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Abstract

In Distributed Storage Systems (DSSs), usually, data is stored using encoded packets

on different chunk servers. In this thesis, we have considered heterogeneous DSSs

in which each node may store a different number of packets and each having

different repair bandwidth. In particular, a data collector can reconstruct the file

at time t using some specific nodes in the system, and for arbitrary node failure,

the system can be repaired by some set of arbitrary nodes. Using min-cut bound,

we investigate the fundamental trade-off between storage and repair cost for our

model of heterogeneous DSS. In particular, the problem is formulated as a bi-

objective optimization linear programming problem. For an arbitrary DSS, it is

shown that the calculated min-cut bound is tight.

For a DSS with symmetric parameters, a well known class of Distributed

Replication-based Simple Storage (DRESS) codes is Fractional Repetition (FR) code.

In such systems, the replicas of data packets encoded by Maximum Distance

Separable (MDS) code, are stored on distributed nodes. Most of the available

constructions for the FR codes are based on combinatorial designs and Graph

theory. In this thesis, FR codes with generalized parameters (such as replication

factor of each packet are not same and storage capacity of each node are also not

same) are considered, and it is called as Generalized Fractional Repetition (GFR)

code. For the GFR code, we propose an elegant sequence-based approach for the

construction of the GFR code called Flower codes. Further, it is shown that any GFR

code is equivalent to a Flower code. The condition for the universally good GFR

code is given on such sequences. For some sequences, the universally good GFR

codes are explored. In general, for the GFR codes with non-uniform parameters,

bounds on the GFR code rate and DSS code rate are studied. Further, we have
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shown that a GFR code corresponds to a hypergraph. Using the correspondence,

properties and bounds of a hypergraph are directly mapped to the associated GFR

code. In general, necessary and sufficient conditions for the existence of a GFR

code is obtained using the correspondence. It is also shown that any GFR code

associated with a linear hypergraph is universally good.

Motivation

The distributed storage systems have been developed to store huge amount of data

such that it allows data accessibility, in a reliable manner, at any time and anywhere.

Many companies such as Microsoft [47, 68], Amazon [8], Google [33], Facebook

[93], etc. use such storage services through data centers which are distributed

along a network. In storage systems like Google file system [33], multiple copies

of data fragments are stored in a manner such that the system is reliable and the

file can be retrieved from the system. At the same level of redundancy, efficient

coding techniques can make the storage system more reliable [115]. In a particular

coding technique, a source file is broken into k packets, and those packets are

encoded into n packets. The packets are stored on n distinct nodes such that any k

nodes out of the n nodes have sufficient information to retrieve the complete file.

However, if some erasure codes, such as Reed-Solomon codes, are used to store

data in such storage system then the complete file has to be reconstructed to repair

a single node failure, which requires a huge amount of bandwidth and storage

space. In [23], Dimakis et al. introduced regenerating code for Distributed Storage

Systems (DSSs) which optimizes the repair bandwidth and the storage space. The

parameters of the DSS considered in [23] are all symmetric and are known as

homogeneous DSS. For the homogeneous DSS, the fundamental trade-off between

the node storage capacity (the number of packets stored in a node) and the repair

bandwidth (the total number of packets communicated during repair) is plotted

in [23, 119]. Further, researchers have studied the trade-off for DSS with some

asymmetric parameters [6, 7, 29, 83, 122], and constructed codes achieving the

optimal points on the trade-off [26, 38, 88] with additional system properties.
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Objectives

Objectives of the thesis are as follows.

• Calculating the Fundamental bound for a heterogeneous DSS.

• Using the Fundamental bound, finding the trade-off curve between the cost

of node storage and the cost of repair bandwidth for the heterogeneous DSS.

• Using the Fundamental bound, finding bounds on the parameters for the

existence of various specific DSSs.

• Construction of the universally good GFR codes for the heterogeneous DSSs.

• Finding bounds on the parameters of GFR codes defined on various hetero-

geneous DSSs.
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CHAPTER 1

Introduction

A message with content and clarity Has gotten to be quite a rarity. To combat the terror of serious

error, Use bits of appropriate parity. -S. W. Golomb [72]

Today a common man cannot imagine life without phone, computers, etc.

In all these devices, messages (data) are either stored or communicated among

various objects. Message transmission (communication of a message between two

objects or storage of message information in some object) is always subject to noise

(additional unwanted messages). For example, storing data in a compact disk or

communication between two cell phones is not free from error or noise. Therefore,

it is quite essential to encode the transmitting data in such a way that the original

information can be decoded and obtained from the noisy message. A general

framework of transmitting a message along a noisy channel is shown in Figure

1.1. A message is encoded using a suitable encoding scheme, and then it is sent

along the noisy channel. Because of this, the encoded message is distorted, and the

receiver receives the changed message. The receiver decodes the message from the

received message using the respective decoding scheme and gives it to the user.

For example, the transmission of message YES or NO is illustrated in the Figure

1.2. In the example, the message YES is encoded by 000 and the message NO is

encoded by 111. Suppose we transmit the message YES, the encoder sends 000

along the noisy channel and the receiver receives 100 in place of 000 because of

noise in the channel. The received vector 100 is closer to 000 than the 111. Therefore,
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Message
Source

Sender
(Encoder)

Channel

Receiver
(Decoder)User

Noise

Message

Codewords

Received vector

Message

Figure 1.1: Message transmission along a noisy channel.

the receiver can conclude that the encoded message 000 was sent and hence, the

message is YES. A code is the set of all encoded messages and the elements of the

code are known codewords. In this example the code is {000, 111}, and 000 and

111 are all codewords. A code that detects errors in a received message is called an

error detecting code. Also, if it can correct the error, it is called an error correcting

code. In the example (Figure 1.2), at-most two-bit flip errors can be detected, and a

one-bit flip error can be corrected. For more details about coding theory see [40].

In a seminal paper [39], Richard Hamming introduced basic technique of cor-

recting single error (although a related code was known in 1945). In 1948, Claude

Shannon published an article A Mathematical Theory of Communication in the Bell

System Technical Journal [97]. The article discusses the maximum rate at which

data information can be transmitted over a noisy communication channel with a

specified bandwidth. In 1949, the binary Golay code was developed [34] which is

a four error-detecting and three error-correcting code in a 24-bit length. The Ham-

ming distance between two codewords (encoded messages) of the same length

is the total number of positions at which symbols differ in both codewords. A

message encoded using the Hamming code can detect 2 errors and correct 1 error.

In Coding Theory, some fundamental bounds like Singleton bound, Sphere packing

bound and Plotkin bound are obtained. These are the bounds on the number of

codewords for given code length and minimum Hamming distance of a code. The

Singleton bound was established by Richard Collom Singleton (1964) [106]. For

an arbitrary code, the Singleton bound is the tight upper bound on the number of

2



Message
(YES or
NO)

Encoder
YES=000
NO=111

000 + 100
=100

Decoder
(000, 100)-
YES

User

Noise

YES

000

100

YES

Figure 1.2: An example of transmission of the Message YES along a noisy channel.

distinct codewords with the codeword length and minimum Hamming distance

of the code. A code, satisfying the Singleton bound with equality is known as

the Maximum Distance Separable (MDS) code. For the MDS code, any k code-

words out of the n codewords have sufficient information of the complete message.

Various branches of coding theory have been developed such as Source coding

(for data compression), Channel coding (for quick and efficient transmission of

many valid codewords), Cryptographical coding (for secure communication), Line

coding (for baseband transmission), and Network coding (for transmission among

nodes in a network).

A network is represented by an acyclic directed connected graph, where each

directed link has some weight (called capacity of the link). In a network, the

maximum possible throughput from the source node to the destination node is

called the maximum flow of the network. In 1956, L. R. Ford Jr. and D. R. Fulkerson

proved the maximum flow is upper bounded by the minimum capacity of all cuts

between these two nodes (source node and destination node) using max-flow-min-

cut theorem, where the minimum capacity of a cut is the sum of the capacities of

all the links on a cut [30]. For a multicast network (network in which group of data

transmission is addressed to some destination nodes from a group of source nodes

simultaneously), Ahlswede et al. (2000), in the article [2], proved that the network

capacity could be achieved using network coding on the intermediate nodes. On

an intermediate node, the network coding is combining some incoming packets

into some outgoing packets. For a multicast linear network (network with two

3



source node and two destination node), the butterfly network [2] is a rapidly used

example.

Over the last few decades, because of the explosive growth of information and

data, storage and managing data have become a significant challenge. The storage

capacity of many data centers exceeds the limit of the petabytes and exabytes. Any

data center is limited by bandwidth cost (cost associated with the communication

of information between various ends), processing power, system capacity cost, time

management, and maintenance cost, etc. To overcome this, the industry has turned

to a Distributed Storage System (DSS) which is running on low-cost common

servers. Cloud storage is a DSS in which information is stored on distinct nodes

as encoded packets in a redundant manner. One can retrieve the whole file by

contacting some other nodes in the system. In a DSS, a failed node can be repaired

using some other active nodes. In DSS, one has to optimize various parameters

in the system such as storage capacity, repair bandwidth, availability, reliability,

security, and scalability. DSS is used by many commercial systems like Facebook,

Yahoo, IBM, Amazon, and Microsoft Windows Azure system [93, 47, 68, 8]. Using

coding theory techniques such as erasure code, data reliability can be improved for

the DSS keeping the same level of redundancy [116, 115]. For a system, redundancy

is added using erasure codes to tolerate failures. Inspired by network coding,

Dimakis et al. proposed a family of regenerating codes in [23], where storage cost

and cost of repair bandwidth is optimum for the regenerating codes. Dimakis et al.

considered a DSS model of n nodes in which the whole file can be recovered by

downloading packets from any k (reconstruction degree) nodes, and a failed node

can be repaired by replacing it with a new node, where the packets of the new

node are downloaded from any d (repair degree) nodes. In this DSS model, for node

failure, the repair bandwidth is the total number of packets downloaded from d

nodes. In the Figure 1.3(a), an example of a DSS with 4 nodes is illustrated. In

the DSS, a file is divided into 2 information packets x1 and x2 of same size. The

two packets are then stored in 4 nodes U1, U2, U3 and U4 using repetition code.

For the DSS, a data collector needs to connect some specific nodes (U1 and U3, or

U2 and U4) to get the complete file information. Note that if any of the pair of

4



nodes out of the pairs (U1, U2) or (U3, U4) fails simultaneously, then the system

can not be repaired anymore. Using coding theory, one can design a DSS with 4

nodes, which is more efficient than the DSS, given in the Figure 1.3(a). A DSS on 4

nodes is illustrated in the Figure 1.3(b) with both the reconstruction degree and the

repair degree are 2. In the DSS, let a file be divided into 2 information packets x1

and x2 of the same size. A data collector can recover the complete file information

by connecting any 2 nodes of the (4, 2, 2) DSS. In the DSS, if any two nodes fail

simultaneously, then the system can be repaired. So, the DSS (Figure 1.3(b)) is

more efficient and reliable than the privious example Figure 1.3(a), at the same

level of redundancy. In the DSS (Figure 1.3(b)), let the file of 4 MB data be stored

in the DSS, where each packet is of size 2 MB. In the DSS, if a node fails, then it

can be repaired by downloading 2 packets from any 2 helper nodes i.e., the sum of

4 MB data needs to be downloaded to repair the node failure. If we allow network

coding on nodes, then nodes can be repaired by downloading less data sum. In

other words, one can design a DSS using network coding such that a node can

be repaired by downloading data less than the 4 MB data from helper nodes. An

example of such kind of DSS is given in the Fig 1.3(c). In the DSS, a file is divided

into 4 packets y1, y2, y3 and y4 of same size, i.e., a file of size 4 MB is divided into 4

packets and the size of each packet is 1 MB. In the DSS, a data collector can get

the complete file information by connecting any 2 nodes. In the DSS, if a node

fails, then the node can be repaired by downloading packets from any 2 helper

nodes. For example, if node U4 fails, then it can be repaired by replacing a new

node U′4 with the same data information. The packet for the new node U′4 can

be downloaded from the remaining 3 nodes. Since the computation on nodes is

allowed, the packet y1 from the node U1, the one packet y3 + y4 from the node U2

and the packet y2 + y4 from the node U3 are downloaded for the new node U′4.

The DSS model considered by Dimakis et al. has symmetric parameters. For

such DSS, a family of regenerating codes with minimum cost of repair bandwidth

is introduced in [26], and it is called Fractional Repetition (FR) codes. However,

DSSs with asymmetric parameters are more close to the real-world scenarios. In

this thesis, for such heterogeneous DSS, the fundamental bound on the file size is

5
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Figure 1.3(a): a DSS with
Repetition code

Figure 1.3(b): DSS with
(4, 2) MDS code

Figure 1.3(c): DSS with
Regenerating code

Figure 1.3: Examples of various DSSs on 4 nodes.

calculated. From the fundamental bound trade-off curve between the cost of node

storage and the cost of repair bandwidth are obtained. For such heterogeneous DSS,

FR codes with general settings on parameters are called Generalized Fractional

Repetition (GFR) codes, and different bounds and properties of the GFR code are

analyzed. A brief contribution of the thesis is following.

Chapter 2 includes the preliminaries for sequences, DSSs, information flow

graph, GFR codes, and hypergraphs. In Chapter 3, the literature survey is included

for regenerating codes and FR codes.

In Chapter 4, we have calculated the min-cut bound for the proposed hetero-

geneous DSS. For such heterogeneous DSS, we have established a bi-objective

optimization linear programming problem subject to the min-cut bound. The solu-

tions to the LP problem such as a trade-off curve between the system storage and

the repair cost are plotted. In a heterogeneous DSS, the system storage cost and

the system repair cost are average costs to store and repair unit information data

on a node respectively. We have plotted a trade-off curve and compared it with the

trade-off curves for the heterogeneous DSS given in [122] and the homogeneous

DSS (DSS with the symmetric parameters) as investigated in [119]. Some specific

cases are investigated for the established bi-objective optimization problem for var-

ious heterogeneous DSSs. The computational complexity to calculate parameters,

for the fundamental bound achieving codes, is very high. So, a particular case by

choosing constant repair traffic and reconstruction degree are considered. Further,
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we have calculated relations on parameters which achieve the fundamental bound.

In Chapter 5, GFR codes which are more general and realistic case for practical

scenario are considered. The parameters of GFR codes such as reconstruction de-

gree, node storage capacity, repair degree, repair bandwidth and packet replication

factor are not uniform. A GFR code construction based on sequences is given

in Chapter 5. In particular, construction of Flower code is studied in detail. The

conditions for universally good GFR code (Flower code) are also obtained in the

same chapter.

In Chapter 6, it is shown that a GFR code corresponds to a hypergraph, where

the GFR code may have some asymmetric parameters. Bounds on specific GFR

codes which are corresponding to some specific hypergraphs are also obtained.

For given parameters of a GFR code with some specific properties, if the respective

bound is not satisfied, then the GFR code will not exist. It is observed that a

GFR code corresponding to a linear hypergraph is universally good. Bounds on

parameters of GFR codes with additional system properties are obtained in the

same chapter.

In Chapter 7, the code rate is analyzed for a GFR code. The GFR code rate for

a GFR code is the ratio of file size to the total number of encoded packets stored

in the GFR code. Bounds on the GFR code rate, the growth of the GFR code rate

and the DSS code rate are obtained in this thesis. It is also shown that the GFR

code with GFR code rate more than the DSS code rate, does not exist. Again it has

been proved that the reliable GFR code with GFR code rate more than 0.5 does

not exist. A reliable GFR code with the maximum code rate 0.5 has the lowest

tolerance factor of 1. Chapter 8 concludes the thesis with future work.
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CHAPTER 2

Preliminaries

Mathematicians have tried in vain to this day to discover some order in the sequence of prime

numbers, and we have reason to believe that it is a mystery into which the human mind will never

penetrate. -Leonhard Euler [1]

The preliminaries for sequences, heterogeneous DSSs, GFR codes, and Hyper-

graphs are discussed in this chapter.

2.1 Sequences

A sequence is a one-dimensional array defined on a set of q symbols, called alphabet.

If the length of the array is finite, then the sequence is called a finite sequence. For

an alphabet A, a finite sequence of length ` (∈ N) is denoted by ~x = (x1 x2 . . . x`),

where xi ∈ A for i = 1, 2, . . . , `. If the alphabet is A = {0, 1} then the sequence is

called a binary sequence. For simplicity, a finite binary sequence of length ` (∈ N)

is denoted by x = x1x2 . . . x`, where xi ∈ {0, 1} for i = 1, 2, . . . , `. The weight of a

finite binary sequence x is the sum of all the terms of the sequence and denoted

by wx. The weight of the first s terms of a binary sequence x is the sum of the first

s terms of the sequence and denoted by wx(s). For example, if x = 101101, then

wx = 4 and wx(3) = 2. A sequence x of length ` is called periodic sequence, if there

exists some positive integer τ such that xr = xr+τ, for τ|` and r = 1, 2, . . . , `− τ.

For the periodic sequence, the parameter τ is called period. For example, the
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sequence x = 101110111011 is a periodic sequence with the period τ = 4. For two

sequences x and y, the concatenation is denoted xy. For a positive integer s, the

sequence xs denotes the concatenation of s copies of the sequence x. For example,

(10)2(1011)304 = 10101011101110110000.

2.2 Distributed Storage Systems

In a DSS, a data file is encoded in a certain number of packets of the same size

and those packets are stored on n distinct nodes. To retrieve the complete data file

information from the DSS, a data collector has to download packets from any k

nodes. For a reliable system, a failed node has to be repaired in the DSS. For the

repair, a failed node is replaced by a new active node with the same information.

For the new node, the packets are downloaded from each node (called helper node)

of a set of d active nodes. The set of helper nodes is called surviving set for the node.

Formally, an (n, k, d) DSS is a storage system with n nodes, reconstruction degree k

and repair degree d such that

• each node contains a fraction of data file information,

• any data collector can reconstruct the complete file information by down-

loading packets from any k (< n) nodes, and

• a failed node is repaired by some d helper nodes.

For a DSS, if all the parameters (such as reconstruction degree, repair degree of

each node, repair bandwidth of each node, node storage capacity) are individual

symmetric or uniform, then the DSS is called homogeneous DSS. The (4, 2, 2) DSS as

given in Chapter 1 (Figure 1.3(c)) is an example of homogeneous DSS.

2.2.1 Homogeneous DSSs

Dimakis et al. introduced regenerating codes in the seminal work [22, 23]. Let

a file be divided into M distinct packets, and the packets are stored on a (n, k, d)

DSS, where the node storage capacity of each node is α. In the DSS, a failed node
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Figure 2.1: For d = 5, 6, . . . 10, k = 5 and M = 1, optimal trade-off curves (as plotted in
[119]) between storage and repair bandwidth.

is repaired by d helper nodes, and β packets are downloaded from each helper

node for the repair process. Therefore, the repair bandwidth (the total number of

downloaded packets for a node failure) is γ = dβ. The parameters of the DSS must

satisfy

M ≤
k−1

∑
i=0

min
{

α,
(

1− i
d

)
γ

}
, (2.1)

and the trade-off between the node storage capacity α and the repair bandwidth γ is

plotted using Inequality (2.1) [23, 119]. For given k = 5, M = 1 and d = 5, 6, . . . 10,

the trade-off between storage capacity and repair bandwidth is simulated in [119]

(see Figure 2.1 for the simulated trade-off). Note that the trade-off is asymptotic.

For the trade-off curve, functional repair is considered, where the repaired node

contains the function of the lost information.. Formally, the regenerating codes are

defined as follows.

Definition 2.1. For a [(n, k, d), (α, β, M)] DSS, regenerating codes are the class of codes

such that

• the data file can be reconstructed by downloading packets from any k (< n) nodes,

and

• a failed node can be repaired by replacing it with a new node, where the packets for

the new node is downloaded from any d existing nodes by downloading β packets

from each.
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In the trade-off curve, by minimizing both parameters in different order, Mini-

mum Bandwidth Regenerating (MBR) codes and Minimum Storage Regenerating

(MSR) codes are obtained [23]. For the MSR code, the node storage capacity αMSR

and the repair bandwidth γMSR are given by the pair [23, 119]

(αMSR, γMSR) =

(
M
k

,
Md

k(d− k + 1)

)
. (2.2)

MSR codes are constructed in [92, 88, 65]. For the MBR code, the the node storage

capacity αMBR and the repair bandwidth γMBR are given by the pair [23, 119]

(αMBR, γMBR) =

(
2Md

k(2d− k + 1)
,

2Md
k(2d− k + 1)

)
. (2.3)

MBR codes are constructed in [26, 88, 58, 88].

A DSS which is not homogeneous is the heterogeneous DSS. Heterogeneous DSSs

are closer to the real-world scenarios, where the characterization of all storage

nodes in various aspects are not necessarily uniform due to geographical environ-

ment and storage devices cost etc. Recently, heterogeneous distributed storage

have been studied for various applications in storage systems such as hybrid

storage systems [59], video-on-demand systems [124] and heterogeneous wireless

networks [35].

2.2.2 Heterogeneous DSSs

Let a file be divided into M distinct packets, where each packet has the same length

and is defined over the field Fq. The packets are encoded and are stored on n

distinct nodes Ui (i = 1, 2, . . . , n) such that a data collector can recover the file

by downloading packets from any k (< n) nodes. Let the αi number of packets

be stored on the node Ui for each i = 1, 2, . . . , n. For a failed node, packets are

downloaded from some di active nodes. Note that packets downloaded from two

nodes in a surviving set may not be same.

An example of such heterogeneous DSS is considered in Figure 2.3. In this

system, a file is divided into M = 4 massage information packets x1, x2, x3 and

x4 on the field Fq with q symbols. The massage information packets are encoded
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Figure 2.2: A model of heterogeneous DSS.

into 11 packets by taking linear combinations of massages information packets as

y1 = x1, y2 = x2, y3 = x3, y4 = x1 + x2, y5 = x4, y6 = x1 + x2, y7 = x1, y8 = x3,

y9 = x2 + x4, y10 = x2 and y11 = x1 + x4. The encoded packets ym (m = 1, 2, . . . , 11)

are distributed on the n = 5 nodes such that packets y1 and y2 are stored on node

U1, packets y3 and y4 are distributed on node U2, packets y5 and y6 are on node

U3, packets y7, y8 and y9 are on node U4 and remaining two packets are on node

U5. Clearly the node storage capacity αi = 2 (i = 1, 2, 3, 5) and α4 = 3. A data

collector can download the complete file by connecting k = 3 or fewer nodes. In

this example, if node U5 fails, then it can be repaired by downloading packets

y7 and y9 from node U4. Since the recovered packets are function of lost packets

so, it is functional repair. On the other hand, node U5 can be repaired exactly by

downloading packets y1, y2 and y5 from nodes U1 and U3 and solving y10 = y2

and y11 = y1 + y5.

In this thesis, we focus our attention to the heterogeneous DSS, the more

general settings on the homogeneous DSS, for which at different time instants,

reconstruction degrees are not uniform and repair degree are also not same. At

any time t, one can define a reconstruction set A as a collection of the nodes having

sufficient packets collectively to reconstruct the file i.e.,

A = {Ui : | ∪i∈I Ui| ≥ M, I ⊂ {1, 2, . . . , n}} .
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Figure 2.3: An example of a (5, 3) DSS.

Clearly |I| = |A| = kt the reconstruction degree at time t, and intersection of any

two reconstruction set may be non-empty. Define A = {A1,A2, . . . ,At, . . .} as a

set of all reconstruction sets. Note that the set A will be finite if all reconstruction

setsA ∈ A are distinct. Therefore, the vector (k1 k2 . . . k|A |) is called reconstruction

vector and denoted by~k. For example as considered in Figure 2.3, A = {Ai : i =

1, 2, . . . , 7} and~k = (3 3 2 2 2 2 2), where reconstruction set Ai is given in the Table

2.1 for i = 1, 2, . . . , 7.

Table 2.1: Reconstruction sets for the DSS as considered in Figure 2.3.

Reconstruction set Reconstruction degree
A |A|

A1 = {U1, U2, U3} 3
A2 = {U1, U2, U5} 3
A3 = {U1, U4} 2
A4 = {U2, U4} 2
A5 = {U2, U5} 2
A6 = {U3, U4} 2
A7 = {U4, U5} 2

In the heterogeneous DSS, at time t, if a node Ui (i = 1, 2, . . . , n) fails then cer-

tain active nodes called helper nodes, download packets and generate a new node

say U′i . The downloaded packets for the new node, have sufficient information

which is lost in the failed node. The new node U′i takes place of the failed node

Ui and the system is repaired. In particular, a set of those helper nodes is called

surviving set for the failed node Ui and is denoted by S(i). For a node Ui, at the
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time instant t, the surviving set is

S(i) :=
{

Uj : j ∈ J ⊂ {1, 2, . . . , n}\{i}
}

.

For a node Ui, if τi distinct surviving sets exist then the surviving sets are denoted

S`(i) for ` = 1, 2, . . . , τi. If a failed node Ui repaired by nodes of surviving set

S(i) then the repair degree at the time t, is d(t)i = |J| = |S(i)|. For the node Ui,

di := max{|S`(i)| : ` = 1, 2, . . . , τi}. For a given DSS, we denote ~d := (d1 d2 . . . dn)

as repair degree vector. Surviving sets are listed in Table 2.2 for the heterogeneous

DSS considered in Figure 2.3. In this example, one can see that if a node U4

fails, then it can be repaired by connecting nodes U2 and U3 or nodes U2 and

U5. Hence surviving sets for the node U4 are S1(4) and S2(4). In Table 2.2, for a

given i (i = 1, 2, . . . , 5), |S(i)| is identical for all ` = 1, 2, . . . , τi. In general, it may

not be accurate. Also note that, in the table, we have chosen those surviving sets

which are not the superset of some other surviving set for the same node failure.

In particular, the condition ensures the active participation of each node of an

arbitrary surviving set during failed node repair process.

Table 2.2: Surviving sets for nodes in the DSS as considered in Figure 2.3.

Nodes Surviving sets Number of surviving sets
Ui S(i) τi

U1 S1(1) = {U2, U4}, 5
S2(1) = {U2, U5},
S3(1) = {U3, U4},
S4(1) = {U3, U5},
S5(1) = {U4, U5}.

U2 S1(2) = {U1, U4}, 3
S2(2) = {U3, U4},
S3(2) = {U4, U5}.

U3 S1(3) = {U4}, 2
S2(3) = {U5}.

U4 S1(4) = {U2, U3}, 2
S2(4) = {U2, U5}.

U5 S1(5) = {U3}, 2
S2(5) = {U4}.

For a failed node Ui, if system is repaired by nodes of specific surviving set

S`(i) then the number of information packets downloaded by node Uj ∈ S`(i) will
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be denoted by β (i, j, `) > 0. For example, if node U4 fails in DSS as shown in

Figure 2.3 then all the two packets from node U5 ∈ S2(4) and packet y3 = x3 from

node U2 ∈ S2(4) is downloaded to repair the failed node U4. Then β (4, 5, 2) = 2

and β (4, 2, 2) = 1.

If a failed node Ui (i ∈ {1, 2, . . . , n}) is repaired by nodes of surviving set S`(i)

then repair bandwidth (denoted by γ (i, `)) for the node Ui, is the total number of

packets downloaded by every nodes of the surviving set S`(i). Mathematically,

γ (i, `) = ∑
j

Uj∈S`(i)

β (i, j, `) . (2.4)

In the heterogeneous DSS as shown in the Figure 2.3, if node U5 fails and it is

repaired by nodes of surviving set S3(5) = {U1, U3} (not considered in Table 2.2

since S1(5) $ S3(5)) then γ (5, 3)= β (5, 1, 3) + β (5, 3, 3) = 2 + 1 = 3 units.

The DSS with the general setting of parameters can be called Generalized Dis-

tributed Storage System (Genralized DSS) with the parameters (n,~k, ~d). In this thesis,

at time instant t, single node failure is considered because simultaneously multi-

node failures can be assumed as a sequence of single node failures in a small time

interval.

In a homogeneous DSS, Wu et al. [119] solved an optimization problem with

the constraint of min-cut bound between the parameters and they plotted the

trade-off curve between node storage capacity α and node repair bandwidth dβ.

The fundamental bound as given in Inequality 2.1 is obtained by the information

flow graph for the homogeneous DSS [119]. Similarly, one can plot the trade-off

curve for the heterogeneous DSS.

In this chapter, we are defining some sequences of distinct nodes and corre-

sponding surviving sets for our model to analyze information flow. The definitions

are as follows.

Definition 2.2. (Node Sequence): For a reconstruction set A, node sequence ~u = (U1 U2

. . . U|A|) is a sequence of nodes such that each node in the set A has appeared exactly ones

in the sequence.

Definition 2.3. (Node Sequence Set): For a reconstruction set A, a set of all node se-
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quences is called node sequence set and is denoted by A (A). Clearly |A (A)| = |A| !.

For the DSS as considered in the Figure 2.3, node sequences and node sequence

sets, defined on various reconstruction sets, are listed in the Table 2.3.

Table 2.3: Node sequences for the DSS as considered in Figure 2.3.

Reconstruction set Node sequences Node sequence set
A ~u A (A)

~u1 = (U1 U2 U3)
~u2 = (U1 U3 U2)

A1 = {U1, U2, U3} ~u3 = (U2 U1 U3) A (A1) = {~u1,~u2,~u3,~u4,~u5,~u6}
~u4 = (U2 U3 U1)
~u5 = (U3 U1 U2)
~u6 = (U3 U2 U1)
~u1 = (U1 U2 U5)
~u2 = (U1 U5 U2)

A2 = {U1, U2, U5} ~u3 = (U2 U1 U5) A (A2) = {~u1,~u2,~u3,~u4,~u5,~u6}
~u4 = (U2 U5 U1)
~u5 = (U5 U1 U2)
~u6 = (U5 U2 U1)

A3 = {U1, U4} ~u1 = (U1 U4) A (A3) = {~u1,~u2}
~u2 = (U4 U1)

A4 = {U2, U4} ~u1 = (U2 U4) A (A4) = {~u1,~u2}
~u2 = (U4 U2)

A5 = {U2, U5} ~u1 = (U2 U5) A (A5) = {~u1,~u2}
~u2 = (U5 U2)

A6 = {U3, U4} ~u1 = (U3 U4) A (A6) = {~u1,~u2}
~u2 = (U4 U3)

A7 = {U4, U5} ~u1 = (U4 U5) A (A7) = {~u1,~u2}
~u2 = (U5 U4)

Definition 2.4. (Surviving Sequence): For a node sequence ~u = (Uλ1Uλ2 . . . Uλ|A|)

on a reconstruction set A ∈ A , the corresponding sequences of surviving sets is ~s =(
S`1(λ1) S`2(λ2) . . . S`|A|(λ|A|)

)
, where S`i(λi) is the surviving set of the node Uλi and

`i ∈ {1, 2, . . . , τλi}.

Definition 2.5. (Surviving Sequences Set): For a node sequence ~u on a reconstruction set

A, the set of all distinct surviving sequences is called the surviving sequence set and is

denoted by S (~u). Clearly |S (~u)| =
(

∏|A|i=1 τλi

)
.
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For the DSS as given in the Figure 2.3, surviving sequences and node sequence

set for the node sequence ~u = (U1 U4) are listed in the Table 2.4.

In [122], Quan et al. have given trade-off curve between system storage cost

and system repair cost for a heterogeneous DSS, having uniform reconstruction

degree. Similarly one can give a trade-off curve between system storage cost and

system repair cost for a heterogeneous DSS model considered in this chapter. For

the heterogeneous DSS, we define system storage cost, cost of node storage and

system repair cost as follows.

Table 2.4: Surviving sequences for the DSS as considered in Figure 2.3.

Node sequence Surviving sequences Surviving sequence set
~u ~s S (~u)

~s1 = (S1(1) S1(4))
~s2 = (S1(1) S2(4))
~s3 = (S2(1) S1(4))
~s4 = (S2(1) S2(4))

~u = (U1 U4) ~s5 = (S3(1) S1(4)) S (~u) = {~si : i = 1, 2, . . . , 10}
~s6 = (S3(1) S2(4))
~s7 = (S4(1) S1(4))
~s8 = (S4(1) S2(4))
~s9 = (S5(1) S1(4))
~s10 = (S5(1) S2(4))

Definition 2.6. (System Storage Cost): Total amount of cost Cs(~α) to store unit data

in heterogeneous DSS(n,~k, ~d) is called system storage cost, where storage amount vector

~α := (α1 α2 . . . αn), storage cost vector~c := (c1 c2 . . . cn), αi is storage capacity of node

Ui and ci is the cost to store unit information data in node Ui for i = 1, 2, . . . , n. Clearly

Cs(~α) =
1
M

n

∑
j=1

cjαj

System storage cost Cs(~α) is 68 cost units for the example considered in Figure

2.3 with~c = (100 10 10 10 1), where the storage cost for the node U1 is c1 = 100,

for node U5 is c5 = 1 and for node Ui = 10 (i = 2, 3, 4).

Definition 2.7. (Node Repair Cost): The average amount of cost to repair a node Ui (i ∈

{1, 2, . . . , n}) in heterogeneous DSS(n,~k, ~d), is called node repair cost r(βi) associated
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with repair cost vector~r := (r1 r2 . . . rn) s.t.

r(βi) =
1

Mτi

τi

∑
`=1

∑
j

Uj∈S`(i)

rjβ(i, j, `), (2.5)

where rj is cost to download unit amount of data from node Uj during the repair process.

Clearly node repair vector r(~β) := (r(β1) r(β2) . . . r(βn)).

In the example considered in Figure 2.3, if~r = (10 1 1 1 1) then node repair cost

vector r(~β) = (r(β1) r(β2) r(β3) r(β4) r(β5)) = (1
2

4
3

1
2

3
4

1
2).

Definition 2.8. (System Repair Cost): System repair cost is total amount of cost to repair

all nodes in heterogeneous DSS(n,~k, ~d) and is denoted by Cr(~β). Mathematically

Cr(~β) =
n

∑
j=1

r(β j).

Clearly Cr(~β) =
43
12 unit for~r = (10 1 1 1 1) in the example considered in Figure

2.3.

2.3 Generalized Fractional Repetition Codes

The MSR codes are more efficient for archival purpose and the MBR codes are

efficient for Internet applications [24, 26]. To optimize disk I/O, a class of MBR

codes are known as Distributed Replication-based Exact Simple Storage (DRESS) codes

were introduced and studied by researchers [26, 96, 89, 134]. The repair mechanism

for these codes are known as repair by transfer, uncoded repair or table based repair (to

repair a failed node, packets are copied from helper nodes and are forwarded to the

newcomer node without any computation). The repair reduces the computation

cost. As shown in Figure 2.4, the DRESS code is a two-layer code, consists of the

inner code, called Fractional Repetition (FR) code along with the MDS code as outer

code [26]. For a positive integer ρ, Fractional Repetition code is a collection of n

subsets of a set {Pj : j = 1, 2, . . . , θ} such that each subset has the same cardinality

α and ρ copies of each packet Pj is in the collection [26].
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Figure 2.4: DRESS Code

For the more general setting on parameters of FR code, we define Generalized

fractional Repetition (GFR) code on a heterogeneous DSS (n,~k, ~d). Let a file be

divided into M distinct information packets, where information packet symbols

are associated with a finite field Fq. By using (θ, M) MDS code on the information

packets, the M information packets are encoded into θ distinct packets P1, P2, . . .,

Pθ. Because of the property of the MDS code, the complete file information can be

extracted from any M packets. Each packet Pj (1 ≤ j ≤ θ) is replicated ρj times

in the system. All the packets are distributed on n distinct nodes U1, U2, . . ., Un

such that each node Ui (i = 1, 2, . . . , n) contains αi packets. It is easy to observe

that the code is the generalization of the FR code on multiple parameters. For

the GFR code, the maximum node storage capacity and the maximum replication

factor are given by α = max{αi : i = 1, 2, . . . , n} and ρ = max{ρj : j = 1, 2, . . . , θ}

respectively. The GFR code is denoted by C : (n, θ,~α,~ρ), where~α = (α1 α2 . . . αn)

and ~ρ = (ρ1 ρ2 . . . ρθ).

Example 2.1. Let a file be split into 5 (= M) information packets and encoded into

6 (= θ) distinct packets P1, P2, P3, P4, P5 and P6 using a (6, 5) MDS code. The 13 replicas

of the 6 (= θ) distinct packets are stored in the 5 distinct nodes U1, U2, U3, U4 and U5

such that U1 = {P1, P2, P3, P4}, U2 = {P1, P5, P6}, U3 = {P2, P5}, U4 = {P3, P6} and U5

= {P4, P6}. The node packet distribution of the GFR code is illustrated in Table 2.5. Hence,

α1 = |U1| = 4, α2 = |U2| = 3, αi = |Ui| = 2 (i = 3, 4, 5). For the GFR code, the node

storage vector~α = (4 3 2 2 2) and the replication vector ~ρ = (2 2 2 2 2 3). In the GFR code,

ρ = max{ρj : j = 1, 2, . . . , 6} = 3 and α = max{αi : i = 1, 2, . . . , 5} = 4. Hence, the

GFR code is denoted by C : (n = 5, θ = 6,~α = (4 3 2 2 2),~ρ = (2 2 2 2 2 3)).

For a GFR code, if a data collector connects any k nodes and downloads M
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Table 2.5: The node packet distribution of the GFR code as considered in Example 2.1.

U1 P1, P2, P3, P4

U2 P1, P5, P6

U3 P2, P5

U4 P3, P6

U5 P4, P6

distinct packets, then the file can be retrieved by using the MDS property, i.e.,

message information can be obtained from any M packets out of θ packets. The

parameter k is known as the reconstruction degree of the GFR code. Note that the

reconstruction degree of the GFR code (Example 2.1) is k = 3. In a GFR code, a

failed node Ui can be repaired by replacing a new node U′i , where both the nodes

Ui and U′i carry the same information. The repair degree of a failed node Ui is the

cardinality of the set of the helper nodes. For a node Ui in a GFR code C : (n, θ,~α,~ρ),

more then one such helper node sets exist with different repair degree. For the

node Ui, the maximum repair degree is di and d = max{di : i = 1, 2, . . . , n}. In the

GFR code (Example 2.1), if node U2 fails then the new node U′2 can be created by

downloading packets from nodes of set {U1, U3, U4} or set {U1, U3, U5}. Hence,

d2 = 3 and d = max{di : i = 1, 2, 3, 4, 5} = 4. Now, one can define a GFR code

formally as follows.

Definition 2.9. (Generalized Fractional Repetition Code): On a Distributed Storage

System with n nodes (denoted by Ui for i = 1, 2, . . . , n) and θ packets (denoted by Pj for

j = 1, 2, . . . , θ), one can define a GFR code as a collection C of n subsets Ui (i = 1, 2, . . . , n)

of a set {Pj : j = 1, 2, . . . , θ}, such that an arbitrary packet Pj is distributed on ρj (∈ N)

distinct subsets in the collection C . The GFR code is denoted by C : (n, θ,~α,~ρ), where

|Ui| = αi,~α = (α1 α2 . . . αn) and ~ρ = (ρ1 ρ2 . . . ρθ).

For identical replication factor i.e., ρj = ρ for j = 1, 2, . . . , θ, the notation of GFR

code can be simplified by C : (n, θ,~α, ρ). Similarly, for αi = α (i = 1, 2, . . . , n), the

GFR code can be denoted by C : (n, θ, α,~ρ). Again, for a GFR code with αi = α

(i = 1, 2, . . . , n) and ρj = ρ (j = 1, 2, . . . , θ), can be represented by C : (n, θ, α, ρ) (the

FR code as introduced in [26]).

One can represent a GFR code with matrices called Node Adjacency Matrix and
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Node Packet Distribution incidence Matrix. For a GFR code, both the matrices are

defined as follows.

Definition 2.10. (Node Adjacency Matrix): For a GFR code C : (n, θ,~α,~ρ), the node

adjacency matrix A = [ai,j]n×n is a square matrix over N ∪ {0} with size n× n, where

the matrix element

ai,j =

 |Ui ∩Uj|, if i 6= j;

0, if i = j.
(2.6)

Note that the node adjacency matrix is symmetric.

The node adjacency matrix of the GFR code C : (5, 6, (4 3 2 2 2), (2 2 2 2 2 3))

(Example 2.1) is

A =



0 1 1 1 1

1 0 1 1 1

1 1 0 0 0

1 1 0 0 1

1 1 0 1 0


Definition 2.11. (Node Packet Distribution Incidence Matrix): For a GFR code C :

(n, θ,~α,~ρ), a matrix B = [bi,j]n×θ over {0, 1} is called a node packet distribution incidence

matrix (NPDI Matrix) if

bi,j =

 1 : if the packet Pj is stored in the node Ui;

0 : if the packet Pj is not stored in the node Ui.

The NPDI matrix of the GFR code C : (5, 6, (4 3 2 2 2), (2 2 2 2 2 3)) (Example

2.1) is

B =



1 1 1 1 0 0

1 0 0 0 1 1

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 1


Some properties of the NPDI Matrix for a GFR code C : (n, θ,~α,~ρ) are observed as.

1. For a GFR code, NPDI Matrix exists, and it is unique up to the permutation.
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2. In the NPDI Matrix of a GFR code, there is no column with entry sum zero.

3. In the NPDI Matrix of a GFR code, there is no row with entry sum zero.

4. The entry sum of jth column in the NPDI Matrix of a GFR code is ρj (replica-

tion factor of packet Pj, for each j = 1, 2, . . . θ).

5. The entry sum of ith row in the NPDI Matrix of a GFR code is αi (node storage

capacity of node Ui, for each i = 1, 2, . . . n).

6. The column support of jth column for the NPDI Matrix of a GFR code is the

set of indexes of those nodes on which packet Pj is distributed.

7. The row support of ith row for NPDI Matrix of a GFR code is the set of indexes

of those packets which are distributed on node Ui.

Hence, one can observe the following two remarks.

Remark 2.1. For each binary matrix Bn×θ with nonzero entry sum of each row and each

column, a GFR code C : (n, θ,~α,~ρ) exists.

Remark 2.2. For a GFR code C : (n, θ,~α,~ρ) with the NPDI Matrix B, the adjacency

matrix A = BBt, where Bt is the transpose of the matrix B.

In a GFR code C : (n, θ,~α,~ρ), if M(k) is the maximum number of distinct

packets that guarantee to deliver to any user connected with any k nodes of the

GFR code then

M(k) := min

{∣∣∣∣∣⋃
i∈I

Ui

∣∣∣∣∣ : |I| = k, I ⊂ {1, 2, . . . , n}
}

. (2.7)

Note that M ≤ M(k). For the GFR code (as given in Example 2.1), one can find

that M(3) = 5.

Consider a GFR code C : (n, θ, α, ρ) with αi = α for each i = 1, 2, . . . , n and

ρj = ρ for each j = 1, 2, . . . , θ. The GFR code is called universally good [26, 105, 128]

if, for k = 1, 2, . . . α, the maximum file size M(k) achieves the MBR capacity [22]

i.e.,

M(k) ≥ kα−
(

k
2

)
, (2.8)
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for k = 1, 2, . . . α. For MBR codes repair bandwidth is equal to the node storage ca-

pacity [23]. Hence, for MBR codes, precisely one packet is communicated from one

helper node for node failure. This motives to define universally good GFR codes

with asymmetric parameters. In this thesis, a GFR code in which any two nodes can

share at-most one packet is called universally good Generalized Fractional Repetition

code (universally good GFR code). For such GFR code with the reconstruction

degree k, the maximum file size is

M(k) ≥
k

∑
i=1

αi −
(

k
2

)
, (2.9)

where α1 ≤ α2 ≤ . . . ≤ αn. The GFR code as considered in Example 2.1 is a

universally good GFR code.

The efficiency of any GFR code can be measure by code rate. Now we define

code rate for a GFR code and a DSS. For a given n ∈ N, the code rate of a DSS (DSS

with n distinct nodes and the maximum reconstruction degree k < n) is

RDSS(k) :=
k
n

.

Similarly, for a GFR code C : (n, θ,~α,~ρ) defined on a DSS (DSS with n distinct

nodes and the maximum reconstruction degree k < n), the FR code rate is given by

RC (k) :=
M(k)

∑θ
j=1 ρj

. (2.10)

For k = 3 in the Example 2.1, the code rate of the (5, 3) DSS is RDSS(3) = 3
5 and

GFR code rate of the GFR code isRC (3) = 5
13 .

Consider two GFR codes C : (n, θ,~α,~ρ) and C ∗ : (n∗, θ∗,~α∗,~ρ∗) such that, in

the GFR code C , the packet Pj is stored on the node Ui if and only if, in the GFR

code C ∗, the packet P∗i is stored on the node U∗j , where n∗ = θ, θ∗ = n, α∗j = ρj

and ρ∗i = αj for i = 1, 2, . . . , n and j = 1, 2, . . . , θ. Essentially, the roles of packets

and nodes are exchanged between C and C ∗. Hence, the GFR code C ∗ is called

the dual of the GFR code C . In [135], the authors studied the dual GFR code with

symmetric parameters. A formal definition of dual GFR code is following.
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Definition 2.12. (Dual Generalized Fractional Repetition Code): Let C : (n, θ,~α,~ρ) be

a GFR code. A dual C ∗ : (n∗, θ∗,~α∗,~ρ∗) of the GFR code C is a GFR code such that the

node U∗j = { f (Ui) = P∗i : Pj ∈ Ui}, where the bijection f is defined between the set of

packets {P∗1 , P∗2 , . . . , P∗θ∗} and the set of nodes {U1, U2, . . . , Un}. The parameters of the

dual GFR code are n∗ = θ, θ∗ = n, α∗j = ρj and ρ∗i = αi, where i = 1, 2, . . . , n and

j = 1, 2, . . . , θ.

For the GFR code C : (5, 6, (4 3 2 2 2), (2 2 2 2 2 3)) (as given in the Example

2.1), the dual GFR code C ∗ : (5, 4, (2 2 2 2 2 3), (4 3 2 2 2)) is U∗1 = {P∗1 , P∗2 }, U∗2 =

{P∗1 , P∗3 }, U∗3 = {P∗1 , P∗4 }, U∗4 = {P∗1 , P∗5 }, U∗5 = {P∗2 , P∗3 } and U∗6 = {P∗2 , P∗4 , P∗5 }.

For a GFR code C : (n, θ,~α,~ρ) with NPDI Matrix B, the NPDI Matrix B∗ of the

dual GFR code C ∗ : (n∗, θ∗,~α∗,~ρ∗) is the transpose matrix of the NPDI Matrix B

i.e., B∗ = Bt. The NPDI Matrix of the GFR code C ∗ : (5, 4, (2 2 2 2 2 3), (4 3 2 2 2)) is

B∗6×5 =



1 1 0 0 0

1 0 1 0 0

0 1 0 1 0

1 0 0 0 1

0 1 1 0 0

0 1 0 1 1


By the property of transpose of a matrix, one can observe the following two

remarks.

Remark 2.3. A GFR code is corresponding to the dual GFR code if and only if the NPDI

Matrix of the GFR code is a symmetric matrix.

Remark 2.4. Dual of a dual GFR code is corresponding to the GFR code itself.

Two GFR codes are equivalent codes if their parameters are identical. In other

words, two GFR codes with same number of nodes and same number of packets,

are equivalent GFR codes if both the GFR codes have same distribution of nodes

and packets.

Definition 2.13. (Equivalent Generalized Fractional Repetition Codes): For given pos-

itive integers n and θ, let f : {1, 2, . . . , n} → {1, 2, . . . , n} and g : {1, 2, . . . , θ} →
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{1, 2, . . . , θ} be two bijective functions. Two GFR codes C : (n, θ,~α,~ρ) and C ′ :

(n, θ,~α′,~ρ′) on n nodes and θ packets are called equivalent GFR codes (denoted by C ≡ C ′)

only if the node packet distribution in both GFR codes are identical i.e., for the GFR code

C , packet Pj (j = 1, 2, . . . , θ) is stored in node Ui (i = 1, 2, . . . , n) if and only if, for the

GFR code C ′, packet Pg(j) is stored in node U f (i).

Consider two GFR codes C : (4, 5, (3 3 2 2), 2) and C ′ : (4, 5, (3 2 3 2), 2),

where the node packet distribution of GFR code C are U1 = {P1, P2, P3}, U2 =

{P1, P4, P5}, U3 = {P2, P4} and U4 = {P3, P5}, and the node packet distribution

of GFR code C ′ are U′1 = {P′1, P′2, P′3}, U′2 = {P′2, P′3}, U′3 = {P′1, P′3, P′5} and U′4 =

{P′4, P′5}. Observe that there exists bijective functions f : {1, 2, 3, 4} → {1, 2, 3, 4}

and g : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} such that g(3) = 4, g(4) = 3 and g(j) = j for

j = 1, 2, 5, and f (2) = 3, f (3) = 2 and f (i) = i for i = 1, 4.

For a given GFR code C : (n, θ,~α,~ρ), one can find the equivalent GFR code

C ′ : (n, θ,~α′,~ρ′) by permuting node indexes and/or permuting packet indexes. So,

GFR codes, for such permutation matrices, are equivalent. Hence, one can observe

the following remark.

Remark 2.5. Equivalent GFR codes have identical permutation on NPDI Matrices.

2.4 Hypergraphs

For a finite set V = {v1, v2, . . . , vn}, the pair (V, E) is called a hypergraph with

hypervertex set V and hyperedge set E , where E ⊂ {E : E ⊆ V} is a family of some

subsets of V [17, 20]. For a hypergraph (V, E), |E| is called the size of the hyperedge

E ∈ E and |E(v)| is the degree of the hypervertex v ∈ V, where E(v) = {E : v ∈ E}.

An example of such hypergraph is shown in Figure 2.5, where V = {vi : i =

1, 2, . . . , 7} and E = {E1 = {v1, v4, v5}, E2 = {v4, v5}, E3 = {v3, v5, v6}, E4 = {v7}}.

In this hypergraph (V, E), hypervertices are shown by simply bold dots, and the

hyperedges are represented by the covered area which contains some hypervertices.

In the particular example, there are 7 hypervertices and 4 hyperedges such that

E(v1) = {E1}, E(v2) = ∅, E(v3) = {E3}, E(v4) = {E1, E2}, E(v5) = {E1, E2, E3},

E(v6) = {E3} and E(v7) = {E4}.
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In a hypergraph (V, E), a hypervertex v ∈ V is called isolated hypervertex

if E(v) = ∅. A hypergraph (V, E) does not have any isolated hypervertex if

V =
⋃

E∈E
E. In a hypergraph (V, E), a loop is a hyperedge E ∈ E with |E| = 1. If two

distinct hyperedges share same hypervertices, then those hyperedges are called

parallel hyperedges for the hypergraph. Similarly, if same hyperedges share two

distinct hypervertices, then those hypervertices are called parallel hypervertices.

v1 v4 v5

v7 v6

v3v2

E1 E2

E3

E4

Figure 2.5: An example of a Hypergraph.

For a hypergraph (V, E), a subset of V is called a hypervertex cover if each

hyperedge is incident to at least one hypervertex of the subset. For an example, the

set {v4, v6, v7} is a hypervertex cover of the hypergraph given in Figure 2.5. Note

that the hypervertex cover of any hypergraph exists, but it is not unique for some

hypergraph.

Now we collect some properties of hypergraphs in the following three lemmas.

Lemma 2.1. ([17, Theorem 1, Chapter 1]) Given m integers r1, r2, . . . , rm and n-tuple of

integers d1 ≥ d2 ≥ . . . ≥ dn, there exist a hypergraph (V,E ) with V = {v1, v2, . . . , vn}

and E = {E1, E2, . . . , Em} such that deg(vi) = di for i ≤ n and |Ej| = rj for j ≤ m if

and only if

1. ∑m
j=1 min{|Ej|, k} ≥ ∑k

i=1 deg(vi) (for k < n), and

2. ∑m
j=1 |Ej| = ∑n

i=1 deg(vi).

Lemma 2.2. ([17, Theorem 4, Chapter 1]) Every hypergraph (V,E ) with no repeated

hyperedge satisfies

max{deg(vi) : i = 1, 2, . . . , |V|} ≤ 2|V|−1.
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Lemma 2.3. ([17, Theorem 6, Chapter 1]) For E = {E1, E2 . . . , Em, F1, F2, . . . , Fm}, let

(V,E ) be a hypergraph of order n with 2m hyperedges such that Ei ∩ Fj = ∅ if and only if

i = j. Then
m

∑
j=1

(|Ej|+ |Fj|
|Fj|

)−1

≤ 1.

A hypergraph (V′, E ′) is called a sub-hypergraph of a hypergraph (V, E) if

V′ ⊆ V and E ′ ⊆ {E′ 6= ∅ : E′ ⊆ E ∩ V′, E ∈ E}. For an example, a hyper-

graph (V′, E ′) with V′ = {v1, v3, v4, v5, v6} and E ′ = {E′1 = {v1, v4, v5}, E′2 =

{v4}, E′3 = {v3, v5}}, is a sub-hypergraph of the hypergraph (V, E) (as shown in

Figure 2.5). For a hypergraph (V, E), hypergraph (V′, E ′) is called sub-hypergraph

induced by the set V′ ⊂ V if E ′ = {E′ 6= ∅ : E′ = E ∩V′, E ∈ E}. A hypergraph

is called connected hypergraph if there exists a sub-hypergraph with the same hy-

pervertex set such that the sub-hypergraph is isomorphic to a connected graph.

The hypergraph (V, E) (Figure 2.5) is not a connected hypergraph since there is an

isolated hypervertex.

Consider a hypergraph (V, E) without isolated hypervertices. For a finite

set V∗ = {v∗1, v∗2, . . . , v∗|E |}, a hypergraph (V∗, E∗) is called the dual of the hy-

pergraph (V, E) if their exist a bijection g : E → V∗ such that Ej = {g(Ei) =

v∗i : vj ∈ Ei}, where j = 1, 2, . . . , |V|. For an example, a hypergraph (V∗, E∗)

with V∗ = {v∗1, v∗2, v∗3, v∗4} and E∗ = {E∗1 = {v∗1}, E∗2 = {v∗3}, E∗3 = {v∗1, v∗2}, E∗4 =

{v∗1 , v∗2 , v∗3}, E∗5 = {v∗4}}, is the dual of a hypergraph (V, E) with V = {v1, v2, v3, v4,

v5} and E = {E1 = {v1, v3, v4}, E2 = {v3, v4}, E3 = {v2, v4}, E4 = {v5}}, where

g(Ej) = v∗j and i = 1, 2, . . . , 5.

In a hypergraph, if two hyperedges share one node maximum, then the hy-

pergraph is called linear hypergraph. For example, a hypergraph (V,E ) is a linear

hypergraph, where V = {v1, v2, v3, v4} and E = {{v1, v2.v3}, {v1, v4}, {v4}}. For

such hypergraph, one can find bound on the number of hyperedges as given in the

following Lemma.
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Lemma 2.4. For a linear hypergraph (V, E),

|E | ≥ ∑
v∈V
|E(v)| −

(
|V|
2

)
. (2.11)

Proof. In a linear hypergraph (V, E), at most (|V|2 ) hyperedges are repeated in the

hyperedge count ∑v∈V |E(v)|. So, the total number of hyperedges of H is bounded

by ∑v∈V |E(v)| − (|V|2 ).

A sub-hypergraph of a linear hypergraph is also a linear hypergraph. For a

positive integer k (not more than the size of the hypergraph), one can find a bound

on the size of sub-hypergraph induced by any k-element subset. Formally, the

bound is discussed in the following lemma.

Lemma 2.5. For V = {vi : i = 1, 2, . . . , n}, consider a linear hypergraph (V, E)

with |E(vi)| ≤ |E(vj)|, for i < j and i, j = 1, 2, . . . , n. For a given positive integer

k < n, let (V′ ⊂ V, E ′) be a induced sub-hypergraph of the hypergraph (V, E) with

E ′ = {E′ 6= ∅ : E′ = E ∩V′, E ∈ E} and |V′| = k. Then

min{|E ′| : V′ ⊂ V, |V′| = k} ≥
k

∑
i=1
|E(vi)| −

(
k
2

)
. (2.12)

Proof. For V = {vi : i = 1, 2, . . . , n}, let (V, E) be a linear conditional hypergraph

with |E(vi)| ≤ |E(vj)|, for 1 ≤ i < j ≤ n. For a given positive integer k < n, let

V′ be an arbitrary k-element subset of the set V. Consider a hypergraph (V′, E ′),

where E ′ = {E′ 6= ∅ : E′ = E ∩ V′, E ∈ E}. By definition of the degree of a

hypervertex,

∑
v∈V′
|E(v)| ≥

k

∑
i=1
|E(vi)|

⇒ ∑
v∈V′
|E(v)| −

(
|V′|

2

)
≥

k

∑
i=1
|E(vi)| −

(
k
2

)
.
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A sub-hypergraph of a linear hypergraph is also linear. So, using Lemma 2.4, one

can conclude that

|E ′| ≥ ∑
v∈V′
|E(v)| −

(
|V′|

2

)
≥

k

∑
i=1
|E(vi)| −

(
k
2

)
.

The chosen k-element set V′ is an arbitrary subset of set V, so

min{|E ′| : V′ ⊂ V, |V′| = k} ≥
k

∑
i=1
|E(vi)| −

(
k
2

)
.

Hence, the lemma is proved.

Now we collect following two lemmas for linear hypergraphs.

Lemma 2.6. ([17, Theorem 3, Chapter 1]) For every linear hypergraph (V,E ), we have

∑
E∈E

(
|E|
2

)
≤
(
|V|
2

)
.

Lemma 2.7. ([17, Chapter 1]) For a linear hypergraph, the dual is linear.

A hypergraph (V, E ) is called a simple hypergraph if none of the subset in E is a

proper subset of another. For example, the hypergraph (V, E ) with V = {vi : i =

1, 2, 3, 4} and E = {Ej : j = 1, 2, 3} is a simple hypergraph, where E1 = {v1, v2, v3},

E2 = {v1, v3, v4} and E3 = {v2, v4}. A bound for simple hypergraph is given in

following lemma.

Lemma 2.8. ([17, Theorem 3, Chapter 1]) Every simple hypergraph (V, E ) satisfies

1. ∑E∈E ≤ (|V||E|)
−1
≤ 1,

2. |E | ≤ (|V||E|)
−1
≤ 1.

For a positive integer r, a hypergraph (V, E) is called a r-uniform hypergraph,

if |E| = r for each E ∈ E . For example, the hypergraph (V, E ) with V = {vi : i =

1, 2, 3, 4} and E = {Ej : j = 1, 2, 3} is 3-uniform hypergraph, where E1 = {v1, v2, v3},

E2 = {v1, v3, v4} and E3 = {v1, v2, v4}. For an r-uniform linear hypergraph, a bound

is given in following lemma.
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Lemma 2.9. ([17, Theorem 3, Chapter 1]) For every r-uniform linear hypergraph (V,E ),

we have

|E | ≤ n(n− 1)
r(r− 1)

.

Lemma 2.10. ([17, Proposition 2, Chapter 1]) An n-tuple of integers d1 ≥ d2 ≥ . . . ≥ dn,

is a degree sequence of a connected uniform hypergraph of rank r if and only if

1. ∑n
i=1 di is a multiple of r,

2. di ≥ 1 (i = 1, 2, . . . , n),

3. ∑n
i=1 di ≥ r(n−1)

r−1 , and

4. d1 ≤ m = ∑n
i=1 di

r .

For a positive integer r, a hypergraph (V, E) is called a r-regular hypergraph,

if deg(v) = r for each v ∈ V. For example, the hypergraph (V, E ) with V =

{vi : i = 1, 2, 3, 4} and E = {Ej : j = 1, 2, 3} is 2-regular hypergraph, where E1 =

{v1, v2, v3}, E2 = {v1, v3, v4} and E3 = {v2, v4}.

Lemma 2.11. ([17, Chapter 1]) For a r-regular hypergraph, the dual is a r-uniform

hypergraph.

Lemma 2.12. ([17, Chapter 1]) For a r-uniform hypergraph, the dual is a r-regular

hypergraph.
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CHAPTER 3

Regenerating Codes and Fractional Repetition

Codes

Any idea, plan, or purpose may be placed in the mind through repetition of thought. -Napoleon Hill

[1]

In this chapter, we give a brief overview of regenerating codes and FR codes.

3.1 Regenerating Codes

In Chapter 2, DSS with homogeneous parameters is formally defined. For such

homogeneous DSS, regenerating code is introduced in the same chapter. Further,

a fundamental bound (Inequality 2.1) on file size is also discussed for the homo-

geneous DSS. Further, a trade-off between storage and repair bandwidth is also

discussed in the chapter. All the points on the trade-off curve can be obtained by

linear network codes over finite fields, where the size of the field is sufficiently large

[117, 118]. The optimal points (MBR code and MSR code) on the trade-off curve are

discussed in the same chapter. The trade-off between storage and repair bandwidth

for exact repair is studied in [37]. In [95], Shah et al. calculated cut-set lower bound

on repair bandwidth for a special flexible setting for homogeneous DSS. In a nice

survey [24], an overview of some existing results and repair models on DSS are

explored. In [87], the trade-off between storage capacity and repair bandwidth
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Minimum Storage Regenerating Code

Minimum Bandwidth Regenerating Code

Locally Repairable Regenerating Codes
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is investigated for exact repair linear regenerating codes for k = d = n− 1. In

[109, 110], for functional repair regenerating codes and exact repair regenerating

codes, the existence of a gap between the storage-bandwidth trade-off is discussed.

For the trade-off between storage and repair bandwidth, the outer bound is studied

in [91]. In [61], the outer bound for (n, k, d) DSS is calculated and the bound gets

tighter as k approaches to n. For the (5, 4, 4) exact-repair regenerating codes, the

fundamental trade-off between storage and repair bandwidth is classified in [111].

3.1.1 Regenerating codes with additional system properties

In this section a brief overview on regenerating codes (see Figure 3.1) with addi-

tional system properties such as locality and multiple node failure are discussed.

1. Locally Repairable codes: The bandwidth requirement of the regenerating codes

are significantly less than the bandwidth requirement of erasure codes by

allowing to communicate with more than k helper nodes for a failed node. For

such systems, using these codes, it seems to be the high I/O traffic of those

nodes. In the systems, the I/O traffic is proportional to the number of helper

nodes r communicated in the repair process [78]. In other words, an erasure

code has locality r if any failed node can be repaired by communicating r

helper nodes. In [36], Gopalan et al. studied the codewords locality and
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obtained bound in terms of the code-word length n, the message length k,

the minimum distance d, and the code locality r. In [36], for a linear erasure

code, the number of parity symbols is bounded as,

n− k ≥ dk/re+ d− 2. (3.1)

To satisfy both the cases the maximum reliability r = k, and the minimum

cost, r << k, in [78], it has been shown that each storage node in the system

must store some additional information such that α = (1 + ε)M/k, where

ε ≥ 0. Hence, the Inequality 3.1, reduces to

d ≤ n−
⌈

M
α

⌉
−
⌈

M
rα

⌉
+ 2

= n−
⌈

k
1 + ε

⌉
−
⌈

k
r(1 + ε)

⌉
+ 2.

(3.2)

Notice that the bound 3.1 can be applied also to nonlinear codes. Finding ε is

an interesting optimization problem to minimize the overhead storage [78].

A regenerating code with locality r = d < k, β < α, and functional repair is

called locally repairable regenerating codes [3, 5, 41].

2. Simple Regenerating Code: In [80] the Simple Regenerating code is studied. A

Simple Regenerating code is a (n, k) Regenerating code with rate 2k
3n , where

the rate can be made arbitrarily close to 2
3 , for given erasure resiliency.

3. BASIC Regenerating Code: Motivated by [48, 45], BASIC (Binary Addition and

Shift Implementable Cyclicconvolutional) coding framework was given in

[44, 100]. In BASIC regenerating code, the coding is enabled such that a failed

node is repaired by XOR operation and properties of bit-wise cyclic-shift.

Using XOR operations and bit-wise acyclic-shifts, a class of regenerating

codes is given in [43]. The same line of work on computational complexity

for Network coding problem is done in [54, 53, 50]. In [42], an overview for

BASIC codes is given, and it discusses some open problems related to them.

4. Cooperative Regenerating Code: The regenerating code which can tolerate mul-
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tiple node failure simultaneously, is called Cooperative Regenerating Code.

For the regenerating code, the failed nodes are repaired with the helper nodes

and newly generated nodes [46, 52, 99, 101]. In [46], the trade-off between

the node storage capacity and repair bandwidth are discussed. In [114], a

multiple-loss flexible repair mechanism is proposed on the minimal-storage

nodes to repair multiple failures. On the trade-off curve between node

storage and repair bandwidth for the cooperative regenerating codes, the

two extreme points correspond to minimal-storage cooperative regenerating

(MSCR) codes and minimal-bandwidth cooperative regenerating (MBCR)

codes. In [113, 64], constructions based on product matrix are proposed for ex-

act MBCR and MSCR codes. the interference alignment is introduced in [21].

As a family of RGC, fractional repetition [67] codes are also considered [49].

In [139], the centralized exact repair of multiple failures in DSS is discussed.

For the DSS, a trade-off between the normalized storage and repair band-

width is also investigated in [139]. In [60], an outer bound on the trade-off

between storage repair bandwidth of linear cooperative regenerating codes

for exact repair with d = k = n− r is given, where the linear cooperative

regenerating code can tolerate maximum r node failure simultaneously. For

exact-repair linear cooperative regenerating codes, an outer bound on the

storage-bandwidth trade-off is given in [62].

5. Concurrent regenerating codes: The concurrent repair framework for both

single and multiple node failures have been studied in [125], and the codes

are simpler and more stable than the cooperative Regenerating codes.

6. Others: A generalization of regenerating codes as “cloud of clouds" frame-

work is considered in [86]. In this paper, a DSS model of n clusters is consid-

ered such that each cluster contains m nodes. The system is fully connected

i.e., nodes in a cluster are connected through intra-cluster links, and clusters

are connected through inter-cluster links. For the DSS model, the trade-off

between inter-cluster repair bandwidth and storage overhead is discussed in

[86].
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3.1.2 Regenerating codes with general parameters

For heterogeneous DSS, repair problem with data allocation is studied in [35, 63, 66,

73, 121]. In [7], a DSS is studied in which storage nodes are divided into two sets

such that communication costs of any two storage nodes from a different group are

different and all nodes in the same group have same communication cost. In [31]

(Extended version [31]), two rack model of a DSS has been studied. In the two rack

model, the communication cost between the nodes in the same rack is significantly

smaller than the communication cast between nodes in the two different racks.

Hence, for a node failure, transmitting more data from the same rack is reducing

communication cost. Using the information flow graph for the two rack DSS model,

the fundamental trade-off is plotted between storage cost and repair cost in [7] and

[31]. A non-homogeneous DSS is considered in [112], where a supernode exists in

the DSS such that the storage capacity, reliability, and availability probability are

more than the other nodes in the system. It has been shown that this model can

achieve the optimal bandwidth-storage trade-off bound in [22, 23] with a smaller

file and alphabet size than the traditional homogeneous storage network in [79].

For heterogeneous DSS, repair cost can be reduced by allowing helper nodes to

encode the codewords of other nodes [32]. In [6, 7, 31, 83, 121], authors investigated

the trade-off between storage capacity and repair bandwidth for the generalized

regenerating codes and shown that each point on the curve is achievable. In the

generalized regenerating code, set of all nodes is divided into two partitions such

that every node in each partition has uniform parameters (αi, di, βi) (∀i ∈ {1, 2}).

In [29], Ernvall et al. calculated the capacity bounds of a heterogeneous DSS having

dynamic repair bandwidth and constant repair degree. In [14], capacity bound is

calculated for heterogeneous DSSs with dynamic repair bandwidth, where node

repair is done by some specific helper nodes. In [122], the trade-off between system

storage cost and system repair cost is investigated for heterogeneous DSSs with

dynamic storage and repair cost. In [55], selective regenerating codes are proposed,

and the trade-off between storage per node and repair bandwidth is plotted for the

regenerating codes, where selective regenerating codes are those codes in which

helper nodes of a failed node are chosen in such a smart way that it reduces repair

35



bandwidth. In [94, 91], the trade-off between node storage capacity and bandwidth

is analyzed for exact repair. In [90], authors gave constructions for interior points

of the normalized trade-off. In [25], Duursma improved bounds on exact repair for

regenerating codes. In [4], authors talked about the improvement of regenerating

codes by a smart selection of helper nodes for arbitrary node failure. Motivated by

this, in Chapter 4, the fundamental bound is calculated for the generalized DSS,

and, using the bound, the trade-off between the storage cost and cost of repair

bandwidth is obtained. For more details, see [9, 12, 24].

3.2 On Fractional Repetition Codes

A DRESS code with parameters [(θ, M(k), k, (n, α, ρ))] is a two layer code with an

outer layer is (θ, M) MDS code and an inner code is an FR code C : (n, θ, α, ρ). To

store a file on a DSS, the file with M packets (each has equal size) is first encoded

by using (θ, M) MDS; next, the replicas of those θ packets are placed on the n

nodes such that node Ui (i ∈ {1, 2, . . . , n}) of the DSS stores α packets and ρ copies

of a packet are stored in the system. A data collector can retrieve the file by

downloading packets from any set of k nodes. If a node Uj fails, then it can be

repaired by using a set of d other active nodes. In the Figure 2.4, the encoding

scheme is shown for an FR code defined on homogeneous DSS.

1. Supported file size: For an FR code, the maximum file with size M(k) is

bounded by the Inequality 2.7, where each has same node storage capac-

ity and same replication factors. An FR code C : (n, θ, α, ρ) is called universally

good [26] or optimal [105] if the DRESS code with parameters [(θ, M(k), k, (n, α, ρ))]

satisfies the Inequality 2.8 for any k ≤ α, where the right hand side of the

Inequality 2.8 is the maximum file size that can be stored using an MBR code

in the DSS, and it is known the MBR capacity [23]. It is interesting to consider

those codes which allow storing larger files in MBR codes. To satisfy 2.8 the

FR code should satisfy the Inequality 2.8. Note that if an FR code C satisfies

2.8 then |Ui ∩Uj| ≤ 1, for Ui, Uj ∈ C , i 6= j ∈ {1, 2, . . . , n} [89].

For a given DSS with exact and uncoded repair, the maximum file that can be
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stored the DSS is called FR capacity and is denoted by A(n, k, α, ρ) [26]. Two

upper bounds on the FR capacity A(n, k, α, ρ) for a (n, k, d) DSS are calculated:

A(n, k, α, ρ) ≤
⌊

nα

ρ

(
1−

(n−ρ
k )

(n
k)

)⌋
; (3.3)

A(n, k, α, ρ) ≤ Φ(k), (3.4)

where Φ(1) = α, Φ(k + 1) = Φ(k) + α−
⌈

ρΦ(k)−kα
n−k

⌉
. The bound given in (3.4)

is more tighter the bound given in (3.3). For given k, the FR code is called

optimal if it satisfies

min{| ∪i∈i Ui| : |I| = k, I ⊂ {1, 2, . . . , n}} = A(n, k, α, ρ) (3.5)

2. Minimum distance: For any FR code, some nodes fail then the remaining nodes

do not have the sufficient packets to recover the stored file. Therefore, in

[127], the minimum distance of FR code is defined as the minimum number

of nodes such that if these nodes fail then the active nodes can not recover

the complete file. More precisely, the minimum distance of an FR code

C : (n, θ, α, ρ) on an (n, k, d)-DSS, denoted by dmin, is the size of the smallest

subset U of {Ui : i = 1, 2, . . . , n} such that the number of distinct packets in

{Ui : i = 1, 2, . . . , n}\U is less than the file size M(k). In [127, Lemma 4], an

alternate definition of the minimum distance of an FR code is given.

Lemma 3.1. [127, Lemma 4] For an FR code C : (n, θ, α, ρ) on an (n, k, d)-DSS

with maximum file size M(k) = θ − δ + 1, the minimum distance

dmin = min {|{i : Ui ∩ S 6= ∅}| : |S| = δ, S ⊂ {P1, P2, . . . , Pθ}} , (3.6)

where δ ∈ {1, 2, . . . , θ}.

The FR code follows a Singleton-like bound on the minimum distance [77].
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For an FR code C : (n, θ, α, ρ) on an (n, k, d)-DSS, the minimum distance

dmin ≤ n−
⌈

M(k)
α

⌉
+ 1. (3.7)

3.2.1 Classification of constructions of FR codes on homogeneous

DSSs

The classification of constructions of FR codes (see Figure 3.2) defined on homoge-

neous DSSs as follows.

• Algebraic Constructions: Using partially ordered sets, FR codes are constructed

in [11]. In [81, 56], FR codes are constructed using difference sets. In [56],

FR codes are constructed using relative difference sets with λ = 1, cyclic

relative difference sets and non-cyclic relative difference sets. FR codes are

constructed from quasi-perfect difference families and perfect difference fam-

ilies in [81]. In the paper [108], two constructions of FR codes are proposed

which are based on affine permutation matrices and circulant permutation

matrices. In [126], FR code, called Cyclic repetition erasure code, is constructed

using circulant permutation matrices.

• Algorithmic Constructions: In the paper [10], an algorithm is presented for

constructing the node-packet distribution matrix of an FR code, where the

node-packet distribution matrix is the matrix representation of the FR code.

• Constructions using Combinatorics: In [26], constructions of FR codes are given

using steiner systems, Fano plane and their dual designs. In [74, 75] and

[77], FR codes are constructed using Affine resolvable designs, mutually

orthogonal Latin squares and Kronecker product technique. In [120], the

construction of the optimal FR codes is proposed by t-designs. In [138], the

FR codes are constructed using uniform group divisible designs. The FR

codes are constructed using regular packing designs in [128].

• Constructions using Finite Geometry: In [57], FR codes are constructed using

finite geometries and corresponding bipartite cage graphs.
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Figure 3.2: Constructions of FR codes.

• Constructions using Probabilistic Approach: Randomized FR codes are con-

structed in [82] using the balls-and-bins model.

• Graph Theory Constructions: In [26, 57, 105, 76, 120], FR codes are constructed

using graphs, where the distribution of packets on nodes in an FR code are

associated with adjacency of edges with vertices in respective graph. In [26],

FR codes are constructed from complete graphs and regular graphs. For given

parameters and the fewest number of storage nodes, FR codes are constructed

using bipartite cage graphs in [57]. In [105], FR codes are constructed using

Turàn graph and cage graphs. Using regular graphs with a given girth, FR

codes are constructed in [76]. In [120], Xu et al. have looked FR code as a

biregular graph, and shown that finding FR code with k fault-tolerance and

the minimum redundancy, is the same as the Zarankiewicz problem in graph

theory.

• Other Constructions: In [85], FR codes are constructed using ring construction.

In the construction, nodes are placed in a circle, and all the replicated packets

are distributed to the nodes in specific order. In [98], FR codes are defined as

hypergraphs and some bounds are calculated.

In [10], FR codes are enumerated for given number of nodes. Algorithms
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are presented in [16] which compute the repair degree d of the FR code and the

reconstruction degree k. For an FR code, the dual bound on file size is investigated

in [135] and improved the bound is in [136].

3.2.2 FR code constructions with additional system properties

Some FR codes with an additional system property (see Figure 3.3), are also studied

in the literature. We summarise these results as follows.

1. In [76], the minimum distance of FR code is defined as the minimum number

of nodes such that if these nodes fail then the active nodes cannot recover

the complete file. The Singleton like bound (Inequality 3.7) on the minimum

distance is established in [76]. FR codes are constructed in [127] using t-

design.

2. In [129], Adaptive FR code is constructed, where the adaptive FR code can

adapt the system changes such as disk failure. The Adaptive FR code is

obtained from symmetric design by removing some points from the blocks.

3. In [102, 103, 104] and [105] Fractional Repetition Batch (FRB) code is studied

which provides uncoded repairs and parallel reads of subsets of stored pack-

ets. An FR code is an FRB code if any batch of t information packets can be

decoded by reading at most one symbol from each node. The FRB codes are

constructed using a regular graph and complete bipartite graph.

4. In [69, 70, 71], the Locally Repairable FR codes are constructed using graphs,

where an FR code is called Locally Repairable FR code if k > d. The Locally

Repairable FR code constructions are proposed based on the symmetric

design in [130]. Locally recoverable FR code is constructed using Kronecker

product technique in [75]. For a Locally Repairable FR code, note that each

failed storage node can have multiple local repair alternatives in the system.

In [76], Locally recoverable FR code is constructed using regular graph. In

[51], Locally Repairable FR codes are constructed using t-design. Locally

Repairable FR codes defined on (n, k, d, α) DSS with maximum file size M(k)

40



Adaptive Fractional Repetition Code

Weak Fractional Repetition Code

Fractional Repetition Batch Code

General Fractional Repetition Code

Heterogeneous Fractional Repetition Code

Pliable Fractional Repetition code

Transpose Fractional Repetition Code

Irregular Fractional Repetition Code

Locally Repairable Fractional Repetition Code

Others

Fractional
Repetition Codes

Figure 3.3: Various FR codes.

and minimum distance dmin satisfy the bound dmin ≤ n−
⌈

M(k)
α

⌉
−
⌈

M(k)
dα

⌉
+

2,

5. In [107], Pliable FR codes are studied, where storage per node and replication

factor for each packet can be adjusted simultaneously. The Pliable FR codes

are constructed using Euclidean geometry, circulant permutation matrices,

extended RS codes, affine permutation matrices, geometry decomposition,

zigzag codes and Euler squares in [107].

6. In [84], Load-Balanced FR codes are studied, where multiple node failures in

the FR code can be repaired in a sequence by downloading at most one block

from any other active node. Note that the property reduces the number of

disk reads which need to repair multiple nodes in the system.

3.2.3 Construction of FR codes with general parameters

FR codes (see Figure 3.3) are generalized into the following general directions.
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1. FR codes are generalized to Weak [38, 85], General [132, 137] or Irregular [123]

FR codes, where different number of packets are stored in each node. Those

FR codes are constructed using partial regular graphs [38] and group divisible

designs [137]. In [85], FR codes are constructed using ring construction, where

all the replicated packets are distributed to nodes in specific order. In [132],

the FR code is constructed using packings, coverings, and pairwise balanced

designs. In [123], FR codes are studied as uniform hypergraphs. For the FR

code on (n, k, d) DSS, the maximum file size

M(k) ≥
k

∑
i=1

di −
(

k
2

)
, (3.8)

where d1 ≤ d2 ≤ . . . ≤ dn [137]. Note that most of the constructions are from

graph theory or design theory. In the Chapter 5, we have given a beautiful

connection between sequences and such FR codes. FR codes are constructed

using sequences, and parameters and properties are studied on the light of

sequences in the Chapter 5.

2. FR codes are generalized to variable [131] or heterogeneous [133] FR codes,

where each packet has different replication factor. The specific FR codes are

constructed using group divisible designs.

3. In [134], the Flexible FR codes are generalized to FR codes, where node storage

capacity of different nodes are different, the replication factor of different

packets are different, and any two distinct nodes contain at most one common

packet. For the FR code, the maximum file size M(k) is bounded as

n

∑
i=n−k+1

αi −
(

k
2

)
≤ M(k) ≤

k

∑
i=1

αi, (3.9)

where α1 ≤ α2 ≤ . . . ≤ αn. The FR code is constructed using pairwise balance

designs and group divisible designs. A heuristic construction for the FR code

is also given in [134].

An excellent connection between Hypergraphs and those FR codes is studied

in the Chapter 6. In the same chapter, a bijective function between Hy-
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pergraphs and FR codes is defined to explore the FR codes in the light of

Hypergraphs. Some basic problems like the existence of FR code for given

parameters and optimality of FR codes are answered using properties of

Hypergraphs.
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CHAPTER 4

On Heterogeneous Distributed Storage System

The more storage you have, the more stuff you accumulate. -Alexis Stewart [1]

In Chapter 2, heterogeneous DSS is introduced. In this chapter, for the het-

erogeneous DSS, a linear bi-objective optimization problem with subject to the

fundamental bound is established, and the trade-off curve between storage cost

and repair costs per node is plotted. The fundamental bound is analyzed for a

specific heterogeneous DSS with constant repair traffic and reconstruction degree.

Conditions on the parameters of the codes on heterogeneous DSS are established.

The techniques are similar to [119, 122].

4.1 Trade-Off for Heterogeneous Distributed Storage

Systems

In this section, we have discussed the information flow graph, bi-objective opti-

mization problem and trade-off for the heterogeneous DSS.

4.1.1 Information flow graph

For a network, the information flow graph is an acyclic weighted directed graph.

At time t, an information flow graph G = (V , E) associated with a heterogeneous

DSS, is shown in Figure 4.1, where V is a set of vertices and E ⊆ V × V is a set

44



In1 Out1

α1

In2 Out2

α2
...Ini Outi

αi...Ink Outk

αk...Inn Outn

αn

In′1 Out′1
α1

. . .

In′2 Out′2
α2

. . .

In′i Out′i
αi

∑ β(i, j, `)
j

Uj ∈ S`(i)\{U1 , . . . , Ui−1}

(Weight sum of edges between
vertexes in step label 0 and i)

In′k Out′k
αk

s

D

Effective reconstruction degree k,
for Data Collector D at time t

︸ ︷︷ ︸
Step

label −1

︸ ︷︷ ︸
Step

label 0

︸ ︷︷ ︸
Step

label 1

︸ ︷︷ ︸
Step

label 2

. . . ︸ ︷︷ ︸
Step

label i

. . . ︸ ︷︷ ︸
Step

label k

︸︷︷︸
Step
label
k + 1

Figure 4.1: Information flow graph G for a heterogeneous DSS.

of edges. The information flow graph G is divided into k + 3 (at time t, k being

the reconstruction degree for a data collector) steps, starting from step label −1 to

label k + 1. Step label−1 contains source node say “s” and step label k + 1 contains

data collector node say “D”. A typical node Ui (i ∈ {1, 2, . . . , n}) in heterogeneous

DSS, is mapped to a pair of vertices “Ini” and “Outi” in V s.t. (Ini, Outi) ∈ E .

Storage capacity αi of node Ui is mapped to w(Ini, Outi), where w(Ini, Outi) is the

weight associated with the edge (Ini, Outi) ∈ E . As given in Figure 4.1, the graph

G consists n pair of vertices named Ini and Outi in step label 0 which associated

with n nodes Ui (i ∈ {1, 2, . . . , n}) of the heterogeneous DSS.

For a heterogeneous DSS, a failed node Ui (i ∈ {1, 2, . . . , n}) is replaced by new

node U′i having αi packets during repair presses. Suppose packets from nodes of

a surviving set S`(i) (` ∈ {1, 2, . . . , τi}) are downloaded for the new node U′i . Let

S`(i) = {Uj : j ∈ J for some J ⊂ {1, 2, . . . , n}\{i}}. For a node Uj ∈ S`(i), suppose

β(i, j, `) packets are downloaded from the node Uj for the node failure Ui. In the

information graph G, the node U′i is mapped to a new pair of nodes In′i and Out′i
s.t. (In′i, Out′i) ∈ E with w(In′i, Out′i) = αi. The weight associated with the edge

(Outj, In′i) ∈ E is w(Outj, In′i) = β(i, j, `).

For a DSS with n nodes, at time t, consider a reconstruction set A = {Ugi : i =

1, 2, . . . , k} ⊂ {U1, U2, . . . , Un} with reconstruction degree k. Recall the k = |A|.

The nodes can fail in any order, so, one can find a node sequence ~u according to
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the order of the failed nodes. Let ~u = (Uλ1 Uλ2 . . . Uλ|A|), where λ is a permutation

on {g1, g2, . . . g|A|}. Here, we have considered only single node failure at a time

t, because, the multiple node failures can be considered as a sequence of single

node failure. So, the sequence of failed nodes can be repaired using some sequence

of a surviving set called surviving sequence. Consider a surviving sequence

~s = (S`1(λ1) S`2(λ2) . . . S`|A|(λ|A|)) for the node sequence ~u. At time t, we have

considered the reconstruction degree is k, so |A| = k. For simplicity, consider the

following.

• Consider the reconstruction set A = {U1, U2, . . . , Uk} i.e., the permutations

gi is identical permutation for i = 1, 2, . . . , k.

• For the reconstruction set A, the nodes are failing in the sequence ~u =

(U1 U2 . . . Uk) i.e., the permutations λi is identical permutation for i =

1, 2, . . . , k.

• For the node sequence ~u = (U1 U2 . . . Uk), the surviving sequence is ~s =

(S`(1) S`(2) . . . S`(k)), where index ` ∈ {1, 2, . . . , τj} of each surviving set

may not be same.

For step label 1 to step label k, each step is associated to a node failure according to

the node sequence and the failed node will repair using the respective surviving

set in the surviving sequence. In this case, the step label i is associated with the

failed node Ui and the failed node will be repaired using the surviving set S`(i).

Note that, at step label i, the total

∑
j∈J\{1,2,...,i−1}

β(i, j, `) (4.1)

packets are downloaded from those nodes Uj ∈ S`(i) which are not failed in any

earlier steps. Hence,

∑
j∈J\{1,2,...,i−1}

w(Outj, In′i) = ∑
j∈J\{1,2,...,i−1}

β(i, j, `) (4.2)

A file with size M is stored in n distinct nodes on heterogeneous DSS. In the
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Figure 4.2: An information flow graph for a heterogeneous DSS (Figure 2.3).

associated information flow graph, source node s is connected with each vertex Ini

in step label 0. The connection is represented with edge (s, Ini) with w(s, Ini)→ ∞

(see Figure 4.1).

A data collector D connects all the k nodes of the set {U′1, U′2, . . . , U′k} and get

the complete file information M. In the graph as in Figure 4.1, data collector D

connects nodes Out′i (i = 1, 2, . . . , k) from step label 1 to step label k and downloads

the complete data file. Therefore, consider (Out′j, D) ∈ E with w(Out′j, D)→ ∞.

An information flow graph for a heterogeneous DSS (as discussed in Figure

2.3), is described in Figure 4.2. In particular, a data collector is connected with

the nodes of A1 = {U1, U2, U3}. In the information flow graph, if the nodes are

failed then it will be repaired by nodes of S1(1), S1(2) and S1(3) respectively. For

a heterogeneous DSS (as considered in Figure 2.3), an information flow graph is

shown in Figure 4.2 for a specifics data collector D connected with the nodes of

A={U1, U2, U3}. The particular information flow graph is plotted for the surviving

sequence (S1(1) S1(2) S1(3)) ∈ S ((U1 U2 U3)). Recall a surviving sequence is a

sequence of surviving sets of distinct nodes and S is a set of all such surviving

sequences. Formally, surviving sequence and surviving sequence set are defined

in the Definitions 2.4 and 2.5.

For a graph G = (V , E), if X ∪ X = V then the cut(X ,X ) represents the set
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of all edges having one end vertex in set X and other vertex in set X such that

removing those all edges will improve the number of components in the graph G.

For a graph G = (V , E), the cut-capacity(X ,X ) is the sum of capacity of all edges

in cut(X ,X ).

Consider the simple case (see Figure 4.1), where, at time t, the reconstruction

set A = {U1, U2, . . . , Uk}, the node sequence ~u = (U1 U2 . . . Uk), the surviving

sequence~s = (S`(1) S`(3) . . . S`(k)) and, for given i = 1, 2, . . . , k, S`(i) = {Uj : j ∈

J for some J ⊂ {1, 2, . . . , n}\{i}}. For the case, at the step label i, from Equation

4.2, the contribution in min cut-capacity(s, D) is

min


 ∑

j∈J\{1,2,...,i−1}
w(Outj, In′i)

 , w(Ini, Out′i)


= min


 ∑

j∈J\{1,2,...,i−1}
β(i, j, `)

 , αi

 .

(4.3)

Therefore, for the given G (Figure 4.1),

min cut-capacity(s, D) =
k

∑
i=1

min


 ∑

j∈J\{1,2,...,i−1}
β(i, j, `)

 , αi

 . (4.4)

In [122, 119, 14, 29], min-cut bound is calculated by analyzing flow passing

from source node s to data collector node D across the information flow graph for

a DSS. Hence one can define flow across the information flow graph as follows.

Definition 4.1. (Information Flow): A function f : E → [0, ∞) ⊂ R is called information

flow or simply flow on an information flow graph G = (V , E) if

1. (capacity constraint): ∀(x, y) ∈ E , f ((x, y)) ≤ c((x, y)), where c((x, y)) =

w(x, y) and c((x, y)) is capacity of edge (x, y) and

2. (flow conservation constraint:) ∀y ∈ V\{s, t},

∑
x

(x,y)∈E

f ((x, y)) = ∑
z

(y,z)∈E

f ((y, z)). (4.5)
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For more details and examples on flow function, see [2, 27].

For a given information flow graph G = (V , E), value of flow delivered to a

data collector node D is defined as total amount of flow passes through the edges

(x, D) ∈ E for all possible x ∈ V .

In general, at time t, for a specific data collector D which connects nodes Uλi

of set At ∈ A , has |At| ! ∏|At|
i=1 τλi number of distinct information flow graphs are

exist. Therefore,

min
G

max - f low(s, D) = min
~u∈A (At)

min
~s∈S (~u)

max - f low(s, D). (4.6)

Hence, for the heterogeneous DSS at any time t,

min
t

min
G

max - f low(s, D) = min
At∈A

min
~u∈A (At)

min
~s∈S (~u)

max - f low(s, D). (4.7)

In this equation (Equation (4.7)), the minimum value for max- f low(s, D) is calcu-

lated for information flow graphs which are obtained for all combinations of all

reconstruction sets, node sequences, and respective surviving sets. At any time t,

for every information flow graph G = (V , E), D can recover the whole file M so

M ≤ min
t

min
G

max - f low(s, D) = min
At∈A

min
~u∈A (At)

min
~s∈S (~u)

max - f low(s, D). (4.8)

In networks, maximum possible value of flow delivered to D, is governed by

min-cut max-flow theorem [2, 27, 30]. Min-cut max-flow theorem says that across the

network, maximum possible value of flow passes from source s to specific data

collector D (denoted by max- f low(s, D)), is equal to minimum cut-capacity(s, D),

where

min cut-capacity(s, D) = min
cut(X ,X );
s∈X ,D∈X ;
X∪X=V .

{
cut-capacity(X ,X )

}
. (4.9)

Therefore, from the Inequality (4.8),

M ≤ min
At∈A

min
~u∈A (At)

min
~s∈S (~u)

cut-capacity(s, D). (4.10)
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4.1.2 Optimization problem for heterogeneous DSSs

In [119], for an information flow graph, flow analysis is done by taking a topologi-

cal order of failed node connected with the data collector. For the heterogeneous

DSS, it is shown that minimum possible value of flexible reconstruction degree is

the lower bound of the cardinality of any cut set which separates source node and

data collector node D. For the heterogeneous DSS, min cut bound is calculated in

Theorem 4.1. Using that min cut bound, it is shown that the file size should be lower

bound of min cut bound for the heterogeneous DSS. A bi-objective optimization

linear programming problem with the constraint as min cut bound, is formulated

to minimize system storage cost and system repair cost for the considered hetero-

geneous DSS. A family of solutions is calculated for the optimization problem by

substituting some numerical values of system parameters. The numerical parame-

ter is plotted the trade-off curve between system storage cost and system repair

cost. The curve is compared with the trade-off curve for homogeneous DSS [22]

and trade-off curve for heterogeneous DSS [122].

In a heterogeneous DSS, information delivered to data collector D depends

on the min cut-capacity(s, D). For such heterogeneous DSS, the following theorem

gives the bound on min cut-capacity(s, D).

Theorem 4.1. (min-cut bound) Consider a heterogeneous DSS with n nodes. At time t,

suppose a data collector D connects the nodes of a reconstruction setAt ∈ A . If nodes of the

reconstruction set A fail in order of the node sequence ~u = (Uλ1 Uλ2 . . . Uλ|A|) ∈ A (A)

and those failed nodes are repaired in order of the surviving sequence~s = (S`1(λ1) S`2(λ2) . . .

. . . S`|A|(λ|A|)) ∈ S , then, for any reconstruction set, node sequence sequence and sur-

viving sequence, the min cut-capacity(s, D)

≥ min
At∈A

min
~u∈A (At)

|At|

∑
i=1

min


 min
~s∈S (~u)

∑
j

Uj∈S`i
(λi)\{Uλ1

,...,Uλi−1
}

β (λi, j, `i)

 , αλi

 ,

(4.11)

where node storage capacity of node Uλi is αλi , and β (λi, j, `i) packets are downloaded

from the node Uj ∈ S`i(λi) for the repair the failed node Ui.
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Proof. Consider a heterogeneous DSS (n, k, d) associated with some information

flow graphs. Every information flow graph G = (V , E) has a source node s, a

data collector node D associated with effective reconstruction degree kt. In the

heterogeneous DSS, a failed node Ui can be repaired by nodes of some surviving

set S`(i), where ` ∈ {1, 2, . . . , τi}.

Let X ⊂ V , X ∪ X = V , s ∈ X and D ∈ X such that some nonempty subset

cut(X ,X ) ⊂ E exist. Now if X = V\{D} then cut-capacity(X ,X )→ ∞. Similarly

if X = {s} then again cut-capacity(X ,X ) → ∞. Hence, min cut-capacity(X ,X )

would be obtained by all those Out′j ∈ X and Ini ∈ X , since it will give a finite

cut-capacity(X ,X ), where i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , kt}.

Information flow graph G = (V , E) is directed acyclic graph so that it can be

represented in topological order of its vertices. For the topological order, sequences

of node failure and a corresponding sequence of surviving sets are arranged by

using definitions as given in the previous section. For that assume at time t,

data collector D connects with all nodes of a set At ∈ A and reconstruct the file

M. A (At) is the set of all possible sequences of nodes of At ∈ A . A sequence(
Uλ1 Uλ2 . . . Uλkt

)
represents the order of nodes failure from specific set At. Recall

the set of all possible surviving sequences
(
S`1(λ1) S`2(λ2) . . . S`k

(λkt)
)

associated

with a node sequence
(

Uλ1 Uλ2 . . . Uλkt

)
, is S

((
Uλ1 Uλ2 . . . Uλkt

))
, where |At| =

kt.

For a specific surviving sequence~s =
(
S`1(λ1) S`2(λ2) . . . S`k

(λkt)
)

associated

with the node sequence ~u =
(

Uλ1 Uλ2 . . . Uλkt

)
, the following observations are

possible.

For Out′λ1
∈ X associated with the first node in node sequence ~u , the following

two cases are possible.

• If In′λ1
∈ X then edge (In′λ1

, Out′λ1
) ∈ cut(X ,X ). Hence, αλ1 will contribute

in cut-capacity(X ,X ).

• If In′λ1
∈ X then edges (Outj, In′λ1

) ∈ cut(X ,X ), where Uj ∈ S`1(λ1) and

S`1(λ1) ∈ ~s for any `1 ∈ {1, 2, . . . , τλ1}. Hence, this case contributes in
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cut-capacity(X ,X ) by

∑
j

Uj∈S`1
(λ1)

β (λ1, j, `1). (4.12)

So, contribution in min cut-capacity(X ,X ) supported by node Uλ1 , is

min


 ∑

j
Uj∈S`1

(λ1)

β (λ1, j, `1)

 , αλ1

 . (4.13)

In general, contribution in min cut-capacity(X ,X ) is supported by node Uλi ∈

~u. If Out′λi
∈ X then following two cases are possible.

• If In′λi
∈ X , then edge (In′λi

, Out′λi
) ∈ cut(X ,X ). Hence αλi will contribute

in cut-capacity(X ,X ).

• If In′λi
∈ X then all those edges (Outj, In′λi

) will contribute in cut(X ,X )

which are associated with Uj ∈ S`i(λi)\{Uλ1 , Uλ2 , . . . , Uλi−1} for surviving

set S`i(λi) ∈ ~s, where `i ∈ {1, 2, . . . , τλi}. Edges (Outλj , In′λi
) associated

with node Uj ∈ S`i(λi)\{Uλ1 , Uλ2 , . . . , Uλi−1} are newly investigated from

step label 0 for cut(X ,X ). Edges (Out′λm
, In′λi

) must be excluded because

they have investigated earlier at step label m, where m ∈ {1, 2, . . . , i− 1} s.t.

Uλm ∈ S`(λi). Hence this case contributes in cut-capacity(X ,X ) by

∑
j

Uj∈S`i
(λi)\{Uλ1

,...,Uλi−1
}

β (λi, j, `i). (4.14)

So, contribution in min cut-capacity(X ,X ) by node Uλi is

min


 ∑

j
Uj∈S`i

(λi)\{Uλ1
,...,Uλi−1

}

β (λi, j, `i)

 , αλi

 . (4.15)

At the time instant t, if data collector D connects with each nodes Uλi ∈ At

(i ∈ {1, 2, . . . , kt}) then the contribution in min cut-capacity(X ,X ) for a specific
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node sequence ~u associated with a specific surviving sequence~s, is

kt

∑
i=1

min


 ∑

j
Uj∈S`i

(λi)\{Uλ1
,...,Uλi−1

}

β (λi, j, `i)

 , αλi

 . (4.16)

Therefore,

min cut-capacity(s, D)

≥ min
At∈A

min
~u∈A (At)

min
~s∈S (~u)

kt

∑
i=1

min


 ∑

j
Uj∈S`i

(λi)\{Uλ1
,...,Uλi−1

}

β (λi, j, `i)

 , αλi

 .

But, for a node sequence ~u,

min
~s∈S (~u)

kt

∑
i=1

min


 ∑

j
Uj∈S`(λi)\{Uλ1

,...,Uλi−1
}

β (λi, j, `i)

 , αλi


=

kt

∑
i=1

min


 min
~s∈S (~u)

∑
j

Uj∈S`(λi)\{Uλ1
,...,Uλi−1

}

β (λi, j, `i)

 , αλi

 .

Hence,

min cut-capacity(s, D)

≥ min
At∈A

min
~u∈A (At)

kt

∑
i=1

min


 min
~s∈S (~u)

∑
j

Uj∈S`(λi)\{Uλ1
,...,Uλi−1

}

β (λi, j, `i)

 , αλi

 .

The min-cut bound is calculated for all possible node sequences ~u associated

with all possible surviving sequences ~u. Hence there exist at least one surviving

sequences, say,~s∗ associated with node sequence, say, ~u∗ for which the inequality

holds with equality i.e., the min-cut bound Inequality (4.11) is tight.

Remark 4.1. For a given heterogeneous DSS, at time t, if an arbitrary data collector
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connects each node Uλj in subset At ∈ A then total number of possible information flow

graphs are given by

∑
At
At∈A

(
|At| !

|At|

∏
j=1

τλj

)
.

In particular, for a specific information flow graph, the total number of computational

comparisons are 2|At|. Hence One can say that the time complexity to calculate min-cut

bound is

O

 ∑
At
At∈A

(
2|At|(|At| !)

|At|

∏
j=1

τλj

) .

By Theorem 4.1 one can calculate the minimum requirement of storage node

capacity and repair bandwidth to store a file with size M. In other words, the

upper bound of the stored file with size M is given by the following lemma.

Theorem 4.2 (Fundamental Bound). Let a file with size M be stored in a heteroge-

neous DSS with n nodes. At time t, suppose a data collector D connects the nodes of

a reconstruction set At ∈ A . If nodes of the reconstruction set A fail in order of the

node sequence ~u = (Uλ1 Uλ2 . . . Uλ|A|) ∈ A (A) and those failed nodes are repaired in

order of the surviving sequence~s = (S`1(λ1) S`2(λ2) . . . S`|A|(λ|A|)) ∈ S , then, for any

reconstruction set, node sequence sequence and surviving sequence, the file size

M ≤ min
At∈A

min
~u∈A (At)

|At|

∑
i=1

min


 min
~s∈S (~u)

∑
j

Uj∈S`i
(λi)\{Uλ1

,...,Uλi−1
}

β (λi, j, `i)

 , αλi

 ,

(4.17)

where node storage capacity of node Uλi (i = 1, 2, . . . |A|) is αλi , and β (λi, j, `i) packets

are downloaded from the node Uj ∈ S`i(λi) for the repair the failed node Ui.

Proof. Any arbitrary data collector D must be able to reconstruct the whole file

with size M. Hence the maximum information flow value delivered to any data

collector should be at least M. Now using min-cut max- f low theorem and Theorem

4.1 one can prove the lemma.

The min cut-capacity(s, D) for the information flow graph as shown in Figure
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4.2, will be min {α1, β (1, 2, 1) + β (1, 4, 1)} + min {α2, β (2, 4, 1)} + min {α3, β (3, 4, 1)}

= 2 + 1 + 2 = 5 units. Note, the min cut-capacity(s, D) = 5 > M = 4.

Remark 4.2. The Fundamental Bound given in Theorem 4.2 is tight. The bound is

calculated by taking minimum cut-capacity for various information flow graphs on a

given DSS. Therefore, there exists at-least one combination of reconstruction set, node

sequence, and surviving sequence such that it satisfies the bound with equality.

Now, one can frame a optimization problem to find minimum system storage

cost and system repair cost under the constraint that the maximum possible infor-

mation deliver to data collector node D is at lest M. The fundamental bound on

file size M (Inequality (4.17)) will be the constraint for the optimization problem.

Problem 4.1.

Minimize: [Cs(~α), Cr(~β)]

subject to

Inequality (4.17);

αi ≥ 0;

β (i, j, `) ≥ 0;

where i ∈ {1, 2, . . . , n}, ` ∈ {1, 2, . . . , τi} and Uj ∈ S`(i) for j ∈ {1, 2, . . . , n}\{i}.

Optimum values for the both objective functions of bi-objective optimization

Problem 4.1, are plotted as trade-off curve between Cs(~α) and Cr(~β). In this

chapter, the optimization Problem 4.1 is solved by a weighted sum method for

some numeric example.

Some specific cases for optimization Problem 4.1 are analyzed in the following

subsection.

4.1.3 Optimization problem for specific heterogeneous DSSs

Given heterogeneous DSS can be reduced to following cases under some specific

restrictions. The cases are as follows:
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1) (Uniform Reconstruction): At time t, if an arbitrary data collector can retrieve

the file by downloading data from exactly k nodes for any combination out of n

nodes then the constraint Inequality (4.17) for the optimization Problem 4.1 has

additional property kt = k, ∀t.

2) (Uniform Repair Degree): For a heterogeneous DSS, if a failed node can

be repaired by any d nodes out of remaining n − 1 nodes. Under the partic-

ular assumption, for a reconstruction set At, nodes are failed in order of the

node sequence ~u = (Uλ1 Uλ2 . . . Uλ|A|) ∈ A (A) and those failed nodes are re-

paired in order of the surviving sequence~s = (S`1(λ1) S`2(λ2) . . . S`|A|(λ|A|)) ∈

S , where S`1(λ1) ⊆ S`2(λ2) ⊆ . . . ⊆ S`|A|(λ|A|). In this case |S`i(m)| = d,

τm = (n−1
d ), ∀m ∈ {1, 2, . . . , n}. Here min cut-capacity(s, D) will be given by

the node sequence
(

Uλ1 Uλ2 . . . Uλ|At |

)
∈ A (At) associated with surviving se-

quence
(

S`(λ1) S`(λ2) . . . S`(λ|At|)
)

such that αλ1 ≤ αλ2 ≤ . . . ≤ αλ|At |
and

{Uλ1 , Uλ2 , . . . , Uλi−1} ⊂ S(`)
λi

. Therefore, for the case of uniform repair degree,

the optimization problem Problem 4.1 reduced to

Problem 4.2.

Minimize: [Cs(~α), Cr(~β)]

subject to

M ≤ min
At∈A

|At|

∑
i=1;

Uλi
∈At

min

{
αλi , ∑

j
β (λi, j, `i)

}
;

0 ≤ α1 ≤ α2 ≤ . . . ≤ αn;

1 ≤ λ1 < λ2 < . . . < λ|At| ≤ n;

(4.18)

where index j is the index of node Uj ∈ S`i(λi)\S`i−1
(λi−1) and S`0(λ0) = ∅.

3) (Uniform Repair Download Amount): In this case, we assume that the down-

loaded amount from any arbitrary helper node to repair the system is constant say

β. Hence, the optimization Problem 4.1 under the restriction has additional proper-

ties as β (i, j, `) = β, β ≥ 0 (∀i ∈ {1, 2, . . . , n}, all possible j ∈ {1, 2, . . . , n}\{i} and
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∀` ∈ {1, 2, . . . , τi}). Hence,

∑
j

β (λi, j, `i) = β ∑
j
|S`i(λi)\{Uλ1 , . . . , Uλi−1}|,

where j’s are the indexes of those nodes Uj ∈ S`i(λi)\{Uλ1 , . . . , Uλi−1}.

4) (Homogenous DSS): A heterogeneous DSS become a homogeneous DSS if

all the parameters are uniform. Hence assume effective reconstruction degree for

any data collector is k and storage capacity of each node is α. In addition let a node

failure can repair by any d nodes out of remaining n− 1 nodes by downloading β

packets from each helper node. Under these restrictions, the constraint Inequalities

(4.17) for the optimization Problem 4.1 reduced to

Problem 4.3.

Minimize: [Cs(~α), Cr(~β)]

subject to

M ≤
k

∑
i=1

min {α, (d− i− 1) β} ;

α ≥ 0;

β ≥ 0.

5) (Other): In this chapter, the considered heterogeneous DSS model can be

reduced into some more specific DSS by applying some appropriate restrictions on

constraints. For example, heterogeneous DSS with uniform reconstruction and uni-

form repair degree (case 1 and 2 respectively) collectively reduce to heterogeneous

DSS as investigated in [122].

One can easily find the solution of the bi-objective optimization Problem 4.1 for

some numerical values and plot the solution as a trade-off curve for the same. One

can compare the trade-off curve with the trade-off curve for the existing heteroge-

neous DSS investigated in [122]. Hence in the next section we are calculating some

optimum solutions for the numerical parameter for our model and comparing it

with homogeneous model [119] and heterogeneous model [122].

Remark 4.3. The trade-off curve between system repair cost and storage cost can be plotted
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by optimization Problem 4.1 for the exact repair if all the surviving sets are the collection

of those helper nodes which are associated with exact repair of the failed nodes.

4.1.4 Trade-off for heterogeneous DSSs

Figure 4.3: For various DSSs (considered in this work, [23, 122]), the optimal trade-off
curves are plotted between system repair cost Cr and system storage cost Cs.

For the optimization Problem 4.1, linear programming problems with single

objective function are solved. The single objective function is calculated by taking

a linear combination of the two objective functions of the optimization problem

4.1. Then such linear programming problems are solved by taking a distinct

linear combination factor between 10−3 and 103. Plotting trade-off and solving LP

problems are done with the help of ‘MATLAB,’ and ‘lp_solve’ [18].

In Figure 4.3, four trade-off curves are plotted between system repair cost Cr and

system storage cost Cs for the respective DSSs. In particular Figure 4.3, one curve

is plotted for homogeneous DSS as investigated in [119], another one is drawn for

a heterogeneous DSS as investigated in [122] and remaining two curves are plotted

for two heterogeneous DSSs as studied in this chapter. In particular, one of the

remaining two curves has minimum effective reconstruction degree kmin as 2 and

other has maximum effective reconstruction degree kmax as 2. For all considered
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DSSs the common parameters are as follow: n = 4, M = 1 unit,~s = (1 10 10 100)

and~r = (10 1 1 1). For homogeneous DSS and heterogeneous DSS studied in

[122] have reconstruction degree k = 2 and repair degree d = 3. Remaining both

heterogeneous DSS have surviving sets S1(1) = {U2, U3, U4}, S1(2) = {U1, U4},

S1(3) = {U1, U2}, and S1(4) = {U2, U3}.

In Figure 4.3, one can see that our heterogeneous DSS model has more optimum

system storage and repair cost then the homogeneous DSS studied in [119]. Al-

though the characteristics of our heterogeneous model and heterogeneous model

investigated in [122] are different, but we obtained some more optimum points

for our model as in Figure 4.3. It is shown in the last subsection that one can find

heterogeneous DSS considered in [122] by taking some restrictions on our model.

Remark 4.4. In the particular trade-off curves, non-integer solution of bi-objective opti-

mization Problem 4.1 is also considered. Since the scaling of an arbitrary file size M to 1

leads to respective integer solution that is not necessarily scaled to some integer.

4.2 Analysis of the Fundamental Bound

For heterogeneous DSS, the complexity of computing the fundamental bound

(Inequality (4.17)) is high. To calculate codes achieving the fundamental bound,

we consider a specific case of the heterogeneous DSS. In the next two sections, we

described the heterogeneous DSS with uniform reconstruction degree k and repair

traffic β, and, further, analyze the fundamental bound to obtain some relations for

the optimal codes for the heterogeneous DSS.

4.2.1 Heterogeneous DSS Model

In heterogeneous DSS, a file is divided into encoded packets and the encoded

packets are distributed among n distinct nodes Ui (i = 1, 2, . . . , n) such that each

node has storage capacity αi and repair degree di. A user can reconstruct the file

by downloading data from any k (< n) nodes but not less than k nodes. If a

node Ui fails then data collector will download β packets from specific di nodes

out of remaining n − 1 nodes. The particular di nodes are called helper nodes
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U1

U2

U3

U4

U5

U6

α1 = 2

α2 = 2

α3 = 2

α4 = 3

α5 = 2

α6 = 2

x1, x1 + x2 + x3

x1, x2

x2, x3

x1, x3, x1 + x3

x2, x1 + x3

x3, x1 + x2 + x3× Failure

β = 1

β = 1

New node U6

File: (x1 x2 x3)
(M = 3)

Figure 4.4: An example of a (6, 2) heterogeneous DSS, where repair bandwidth is propor-
tional to repair degree.

for the failed node Ui. In this model, β(i, j, `) = β for each i, j ∈ {1, 2, . . . , n} and

` ∈ {1, 2, . . . , τi}. In this case, repair bandwidth for a node Ui is γi = diβ.

An example of such a heterogeneous DSS is illustrated in Figure 4.4. In this

example, A file is divided into 3 (= M) distinct coded packets x1, x2 and x3 on field

Fq. These three packets are encoded into thirteen distinct packets and distributed

in (6, 2) heterogeneous DSS. For the heterogeneous DSS, the repair traffic β is 1. In

the particular DSS, node storage capacity αi is 2, 2, 2, 3, 2 and 2 for i = 1, 2, 3, 4, 5, 6

(see Figure 4.4). Note that αi = γi = di for each i = 1, 2, 3, 4, 5, 6. Similar to the

parameters of the regenerating codes for homogeneous systems [23], we provide

the parameters of Heterogeneous Regenerating codes in the next remark.

Remark 4.5. For a (n, k) heterogeneous DSS, regenerating codes over a field Fq are

described by the parameters [n, k, ~d,~α, β, M], where M is the file size, β is the repair

traffic, ~d = (d1 d2 . . . dn) and~α = (α1 α2 . . . αn) are one dimensional arrays of repair degree

di and node storage capacity αi for node Ui indexed with i = 1, 2, . . . , n.

The fundamental bound for the specific heterogeneous DSS, is described in

following theorem.

Theorem 4.3 (Fundamental Bound). For a (n, k) heterogeneous DSS, the file size M

must satisfy the Inequality 4.19, where {U f0} = ∅,~s =
(

S` f1
( f1) S` f2

( f2) . . . S` fn
( fn)

)
,

T is the set of all surviving sequences ~s with length n and ` fi ∈
{

1, 2, ..., τfi

}
for
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i = 1, 2, . . . , n.

M ≤ min
~s∈T

 k

∑
j=1

min

α f j ,

∣∣∣∣∣∣S` f j
( f j)\

 j−1⋃
λ=0

{U fλ
}

∣∣∣∣∣∣ β


 (4.19)

In [14], it is shown that there exists code which achieves the fundamental bound

for such (n, k) heterogeneous DSS. Hence, one can get the optimal codes by reducing

parameters which meet the fundamental bound. In the next section, parameters for

the optimal codes are computed by minimizing node storage capacity and repair

bandwidth.

4.2.2 Analysis for the Optimal Heterogeneous DSS Model

Consider a (n, k) heterogeneous DSS with τi number of surviving sets S`i(i) and

repair degree
∣∣S`i(i)

∣∣ = di (`i = 1, 2, . . . , τi and i = 1, 2, . . . , n). If αi >
∣∣S`i(i)

∣∣ β

then the failed node Ui can not be repaired so αi ≤
∣∣S`i(i)

∣∣ β for each i and `i. For

optimality, αi = diβ. Hence for constant repair traffic β, node storage capacity αi

and repair degree di are proportional to each other. Consider ci ∈ (0, 1) ⊂ R such

that
n
∑

i=1
ci = 1 and

ci

αi
=

cj

αj
for 1 ≤ i < j ≤ n. Hence, for each i ∈ {1, 2, . . . , n},

αi = ci
n
∑

j=1
αj = ciα

∗, where α∗ =
n
∑

j=1
αj. Again, k is reconstruct degree so, M ≤

∑i∈K αi = ∑i∈K ciα
∗ for any arbitrary set K ⊂ {1, 2, ..., n} such that |K| = k. Hence,

M ≤ ∑k
i=1 ciα

∗ for c1 ≤ c2 ≤ ... ≤ cn. For optimum case, one can reduce α∗ up to

α∗min such that

M =
k

∑
i=1

ciα
∗
min ⇒ α∗min = M

(
k

∑
j=1

cj

)−1

, (4.20)

For the (6, 2) heterogeneous DSS as given Figure 4.4, M = 3, c4 = 3/13 and

ci = 2/13 (i = 1, 2, 3, 5, 6). Therefore, α∗ = 13 and M = 3 ≤ α∗ ∑2
i=1 ci = 4.

Similarly for a fixed proportional factor α∗min, one can minimize the repair traffic

β such that Bound 4.3 holds with equality. For a specific surviving sequence~s =(
S` f1

( f1) S` f2
( f2) . . . S` fn

( fn)
)

with sufficient large repair traffic β, the inequality

α fm ≤
∣∣∣∣S` fm

( fm)\
(

m−1⋃
λ=0
{U fλ

}
)∣∣∣∣ β holds for each m = 1, 2, . . . , k. If we choose β
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= βmin given in Equation 4.22 then βmin is the minimum value of repair traffic β

which ensures ∣∣∣∣∣S` fm
( fm)\

(
m−1⋃
λ=0

{U fλ
}
)∣∣∣∣∣ βmin ≥ α fm (4.21)

for each fm of an arbitrary surviving sequence.

βmin = max
~s∈T

 max
1≤m≤k

α fm

∣∣∣∣∣S` fm
( fm)\

(
m−1⋃
λ=0

{U fλ
}
)∣∣∣∣∣
−1

 (4.22)

For the (6, 2) heterogeneous DSS as given Figure 4.4, M = 3, c4 = 3/13, ci = 2/13

(i = 1, 2, 3, 5, 6) and βmin = 1.
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CHAPTER 5

On Flower Codes

Just living is not enough... one must have sunshine, freedom, and a little flower. -Hans Christian

Andersen [1]

In this chapter, a general approach for the construction of a GFR code using

sequences is introduced. The properties of such GFR codes and universally good

Flower codes are also discussed.

5.1 Flower Code: A General Approach

Motivated by the ring construction of GFR codes as given in [15, 38], one can

construct a GFR code as follows. First, place all n nodes on a circle and then drop all

replicated packets on those nodes one by one. One has to place the packets until all

the replicated packets are consumed. It gives us a GFR code since all replicas of each

packet are in the system. For example, consider n = 4 distinct nodes U1, U2, U3

and U4, and θ = 4 distinct packets P1, P2, P3 and P4. The replication factor of those

packets are ρ1 = 3, ρ2 = 2, ρ3 = 2 and ρ4 = 2. Let {P2, P1, P1, P3, P4, P2, P4, P1, P3} be

a collection of all the replicas of all four packets. A Flower code can be constructed

by selecting packets one by one from the collection and dropping it on nodes one

by one, where all the 4 nodes are placed on a circle (see Figure 5.1).

The parts of this chapter are presented in Seventh International Workshop on Signal Design
and Its Applications in Communications (IWSDA) 2015, and Sequences and Their Applications
(SETA) 2018.
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U1

U2

U3

U4

Flower code

Figure 5.1: An example of a Flower code.

Definition 5.1. (Flower Code): A system on (n, k)-DSS is called a Flower code in which

packets selected from a collection are distributed among n nodes arranged on a circle, where

the collection contains all the replicas of each packet.

Note that, for a Flower code, the replica of each packet may be different.

To construct a Flower code, one can select the copies of coded packets randomly

from the collection of replicated packets and he can place it one by one on nodes

using some model such as the balls-and-bins model [82]. For the system, one can

calculate the probability of receiving the complete file by user and the probability

of data recovery when a node has failed. On the other hand, the selection of

packets from the collection and dropping the selected packet on nodes can be

made using finite binary characteristic sequences. More precisely, for finite binary

characteristic sequences y (of length t) and x (of length `), if yr = 1 (r ∈ {1, 2, . . . , t})

then the associated packet is selected to be dropped on a node, and if xm = 1

(m ∈ {1, 2, . . . , `}) then the selected packet is dropped on the associated node. For

a Flower code, both sequences are called the packet selection sequence and the packet

dropping sequence respectively. For the terms yj = 1 and xm = 1, one can select

and drop a packet on a node in various methods. In this section, we consider the

following.

• If the term yr = 1 then the packet for which the packet-index is congruent to

r (mod θ) is selected to be dropped on a node.

• If the term xm = 1 then the selected packet is dropped on the node for which
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the node-index is congruent to m (mod n).

For example, Flower code as considered in the Figure 5.1 can be constructed using

the two binary sequences y = 0100100010110101101 and x = 101101111101. In

the rest of the chapter, for a flower code with n nodes and θ packets, the packet

selection sequence of length t is denoted by y and the packet dropping sequence

of length ` is denoted by x.

The necessary conditions for the existence of a Flower code for any two binary

sequences are given in the next Lemma.

Lemma 5.1. For n nodes, θ packets, and binary sequences y and x, a Flower code exists, if

1. the weight of both sequences are same i.e., wx = wy,

2. wx ≥ θ and wy ≥ n.

Proof. The proof of part 1: For some r ≤ t, if yr = 1 only then a packet is selected

to drop on a node so, the weight of the binary sequence y is the total number of

replicated packets which are stored in the system. On the other hand, for some

m ≤ `, if xm = 1 only then the selected packet is dropped on a node so, the weight

of the binary sequence x is the total storage capacity of all nodes. However, the

packet replica sum and the storage capacity sum are always the same for any

system which follows the proof of part 1. Therefore, the Flower code exists, if the

weight of both the sequences is the same. The proof of part 2 follows the fact that

the total number of replicated packets which are stored in the system can not less

then θ and the total storage capacity of all nodes cannot be less than n.

From the construction of Flower code, one can observe the following Fact.

Fact 5.1. For some positive integers m ≤ ` and r ≤ t, consider a Flower code with n

nodes, θ packets and two characteristic binary sequences y and x. For i ∈ {1, 2, . . . , n}

and j ∈ {1, 2, . . . , θ}, the packet Pj is dropped on the node Ui if and only if xm = 1, yr = 1

and wx(m) = wy(r), where i−m ≡ 0 (mod n) and j− r ≡ 0 (mod θ).

The parameters of a Flower code are calculated in the following theorem.
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Theorem 5.1. The parameters of a Flower code with n nodes, θ packets and characteristic

binary sequences y and x are ρj = ∑

⌊
t−j

θ

⌋
p=0 ypθ+j (j = 1, 2, . . . , θ) and αi = ∑

b `−i
n c

s=0 xsn+i

(i = 1, 2, . . . , n).

Proof. From the Fact 5.1, the Theorem follows from the fact that a packet Pj is se-

lected to drop on some node if and only if ypθ+j = 1 for some p ∈ {0, 1, . . . ,
⌊

t−j
θ

⌋
}.

Similarly, a selected packet is dropped on a node Ui if and only if xsn+i = 1 for

some s ∈ {0, 1, . . . ,
⌊
`−i

n

⌋
}.

From the Theorem 5.1, one can observe the following propositions.

Proposition 5.1. For each p = 0, 1, . . . ,
⌊

t−j
θ

⌋
, ypθ+j = 0 if and only if the packet Pj

does not have any copy in the system, where some j ∈ {1, 2, . . . , θ}.

Proposition 5.2. For each s = 0, 1, . . . ,
⌊
`−i

n

⌋
, xsn+n = 0 if and only if the node Ui does

not contain any packet, where some i ∈ {1, 2, . . . , n}.

The following remark gives the constraint on binary sequences for the distribu-

tion of multiple copies of a particular packet on a specific node.

Remark 5.1. For n nodes and θ packets, consider a Flower code with binary sequences x

and y. For positive integers m1 < m2 ≤ ` and r1 < r2 ≤ t, let xm1 = xm2 = 1 and yr1 =

yr2 = 1 such that wx(m1) = wy(r1) and wx(m2) = wy(r2). If m1 −m2 ≡ 0 (mod n)

and r1 − r2 ≡ 0 (mod θ) then the two replicas of a particular packet are dropped on a

specific node.

From the construction of GFR code, it is easy to observe that Flower code exists

for each GFR code with any set of parameters.

Lemma 5.2. For any GFR code, a Flower code exists.

Proof. For a GFR code with n nodes and θ packets, one can always find the collec-

tion S = {(i, j) : Packet Pj is stored in node Ui, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , θ}}

where |S| = s. Arrange all the pair of the collection S in a specific order and then

extract the sequences of i’s and j’s. Denote the sequences by a = (a1 a2 . . . a|S|)

and b = (b1 b2 . . . b|S|) respectively. Note that the sequence a is defined on
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{1, 2, . . . , n} and the sequence b is defined on {1, 2, . . . , θ}. For any positive in-

teger z ≤ |S|, the packet Pbz is stored on the node Uaz in the GFR code. For the

sequences a and b, construct binary sequences x = 0a1−110a2−a1−11 . . . 10as−as−1−11

and y = 0b1−110b2−b1−11 . . . 10bs−bs−1−11, where subtractions for the sequences x

and y are modulo n and modulo θ respectively. The binary sequences x and y are

finite so assume the length of x and y are ` and t respectively. For some integers

m ≤ ` and r ≤ t, let wx(m) = wy(r), xm = 1 and yr = 1. For the integers m and r,

one can fine a positive integer z ≤ s such that

m = ((a1 − 1) + 1 + (a2 − a1 − 1) + 1 + . . . + 1 + (az − az−1 − 1) + 1) (mod n) ≡ az

and

r = ((b1 − 1) + 1 + (b2 − b1 − 1) + 1 + . . . + 1 + (bz − bz−1 − 1) + 1) (mod θ) ≡ bz.

Hence, m− az ≡ 0 (mod n) and m− bz ≡ 0 (mod θ). From the Fact 5.1, the packet

Pbz is stored in the node Uaz in the Flower code.

Proposition 5.3. An arbitrary GFR code is equivalent to a Flower code.

For given i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , θ} and a Flower code with n nodes,

θ packets and binary sequences x and y, let Ai(j) be the number of copies of the

packet Pj which are stored in the node Ui in the Flower code. For example, in the

Flower code (see Figure 5.1) one copy of the packet P2 is stored in the node U1 so,

A1(2) = 1. similarly, A1(3) = 0, because packet P3 is not stored in node U1. For a

Flower code, from the Fact 5.1 and the Theorem 5.1, one can observe the following

proposition.

Proposition 5.4. Consider a Flower code with n nodes, θ packets and binary sequences

x and y. For given i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , θ}, if Ii,j = {r : wy(r) =

wx(m), r− j ≡ 0 (mod θ), m− i ≡ 0 (mod n)} then Ai(j) = ∑r∈Ii,j
yr.

The following Lemma gives the the necessary and sufficient condition for a

flower code to be universally good, i.e., to be an universally good GFR code.
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Lemma 5.3. Consider a Flower code with n nodes, θ packets and binary sequences x and

y. The Flower code is universally good if and only if, for all integers 1 ≤ i 6= p ≤ `,

θ

∑
j=1

Ai(j)Ap(j) ≤ 1, (5.1)

where, Ai(j) is given in the Proposition 5.4.

Proof. From the Fact 5.1, for positive integers i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , θ},

Ai(j) = 1 if and only if the packet Pj is dropped on the node Ui. For any p ∈

{1, 2, . . . , n} such that p 6= i, the value ∑θ
j=1 Ai(j)Ap(j) is the total number of

distinct packets common in both the nodes Ui and Up. Hence, the Flower code is

universally good, if ∑θ
j=1 Ai(j)Ap(j) ≤ 1 for 1 ≤ i 6= p ≤ n.

For the Flower code (see the Figure 5.1) with n = θ = 4, and two binary

sequences y = 0100100010110101101 and x = 101101111101, A1 = 0101, A2 =

1010, A3 = 1001 and A4 = 1110. Note that the Flower code is not universally

good because ∑4
j=1 A2(j)A4(j) = 2 � 1 i.e., node U2 and node U4 share 2 distinct

packets.

Remark 5.2. For any integers 1 ≤ i < p < s ≤ n, if a binary sequence x satisfies

∑θ
j=1 Ai(j)Ap(j) ≤ 1 and ∑θ

j=1 Ai(j)Ap(j)As(j) = 0 then any two nodes share no more

than one packet. Therefore, the Flower code is universally good.

Remark 5.3. From the Remark 5.2, it is easy to observe that if a binary sequence x with

the entry sum 2θ satisfies ∑θ
j=1 Ai(j)Ap(j) ≤ 1 for any i, p ∈ {1, 2, . . . , n} and i 6= p

then the Flower code is universally good.

For a Flower code, the maximum file size is calculated in the following Lemma.

Lemma 5.4. For a universally good Flower code with n nodes, θ packets, and reconstruc-

tion degree k, the maximum file size

M(k) = max

{
∑
i∈I

θ

∑
j=1

Ai(j)− ∑
i,p∈I;i<p

θ

∑
j=1

Ai(j)Ap(j) : |I| = k, I ⊂ {1, 2, . . . , n}
}

.

(5.2)
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Proof. For a subset I ⊂ {1, 2, . . . , n}, the total number of packets stored in nodes

(indexed from I) is ∑i∈I ∑θ
j=1 Ai(j). The total number of common packets shared by

those nodes is ∑i,p∈I;i<p ∑θ
j=1 Ai(j)Ap(j). For universally good Flower code, three

or more nodes do not share any packet. Hence, by inclusion exclusion principle, for

the reconstruction degree k = |I|, the maximum file size is given by the Equation

5.2.

The following subsection discusses a general construction of the two character-

istic binary sequences for a Flower code.

5.1.1 Construction of universally good Flower code

For given positive integers n, θ and z, Algorithm 1 ensures two binary sequences

x and y for which the Flower code is universally good. For a Flower code, the

value z is the count of copies of packets which are placed in the system. In the

Algorithm 1, for each j = 1, 2, . . . , θ and i = 1, 2, . . . , n, first initialize Ai(j) with 0.

By permuting node-indices and permuting packet-indices, for any Flower code,

one can always find a Flower code in which the packet P1 is dropped on the node

U1, where both the Flower codes have same properties. So, the binary sequences

are initialized with x = 1 and y = 1 which ensures the packet P1 is dropped on the

node U1. In each while loop, the sequences x and y which satisfy the Inequality

(5.1) are concatenated with 0a−11 and 0b−11. For the loop, the positive integers

a and b are selected such that those concatenated sequences x0a−11 and y0b−11

satisfy the Inequality (5.1). Note that wx0a−11 = wx + 1 and wy0b−11 = wy + 1 and

hence, by induction with initial condition, x1 = y1 = 1, wx0a−11 = wy0b−11. In the

Algorithm 1, the positive integers a and b can be a distinct for different while loop

as well as within a loop. One can introduce randomness by selecting a and b as

random integers. The algorithm will terminate, if wx = wy > z. The condition on

while loop ensures the weight of each binary sequence is z.

An Example of the construction of sequences is illustrated in Table 5.1 for n = 3

and θ = 3. From the algorithm, x = 11001100101 and y = 100101010011. The

Flower code is U1 = {P1, P2}, U2 = {P1, P3}, U3 = {P2, P3}. Note that the Flower

code is universally good.
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Table 5.1: For n = θ = 4, construction of sequences x and y using the Algorithm 1.

Sr. No. a x b y Ai(j)
1. - 1 - 1 A1(1) = 1
2. 1 1001 3 1021 A2(1) = 1
3. 3 1001021 2 1021011 A2(3) = 1
4. 1 1001021001 2 1021011011 A3(2) = 1
5. 3 1001021001021 3 1021011011021 A1(2) = 1
6. 2 1001021001021011 1 1021011011021001 A3(3) = 1

Algorithm 1 Construction of sequences x and y for a universally good Flower
code.
Require: n, θ ≥ 1 and an integer z ≥ max{n, θ}.
Ensure: The finite binary sequences x and y.

Initialize: Ai(j) = 0 for each j = 1, 2, . . . , θ and i = 1, 2, . . . , n.
Initialize: x = x1 = 1, y = y1 = 1 and update A1(1) = 1.
while wx(m) < z for m > 1 do

For positive integers a (≤ n) and b (≤ θ)

if Ap(j) + ∑θ
s=1,s 6=j Ai(s)Ap(s) ≤ 1 for p = 1, 2, . . . , n and i 6= p, where i −

(m + a) ≡ 0 (mod n) and j− (r + b) ≡ 0 (mod θ) then
Update x by x0a−11 and y by y0b−11
Update Ai(j) by Ai(j) + 1
Update m by m + a, and r by r + b

end if
end while
Update ` by m, and t by r

For the binary sequences generated by the Algorithm 1, the following Lemma

ensures the universally good condition of the Flower code.

Lemma 5.5. For positive integers n and θ, if the binary sequences x and y are generated

by the Algorithm 1 then the Flower code is universally good.

Proof. For positive integers a and b in a loop of the Algorithm, xm+a = yr+b = 1

and wx(m + a) = wy(r + b). Therefore, the packet Pj will be placed on node

Ui, where i − (m + a) ≡ 0 (mod n), j − (r + b) ≡ 0 (mod θ), i ∈ {1, 2, . . . , n}

and j ∈ {1, 2, . . . , θ}. For each integer p = 1, 2, . . . , n such that i 6= p, Ap(j) +

∑θ
s=1,s 6=j Ai(s)Ap(s) = ∑θ

s=1 Ai(s)Ap(s) ≤ 1, where Ai(j) = 1 for j ∈ {1, 2, . . . , θ}

such that j− (r + b) ≡ 0 (mod θ). From the Lemma 5.3, the Lemma holds.

The Flower code which corresponds to the dual GFR code is called a dual

Flower code. The following theorem gives the connection between a Flower code
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and its dual.

Theorem 5.2. Consider a Flower code with n nodes, θ packets, and two binary sequences

y and x (the packet selection sequence and the packet dropping sequence respectively). A

Flower code with n∗ nodes, θ∗ packets and two binary sequences y∗ and x∗ (the packet

selection sequence and the packet dropping sequence respectively) is the dual code if and

only if n∗ = θ, θ∗ = n, x∗ = y and y∗ = x.

Proof. The proof follows the Definition 2.12 and the Fact 5.1.

The following theorem gives the connection for universally good condition on

Flower code and its dual code.

Theorem 5.3. The dual of a universally good Flower code is again universally good.

Proof. Indeed, if a Flower code is universally good then, in the dual, two packets

P∗i (1 ≤ i ≤ θ∗) and P∗j (1 ≤ j ≤ θ∗) cannot stored in two distinct nodes U∗r

(1 ≤ r ≤ n∗) and U∗s (1 ≤ s ≤ n∗), as then, packets Pr and Ps are stored in both

nodes Ui and Uj which contradicts |Ui ∩Uj| ≤ 1.

From the Theorem 5.1 and 5.2, one can easily observe the following proposition.

Proposition 5.5. For a Flower code with n nodes, θ packets and characteristic binary

sequences y and x, the parameters of dual Flower code are α∗j = ∑

⌊
t−j

θ

⌋
p=0 ypθ+j (j =

1, 2, . . . , θ) and ρ∗i = ∑
b `−i

n c
s=0 xsn+i (i = 1, 2, . . . , n).

Now, we explore some specific cases of Flower code such as Flower code with

packet selection sequence y = 1t and Flower code with packet dropping sequence

x = 1` in the following two sections.

5.1.2 Flower codes with all one packet selection sequences

In the subsection, we discuss the properties (such as parameters, universally

good condition and dual property) of Flower codes with all one packet selection

sequence. The Flower code with uniform replication factor can also be constructed

by taking packet selection sequence y = 1ρθ. For n nodes, θ packets, and binary

sequences x and y = 1t, from the Lemma 5.1, the Flower code exists if t = wx.
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From the Fact 5.1, in the Flower code, packet Pj is stored in node Ui if and only if

xm = 1, wx(m)− j ≡ 0 (mod θ) and m− i ≡ 0 (mod n). The parameters of such

Flower codes are calculated in the following Theorem.

Theorem 5.4. For a Flower code with n nodes and θ packets and a binary sequence x of

length `, the packet replication factor of the packet Pj (j = 1, 2, . . . , θ) is

ρj =


wx
θ : if η = 0,

1 +
⌊wx

θ

⌋
: if j = 1, 2, . . . , η and η 6= 0,⌊wx

θ

⌋
: if j = η + 1, . . . , θ and η 6= 0;

where η = wx − θ
⌊wx

θ

⌋
.

Proof. From the division algorithm, wx = θ
⌊wx

θ

⌋
+ η for some 0 ≤ η < θ. So, wx−η

θ

is a positive integer
⌊wx

θ

⌋
. Now, from the Theorem 5.1, for y = 1wx ,

ρj =

⌊
wx−j

θ

⌋
∑
p=0

ypθ+j

=

⌊
wx − j

θ

⌋
+ 1

=

⌊
wx − η

θ
+

η − j
θ

⌋
+ 1

=

⌊
wx − η

θ

⌋
+

⌊
η − j

θ

⌋
+ 1

=
⌊wx

θ

⌋
+

⌊
η − j

θ

⌋
+ 1

(5.3)

Now, there are two cases.

• Case 1: if 0 < j ≤ η < θ then 0 < η−j
θ < 1. Therefore,

⌊
η−j

θ

⌋
= 0.

• Case 2: if 0 ≤ η ≤ j < θ then −1 < η−j
θ < 0. So,

⌊
η−j

θ

⌋
= −1.

From Equation 5.3, and Case 1 and 2, the result holds.

Using Theorem 5.4, one can observe the following remark.

Remark 5.4. For n nodes and θ packets, consider a Flower code with binary sequences

x (length `) and y = 1wx . For two distinct integers m1 (≤ `) and m2 (≤ `), let
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xm1 = xm2 = 1. If m1 −m2 ≡ 0 (mod n) and wx(m1)− wx(m2) ≡ 0 (mod θ) then the

two replicas of the packet Pj are dropped on node Ui, where wx(m1)− j ≡ 0 (mod θ) and

i−m1 ≡ 0 (mod n).

Using the Definition of a Flower code and the Theorem 5.4, one can easily prove

the following proposition.

Proposition 5.6. For a Flower code with n nodes, θ packets, and binary sequences x

(length `) and y = 1wx , the replication factor ρj ∈ {ρ− 1, ρ} (j = 1, 2, . . . , θ).

Lemma 5.6. A Flower code with n nodes, θ packets, and binary sequences x (length `) and

y = 1wx , is universally good, if and only if ∑θ
j=1 Ai(j)Ap(j) ≤ 1 for each i, p = 1, 2, . . . , n

and i 6= p.

Proof. The proof follows the Theorem 5.1 for the packet selection sequence y =

1wx .

Using the Remark 5.3, one can easily prove the following two Lemmas.

Lemma 5.7. For given integers n, θ and a periodic binary sequence x with the period

τ < n < θ, if ` =
⌈

2θτ
wx(τ)

⌉
then the Flower code with two characteristic binary sequences

y = 1ρθ and x will be universally good with ρ = 2, where gcd(n, θ) = 1 and gcd(n, τ) =

1.

Proof. For a periodic binary sequence x with the period τ ≤ n, if ` =
⌈

2θτ
wx(τ)

⌉
then

the entry sum will be 2θ. For the particular periodic sequence, if gcd(n, θ) = 1 and

gcd(n, τ) = 1 then any two node will not contain more than one common packet.

Hence, the result holds.

For example, τ = 3, n = 4, θ = 5, the sequence x = 110110110110110 will give

the universally good Flower code, where α1 = α2 = 3 and α3 = α4 = 2 and ρj = 2

(j = 1, 2, 3, 4, 5). Note that the sequence x is the Fibonacci sequence with modulo 2.

Proposition 5.7. For n, θ, and the a binary sequence x, the Flower code is a universally

good, where the sequence is generated from the Algorithm 1 with b = 1.
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5.1.3 Constructions of Flower codes from various sequences

In order to construct a GFR code C : (n, θ,~α, ρ), one can drop θ packets Pj (j =

1, 2, . . . , θ). This motivates us to define cycle m and jump for m ∈ {1, 2, . . . , ρ}.

Definition 5.2. (Cycle): For a GFR code C : (n, θ,~α, ρ), and for every m (1 ≤ m ≤ ρ), a

cycle is defined as dropping of all θ packets (with no repetition) on n nodes.

An example of such cycle is shown in Table 5.2.

Definition 5.3. (Jump): The number of null packets between two consecutive packets from

{1, 2, . . . , θ} while dropping them on n nodes U1, U2, . . . , Un is known as a Jump.

An example of such jump is shown in Table 5.2. In the table, dash between two

packets (such as packets indexed by 3 and 4) represents jump for the certain cycle.

Table 5.2: An example of jumps and cycles for the 4 packets on 3 nodes.

Cycle 1 Cycle 2
Packet Index 1 2 3 − 4 − − 1 2 − 3 4
Node Index 1 2 3 1 2 3 1 2 3 1 2 3

One can associate a binary characteristic sequence (dropping sequence), node se-

quence (ordering the node sequence where the packet is dropped) and node-packet

incidence matrix with any GFR code. We now formally collect these definitions.

Definition 5.4. (Dropping Sequence): a GFR code C : (n, θ,~α, ρ) can be characterized

by a binary characteristic sequence (weight of the sequence is ρθ) which is one whenever a

packet is dropped on a node and zero whenever no packet is dropped.

For a given n = 4, θ = 6 and dropping sequence d = 11111100011100111, one

can find the GFR code C : (4, 6, 3, 2) with U1 = {P1, P5, P6}, U2 = {P1, P2, P6}, U3 =

{P2, P3, P4} and U4 = {P3, P4, P5}. From the dropping sequence, the GFR code is

generated by dropping packet P1 on node U1, since d1 = 1 and so on.

Dropping sequence d with length l of a GFR code C : (n, θ,~α, ρ) has the follow-

ing properties.
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1. The mth term of the dropping sequence d is

dm =

 1 : if packet is dropped on node Ut;

0 : if packet is not dropped on node Ut,

where

t =

 m (mod n) : if n - m;

n : if n | m.

2. WLOG one can set d(l) = 1 for dropping sequence d with length l ∈ N s.t.

weight wd = ρθ and dm ∈ {0, 1}.

3. It is clear that l ∈ {ρθ, ρθ + 1, ..., ρθ + (n− 1)ρθ−1, ...} but one can reduce the

value of l such that ρθ ≤ l ≤ ρθ + (n− 1)ρθ−1 by puncturing n consecutive

0’s in d. It can be observed easily that if l > ρθ + (n− 1)ρθ−1 then ∃ q(≥ n)

consecutive 0’s in d.

4. If dr = 1 (1 ≤ r ≤ l) then the packet Pλ is distributed on the node Ut, where

η(r) = wd(r) (mod θ) and

λ =

 η(r) : if η(r) 6= 0;

θ : if η(r) = 0.

Definition 5.5. (Node Sequence): A GFR code C : (n, θ,~α, ρ) can be characterised by

a finite sequence s of length ρθ defined from {1, 2, . . . , ρθ} (⊂ N) to {1, 2, ..., n} (⊂ N)

such as packet Pt (t ∈ {1, 2, . . . θ}) is dropped on node Usi (si ∈ {1, 2, . . . n}), where

t =

 i (mod θ) : if (i (mod θ)) 6= 0;

θ : if (i (mod θ)) = 0.
(5.4)

For given n nodes and θ packets, a possible node sequence is (1 2 3 4 1 2 2 3 4 3 4 1)

with alphabet {1, 2, 3, 4} for the GFR code C : (4, 6, 3, 2) with U1 = {P1, P5, P6}, U2

= {P1, P2, P6}, U3 = {P2, P3, P4} and U4 = {P3, P4, P5}.

Remark 5.5. For a GFR code C : (n, θ,~α, ρ), there may exist more then one dropping

sequences d with length l as well as node sequences s with length ρθ.
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Next section describes the construction of the flower codes. A generalized

ring construction of GFR codes for ρ = 2 was described in [38] which gives

homogeneous (heterogeneous) GFR codes for θ a multiple of n (or θ not a multiple

of n). In this section, we generalize ρ = 2 construction to ρ > 2. To construct the

GFR code of replication factor ρ, we first place n nodes on a circle. Now we can

place θ packets on each of them one by one until a cycle is complete. One has to

place the packets until we complete all ρ cycles. It rises to a GFR code since all θ

packets are replicated ρ times in the system. Now we can vary the packet dropping

mechanism by introducing jumps within a cycle or after every cycle. To do so

first, we define a different kind of jumps. This process yields several classes of

interesting GFR codes.

Definition 5.6. (Internal & External Jumps): An internal jump is a jump applied within

a cycle m, 1 ≤ m ≤ ρ. Similarly a jump is called external jump if it is applied between

two consecutive cycles m & m + 1, 1 ≤ m ≤ ρ. In particular, internal (external) jump

function is denoted by fin( fex) with domain {1, 2, ..., ρθ} \{θ, 2θ, . . . , ρθ} ({1, 2, ..., ρ}).

Both jump functions have common co-domain N∪ {0}.

For given nodes n = 3, packets θ = 4, internal jump function fin = 1 and

external jump function fex, one can construct node sequence (1 3 2 1 2 1 3 2) for

some GFR code C : (3, 4, 3, 2).

Remark 5.6. A special kind of jump, (for example, see Definition 5.7), can be described by

a characteristic function ξ(i) = 1 (drop) or 0 (do not drop) which tells us when to drop a

packet at a position i, 1 ≤ i ≤ n.

Definition 5.7. (Subset Type Jumps): Let {1, 2, . . . , n} be an index set of n nodes and let

A ⊆ {1, 2, . . . n}. A jump is called subset type jump if it’s characteristic function ξ(i) is

given by

ξ(i) =

 1 : if i ∈ A;

0 : if i /∈ A.

For example, an Flower code FC : (8, 7, (3 4 2 2 3 3 3 1), 3) is constructed using

subset type jumps A1 = {1, 2, 4}, A2 = {5, 6, 7, 8} and A3 = {2, 3, 5, 6, 7} in Table

5.3. Now we are ready to define a Flower code with single ring having a subset

type jump within it’s ρ cycles.
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Definition 5.8. (Flower Code with Single Ring): A Flower code FC : (n, θ,~α, ρ) with

single ring and having a subset type jumps can be defined by first placing n nodes along

a single ring and then dropping packets as per a subset jump Am(1 ≤ m ≤ ρ) (see

Definition 5.7) within every cycle m(1 ≤ m ≤ ρ) till we drop all ρθ packets on the ring.

Table 5.3: An example of a Flower code constructed by subset type jumps.

Node Packet distribution Node Capacity

For A1 For A2 For A3 αi

U1 P1 P4 P7 - - - - 3

U2 P2 P5 - - - P1 P6 3

U3 - - - - - P2 P7 2

U4 P3 P6 - - - - - 2

U5 - - - P1 P5 P3 - 3

U6 - - - P2 P6 P4 - 3

U7 - - - P3 P7 P5 - 3

U8 - - - P4 - - - 1

Lemma 5.8. Consider a Flower code FC : (n, θ,~α, ρ) with single ring and having subset

type jumps on node subsets A1, A2, . . . Aρ. If total number of packets distributed on node

Uit(it ∈ Am; 1 ≤ m ≤ ρ and t = 1, 2, . . . , |Am|) for subset type jump with single ring

on node subset Am is P(Uit , Am) then

P(Uit , Am) =


⌈

θ
|Am|

⌉
: if t ≤ θ (mod |Am|);

⌊
θ
|Am|

⌋
: otherwise.

Proof. Suppose A1, A2, . . . Aρ are the subsets of {1, 2, . . . , n}. For the given n nodes,

θ packets and Am (m = 1, 2, . . . ρ) one can construct flower code FC : (n, θ,~α, ρ)

with single ring and subset type jump on Am, for each m. Since subset type

jump on particular subset Am is assigning θ distinct packets on nodes Uit ∈ Am

(1 ≤ t ≤ |Am|) in some specific order. If |Am| divides θ then number of packets
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dropped on a particular node Uit is θ
|Am| . If |Am| does not divide θ then after

dropping
⌊

θ
|Am|

⌋
packets on each node of Am, there will remain θ (mod |Am|)

packets to assign nodes. Hence, there are θ (mod |Am|) number of nodes Uit

(it ∈ Am) with
⌊

θ
|Am|

⌋
+ 1 packets each. Remaining nodes in the set Am have⌊

θ
|Am|

⌋
packets each. Hence, the lemma is proved.

Lemma 5.9. For a Flower code FC : (n, θ,~α, ρ) with single ring and having subset type

jumps on node subsets A1, A2, . . . Aρ, the total number of packets stored on a particular

node Ui is

αi =
ρ

∑
m=1

P(Ui, Am),

where, P(Ui, Am) = 0 for Ui /∈ Am.

Proof. For a Flower code FC : (n, θ,~α, ρ) with single ring and having subset type

jumps, all packets stored on a particular node are equal to the sum of total number

of packets dropped on the node for each subset type jump of Am (1 ≤ m ≤ ρ).

Hence, the lemma is proved.

Remark 5.7. For a Flower code FC : (n, θ,~α, ρ) with a subset type jump Am(1 ≤ m ≤ ρ)

has the following properties

• If |Amax| = max
{
|A1| , |A2| , ...,

∣∣Aρ

∣∣} then

⌊
θ

|Amax|

⌋
≤ αi ≤ α ≤

ρ

∑
m=1

⌈
θ

|Am|

⌉
.

• If ∃Ui s.t. Ui ∈
⋂ρ

m=1 Am then the node Ui has the maximum number of distributed

distinct packets i.e., |Ui| = α but the converse is not true.

• For 1 ≤ i, j, p ≤ n, if ∃ Up (p ∈ Am) s.t.

Up /∈
ρ⋃

i=1
i 6=m

Ai, then αmax ≥
⌈

θ

|Am|

⌉
.

To construct GFR code C : (n, θ,~α, ρ), one can concatenate ρ distinct cycles with

some internal and external jumps, where each cycle defined on n nodes.
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Definition 5.9. (Flower Code with Multiple Rings): A system with ρ cycles of θ packets

in which packets are distributed among n nodes arranged on a circle with internal jump

function fin : {1, 2, ..., ρθ} \{θ, 2θ, . . . , ρθ} → N ∪ {0} and external jump function

fex : {1, 2, ..., ρ} → N ∪ {0} is called Flower code FC with parameters n, θ,~α and ρ,

where~α = (α1 α2 . . . αn).

Note that the Flower code FC : (n, θ,~α, ρ) has internal and external jump

functions ( fin and fex respectively) and each Flower code FC : (n, θ,~α, ρ) is a GFR

code C : (n, θ,~α, ρ) so terms of node sequence s (length ρθ) can be represented in

terms of fin and fex as described in Theorem 5.5 .

Theorem 5.5. Consider a Flower code FC : (n, θ,~α, ρ) having an internal jump function

fin : {1, 2, ..., ρθ} \ {θ, 2θ, . . . , ρθ} → N ∪ {0} and an external jump function fex :

{1, 2, ..., ρ} → N∪ {0}. If node sequence of the Flower code FC : (n, θ,~α, ρ) is s (length

ρθ) then

sm =



1 : if m = 1;

ϑ(m) : if ϑ(m) 6= 0, 1 < m ≤ ρθ;

n : if ϑ(m) = 0, 1 < m ≤ ρθ;

0 : if m > ρθ,

(5.5)

where

ϑ(m) =


m +

m−1

∑
i = 0

θ - i

fin(i) +
m−1

∑
i = 0

θ | i

fex

(
i
θ

)

(mod n).

Proof. Suppose node sequence of the Flower code FC : (n, θ,~α, ρ) is s of length

ρθ with an internal jump function fin(m) : {1, 2, ..., ρθ} \{θ, 2θ, . . . , ρθ} → N∪ {0}

and an external jump function fex(m) : {1, 2, ..., ρ} → N∪ {0}. By the Definition 5.4

of Node Sequence s of Flower code FC : (n, θ,~α, ρ), we have Usm (sm ∈ {1, 2, . . . n})

is the node on which packet is dropped and WLOG for m = 1 one can take s1 = 1.

If p is the index of term sp in the sequence s then for p 6= 1 and p ≤ ρθ, following

cases are raised.
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1. If θ | p then θth packet is placed on sp for a cycle and first packet for the

next cycle is placed on sp+1. Hence there is external jump between packets

dropped on node sp and node sp+1. Clearly p
θ gives the index number of

jump completed at node sp.

2. If θ - p then both packets dropped on nodes indexed sp and sp+1, are from

same cycle so there is internal jump between the both nodes.

Note that both cases can not fall on same node sm in node sequence s. Following

case 1 for p = m− 1,

sm = sm−1 + fex

(
m− 1

θ

)
+ 1, (5.6)

where θ | (m− 1) and m ∈ {1, 2, . . . ρθ}. Again for case 2,

sm = sm−1 + fin (m− 1) + 1, (5.7)

where θ - (m− 1) and m ∈ {1, 2, . . . ρθ}.

Hence one can have the following recursive equation by the above equations

(5.6) and (5.7) with boundary conditions s1 = 1 and si = 0 ∀i(∈ N) > ρθ on node

sequence s of length ρθ.

sm =



1 : if m = 1;

st + fex(tex) + 1 : if θ | t, 1 < m ≤ ρθ;

st + fin(t) + 1 : if θ - t, 1 < m ≤ ρθ;

0 : if m > ρθ,

(5.8)

where tex = m−1
θ and t = (m− 1). Solving the recursive equation (5.8), one can get

relation (5.5).

Since each GFR code can be represented by node sequence, dropping sequence

and incidence matrix so each Flower code can also be represented by node se-

quence, dropping sequence, and incidence matrix. The following lemmas establish

the relationships among those collectively. The lemmas are as follows.
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Lemma 5.10. Consider a dropping sequence d of length l for a Flower code FC :

(n, θ,~α, ρ). If dt = 1 for any t (1 ≤ t ≤ l) then NPDI Matrix Bn×θ = [bi,j]n×θ is

given by bi,j = 1, where

j =

 wd(t) (mod θ) : if θ - wd(t);

θ : if θ | wd(t).
(5.9)

and

i =

 t (mod n) : if n - t;

n : if n | t;
(5.10)

Proof. Let d be a dropping sequence of length l for a GFR code C : (n, θ,~α, ρ) with

n nodes and θ packets. For a given m ∈ {1, 2, . . . , l}, if dm = 1 then the index of the

packet associated with the dm is mapped to weight wd(m). Hence, it proves the

lemma.

Lemma 5.11. Consider a Flower code FC : (n, θ,~α, ρ) with node sequence s of length ρθ.

Its dropping sequence is given by 〈d(m)〉lm=1 s.t. ∀ i, 1 ≤ i ≤ ρθ

d(m) =


1 : if m =

i
∑

j=1

(
sj − sj−1

)
(mod n);

0 : if m 6=
i

∑
j=1

(
sj − sj−1

)
(mod n),

where s0 = 0.

Proof. For a Flower code FC : (n, θ,~α, ρ), consider a dropping sequence d of length

l. By the definition node sequence, two packets with consecutive indexes are

associated with si and si+1, for some i ∈ {1, 2, . . . , n}. Using the definition of

dropping sequence, one can find that [si+1 − si] (mod n) number of zeros exist

between two consecutive 1′s. In particular, the 1′s are associative with the two

packets. It proves the lemma.

Lemma 5.12. Consider a Flower code FC : (n, θ,~α, ρ) with dropping sequence d with
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length l. Its node sequence is given by s of length ρθ s.t. for each t (1 ≤ t ≤ l) with dt = 1,

i = wd(t)

and

si =

 t (mod n) : if n - t;

n : if n | t.

Proof. Using the defination of node sequence and dropping sequence, one can

easily prove the lemma by observing that the weight wd(t) is associated with the

packet for dt = 1.

5.1.4 Flower codes with all one packet dropping sequences

In the subsection, we discuss the properties (such as parameters, universally

good condition, and dual property) of Flower codes with all one packet dropping

sequence. The Flower code with uniform node storage capacity can also be con-

structed by taking packet dropping sequence x = 1ρθ. For n nodes, θ packets, and

binary sequences x = 1` and y, from the Lemma 5.1, the Flower code exists if

` = wy. From the Fact 5.1, in the Flower code, packet Pj is stored in node Ui if and

only if yr = 1, r − j ≡ 0 (mod θ) and wy(r)− i ≡ 0 (mod n). The parameters of

such Flower codes are calculated in the following Theorem.

Theorem 5.6. For a Flower code with n nodes, θ packets and a binary sequence y of length

t the node storage capacity of the node Ui (i = 1, 2, . . . , n) is

αi =


wy
n : if η = 0,

1 +
⌊

wy
n

⌋
: if i = 1, 2, . . . , η and η 6= 0,⌊

wy
n

⌋
: if i = η + 1, . . . , θ and η 6= 0;

where η = wy − θ
⌊ s

n
⌋
.

Using the Theorem 5.6, one can observe the following remark.

Remark 5.8. For n nodes and θ packets, consider a Flower code with a binary sequence x =

1wy and y (length t). For two distinct integers r1 (≤ t) and r2 (≤ t), let yr1 = yr2 = 1. If
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r1− r2 ≡ 0 (mod θ) and wy(r1)−wy(r2) ≡ 0 (mod n) then the two replicas of the packet

Pj are dropped on a node Ui, where r1 − j ≡ 0 (mod θ) and wy(r1)− i ≡ 0 (mod n).

Using the Definition of a Flower code and the Theorem 5.6, one can easily prove

the following proposition.

Proposition 5.8. For a Flower code with n nodes, θ packets, and binary sequences x = 1wy

and y (length t), the node storage capacity αi ∈ {α− 1, α} (i = 1, 2, . . . , n).

Lemma 5.13. A Flower code with n nodes, θ packets, and binary sequences x = 1wy

and y (length t), is universally good, if and only if ∑θ
j=1 Ai(j)Ap(j) ≤ 1 for each i, p =

1, 2, . . . , n and i 6= p.

Proof. The proof follows the Lemma 5.3 for the packet dropping sequence x =

1wy .

Proposition 5.9. For n, θ, and the a binary sequence y, the Flower code is universally

good, when the sequence is generated from the Algorithm 1 with a = 1.
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CHAPTER 6

Generalized Fractional Repetition Codes and

Hypergraphs

Every dance is a kind of fever chart, a graph of the heart. -Martha Graham [1]

In this chapter, motivated by [98], a bijection between a hypergraph and a GFR

code has been established and using the bijection, bounds on the parameters of

GFR codes are studied for various GFR codes. Considering the same bijection for

the case of linear hypergraph, the construction of universally good adaptive GFR

codes are discussed.

6.1 Hypergraphs and Generalized Fractional Repeti-

tion Codes

In Chapter 2, hypergraphs are introduced. Various codes on hypergraphs are also

studied in [13, 19]. This motives us to study the properties of GFR codes in terms

of parameters of hypergraphs. As introduced in Chapter 2, a hypergraph is the

collection of some subsets of the set of hypervertices. On the same line, a GFR

code is the collection of some subsets of the set of packets. Therefore, it is easy to

observe that, in a GFR code, the distribution of nodes and packets are similar to

the incidence of hypervertices and hyperedges in a hypergraph. It is natural that a

GFR code can be represented by a hypergraph (V, E) with n hypervertices and θ
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v1 v2

v3 v4

E1

E2
E3

E4

E5

E6

⇐⇒

U1 P1, P2, P3

P1, P4, P5

P2, P4, P6

P3, P5, P6

U2

U3

U4

Hypergraph (V, E) FR code C : (n, θ, α, ρ)

Figure 6.1: An example of the bijection between a Hypergraph and a GFR code.

hyperedges. The following fact is straightforward.

Fact 6.1. A GFR code with n nodes, θ packets, node storage capacity αi (i = 1, 2, . . . , n)

and packet replication factor ρj (j = 1, 2, . . . , θ) is equivalent to a hypergraph (V, E) with

|V| = n and |E | = θ such that |E(vi)| = αi for vi ∈ V, and |Ej| = ρj for Ej ∈ E , and

hence, there exists a bijection ϕ : E → {Pj : j = 1, 2, . . . , θ} such that Ui = ϕ(E(vi)) =

{Pj = ϕ(E) : vi ∈ E, E ∈ E}, where i = 1, 2, . . . , n.

To illustrate the relationship between a hypergraph and a GFR code, let us

consider an example.

Example 6.1. As shown in Figure 6.1, consider a hypergraph (V, E) with V = {vi : i =

1, 2, 3, 4} and E = {Ej : j = 1, 2, 3, 4, 5, 6}, where E1 = {v1, v2}, E2 = {v1, v3}, E3 =

{v1, v4}, E4 = {v2, v3}, E5 = {v2, v4} and E6 = {v3, v4}. For the hypergraph, E(v1) =

{E1, E2, E3}, E(v2) = {E1, E4, E5}, E(v3) = {E2, E4, E6} and E(v4) = {E3, E5, E6}. As

shown in Figure 6.1, consider a GFR code C : (n = 4, θ = 6, α = 3, ρ = 2) with 4 nodes

and 6 packets such that U1 = {P1, P2, P3}, U2 = {P1, P4, P5}, U3 = {P2, P4, P6} and U4 =

{P3, P5, P6}, where~α = (3 3 3 3) and~ρ = (2 2 2 2 2 2). Note that there exist the bijection

ϕ : E → {Pj : j = 1, 2, . . . , 6} such that ϕ(Ej) = Pj for each j = 1, 2, . . . , |E |. Hence,

ϕ(E(vi)) = {Pj = ϕ(Ej) : Ej ∈ E , vi ∈ Ej}.

The relation between the parameters of the hypergraph and the parameters of

the GFR code are as follows.

• The hypervertices and hyperedges of the hypergraph are mapped to nodes

and packets of the GFR code respectively.

• The number of nodes and the number of hypervertices are same i.e., n = |V|.

85



• The number of distinct packets and the number of hyperedges are same i.e

θ = |E |.

• The packet distribution in the node φ(E(v)) = {φ(E) : E ∈ E(v)}.

• The node storage capacity of any node is the same as the hypervertex degree

of the respective hypervertex i.e., αi = |E(vi)|, for i = 1, 2, . . . , n.

• The replication factor of any packet is equal to the cardinality of the respective

hyperedge i.e., ρj = |Ej|, for j = 1, 2, . . . , θ.

• The maximum node storage capacity α = max{|E(v)| : v ∈ V} and the

maximum replication factor ρ = max{|E| : E ∈ E} for a GFR code.

• A reconstruction set of the corresponding GFR code is associated with a

hypervertex cover of a sub-hypergraph (V′, E ′) induced by V′ = ∪E∈E(v)E,

and |E ′| ≥ M(k).

• Consider a hypervertex cover V of a sub-hypergraph (V′, E ′) of the hyper-

graph (V, E), where V′ = ∪E∈E(v)E and E ′ = E(v).

• In the corresponding GFR code C , for a node failure Ui, the surviving set is

associated with the set V \{vi}, where i = 1, 2, . . . , |V|.

• In the GFR code, the repair bandwidth for any node is equal to the hyperver-

tex degree of respective hypervertex and the tolerance factor is equal to the

corresponding hypergraph size.

• For the given positive integer k < n, let (V′, E ′) be a sub-hypergraph induced

by V′ ⊂ V. The maximum file size M(k) of the corresponding GFR code is

M(k) = min{|E ′| : V′ ⊂ V, |V′| = k}.

• Let (V′, E ′) be a sub-hypergraph induced by V′ ⊂ V. The minimum distance

of the corresponding GFR code is dmin = min{|V\V′| : V′ ⊂ V s.t. |E ′| < θ}.

For any GFR code C : (n, θ,~α,~ρ), it is obvious that the parameters n and θ must

be positive integer. Therefore, a Hypergraph (V 6= ∅, E) with |E(v)| > 0 (for each

v ∈ V) and |E| > 0 (for each E ∈ E ) will corresponds to a GFR code with |V| nodes
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and |E | packets. For the rest of the chapter, hypergraph (V 6= ∅, E) with E(v) 6= ∅

(for each v ∈ V) and E 6= ∅ (for each E ∈ E ) is considered. In the following

section, the correspondence between a hypergraph and GFR code is explored, and

universally good GFR code is constructed. Since it is recursive construction, it

justifies the adoptness of the system.

6.2 Construction of Universally Good Generalized Frac-

tional Repetition Codes

As introduced in Chapter 2, for a GFR code, if any two node contain atmost one

common packet then the GFR code is universally good, and, for any hypergraph, if

any two hyperedges share atmost one hypervertex then the hypergraph is a linear

hypergraph. Hence, the following fact is straightforward.

Fact 6.2. A GFR code is universally good if and only if the GFR code is a linear hypergraph.

From the fact 6.2, one can construct universally good GFR code by constructing

a linear hypergraph. For a linear hypergraph, the parameters of a universally good

GFR code is given in following Fact 6.3.

Fact 6.3. For a non-empty hypervertex set V and a hyperedge set E ⊂ {E : E ⊂ V}, a

linear hypergraph (V, E) is a universally good GFR code with |V| nodes, |E | packets, node

storage capacity |E(vi)| (vi ∈ V for i = 1, 2, . . . , |V|) and packet replication factor |Ej|

(Ej ∈ E for j = 1, 2, . . . , E ).

Recall that any sub-hypergraph (or induced sub-hypergraph) of a linear hyper-

graph is also a linear hypergraph. It motives us towards the recursive construction

of a linear hypergraph by adding a hypervertex and/or adding a hyperedge into a

linear hypergraph as per the following three facts 6.4, 6.5 and 6.6.

Fact 6.4. Consider a linear hypergraph (V, E ). For a set E ⊂ V, the hypergraph (V, E ∪

{E}) is a linear hypergraph if and only if |E ∩ E′| ≤ 1 for each E′ ∈ E .
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Fact 6.5. Consider a linear hypergraph (V, E ). For a hypervertex v /∈ V and a set E ⊂ V,

the hypergraph (V ∪{v}, E ∪ {E∪{v}}) is a linear hypergraph if and only if |E∩ E′| ≤ 1

for each E′ ∈ E .

Fact 6.6. Consider a linear hypergraph (V, E ) and suppose E′ ⊂ E, where E ⊂ V and

E′ ∈ E . For E′ ⊂ E, the hypergraph (V, (E\{E′}) ∪ {E}) is a linear hypergraph if and

only if |E ∩ E′′| ≤ 1 for each E′′ ∈ E , where E′′ 6= E′.

One can construct a linear hypergraph by adding one hyperedge in the hy-

peredge set (Fact 6.4), or injecting a hypervertex in vertex set and a hyperedge

(Fact 6.5), or deleting a hyperedge from hyperedge set and adding a hyperedge

which contains all the hypervertices of the deleted hyperedge (Fact 6.6) in a linear

hypergraph. Considering iterations of Fact 6.4, Fact 6.5 and Fact 6.6 several time,

one can get universally good GFR code with the parameters specified in Fact 6.3.

For example, one can construct the GFR code of Figure 6.1 recursively as given in

Table 6.1. In the example, a hypervertex v4 and a hyperedge E3 are added into the

initial hypergraph by using the Fact 6.5. In the step 3 and 4, hyperedges E5 and E6

are added into the hypergraph.

Remark 6.1. In Fact 6.4, a linear hypergraph is constructed by adding a hyperedge into

a linear hypergraph. In the corresponding GFR codes, a new universally good GFR code

with higher parameters can be constructed by adding a new packet into a universally good

GFR code.

Remark 6.2. In Fact 6.5, a linear hypergraph is constructed by adding a hypervertex into

a linear hypergraph. In the corresponding GFR codes, a new universally good GFR code

with higher parameters can be constructed by adding a new node into a universally good

GFR code.

Remark 6.3. In Fact 6.6, a linear hypergraph is constructed by replacing a hyperedge

with a new hyperedge such that the new hyperedge contains all the hypervertices of the

hyperedge. In the corresponding GFR codes, a new universally good GFR code with higher

parameters is constructed by increasing the replication factor of a packet in a universally

good GFR code.
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Table 6.1: Recursive construction of the GFR code (Figure 6.1).

Step Hypergraph Adaptive Universally Fact
No. (V, E ) Good GFR code
1 V = {v1, v2, v3},

E = {E1, E2, E4}, Initial
E1 = {v1, v2}, U1 = {P1, P2}, Hypergraph
E2 = {v1, v3}, U2 = {P1, P4},
E4 = {v2, v3} U3 = {P2, P3}

2 V = {v1, v2, v3, v4}
E = {E1, E2, E4, E3},
E1 = {v1, v2}, U1 = {P1, P2, P3},
E2 = {v1, v3}, U2 = {P1, P4}, Fact 6.5
E4 = {v2, v3}, U3 = {P2, P3},
E3 = {v1, v4} U4 = {P3}

3 V = {v1, v2, v3, v4}
E = {Ei : i = 1, 2, 3, 4, 5},
E1 = {v1, v2}, U1 = {P1, P2, P3},
E2 = {v1, v3}, U2 = {P1, P4, P5}, Fact 6.4
E3 = {v1, v4}, U3 = {P2, P3},
E4 = {v2, v3}, U4 = {P3, P5}
E5 = {v2, v4}

4 V = {v1, v2, v3, v4}
E = {Ei : i = 1, 2, . . . , 6},
E1 = {v1, v2}, U1 = {P1, P2, P3},
E2 = {v1, v3}, U2 = {P1, P4, P5}, Fact 6.4
E3 = {v1, v4}, U3 = {P2, P3, P6},
E4 = {v2, v3}, U4 = {P3, P5, P6}
E5 = {v2, v4}, (Universally good
E6 = {v3, v4} GFR code (Figure 6.1))

Lemma 6.1. For each GFR code, dual of the GFR code exists.

Proof. Any GFR code C : (n, θ,~α,~ρ) is represented by a binary NPDI Matrix, where

the entry sum of each row and each column are non-zero. The transpose of such

binary matrix is again a binary matrix with nonzero entry sum of each row and

entry sum of each column. Hence, there exist a GFR code C ∗ : (n∗, θ∗,~α∗,~ρ∗) with

respect to the transposed binary matrix. Hence, the GFR code C ∗ is dual of the

GFR code C .

For a GFR code, the dual GFR code is equivalent to the dual hypergraph of the

corresponding hypergraph. For GFR codes with symmetric parameters, the file

size of dual GFR code is studied in [135]. Considering the fact that the dual of a
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linear hypergraph is again linear hypergraph, the following remark is obvious.

Remark 6.4. The dual of a universally good GFR code is again universally good GFR

code.

6.3 Generalized Fractional Repetition Codes using Hy-

pergraphs

In this Section, bounds on specific hypergraphs are mapped into the corresponding

GFR code. Also for a GFR code, algebraic entropy, and existence condition are

calculated.

6.3.1 Algebraic entropy of GFR code

The algebraic entropy of a hypergraph is discussed in [20]. Using a Hyper-FR

mapping on a hypergraph, one can find the algebraic entropy for a GFR code in

the following Theorem.

Theorem 6.1. (Algebraic Entropy) Consider a GFR code C : (n, θ,~α,~ρ) with the node

adjacency matrix A = [ai,j]n×n. The algebraic entropy associated to the GFR code C :

(n, θ,~α,~ρ), is given by

I = −
n

∑
i=1

λi log2 λi,

where λi ∈ R (for i = 1, 2, . . . , n) are a discrete probability distribution. In particular, λi

(i = 1, 2, . . . , n) are the eigenvalues of matrix L(C ) = D− A such that ∑n
i=1 λi = 1 and

0 ≤ λi ≤ 1 (∀i = 1, 2, . . . , n), where

D = diag

(
n

∑
j=1

a1,j,
n

∑
j=1

a2,j, . . . ,
n

∑
j=1

an,j

)

is the diagonal matrix.

Proof. ∀ vi, vj ∈ V the matrix element ai,j = |E(vi)∩E(vj)| for i 6= j and ai,j = 0 oth-

erwise. Define L(H ) = D− A(H ), where D = diag(D(v1), D(v2), . . . , D(vn)) and

D(vi) = ∑n
j=1 ai,j. The square matrix L(H ) is positive semidefinite and symmetric
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so eigenvalues of L(H ) are non negative real number say µi ≥ 0 (i = 1, 2, . . . , n).

Moreover
n
∑

i=1
µi = Tr(L(H )) =

n
∑

i=1
D(vi), where trace of matrix L(H ) is Tr(L(H )).

Now define L′(H ) = L(H )
n
∑

i=1
D(vi)

. The eigenvalues of matrix L′(H ) are λi = µi
n
∑

i=1
D(vi)

.

Note that 0 ≤ λi ≤ 1 and ∑n
i=1 λi = 1, for each i = 1, 2, . . . , n. Hence λi is dis-

crete probability distribution for i = 1, 2, . . . , n. Now one can define algebraic

hypergraph entropy

I(H ) = −
n

∑
i=1

λi log2 λi. (6.1)

For more details on algebraic hypergraph entropy see [20, Chapter 1]. The

significance of the algebraic entropy of a GFR code is not known yet. Note that

bounds on parameters of various hypergraphs are well studied [17, 20]. Using the

connection between hypergraph and GFR code, one can directly get the bounds on

parameters of GFR code. In the following sections, the bounds on parameters for

various GFR code are discussed.

6.3.2 Bounds for GFR Codes using Hypergraphs

For a given positive integers n, θ, αi (i = 1, 2, . . . , n) and ρj (j = 1, 2, . . . , θ), the

necessary and sufficient condition for the existence of a GFR code C : (n, θ,~α,~ρ) is

given in the following Theorem.

Theorem 6.2. (Existence Condition) For two positive integers n and θ, consider positive

integers ρj (j = 1, 2, . . . , θ) and αi (i = 1, 2, . . . , n) such that α = α1 ≥ α2 ≥ . . . ≥ αn.

A GFR code C : (n, θ,~α,~ρ) exists with |Ui| = αi and replication factor of packet Pj is ρj if

1.
θ

∑
j=1

ρj =
n
∑

i=1
αi and

2.
θ

∑
j=1

min{ρj, m} ≥
m
∑

i=1
αi ( for m < n, m ∈ N).

Proof. The proof follows from Fact 6.1 and Lemma 2.1.

The alternative condition for the existence of a GFR code is given in the follow-

ing Theorem.
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Theorem 6.3. (Alternate Existence Condition) For two positive integers n and θ, consider

positive integers ρj (j = 1, 2, . . . , θ) and αi (i = 1, 2, . . . , n) such that ρ = ρ1 ≥ ρ2 ≥

. . . ≥ ρn. A GFR code C : (n, θ,~α,~ρ) exists such that |Ui| = αi and replication factor of

packet Pj is ρj if

1.
n
∑

i=1
αi =

θ

∑
j=1

ρj and

2.
n
∑

i=1
min{αi, m} ≥

m
∑

j=1
ρj ( for m < θ, m ∈ N).

Proof. The proof follows from the dual statement of the Theorem 6.2.

For given n, θ, αi (i = 1, 2, . . . , n) and ρj (j = 1, 2, . . . , θ), one can observe that

Theorems 6.2 and Theorem 6.3 hold simultaneously. Note that, for the given

parameters n, θ, αi (i = 1, 2, . . . , n) and ρj (j = 1, 2, . . . , θ), if it does not satisfy one

of the constraint in the Theorem 6.2 or Theorem 6.3, then a GFR code does not exist

with these parameters.

Consider a GFR code with two packets having same replication factor such that

the two packets are shared by same nodes. Let us call those packets as parallel

packets. Similarly, let us call the two nodes Ui and Uj as parallel nodes if Ui = Uj

for i ≤ j. For a GFR code without parallel packets and parallel nodes, the bound

on node storage capacity and replication factor are given in the following two

Lemmas.

Lemma 6.2. A GFR code C : (n, θ,~α,~ρ) without parallel packets, satisfies α ≤ 2n−1.

Proof. The proof follows from the Lemma 2.2 and Fact 6.1.

Lemma 6.3. A GFR code C : (n, θ,~α,~ρ) without parallel nodes, satisfies ρ ≤ 2θ−1.

Proof. The proof follows from the dual statement (with respect to the hypergraph)

of Lemma 6.2.

Lemma 6.4. For each j = 1, 2, . . . , θ, a GFR code C : (n, θ,~α,~ρ) with ρj = ρ (j =

1, 2, . . . , θ) connected hypergraph, satisfies the following conditions.

1.
n
∑

i=1
αi is a multiple of ρ,
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2.
n
∑

i=1
αi ≥ ρ(n−1)

ρ−1 ,

3. α ≤ 1
ρ

n
∑

i=1
αi.

Proof. The proof follows from Lemma 2.10 and Fact 6.1.

For a GFR code, let the set of nodes be a disjoint union of two subsets such that

any node from one subset does not share packets with any node from the another

subset. A bound on the GFR code is calculated in the following theorem.

Lemma 6.5. Let C : (n, θ = 2m,~α,~ρ) be a GFR code with message packets P1, P2,. . .,

Pm, P′1, P′2,. . ., Pm such that Fi ∩ F′j =∅ if and only if i = j, where Fj = {Ui : Pj ∈ Ui}

and F′j = {Ui : P′j ∈ Ui}. Then

m

∑
j=1

(|Fj|+ |F′j |
|Fj|

)−1

≤ 1.

Proof. The proof follows from Lemma 2.3 and Fact 6.1.

6.3.3 Bounds for GFR Codes using Linear Hypergraphs

As introduced in Chapter 2, a hypergraph is a linear hypergraph if any two hy-

peredges share at most one hypervertex. Note that, in a hypergraph, any two

hyperedges share at most one hypervertex if and only if any two hypervertices

are shared by at most one hyperedge. Therefore, any two nodes in a GFR code,

equivalent to a linear hypergraph, do not share more than one packet. A GFR code

corresponding to a linear hypergraph will satisfy the following Lemmas.

Lemma 6.6. A GFR code C : (n, θ,~α,~ρ) with |Ui ∩ Uj| ≤ 1 (for each i 6= j and

i, j = 1, 2, . . . , n), satisfies
θ

∑
j=1

(
ρj
2 ) ≤ (n

2).

Proof. The proof follows from Fact 6.1 and Lemma 2.6.

Lemma 6.7. A GFR code C : (n, θ,~α,~ρ) with |Ui ∩ Uj| ≤ 1 (for each i 6= j and

i, j = 1, 2, . . . , n), satisfies
n
∑

i=1
(αi

2 ) ≤ (θ
2).
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Proof. The proof follows from the dual statement of Lemma 6.6.

The bound on the maximum file size stored in a GFR code is obtained in the

following Theorems using the approach of hypergraph (see Theorem 4 in [137]).

Theorem 6.4. A GFR code C : (n, θ,~α,~ρ) with |Ui ∩ Uj| ≤ 1 satisfies M(k) ≥

∑k
i=1 αi − (k

2), where αi ≤ αj (1 ≤ i < j ≤ n).

Proof. The proof follows from the Lemma 2.4 and Lemma 2.5.

Remark 6.5. Recall that, a sub-hypergraph of a linear hypergraph is again a linear

hypergraph and each linear hypergraph satisfies the Lemme 2.4. Hence, all the GFR codes

which are equivalent to linear hypergraph satisfy the Theorem 6.4 for each k ≤ n− 1. So,

each GFR code which is equivalent to a linear hypergraph is universally good.

Remark 6.6. A GFR code illustrated in [134], is equivalent to a linear hypergraph. The

bound on maximum file size (Theorem 6.4) is also discussed in [134, Inequality 2].

6.3.4 Bounds for GFR Codes using Simple Hypergraphs

As introduced in Chapter 2, a hypergraph (V, E) is a simple hypergraph only if

Ei ⊆ Ej then i = j, for any Ei, Ej ∈ E . In a GFR code which is equivalent to a

simple hypergraph, all the nodes which share a packet, will not contain any other

common packet. Any GFR code equivalent to a simple hypergraph will satisfy the

following two lemmas.

Lemma 6.8. A GFR code C : (n, θ,~α,~ρ) with {U : Pi ∈ U} * {U : Pj ∈ U} for each

i 6= j and i, j = 1, 2, . . . , n, satisfies
θ

∑
j=1

(n
ρj
)
−1 ≤ 1 and θ ≤ ( n

bn/2c).

Proof. The Lemma follows from [17, Chapter 1, Theorem 2].

Lemma 6.9. A GFR code C : (n, θ,~α,~ρ) with Ui * Uj for each i 6= j and i, j =

1, 2, . . . , n, satisfies
n
∑

i=1
( θ

αj
)
−1 ≤ 1 and n ≤ ( θ

bθ/2c).

Proof. The proof follows from the duality (with respect to the hypergraph) on

Lemma 6.8.
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Remark 6.7. In the GFR code as considered in [10, 26, 103, 127, 129], if parallel nodes

do not exist then the GFR code will satisfy the Lemma 6.8 and Lemma 6.9.

In [26, 77], the GFR codes with symmetric parameters satisfy the bounds es-

tablished in Lemma 6.6, 6.7, 6.8 and 6.9 with equality. In [133, 137, 134], the GFR

codes with asymmetric parameters satisfy the bounds established in Lemma 6.6

and 6.7 with equality. It would be an interesting task to find more GFR codes with

asymmetric parameters which satisfy Lemma 6.4, 6.5, 6.8 and 6.9 with equality.

6.3.5 Bounds for GFR Codes using Uniform Hypergraphs

As introduced in Chapter 2, for a positive integer r, an r-uniform hypergraph is a

hypergraph (V, E) with |E| = r, for each E ∈ E . If a hypergraph is an r-uniform

hypergraph then the hypergraph is called an r-uniform hypergraph. A GFR code

C : (n, θ,~α,~ρ) associated with an r-uniform hypergraph (V, E) will have the same

replication factor for each packet i.e., ρ = ρj for each j = 1, 2, . . . , θ.

For a positive integer r, an r-uniform hypergraph (V, E) is called an r-complete

hypergraph denoted by Kr
|V| if E = {E : E ⊆ V, |E| = r}. The following Lemma

gives a bound on the total number of packets of a GFR code.

Lemma 6.10. For a GFR code C : (n, θ,~α, ρ), the total number of distinct packets θ

satisfies, θ ≤ (n
ρ).

Proof. In an r-complete hypergraph Kr
|V| with no parallel hyperedges and isolated

hypervertices, |E | = (|V|r ). An r-uniform hypergraph (V, E) is a sub-hypergraph

of the r-complete hypergraph Kr
|V|. Hence, |E | ≤ (|V|r ). The number of distinct

edges in the corresponding GFR code C : (n, θ,~α, ρ) equivalent to a ρ-uniform

hypergraph (V, E), θ will satisfy, θ ≤ (n
ρ).

Note that the condition given in Lemma 6.10, is derived in [28] for GFR codes

with symmetric parameters. If an r-uniform hypergraph is a connected hypergraph

then the hypergraph is called a connected r-uniform hypergraph.

Lemma 6.11. A GFR code C : (n, θ,~α, ρ) with |Ui ∩Uj| ≤ 1 for each i, j = 1, 2, . . . , n

satisfies θ ≤ n(n−1)
ρ(ρ−1) .
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Proof. The proof follows from Fact 6.1 and Lemma 2.9.

Remark 6.8. The GFR code associated to a ρ-uniform linear hypergraph is GFR code

[137]. For a ρ-uniform linear hypergraph, the Theorem 6.4 follows from the bound on

maximum file size stored in a GFR code [137, Theorem 4].

Remark 6.9. In [123, Fact 1], it has been shown that an IFR code is equivalent to a

ρ-uniform hypergraph.

6.3.6 Bounds for GFR Codes using Regular Hypergraphs

As introduced in Chapter 2, an s-regular hypergraph is a hypergraph (V, E) such

that |E(vi)| = s, for each vi ∈ V. A hypergraph (V, E) is called an s-regular

hypergraph if |E(vi)| = s, for each vi ∈ V. A GFR code C : (n, θ,~α,~ρ) associated

with an s-regular hypergraph (V, E) will have the same node storage capacity for

each node i.e., α = αi for each i = 1, 2, . . . , n. The following three Lemmas give

bound on the GFR codes.

Lemma 6.12. A GFR code C : (n, θ, α,~ρ) associated with a connected α-regular hyper-

graph, satisfies the following conditions.

1.
θ

∑
j=1

ρj is a multiple of α,

2.
θ

∑
j=1

ρj ≥ α(θ−1)
α−1 ,

3. ρ ≤ 1
α

θ

∑
j=1

ρj.

Proof. The proof follows from the dual statement (with respect to hypergraphs) of

Lemma 6.4.

Lemma 6.13. A GFR code C : (n, θ, α,~ρ) with |Ui ∩Uj| ≤ 1 for each i, j = 1, 2, . . . , n

satisfies n ≤ θ(θ−1)
α(α−1) .

Proof. The proof follows from the dual property of Lemma 6.11.
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A hypervertex of an s-regular hypergraph (V, E), shares s distinct hyperedges,

and hence, |V| ≤ (|E |s ). The following Lemma ensures the existence of a GFR code

with the same number of nodes and packets and same packet replication factor

and node storage capacity.

Lemma 6.14. For a positive integer r, there exists a GFR code C : (n, n, r, r) such that

2 ≤ r ≤ n− 1.

Proof. The proof follows from the fact that there exists an r-uniform r-regular

hypergraph with n hypervertices for 2 ≤ r ≤ n− 1.

The node packet distribution of the GFR code C : (5, 5, r, r) with 5 nodes are

the following for r = 2, 3, 4.

• There exists a GFR code C : (5, 5, 2, 2) with U1 = {P1, P2}, U2 = {P2, P3},

U3 = {P3, P4}, U4 = {P4, P5} and U5 = {P5, P1} for r = 2.

• There exists a GFR code C : (5, 5, 3, ) with U1 = {P1, P2, P3}, U2 = {P2, P3, P4},

U3 = {P3, P4, P5}, U4 = {P4, P5, P1} and U5 = {P5, P1, P2} for r = 3.

• There exists a GFR code C : (5, 5, 4, 4) with U1 = {P1, P2, P3, P4}, U2 =

{P2, P3, P4, P5}, U3 = {P3, P4, P5, P1}, U4 = {P4, P5, P1, P2} and U5 = {P5, P1, P2, P3}

for r = 4.

Remark 6.10. Each GFR code C : (n, θ, α, ρ) considered in [26] is associated with a

ρ-uniform α-regular hypergraph (V, E).

Recall that the storage capacity of nodes in a GFR code is related to the replica-

tion factor of packets in the corresponding dual GFR code and vise versa. Following

two Lemmas are based on the properties of duality.

Lemma 6.15. If C : (n, θ, α,~ρ) is a GFR code then the dual GFR code C ∗ : (n∗, θ∗,~α∗, ρ∗)

is a GFR code with ρ∗ = α.

Proof. The lemma follows from the fact that the dual of an r-uniform hypergraph

is an r-regular hypergraph [17].
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Lemma 6.16. If C : (n, θ,~α, ρ) is a GFR code then the dual GFR code C ∗ : (n∗, θ∗, α∗,~ρ∗)

is a GFR code with α∗ = ρ.

Proof. The lemma follows from the fact that the dual of an s-regular hypergraph is

an s-uniform hypergraph [17].

Remark 6.11. In [57], the transpose code of a GFR code is a GFR code, corresponds to

a dual hypergraph. All the GFR codes in [57], are corresponds to a ρ-uniform α-regular

hypergraph. So, any transpose code corresponds to an α-uniform ρ-regular hypergraph.

All the bounds in Lemma 6.6, 6.7, 6.13 and 6.11 are new bounds for the uni-

versally good GFR codes with asymmetric parameters as the best known to the

authors. In [26, 77], GFR codes with symmetric parameters satisfy the bounds in

Lemma 6.6, 6.7 and 6.9 with equality. It would be an interesting task to find more

GFR codes with asymmetric parameters which satisfy Lemma 6.4, 6.5, 6.9, 6.6, 6.7,

6.13 and 6.11 with equality.

6.3.7 GFR Codes and Hypergraphs

Each GFR code studied in the literature is associated with a specific hypergraph.

The various GFR codes and equivalent hypergraphs are listed in the Table 6.2.

FR code as the Hyper-FR image of the listed hypergraph (Table 6.2), satisfies the

constraints given in the definition of a GFR code in the respective article.
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Table 6.2: GFR codes and respective hypergraphs.

GFR code Corresponding hypergraph
C : (n, θ,~α,~ρ) (V, E)
GFR code [26, 103, 11] ρ-uniform and α-regular hypergraph
HFR code [133] Linear and α-regular hypergraph
IFR code [123] ρ-uniform hypergraph
VFR code [131] α-regular hypergraph with

|E| ∈ {ρ1, ρ2}, for each E ∈ E
GFR code [132, 137] ρ-uniform and linear hypergraph
WFR code [38] ρ-uniform hypergraph
GFR code [81, 56, 108] ρ-uniform, α-regular and
[128, 135, 120, 57, 77] linear hypergraph
Adaptive GFR code [129] ρ-uniform α-regular hypergraph s.t.

induced sub-hypergraph is again
ρ′-uniform α′-regular hypergraph

FFR code [134] Linear hypergraph
GFR code [85] ρ-uniform hypergraph
GFR code [15] Hypergraph
GFR code [127, 10] ρ-uniform and α-regular hypergraph
GFR code [104], Intersecting, ρ-uniform and
[74, 75] α-regular hypergraph
Locally repairable ρ-uniform, α-regular and
GFR code [69, 130, 71, 70] and non-linear hypergraph
FRB codes [102, 105, 103, 104] ρ-uniform and α-regular hypergraph
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CHAPTER 7

Further Properties of Generalized Fractional

Repetition Codes

Math is a language that you use to describe statistics, but really it’s about collecting information

and putting it in an order that makes sense. -Lauren Stamile [1]

For any code, bounds help to estimate the range of optimal parameters. For any

code, the code rate measures the redundancy added per symbol. In this chapter,

bounds on maximum file size, GFR code rate, and DSS code rate are calculated for

GFR codes.

7.1 Bounds on Generalized Fractional Repetition codes

In this section, for a GFR code, the bounds on file size stored in a GFR code is

discussed in Lemma 7.1 and Lemma 7.2. Further, the existence of dual of a GFR

code is discussed in the Lemma 6.1. A bound on distinct non-equivalent GFR

codes are discussed in Lemma 7.1 and Lemma 7.2.

Lemma 7.1. Consider a GFR code C with n nodes and reconstruction degree k. If the

node storage capacity of node Ui is αi and α1 ≤ α2 ≤ . . . ≤ αn, then the maximum file

size M(k) stored in the GFR code is bounded as

M(k) ≥
k

∑
i=1

αi − c
(

k
2

)
, (7.1)
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where any two distinct nodes have at-most c common packets and any 3 distinct nodes do

not have any common packets.

Proof. For a GFR code, any pair of distinct nodes contains at-most c distinct packets.

So, from the inclusion–exclusion principle from set theory, the total number of

distinct packets in any k nodes is bounded by the difference of the total number

of packets stored in those k nodes and the sum of common packets in any pair of

nodes i.e.,

M(k) ≥∑
i∈I

αi − c
(

k
2

)
,

for any I ⊂ {1, 2, . . . , n}, where |I| = k. If I = {1, 2, . . . , k} and α1 ≤ α2 ≤ . . . ≤ αk

then we obtained the desired lower bound.

Lemma 7.2. Let C be a GFR code with n nodes and reconstruction degree k. If ρj

(j ∈ {1, 2, . . . , θ}) is the replication factor for the packet Pj then the maximum file size

M(k), for the GFR code, is bounded as

M(k) ≤
⌊

θ

∑
j=1

(
1−

(
n−ρj

k )

(n
k)

)⌋
. (7.2)

Proof. The proof is motivated by the proof of the Lemma 14 in [26]. Let S =

{SI = ∪i∈IUi : I ⊂ {1, 2, . . . , n}, |I| = k} be a collection of packet sets such that

the packet set is contained in k-subsets of node set collectively. If the average

cardinality of the sets in S is denoted by S, then

∑
SI∈S
|SI | =

(
n
k

)
S. (7.3)

But, an arbitrary packet Pj (j ∈ {1, 2, . . . , θ}) is the member of exactly (n
k)− (

n−ρj
k )

distinct sets in S . Hence,

∑
SI∈S
|SI | =

θ

∑
j=1

((
n
k

)
−
(

n− ρj

k

))
. (7.4)

Since, any k nodes have sufficient packets to reconstruct file so, M(k) ≤ |SI | for
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each SI ∈ S . Hence,

M(k) ≤ S =

⌊
θ

∑
j=1

(
1−

(
n−ρj

k )

(n
k)

)⌋
. (7.5)

Note that the Theorem 4 in [137] is a special case of the Lemma 7.1, and Lemma

14 in [26] is the special case of the Lemma 7.2.

Theorem 7.1. If A(n, θ) is a set of all distinct GFR codes defined on n nodes and θ packets

such that any two GFR codes in A(n, θ) are not equivalent then

1. |A(n + 1, θ)| ≤ (2θ − 1)|A(n, θ)| and

2. |A(n, θ + 1)| ≤ (2n − 1)|A(n, θ)|.

Proof. One can construct a GFR code by adding a node or/and a packet into a GFR

code C : (n, θ,~α,~ρ). A binary matrix represents each GFR code. One can construct

a binary matrix (NPDI Matrix) by adding a binary row (a node) or/and a binary

column (a packet) into a given NPDI Matrix (given GFR code) recursively. The

addition follows the following steps recursively in a suitable order.

1. (Adding a row) For a given θ, there are ∑θ
j=1 (

θ
j) = 2θ − 1 distinct non-zero

rows can be added into a given binary matrix (NPDI Matrix). Hence,

|A(n + 1, θ)| ≤ (2θ − 1)|A(n, θ)|.

2. (Adding a column) For a given θ, there are ∑n
i=1 (

n
i ) = 2n− 1 distinct non-zero

columns can be added into a given binary matrix (NPDI Matrix). Hence,

|A(n, θ + 1)| ≤ (2n − 1)|A(n, θ)|.

Theorem 7.2. If A(n, θ) is a set of all distinct GFR codes defined on n nodes and θ packets

such that
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1. any two GFR codes in A(n, θ) are not equivalent, and

2. for any GFR code in A(n, θ), both the minimum node storage capacity and the

minimum packet replication factor are at-least 2,

then

1. |A(n + 1, θ)| ≤ (2θ − θ − 1)|A(n, θ)| and

2. |A(n, θ + 1)| ≤ (2n − n− 1)|A(n, θ)|.

Proof. One can construct a GFR code C : (n′, θ′,~α′,~ρ′) by adding a node or/and

a packet into a GFR code C : (n, θ,~α,~ρ). A binary matrix represents each GFR

code. One can construct a binary matrix (NPDI Matrix) by adding a binary row (a

node) or/and a binary column (a packet) into a given NPDI Matrix (given GFR

code) recursively. The addition follows the following steps recursively in a suitable

order.

1. (Adding a row) For a given θ, there are ∑θ
j=2 (

θ
j) = 2θ − θ − 1 distinct rows

that can be added into a given binary matrix (NPDI Matrix), where the added

row contains at-least two number of ones. Hence,

|A(n + 1, θ)| ≤ (2θ − θ − 1)|A(n, θ)|.

2. (Adding a column) For a given θ, there are ∑n
i=2 (

n
i ) = 2n − n− 1 distinct non-

zero columns that can be added into a given binary matrix (NPDI Matrix),

where the added column contains at-least two number of ones. Hence,

|A(n, θ + 1)| ≤ (2n − n− 1)|A(n, θ)|.

7.2 Properties of Code Rate

Consider a GFR code C : (n, θ,~α,~ρ) with replication factor ρj = 2 (for each j ∈

{1, 2, . . . , θ}) on a (θ, M(k)) MDS code. The GFR code rate approaches to 1/2, if
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M(k)/θ approaches to 1. Note that the ratio M(k)/θ will approach 1 if the values

of both the maximum file size M(k) and the total number of distinct encoded

packets θ are very close and are very high. Recall that the tolerance factor for such

cases of the GFR code is ρ− 1 = 1. Hence, the code rate of a reliable GFR code is

bounded by 1/2. For a GFR code C : (n, θ,~α,~ρ), the code rate

RC (k) =
M(k)

∑θ
j=1 ρj

≥ αmin

∑θ
j=1 ρj

≥ αmin

ρθ
.

For any GFR code C : (n, θ,~α,~ρ), the growth of the GFR code rate is

RC (k)
RC (k− 1)

=
M(k)

M(k− 1)
≤ ∑k

i=1 αi

αmin
,

where αmin = min{αi : i = 1, 2, . . . , n} and k = 2, 3, . . . n− 1.

For a GFR code C : (n, θ,~α,~ρ) defined on (n, k) DSS, the following Lemma

gives a relation between the GFR code rate and the DSS code rate.

Lemma 7.3. For a GFR code, the GFR code rate is bounded by the DSS code rate.

Proof. For a GFR code, let a file, with size M(k), be stored in a GFR code C :

(n, θ,~α,~ρ). Since 1
k M(k) ≤ 1

n ∑n
i=1 αi,

RC (k) =
M(k)

∑n
i=1 αi

≤ k
n

(
1
k M(k)

1
n ∑n

i=1 αi

)
<

k
n
= RDSS(k).

Theorem 7.3. For an (n, k) DSS, consider a GFR code C : (n, θ,~α,~ρ) with |Ui ∩Uj| ≤ 1

(for each 1 ≤ i < j ≤ n). Then, the rate difference

RDSS(k)−RC (k) ≤
1

∑n
i=1 αi

(
k
2

)
.

Proof. For any i, j ∈ [n] and 1 ≤ i < j ≤ n, let a GFR code C : (n, θ, α, ρ) (with

|Ui ∩Uj| ≤ 1) be defined on (n, k) DSS. If αave is the average node storage capacity
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on nodes, then the code rate difference

RDSS(k)−RC (k) =
k 1

n ∑n
i=1 αi −M(k)
∑n

i=1 αi

=
kαave −M(k)

∑n
i=1 αi

.

Without loss of generality, let αi ≥ αj for 1 ≤ i < j ≤ n. Hence,

kαave ≤
k

∑
i=1

αi.

Therefore,

RDSS(k)−RC (k) ≤
1

∑n
i=1 αi

(
k

∑
i=1

αi −M(k)

)
.

Note that ∑n
i=1 αi −M(k) are the total number of common packets such that every

common packet is shared by a pair of the nodes from the node set {U1, U2, . . ., Uk}.

Hence,

RDSS(k)−RC (k) ≤
1

∑n
i=1 αi

(
k
2

)
.

Consider a GFR code C : (5, 10, 4, 2) with the node packet distribution as given

in the Table 7.1. For k = 1, 2, 3, 4, the GFR code rateRC (k), DSS code rate k/n and

difference between both the code rates are calculated in Table 7.2.

Table 7.1: The node packet distribution for the GFR code C : (5, 10, 4, 2).

U1 P1, P2, P3, P4

U2 P1, P5, P6, P7

U3 P2, P5, P8, P9

U4 P3, P6, P8, P10

U5 P4, P7, P9, P10

For another example, consider a GFR code C : (6, 6, 2, 2) with the node packet

distribution as given in the Table 7.3. For k = 2, 3, 4, 5, the code rateRC (k), the DSS

code rateRDSS(k) and the differenceRDSS(k)−RC (k) are calculated in Table 7.4.

In this Chapter, we have given some constructions of universally good GFR

code by concatenating two GFR codes with different packet symbols. The resultant
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Table 7.2: For k = 2, 3, 4, the (5, k) DSS code rate and the GFR code rate of the GFR code
C : (5, 10, 4, 2).

Max. Reconstruction DSS Code Rate Code Rate The Rate
Degree of GFR Code Difference

k RDSS(k) RC (k) k(k− 1)/(2nα)

1 0.200 0.200 0.000
2 0.400 0.350 0.050
3 0.600 0.450 0.150
4 0.800 0.500 0.300

Table 7.3: The node packet distribution for the GFR code C : (6, 6, 2, 2).

U1 P1, P2

U2 P2, P3

U3 P3, P4

U4 P4, P5

U5 P5, P6

U6 P1, P6

GFR code is called concatenated GFR code. The code rate and its growth are

discussed in the following theorem.

Theorem 7.4. Consider a GFR code C (1) : (n(1), θ(1),~α(1),~ρ(1)) with NPDI Matrix B(1)
n×θ .

For a positive integer m and r < m, let C (m) : (n(m) = mn, θ(m) = mθ,~α(1),~ρ(m) = ~ρ)

be a GFR code with NPDI Matrix M(m), where the matrix

B(r+1) =

B(1) 0

0 B(r)

 .

For a positive integer K < n(m) and k ≡ K (mod n(1)),

1. the DSS code rate

RDSS(K) =
1
m

(⌊
K

n(m)

⌋
+

k
n

)
,

2. the GFR code rate

RC (m)(K) =
1
m

(⌊
K

n(m)

⌋
1

ρave
+RC (k)

)
,
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Table 7.4: For k = 1, 2, 3, 4, 5, the (6, k) DSS code rate and the GFR code rate of a GFR code
C : (6, 6, 2, 2).

Max. Reconstruction DSS Code Rate GFR Code Rate The Rate
Degree Difference

k RDSS(k) RC (k) (k− 1)/(2n)
1 0.167 0.167 0
2 0.333 0.250 0.083
3 0.500 0.333 0.167
4 0.667 0.417 0.250
5 0.833 0.500 0.333

3. and the rate difference

RDSS(K)−RC (n)(K)

=
1
m

{
RDSS(k)

(
1− 1

ρave

)
−RC (k)

}
,

whereRDSS(k) is (n(1), k) DSS code rate and

ρave =
∑n

i=1 αi

θ
=

∑θ
j=1 ρj

θ
.

Proof. For N = nm and K = nbK/nc+ k, one can easily find the DSS code rate

RDSS(K), the GFR code rateRC (K) and the rate differenceRDSS(K)−RC ′(K).

In a GFR code C (m) : (n(m) = mn, θ(m) = mθ,~α(1),~ρ(m) = m~ρ), if the average of

the replication factor to the packets is

ρ
(m)
ave =

∑n(m)

i=1 α
(m)
i

θ(m)
,

then ρ
(m)
ave = ρ

(1)
ave, for any m ∈ N.

For r = 1, 2, if two GFR codes C (r) : (n(r), θ(r),~α(r),~ρ(r)) are universally good

then the concatenated GFR code C : (n, θ,~α,~ρ) is also universally good.

For any m ∈ N, if the GFR code C (1) : (n(1), θ(1),~α(1),~ρ(1)) is universally good

then the constructed GFR code C (m) : (n(m), θ(m),~α(m),~ρ(m)) (see Theorem 7.4) is

also universally good, where n(m) = mn, θ(m) = mθ,~α(m) =~α(1) and ~ρ(m) = m~ρ.
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For a positive integer α > 1, consider a matrix

Wα+1 =

1α 0(α
2)

Iα Wα

 ,

where 0m is an zero-array with length m, 1m is an m-length array with each entry

one, Im is an identity matrix of dimension m and W1 =

1

1

 for m > 1 and m ∈ N. a

GFR code C : (n = α + 1, θ = (α+1
2 ),~α,~ρ = (2 2 . . . 2) with the NPDI Matrix Wα+1 is

universally good [26]. For the GFR code, the difference between the DSS code rate

RDSS(k) and the GFR code rateRC (k) is k(k− 1)/(2nα). Note that the difference

increases with O(k2).

7.3 Reconstruction and Repair Degree of Generalized

Fractional Repetition Codes

Given a Fractional Repetition (FR) code with symmetric parameters, calculating

the reconstruction degree and repair degree in a DSS is a significant problem. In

this section, we present algorithms for approximating the reconstruction and repair

degree of GFR Codes.

Given a (n, k, d) DSS, one has to find a good GFR code C : (n, θ,~α,~ρ) which

matches with the parameters of DSS. Note that the parameter k in DSS is known as

the reconstruction degree of DSS. If one wants to get the entire file, then one has to

contact any k nodes in DSS. However, if we look at the definition of GFR code C

one finds that it is independent of k (there is no direct formula for calculating the

reconstruction degree). This motivates us to define the reconstruction degree of

GFR code C as the the number kFR so that if one wants the entire file (total (θ − 1)

packets as one remaining packet one can get using MDS code) one has to contact

the smallest set of any kFR nodes in GFR code. Clearly, k ≤ k ≤ kFR. To find the

value kFR of a GFR code we also define another reconstruction degree k of GFR

code as the smallest subset of nodes of C , which allows recovering the entire data

(all θ − 1 packets). Clearly, we also have k ≤ kFR. We present an Algorithm 2 to
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compute k. It gives a lower bound on actual kFR.

To find the reconstruction degree of a GFR code, one can always delete one

packet from all the nodes (W.L.O.G., we usually delete the last packet θ) as we can

recover it using the parity of MDS codes. Hence, for constructing entire data, it

is sufficient to reconstruct only (θ − 1) packets. Thus WLOG we delete the last

packet θ in the algorithm 2.

Algorithm 2 Algorithm to compute reconstruction degree k∗.

Require: Node packet distribution of GFR code after removing the last packet θ
from all n nodes of Vn = {V1, V2, . . . Vn}.

Ensure: Reconstruction degree k∗upp.
1: For 1 ≤ i, j, m ≤ n, if ∃ Vi & Vj s.t. Vj ⊆ Vi then delete all such Vj for all possible
nodes Vi and list remaining collection of nodes as Vm = {Vi1 , Vi2 , . . . , Vim},
|Vij | = αij = number of packets in node Vij .
2: Let V l = {Vij ∈ Vm : 1 ≤ j ≤ m & |Vij | = max{αij}}.
3: Pick an arbitrary set Vij ∈ V l, and call this set as P. Set the counter kλ = 1,
1 ≤ kλ ≤ m and 1 ≤ λ ≤ |V l| = l.
4: If ∃ Vij′

(1 ≤ j′ ≤ m) ∈ Vm s.t. Vij′
∩ P = ∅ then go to step 5 otherwise jump

to step 6.
5: Pick Vij′′

(1 ≤ j′′ ≤ m) ∈ Vm which has max cardinality among all Vij′′
in Vm

with Vij′′
∩ P = ∅. Update P = P ∪Vij′′

, update counter kλ = (kλ + 1) and go to
step 4.
6: If ∃Vir (1 ≤ r ≤ m) ∈ Vm s.t. Vir 6⊂ P then go to step 7 otherwise go to step 8.
7: Pick Vir′ (1 ≤ r′ ≤ m) ∈ Vm which has maximum |Vir′\P| among all Vir′ ∈ Vm

having the condition Vir′ 6⊂ P then update P = P ∪ Vir′ , update counter kλ =

(kλ + 1) and go to step 6.
8: If 1 ≤ λ < l, then store kλ in kλ′ and set kλ = k(λ+1) and perform step
4 for P = Vij′′′

(1 ≤ j′′′ ≤ m) ∈ V l s.t. Vij′′′
6= Vij ∈ V l, otherwise report

k∗upp = min{k′λ}l
λ=1.

Example 7.1. Consider a GFR code C : (n, θ,~α,~ρ) with U1 = {U1, U2, U3, U4}, U2 =

{U1, U6, U9}, U3 = {U2, U5, U7, U9}, U4 = {U3, U5, U6, U8} and U5 = {U4, U7, U8}.

• Note that since n = 5, after removing any packet (say last packet P9) we get V5 =

{V1, V2, V3, V4, V5}, where V1 = {1, 2, 3, 4}, V2 = {1, 6}, V3 = {2, 5, 7}, V4 =

{3, 5, 6, 8}, V5 = {4, 7, 8} each having cardinality as {4, 3, 3, 4, 3} respectively.

• Further since there is no set Vp s.t. Vp ⊆ Vq (1 ≤ p, q ≤ 5) so step 1 yields

Vm = V5 = {V1, V2, V3, V4, V5}.
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• For step 2, note that there are only two sets V1, V4 of maximum cardinality 4, so

V l = {V1, V4} now executing step 3, pick an arbitrary node V1 as P = V1 and

initialise k1 = 1.

• Now we skip step 4, since there does not exist any set Vi ∈ V5 s.t. Vi ∩ P = ∅ and

we go to step 6.

• At step 6, we search Vi ∈ V5 s.t. Vi 6⊂ P so we get V1, V2, V3, V4, V5.

• For step 7 we have V2\P = {6}, V3\P = {5, 7}, V4\P = {5, 6, 8} and V5\P =

{7, 8} among them |V4\P| is maximum. So P = P∪V4 = {1, 2, 3, 4}∪{3, 5, 6, 8} =

{1, 2, 3, 4, 5, 6, 8} and k1 = 1 + 1 = 2.

• According to step 6, again we search Vi ∈ V5 s.t. Vi 6⊂ P and we get V3, V5. Now

again V3\P = {7} and V5\P = {7}.

• By step 7, P = P ∪ V5 = {1, 2, 3, 4, 5, 6} ∪ {4, 7, 8} = {1, 2, 3, 4, 5, 6, 7, 8} and

k1 = 2 + 1 = 3 since V3\P is maximum.

• According to step 8, k′1 = 3 and update k1 = k2 = 1 Compute k′2 for P = V4 ∈ V2,

k′2 = 3.

• So k′upp = min{k1, k2} = 3.

Note that in general, Algorithm 2 computes an upper bound on k. However,

Algorithm 3 gives an exact value of k i.e., k∗upp = k = 3. Algorithm 3 presents a

case of GFR code C : (5, 8, 4, 2) for which k = 2 and kupp = 3. Further, note that at

the cost of complexity, one can modify the algorithm 2 at step 3, by taking P on all

possible nodes in Vm to yield an exact reconstruction degree k∗. In particular, for

GFR code (with symmetric parameters) this algorithm will always give an exact

value of k∗.

Remark 7.1. In Algorithm 2, 3, and 4, reconstruction degree and repair degrees are

approximated for M(k) = θ − 1. For some cases, these algorithms estimate exact values,

i.e., reconstruction degree and repair degree.
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Algorithm 3 Algorithm to compute reconstruction degree kFR.

Require: A set of packets Ω = {1, 2, . . . , θ} and node packet distribution of GFR
code with n nodes Un = {U1, U2, . . . , Un}.

Ensure: Exact reconstruction degree kFR.
1: For 1 ≤ m ≤ n set Um = {U1, U2, . . . , Um}. Take m = n.
2: Pick the set Um ∈ Um and call this set as P. Set the counter kλ = 1, 1 ≤ kλ ≤ m
and 1 ≤ λ ≤ n. If Ω\P = ∅ or singleton set then go to step 6 otherwise go to
step 3.
3: If ∃ Uj (1 ≤ j ≤ m) ∈ Um s.t. Uj ∩ P = ∅ then go to step 4 otherwise jump to
step 5.
4: Pick an arbitrary Uj′ (1 ≤ j′ ≤ m) ∈ Um which has maximum cardinality
among all Uj′ in Um with Uj′ ∩ P = ∅. Update P = P ∪Uj′ , update counter
kλ = (kλ + 1). Again if Ω\P = ∅ or singleton set then go to step 6 otherwise go
to step 3.
5: Pick Ur (1 ≤ r ≤ m) ∈ Um s.t. Ur ⊂ P which has maximum |Ur\P| among
all Ur ∈ Um having the condition Ur 6⊂ P then update P = P ∪ Ur, update
counter kλ = (kλ + 1). Once again if Ω\P = ∅ or singleton set then go to step 6
otherwise go to step 5.
6: Store kλ in k′λ and set kλ = k(λ+1).
7: If 1 ≤ λ < n then calculate Um−1 = Um\{Um} and perform step 2 for
P = Uj′′ (1 ≤ j′′ ≤ n) ∈ Um, otherwise report kFR = max{k′λ}n

λ=1.

Algorithm 4 Algorithm to compute repair degree di.

Require: Incidence matrix Bn×θ of GFR code.
Ensure: Repair degree di of node Ui.

1: For each node i (1 ≤ i ≤ n), let S{i}i = {Hj\{i} : i ∈ Hj, 1 ≤ j ≤ θ}
2: Compute T ⊆ {1, 2, . . . , θ} s.t. |T| is maximum among all possible subsets
and for t ∈ T, Ht\{i} ∈ S{i}i , and

⋂
t Ht\{i} = ∅. Set counter lq (1 ≤ q ≤ n) =

|T| − 1.
3: Update S{i}i = S{i}i \(Ht\{i}), ∀t ∈ T.

4: If S{i}i = ∅ then di = αi − ∑
q
λ=1 lλ, where αi = |Vi|, otherwise set q = q + 1

and go to step 2.
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Example 7.2. Consider the following node-packet distribution incidence matrix B11×8 for

GFR code C : (11, 8, 2, 3).

B11×8 =



1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

1 1 1 1 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 0

1 0 0 1 1 0 0 0

0 1 1 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


According to Algorithm 4 the calculation of repair degree di where i ∈ {1, 2, . . . , 11}

for the node-packet distribution incidence matrix M11×8 is as follows.

• H1 = {1, 8, 5}, H2 = {2, 5, 9}, H3 = {5, 9, 3}, H4 = {8, 1, 5}, H5 = {2, 6, 8},

H6 = {9, 4, 7}, H7 = {10, 7, 1}, H8 = {2, 6, 11}.

• If we want to compute repair degree for 5th node (i.e., d5) then pick the all Hj s.t. 5 ∈

Hj i.e., H1, H2, H3 and H4.

• Now S{5}5 = {H1\{5}, H2\{5}, H3\{5}, H4\{5}}, where H1\{5} = {1, 8},

H2\{5} = {2, 9}, H3\{5} = {9, 3} and H4\{5} = {8, 1}.

• But
⋂

r∈{1,2,3,4} Hr\{5} = ∅ and there is no any common element among any three

sets chosen from the S{5}5 .

• But for T = {1, 4} we have H1\{5}
⋂

H4\{5} = {1, 8} = ∅ so l1 = 2− 1 = 1.

• Now updated S{5}5 is S{5}5 = {H2\{5}, H3\{5}} then we have H2\{5}
⋂

H3\{5} =

{9} = ∅ here T = {2, 3} so l2 = 2− 1 = 1.

• Now Repair degree (d5) = α5 − l1 − l2 = 2 where α5 is weight of 5th row in node-

packet distribution incidence matrix M11×8.
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CHAPTER 8

Conclusions and Future Work

The future belongs to those who believe in beauty of their dreams. -Eleanor Roosevelt [1]

In this thesis, we proposed a model of heterogeneous DSS with dynamic re-

construction degree, storage node capacity and repair bandwidth. In particular,

at time t, a file can be reconstructed using a specific set of nodes and system is

repaired for any failed node by contacting some set of helper nodes. For such

heterogeneous DSS, the fundamental trade-off curve between system repair cost

and system storage cost is investigated. To plot the trade-off curve, a bi-objective

optimization problem is formulated with the constraints of min-cut bound and

non-negative parameters of the heterogeneous DSS. The bi-objective optimization

problem is solved by a weighted sum method for some numerical values of pa-

rameters of the heterogeneous model. Analyzing the trade-off curve, we observed

some more optimum points than the existing heterogeneous model [122]. The

considered model is close to the real world scenario. Our heterogeneous model is

flexible enough to mold it into any existing heterogeneous or homogeneous DSS

by considering appropriate restrictions. It would be an interesting task to construct

codes achieving the optimum points on the trade-off curve.

Further, a novel class of GFR codes based on sequences is introduced in the

thesis. Our work opens an excellent connection between GFR codes with a well-

known area of sequences. In this thesis, we have calculated the bound for the

universally good GFR code using sequences. Universally good GFR codes are

113



constructed using some families of binary sequences of finite length. It would be

interesting to study some more bounds on GFR codes using sequences. Construct-

ing GFR codes using a well-known class of sequences would be another exciting

task in the near future. In the last chapter of the thesis, we have sketched the

surface of the fascinating topic by establishing a correspondence between GFR

code and hypergraph. It is shown that each GFR code studied in the literature

is associated with some conditional hypergraph, where, for the hypergraph, size

of hyperedges and degree of hypervertices are all non-zero positive integers. A

construction of universally good adaptive GFR code with asymmetric parameters

is discussed in this work. Bounds on universally good GFR codes are obtained

from the properties of hypergraphs. Some new bounds are found on universally

good GFR code defined on heterogeneous DSS. It would be an exciting work in the

future to find the GFR codes which satisfy those bounds with equality. Analysis of

GFR codes on generalized hypergraph could be another interesting problem. It

will also be interesting future task to analyse the complexity of Algorithm 2, 3 and

4. In addition, obtaining algorithms for GFR codes to estimate the parameters is an

another interesting task in near future.
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