A file identifier and parity check
bit are appended at the ends of each chunk.
1.8 The data encoded DNA sequence can be synthesized and stored.

Algorithm 3 Algorithm for Decoding
Input: DNA sequences in which data is encoded.
Output: Original computer file

1.1 The DNA sequence is decoded by extracting the input file from the chunk.
1.2 Data encoded DNA sequence is converted to ternary codewords using the
ψ map in Table 6.2.
1.3 Each string is decoded to length 11 (the Table 6.7).
1.4 Data is retrieved by corresponding the ASCII values corresponding to each
ternary codeword. The original file is segregated from the separators.
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are obtained in the next section.

6.2.2 Analysis on Error Correction

Remark 6.5. Let ψ be the map used for the conversion (using Table 6.2) of CZ3 ternary

code to CDNA DNA code i.e, ψ(CZ3) = CDNA.

The alternative possible mapping is given in the Tables 6.3 and 6.4.

ψ1 =

0 1 2
A T C G
C A G T
G C T A
T G A C

Table 6.3: Alternative mapping ψ1 to covert the ternary Golay subcode to the DNA
nucleotides avoiding runlengths.

ψ2 =

0 1 2
A G T C
C T A G
G A C T
T C G A

Table 6.4: Alternative mapping ψ2 to covert the ternary Golay subcode to the DNA
nucleotides avoiding runlengths.

In order to investigate the error correction possible in DNA codewords, the

following results holds.

Lemma 6.6. Let ψ(x) ∈ CDNA send through a noisy channel and ψ(y) is received. If

dH(ψ(x), ψ(y)) = t and corresponding ternary code obtained for ψ(x) and ψ(y) are x

and y respectively then t < dH(x, y) ≤ 2t where x, y ∈ CZ3 .

Proof. As per the lemma, assume that ψ(x) is sent and ψ(y) is received. Their

corresponding ternary codes are x and y respectively (using Table 6.2). By us-

ing Lemma 6.5, one can observe the following. Let x[i] be the ith element of the

stringsx. Occurrence of substitution errors can be characterized as follows
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1. Bit Flip error: For 1 ≤ i < j < 11, if ψ(x)[i] 6= ψ(y)[i] and ψ(x)[j] 6= ψ(y)[j]

such that j − i > 1 then x[i] 6= y[i], x[i + 1] 6= y[i + 1] and x[j] 6= y[j],

x[j + 1] 6= y[j + 1]. Hence for the bit flip error, dH ( ψ(x), ψ(y) ) = 2t.

2. Burst error in consecutive b positions: For 1 ≤ i < 11, if ψ(x)[i] 6= ψ(y)[i],

ψ(x)[i + 1] 6= ψ(y)[i + 1], . . . , ψ(x)[i + b] 6= ψ(y)[i + b] then x[i] 6= y[i], x[i +

1] 6= y[i + 1], . . . , x[i + b] 6= y[i + b] ∀ b < dH. Hence for the burst error, dH (

ψ(x) , ψ(y) ) = t + 1.

3. For random bit flips and burst error in consecutive positions, from above

cases one can observe that dH ( ψ(x) , ψ(y) ) ≤ t.

If the number of bit flips or burst error at end positions in DNA code is t, then the

Hamming distance between respective ternary codes will be t because the number

of errors in ternary codes cannot be less than the number of error in DNA codes.

Hence in general, t < dH( x , y ) ≤ 2t.

Example 6.7. Let ψ(x) = GTCTCGTAGTC and ψ(y) = GAGTCGTAGTC then x =

10111000101 and y = 11101000101. The minimum Hamming distance dH(ψ(x),ψ(y)) =

2 and dH(x, y) = 4.

Corollary 6.8 is an observation for results of Lemma 6.6.

Corollary 6.8. For ψ(x), ψ(y) ∈ CDNA and x, y ∈ CZ3 , if the minimum Hamming

distance dH(ψ(x), ψ(y)) = t then dH(x, y) = 2t. But this is not applicable in reverse

direction, that is if we know dH(x, y), we cannot say anything about the distance between

ψ(x) and ψ(y).

Example 6.9. Let ψ(x) = GTCTCGTAGTC and ψ(y) = GACTCGTAGTC then

x = 10111000101 and y = 11011000101. The minimum Hamming distance dH(ψ(x),

ψ(y)) = 1 and dH(x, y) = 2.

Lemma 6.10. Using the double layer error correcting scheme, one can correct any 2 bit

flips in DNA.

Proof. If there is 1 bit flip in a DNA codeword, it implies 2 bit flips in ternary

codeword using Lemma 6.5. This can be easily corrected using the ternary code
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with the distance dH = 5. In case of 2 bit flips, one can prove it by contradiction

and Lemmas 6.5 and 6.6.

Let x and y be the ternary codeword corresponding the DNA codeword ψ(x)

and ψ(y) respectively. Now, 2t < dH(x,y) ≤ 4t by using Lemma 6.6. Now, let L be

the set of codewords from CZ3 that are at distance dH = 4 from y.

Select w ∈ CZ3 , w 6= x such that dH(y,w) ≤ 4t. Let LDNA be the set of corre-

sponding codewords wDNA ∈ CDNA obtained by converting the ternary code to

the DNA code. Trivially, x ∈ L. Let LDNA be the set of corresponding codewords

ψ(wDNA) ∈ CDNA obtained.

Now, ∀ ψ(w) 6= ψ(x), we claim that dH(ψ(y),ψ(w)) > 2t =⇒ dH ( y , w ) ≤ 4

⇒ dH(ψ(y) , ψ(w) )> 2. Let us prove it by contradiction. Suppose dH(ψ(y),ψ(w))

≤ 2. This can be divided into two cases. In the first case, dH(ψ(y),ψ(w)) ≤ t. But

as per Lemma 6.6, this cannot occur and hence such ψ(w) can’t exist in the set L

while solving for 2t errors. In the second case, t + 1 ≤ dH(ψ(y),ψ(w)) ≤ 2t. This

will result in required codeword ψ(x).

Example 6.11. Let ψ(x) = CATGATGAGCG and ψ(y) = CGTGACGAGCG then

x = 02221221120 and y = 00021001120. The minimum Hamming distance dH(ψ(x),

ψ(y)) = 2 and dH(x, y) = 4. Let L ⊂ CZ3 such that dH(y, w) ≤ 4 ∀ w ∈ L. See Table

6.5.

6.2.3 Results and Simulation

We select five computer files used by N. Goldman et al. [47] as a proof of concept

for the refurbished algorithm for data encoding in DNA codewords. Simulation

and analysis for the input data encoded in DNA sequences were performed by the

software DNA Cloud [121]. First, selected input files were converted into DNA

sequences. These files constituted the total of 757051 bytes, and each byte was

encoded into the ternary Golay codeword of length 11 using the software. In a

nutshell, the five files were stored in 84126 DNA chunks. The size of each chunk

varied from 109 to 112 nucleotides (nt) (depending on the number of chunks re-

quired for the input file). This results in encoding of 757,051 bytes of input data
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No w dH(y, w) ψ(w) dH(ψ(w), ψ(y))
w1 20021020110 4 TACAGTGTCTA 10
w2 02221221120 4 CATGATGAGCG 2
w3 00020121100 4 CGTGTCAGACG 4
w4 00021112020 4 CGTGAGATATA 6
w5 01011011100 4 CTAGACTCTAC 7
w6 20211001020 4 TATCTACTATA 10
w7 12001002120 4 GCGTCGTGATA 11
w8 00001021220 4 CGTAGTGATGT 6
w9 00022001121 4 CGTGCGTCTGA 7
w10 01121000220 4 CTCAGTACATA 10
w11 00101101110 4 CGACTCGAGAC 5
w12 10021201200 4 GTATCACTGTA 10

Table 6.5: Observe that the highlighted codeword w2 is at only at distance 4 ie.
dH(ψ(w), ψ(y)) = 2. Hence, dH(y, w) = 4 which implies w2 is the sent codeword
that is highlighted in red color.

Original File Bytes Chunk No. of No. of Chunk No. of No. of
File name size Size Chunks nucleotides Size chunks nucleotides

N.Goldman Result Golay Codes Result
EBI.jp2 179.9 KB 184264 117 37423 4378491 112 20476 2293312
MLK_excerpt_ 164.6 KB 168539 117 34164 3997188 111 18728 2078808
VBR_45− 85.mp3
View_hu f f 3.cd.new 15.3 KB 15646 117 3163 370071 109 1740 189660
watsoncrick.pdf 274.3 KB 280864 117 56911 6658587 112 31209 3495408
wssnt10.txt 105.2 KB 107738 117 21650 2533050 111 11973 1329003
Total 739.3 KB 757051 153335 17937387 84126 9386191

Table 6.6: Executive Summary of data encoded using N. Goldman et al. approach
and proposed DNA Golay subcode approach

in 9,386,191 nt (see Table 6.6). This evident the improved results compared to

N. Goldman’s encoding scheme, that encoded the same files of 757,051 bytes in

153,335 DNA chunks, each of 117 nt. Note that we have not performed synthesis

and sequencing protocols for the encoded data in DNA. However, we observed

theoretical improvements in DNA data net information density and associated

cost.

DNA Net Information Density

We analyzed DNA net information density for the proposed ternary Golay sub-

codes for DNA data storage.

Definition 6.1. For a given DNA based information storage system, DNA information

density is the total amount of data in bits that can be stored in the unit gram of DNA.

At the theoretical maximum, one gram of a single-stranded genetic code can
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store 455 EB (exabytes) of information [24]. Work proposed by N. Goldman et

al. achieved practical information density 2.2 PB (petabytes) per gram of DNA

while using the DNA Golay subcodes, theoretically we have achieved net infor-

mation density for DNA data storage system for the proposed chunk architecture

as 1.15× 1020 = 115 EB (Exabytes) per gram DNA.

Proposition 6.12. DNA Net Information Density using our chunk architecture for one

gram of DNA is calculated by solving the following non-linear equation

[
(182× 1019 × l)÷

(
(l + 3) + log3

(
N (x + 22)

l

)
× N

) ]
− 22 = x, (6.22)

where, x= number of bytes per one gram of DNA, l = Length of chunk without chunk

index, N = Length of the error correcting code.

Proof. Consider total information that can be encoded in one gram of DNA is x

bytes. Let I be number of nucleotides required to store file such that

I = N × x + N × 2 + N × log10(x) (6.23)

where x×N are nucleotides for x bytes, 2×N are nucleotides for 2 separators and

N× log10(x) are nucleotides for storing file size on DNA. Since maximum storage

capacity of DNA is 455 exabytes, we can consider log10(x) = 20. Therefore I can

be generalized as

I = N (x + 22) (6.24)

Information encoded in DNA is divided into chunks of particular length. Let

chunk length without chunk index be l, length of chunk with chunk index be L

and number of chunks be C.

L = (l + 3) + (log3 (C)) where Chunk number C = d I
l e. To calculate DNA net

information density, we need to estimate bytes which can be stored in one gram

of DNA which has 182 × 1019 nucleotides. Therefore, DNA net data density is
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Figure 6.3: Comparison between cost of DNA synthesis and sequencing using
N. Goldman approach and families of DNA Golay subcodes used in the DNA
information storage. The graph shows that cost using N. Goldman’s approach is
significantly higher than the DNA Golay subcodes approach.

obtained by following

x =

[ (
182× 1019 × l

)
÷
(
(l + 3) + log3

(
N (x + 22)

l

)
× N

) ]
− 22 (6.25)

Theoretical DNA net information density for the proposed method obtained

by solving Equation 6.25 is 1.15× 1020 (115 Exabytes) bytes per gram of DNA for

the chunk length l = 99 and N = 11.

DNA Storage Cost Simulation

We plot the DNA data storage cost for various file size (MB) by assuming cost

$0.05 per DNA base (see Figure 6.3). Using the DNA Golay code, there was drop

in amount of the DNA required which points to decrease in the cost of storage. We

have also plotted the cost of non-linear families of ternary codes. The proposed

codes are cost-effective as there is a trivial increase in cost with the increment in

the amount of the data encoded while there is significant increment in the cost of

the method proposed by N. Goldman et al. [47] .
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Trade off

The coding potential of the proposed encoding scheme is 0.73 bits per base by

encoding 8 bits into 11 DNA bases per byte (i.e., 8/11 = 0.73 bits per base). This

can be improved to 0.89 by employing 9 base per byte (i.e., 8/9 = 0.89 bits per

base) with (9, 256, 3)3 code. However, this will reduce error detection to two bits

and error correction to one bit for the code.

Figure 6.4 shows the trade off for each family of codewords developed along

with error correction capacity t. Note that as the length n of the code increases,

there is a linear increase in the error correction capacity t. But code rate decreases

as there is an increment in both the length n and error correction t. Hence, for the

robust data storage, (11, 256, 5)3 code is better than the code (9, 256, 3)3 because

with the code (9, 256, 3)3, the code rate and coding potential decreases. Error cor-

rection capacity t for each code increases linearly with the increase in the length

of the code n. However, with the increase in these two parameters, there is decli-

nation of the code rate.

Figure 6.4: A curve plots the trade off between code rate of a code and length of
codeword. One can observe that the code with length n = 12 and error correction
t = 2 is a reliable code that has code rate 0.5

In summary, codes for DNA data storage systems are proposed by using con-

strained coding and Golay subcode method. These DNA codes satisfy the two in-
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evitable constraints which are fixed GC-weight and no run-lengths for DNA stor-

age. The presented DNA codes with the DNA constraints is necessary to avoid

errors that may occur during DNA synthesis and sequencing.
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ASCII Golay codes Wei- ASCII Golay codes Wei- ASCII Golay codes Wei- ASCII Golay codes Wei-
Values ght values ght values ght values ght

86 00002111202 6 170 00001222101 6 127 00020220222 6 253 00022001121 6
52 00021112020 6 138 00010110111 6 41 00012221010 6 86 00011002212 6
42 00201010122 6 100 00200121021 6 44 00202202220 6 250 00221200011 6
132 00220011210 6 161 00222122112 9 98 00211120200 6 8 00210201102 6
34 00212012001 6 10 00102020211 6 149 00101101110 6 87 00100212012 6
21 00122210100 6 74 00121021002 6 36 00120102201 6 69 00112100022 6
177 00111211221 9 20 00110022120 6 213 02012212122 9 163 02011020021 6
229 02010101220 6 255 02002102011 6 197 02001210210 6 133 02000021112 6
252 02022022200 6 26 02021100102 6 173 02020211001 6 151 02210222211 9
82 02212000110 6 75 02211111012 9 37 02200112100 6 166 02202220002 6
191 02201001201 6 88 02220002022 6 63 02222110221 9 68 02221221120 9
150 02111202000 6 76 02110010202 5 4 02112121101 9 154 02101122222 9
234 02100200121 6 22 02102011020 6 162 02121012111 9 105 02120120010 6
102 02122201212 9 171 01021121211 9 104 01020202110 6 169 01022010012 6
196 01011011100 6 208 01010122002 6 84 01012200201 6 130 01001201022 6
146 01000012221 6 72 01002120120 6 16 01222101000 6 66 01221212202 9
24 01220020101 6 106 01212021222 9 223 01211102121 9 58 01210210020 6
137 01202211111 9 73 01201022010 6 101 01200100212 6 168 01120111122 9
181 01122222021 9 175 01121000220 6 251 01110001011 6 40 01112112210 9
140 01111220112 9 17 01100221200 6 83 01102002102 6 254 01101110001 6
240 20121202122 9 214 20120010021 6 53 20122121220 9 202 20111122011 9
25 20110200210 6 18 20112011112 9 247 20101012200 6 174 20100120102 6
112 20102201001 6 89 20022212211 9 210 20021020110 6 217 20020101012 6
248 20012102100 6 194 20011210002 6 182 20010021201 6 80 20002022022 6
79 20001100221 6 195 20000211120 6 12 20220222000 6 209 20222000202 6
165 20221111101 9 245 20210112222 9 2 20212220121 9 81 20211001020 6
38 20200002111 6 141 20202110010 6 211 20201221212 9 239 22100111211 9
95 22102222110 9 43 22101000012 6 224 22120001100 6 203 22122112002 9
145 22121220201 9 147 22110221022 9 19 22112002221 9 50 22111110120 9
136 22001121000 6 107 22000202202 6 134 22002010101 6 109 22021011222 9
153 22020122121 9 148 22022200020 6 205 22011201111 9 212 22010012010 6
54 22012120212 9 241 22202101122 9 156 22201212021 9 115 22200020220 6
116 22222021011 9 78 22221102210 9 67 22220210112 9 70 22212211200 9
178 22211022102 9 159 22210100001 6 142 21112020000 6 92 21111101202 9
48 21110212101 9 90 21102210222 9 218 21101021121 9 126 21100102020 6
39 21122100111 9 219 21121211010 9 167 21120022212 9 114 21010000122 6
172 21012111021 9 14 21011222220 9 120 21000220011 6 139 21002001210 6
160 21001112112 9 33 21020110200 6 179 21022221102 9 117 21021002001 6
225 21211010211 9 129 21210121110 9 183 21212202012 9 230 21201200100 6
35 21200011002 6 93 21202122201 9 6 21221120022 9 32 21220201221 9
56 21222012120 9 158 10212101211 9 185 10211212110 9 47 10210020012 6
143 10202021100 6 123 10201102002 6 204 10200210201 6 242 10222211022 9
111 10221022221 9 103 10220100120 6 108 10110111000 6 9 10112222202 9
65 10111000101 6 249 10100001222 6 13 10102112121 9 180 10101220020 6
226 10120221111 9 144 10122002010 6 15 10121110212 9 57 10011121122 9
128 10010202021 6 135 10012010220 6 243 10001011011 6 190 10000122210 6
207 10002200112 6 77 10021201200 6 45 10020012102 6 91 10022120001 6
192 12221010000 6 186 12220121202 9 216 12222202101 9 97 12211200222 9
118 12210011121 9 246 12212122020 9 215 12201120111 9 51 12200201010 6
206 12202012212 9 184 12122020122 9 227 12121101021 9 233 12120212220 9
237 12112210011 9 188 12111021210 9 113 12110102112 9 49 12102100200 6
201 12101211102 9 155 12100022001 6 222 12020000211 6 231 12022111110 9
5 12021222012 9 27 12010220100 6 131 12012001002 6 164 12011112201 9
3 12000110022 6 46 12002221221 9 119 12001002120 6 28 11200222122 9
176 11202000021 6 23 11201111220 9 64 11220112011 9 157 11222220210 9
187 11221001112 9 244 11210002200 6 238 11212110102 9 96 11211221001 9
235 11101202211 9 60 11100010110 6 1 11102121012 9 110 11121122100 9
200 11120200002 6 221 11122011201 9 99 11111012022 9 31 11110120221 9
198 11112201120 9 193 11002212000 6 125 11001020202 6 124 11000101101 6
152 11022102222 9 122 11021210121 9 71 11020021020 6 94 11012022111 9
220 11011100010 6 29 11010211212 9 199 00000201211 5 61 00000102122 5
11 00002012110 5 228 00002210021 5 62 00001021220 5 55 00001120012 5
121 00020121100 5 7 00020022011 5 30 00022100210 5 232 00022202002 5
189 00021010201 5 59 00010212200 5 236 00010011022 5 0 00000000000 0

Table 6.7: Codewords from subcode of Ternary Golay code i.e. (11, 6, 5)3 assigned
to 256 ASCII values is given in the Table. © [2018] IEEE. Reprinted, with permis-
sion, from Dixita Limbachiya, Vijay Dhameliya, Madhav Khakhar, and Manish
K. Gupta, On Optimal Family of Codes for Archival DNA storage, In Proceedings of
IEEE Seventh International Workshop on Signal Design and its Applications in
Communications (IWSDA), pp. 123-127. 2015.
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CHAPTER 7

Conclusion and Future Scope

Biology has at least 50 more interesting years.

James Watson

News summaries 31 Dec 1984. Quoted in James Beasley Simpson, Simpson’s Contemporary Quotations

(1988), [36]

DNA computing is a fascinating area of research which have expanded its

role in different applications. For such computation, DNA codes are designed to

perform desirable computation. There are different approaches in the literature

to design the DNA codes. In this work, theoretical approaches of algebraic cod-

ing are described. DNA codes using the ring Z4 + wZ4, where w2 = 2 + 2w is

proposed. A new distance (called the Gau distance) on the ring R is introduced.

We have also proposed a new distance preserving the Gau map φ from the ele-

ments of the ring R to all the DNA codewords of length 2. Different properties

as linearity and closure of the Gau map for DNA codes is presented. Several new

families of the DNA codes which satisfies Hamming distance, reverse and reverse

complement constraints are obtained. Some of them are optimal with respect to

the bounds and are better than the DNA codes obtained in the literature. Some

of general results on rings are also described. Further, results of the Gau map is

extended to different rings.

Later part of the thesis consist of codes with no-runlength and fixed GC-weight

constraints for DNA data storage. We provide constrained coding to generate
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DNA codewords with the minimum distance between the codewords satisfying

these constraints. An exact number of DNA codewords with both the constraints

is enumerated. Further, bounds on such number of DNA codewords are pro-

vided.

We have also developed another new approach which satisfies both these con-

straints using Golay subcodes. A non-linear families of DNA codes is developed

for archival DNA information encoding systems. By using proposed ternary Go-

lay subcode, two bit-flips errors can be corrected. We have simulated the method

and analyzed code rate and estimated cost for the method.

DNA codes have been constructed on some finite fields, but there are many

other finite fields from which DNA codes can be constructed. For the higher val-

ues of n and large M, fields of higher order can be used. Significant work has

been done on constructing DNA codes from rings by considering all the theoreti-

cal approaches. It gives a more substantial number of DNA codewords for larger

values of n. Mapping plays a vital role in DNA code construction over rings and

field. Different mapping on the same fields or rings can generate different DNA

codes.

Though theoretical construction methods help to achieve bounds on the DNA

codes for larger values of length n and distance d, it is difficult to modify the

theoretically constructed DNA codewords for the specific application of DNA

computing. The interesting problem is to classify the DNA codes with respect

to algebraic properties of DNA. Endeavoring the portability of DNA codes from

one application to another that can help in the building common background for

different applications is challenging. For the future study, it would be an exciting

task to investigate the algebraic structure of the cyclic codes over the ring R and

their correspondence to the DNA codes using the map φ. Using algebraic coding,

constructing the optimal DNA codes meeting the bounds on the reverse, reverse

complement, GC-weight constraints is also an exciting future work.

Using the DNA codes for data storage is widely studied in recent years and

has achieved handful success. Still, there are challenges associated with DNA

reading and writing technology. As the cost of reading and writing DNA are
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high, storing the data in DNA is still expensive. Nevertheless, looking at the re-

cent technological advancements in DNA synthesis and sequencing methods, it is

anticipated that DNA storage may become an extremely competitive technology

for archival data storage. Designing the DNA storage architecture with capac-

ity achieving codes with error handling ability, including reading, writing and

storage errors are a spellbinding research problem. Designing the optimal coding

schemes universal to any data type is still a challenge. To develop data extracting

method to retrieve the information the randomly from the pools of the millions

of DNA sequences in the well is an interesting research problem. As the interac-

tion of computers and programmable DNA is leading to significant discoveries,

one needs to develop the methods that are feasible to future DNA computers. Re-

searchers need to understand better the way nature reads the information from

the DNA over the extended period. Investigating the approaches to optimize the

DNA data storage space such that data is stored in a compact form in a single

cell is challenging. Challenges to build the DNA based data storage with low

cost and high reading writing speed, technologies of DNA writing and reading

should be improved such that large-scale DNA synthesis and sequencing can be

done by using massive parallel next-generation DNA synthesis and sequencing

[122]. Looking at the technical requirements of the DNA manipulation machines,

it will be interesting to develop robust and portable technology for the DNA data

storage.

Extending the DNA data storage to other biomolecules and the living model

organism is anticipated in the near future.
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