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Abstract

Automatic Speaker Verification (ASV) systems are vulnerable to various spoof-
ing attacks, namely, Speech Synthesis (SS), Voice Conversion (VC), Replay, and
Impersonation. The study of spoofing countermeasures has become increasingly
important and is currently a critical area of research, which is the principal objec-
tive of this thesis. With the development of Neural Network-based techniques, in
particular, for machine generated spoof speech signals, the performance of Spoof
Speech Detection (SSD) system will be further challenging. To encourage the de-
velopment of countermeasures that are based on signal processing techniques or
neural network-based features for SSD task, a standardized dataset was provided
by the organizers of ASVspoof challenge campaigns during 2015, 2017, and 2019.

The front-end features extracted from the speech signal has a huge impact in
the field of signal processing applications. The goal of feature extraction is to
estimate the meaningful information directly from the speech signal that can be
helpful to the pattern classifier, speech, speaker, emotion recognition, etc. Among
various spoofing attacks, speech synthesis, voice conversion, and replay attacks
have been identified as the most effective and accessible forms of spoofing. Ac-
cordingly, this thesis investigates and develops a framework to extract the dis-
criminative features to deflect these three spoofing attacks.

The main contribution of the thesis is to propose various feature sets as front-
end countermeasures for SSD task using a traditional Gaussian Mixture Model
(GMM)-based classification system. The feature sets are based on Teager Energy
Operator (TEO) and Energy Separation Algorithm (ESA), namely, Teager Energy
Cepstral Coefficients (TECC), Energy Separation Algorithm Instantaneous Fre-
quency Cepstral Coefficients (ESA-IFCC), Energy Separation Algorithm Instan-
taneous Amplitude Cepstral Coefficients (ESA-IACC), Amplitude Weighted Fre-
quency Cepstral Coefficients (AWFCC), Gabor Teager Filterbank (GTFB). The mo-
tivation behind using TEO is its nonlinear speech production property. The true
total source energy is known to be estimated using TEO, and it also preserves the
amplitude and frequency modulation of a resonant signal and hence, it improves
the time-frequency resolution along with improving the formant information rep-
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resentation. In addition, the TEO also has the noise suppression property and it
attempts to remove the distortion caused by noise signal.

In Chapter 3, we analyze the replay speech signal in terms of reverberation
that occurs during recording of the speech signal. The reverberation introduces
delay and change in amplitude producing close copies of speech signal which sig-
nificantly influences the replay components. To that effect, we propose to exploit
the capabilities of Teager Energy Operator (TEO) to estimate running estimate of
subband energies for replay vs. genuine signal. We have used linearly-spaced
Gabor filterbank to obtain narrowband filtered signal. The TEO has the property
to track the instantaneous changes of a signal. In Chapter 4, we propose Instan-
taneous Amplitude (IA) and Instantaneous Frequency (IF) features using Energy
Separation Algorithm (ESA). The speech signal is passed through bandpass fil-
ters in order to obtain narrowband components because speech is a combination
of several monocomponent signals. To obtain a narrowband filtered signal, we
have used linearly-spaced Butterworth and Gabor filterbank. The instantaneous
modulations helps to understand the local characteristics of a non-stationary sig-
nal. These IA and IF components are able to capture the information present
in a slowly-varying amplitude envelope and fast-varying frequency. The slow-
varying temporal modulations for replay speech have the distorted amplitude en-
velope, and the fast-varying temporal modulation do not preserve the harmonic
structure compared to the natural speech signal. For replay speech signal, the
intermediate device characteristics and acoustic environment distorts the spectral
energy compared to the natural speech energy. In Chapter 5, we extend our earlier
work with the generalized TEO, i.e., by varying the samples of past and future in-
stants with a constant arbitrary integer k also known as lag parameter or dependency
index, and named it as Variable length Teager Energy Operator (VTEO). In Chap-
ter 6, we propose the combination of Amplitude Modulation and Frequency Mod-
ulation (AM-FM) features for replay Spoof Speech Detection (SSD) task. The AM
components are known to be affected by noise (in this case, due to replay mecha-
nism). In particular, we explore this damage in AM component to corresponding
Instantaneous Frequency (IF) for SSD task. Thus, the novelty of proposed Ampli-
tude Weighted Frequency Cepstral Coefficients (AWFCC) feature set lies in using
frequency components along with squared weighted amplitude components that
are degraded due to replay noise. The AWFCC features contains the information
of both AM and FM components together and hence, gave discriminatory infor-
mation in the spectral characteristics.

The first motivation in this thesis is to develop various countermeasures for
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SSD task. The experimental results on the standard spoofing database shows that
proposed feature sets perform better than the corresponding baseline systems.
Inspired by the success in the SSD task, we applied TEO-based feature set in a
variety of speech and audio processing applications, namely, Automatic Speech
Recognition (ASR), Acoustic Scene Sound Classification (ASC), Voice Assistant
(VA), and Whisper Speech Detection (WSD). In all these applications, our TEO-
based feature set gave consistently better performance compared to their respec-
tive baselines.
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CHAPTER 1

Introduction

1.1 Motivation

One expects voice to be the primary source of interface between humans, and
machines in the near future [32]. Various biometric traits that have been success-
fully used in practical applications include voice, face, iris, fingerprint, palmprint,
palm/finger vein, etc. [33]. The Automatic Speaker Verification (ASV) system is
a biometric speaker authentication to verify a claimed speaker’s identity with the
help of the machines [34]. According to major companies that are involved in
the speech recognition research believe that the perfect user interface, does not
exist till date and to build it, knowledge of both sociology and technology fields
are required [35]. The developed systems allows, one to wirelessly control lights,
fans, TV, AC, security, etc [36]. Home automation now-a-days is one of the major
growing industries that changes the lifestyle of people [35]. On the other hand, for
special need, such as the person who are elderly and the disabled [37]. It is also
useful for the people who live alone might require helping hand at home [37].

Though the ASV systems are convenient and easy to use, it raise new security
issues because of their vulnerability to several types of spoofing attacks, such as
replay, impersonation, synthetic speech, voice conversion [1, 38]. In practice, we
would like an ASV system to be robust against variations, such as microphone
and transmission channel, intersession, acoustic noise, speaker aging, etc. This
robustness makes an ASV system to be vulnerable to various spoofing attacks as
it tries to nullify these effects. The spoofing attacks in biometrics are also known
as presentation attacks as per International Organization for Standardization (ISO),
and International Electro-technical Commission (IEC) [39].

Impersonation is defined as the process of producing the similar voice pattern,
and speech behavior of the target speaker’s voice [40–42]. The impersonators
do not require any technical background knowledge or machines to imitate the
target speaker. Speech synthesis research is also carried out using Text-To-Speech
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(TTS) system, where the text is given as the input, and the system produces a
speech signal at the output [43–45]. It is a machine-generated voice production
system, and represents a genuine threat. Voice Conversion (VC) is the process of
converting the source speaker’s voice to a sound similar to that of target speaker’s
voice [41, 46, 47]. One of the most easiest and simple spoofing attack is the replay
attack. The replay is a pre-recorded speech signal of a target speaker’s voice that
is captured using a recording device to get the fraudulent access to the system
[48–50].

Due to recent technological developments, it is possible to generate spoofed
data that resembles very close to their natural counterparts. To protect the ASV
system from such attacks, one of the approach is to develop an ASV system that is
more robust to resist any kind of spoofing attack. Another approach is to build an
independent Spoof Speech Detection (SSD) system. These spoofed signals resem-
ble close to the corresponding natural voice and thus, have high chance to spoof
the ASV system. The illustration of spoofing on ASV system is shown in Figure
1.1. It is therefore very important to develop countermeasures that can detect such
spoofing attacks.

Specifically, voice-based access in digital devices, such as smartphones, is equipped
with an AI-enabled personal assistant, e.g., OK Google, Apple Siri, Microsoft Cor-
tana, Amazon Echo, etc. Since an AI-enabled framework is used in real-life noise
scenarios, we need a knowledge of both signal processing and machine learning
to propose a feasible solution to develop a noise-robust voice-based access sys-
tem. Hence, there is a great demand for speech and audio technology in the near
future, since voice is the most important form of human communication, and pos-
sibly human-to-machine interactions.

Figure 1.1: Basic Illustration of Spoofing on ASV System. After [18].

The objective of this thesis is the study of Energy Separation Algorithm (ESA),
and Teager Energy Operator (TEO)-based features for SSD task. The motivation
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behind using TEO is its nonlinear speech production property [51]. The true total
source energy is estimated using TEO, and it also preserves the amplitude and fre-
quency modulation of a resonant signal and hence, it improves the time-frequency
resolution along with improving the formant information representation [52]. In
addition, the TEO has the noise suppression capability and thus, it attempts to
suppress the distortion caused by additive noise signal.

The Amplitude Modulation (AM) and Frequency Modulation (FM)-based fea-
tures have been used for several speech applications (involving signal degrada-
tion), such as speech and speaker recognition, speech analysis, and synthesis, etc.
In particular, modulation features from the AM-FM speech model were originally
conceived for robust speech recognition task [53] as they capture the second or-
der non-linear structure of speech formants. Very recently, these features are ap-
plied for far-field/whisper speech recognition (WSR) task [54–56]. In this study,
we explore the significance of AM and FM representation for replay SSD task.
Recently, we have proposed AM-FM-based feature sets using demodulation tech-
niques with Hilbert Transform (HT), and Energy Separation Algorithm (ESA) [27].
The motivation behind using the TEO and ESA approach is as follows:

• TEO has the capability to capture property of airflow pattern in vocal tract
system during natural speech production and thus, it can be an excellent use
for SSD task.

• The ESA is applied on the narrowband filtered speech signals, which are
modeled using AM-FM signals to estimate time-varying amplitude enve-
lope, and instantaneous frequencies [57].

• The ESA approach do not require the computationally complex task of phase
unwrapping (as it is required for HT-based approach of analytic signal gen-
eration).

• To estimate the IA and IF components with ESA approach, only five consec-
utive samples are required.

• The slow and fast-varying temporal modulations obtained at different time
scale have the distortion for the replay speech signal compared to the natural
speech.

• The IF component estimated for the subband filtered signal shows the damp-
ing in the fluctuation for the replay signal around the center (carrier) fre-
quency.
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• For the same time scale from where the IF fluctuation started having tilt from
its center frequency, sinc-like patterns are observed in replay signal than its
natural counterpart in the voiced regions.

• The spectral energy obtained from the Teager Energy Operator (TEO), shows
the difference for the natural, and its corresponding replay speech signal in
all the frequency regions, which is not captured by the traditional spectro-
gram.

Our proposed feature sets has been applied for various applications as given
below:

• Spoof Speech Detection (SSD) [1, 9–18, 27–29, 58–60].

• Replay Detection for Voice Assistants (VAs) [20, 21].

• Automatic Speech Recognition (ASR) [19, 61].

• Whisper Speech Detection (WSD) or classification of normal vs. whisper
speech [22].

• Acoustic Scene Classification (ASC) [23].

1.2 Key Research Challenges

The key research challenges in developing the SSD system are as follows:

• Performance of Joint Protocol with ASV Systems: The current studies on de-
veloping countermeasures, and ASV systems are carried out independently.
What user would like to have is a secure and accurate ASV system. How-
ever, a more robust ASV system to noise and channel variations may become
less secure against spoofing attacks. As there is no guarantee of having a bet-
ter performing countermeasure that provides lower EER, and also reliable
for the ASV system performance. Hence, with the progress made in the re-
search of spoofing detection, evaluation metrics must evolve to reflect the
joint protocol system performance.

• Liveness Detection: The use of high quality recording loudspeaker or play-
back device to record/playback the speech signal. In this process, the quality
of signal captured becomes indistinguishable from live human voice. This
high quality device makes the spoofed speech signal almost impossible to
detect that depends on the acoustic cues. This gives motivation to investi-
gate further on the liveness detection of human voice.
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• Logical and Physical Access: The physical access is the actual spoofing,
where the speech is played back through a microphone into the ASV system.
However, the ASVspoof database gave a special attention to logical access
attacks. For such attacks, it is assumed that the spoofed samples are directly
injected into the system through a software-based process [62]. Hence, phys-
ical access attacks might be more realistic than the logical access attacks,
where the attacker plays back a recorded utterance to the system. This ut-
terance can be either obtained from the real speaker or can be forged using
voice conversion (VC) or synthetic speech (SS) algorithms. This motivates
the study on physical access attacks, and evaluation database development.

• Comparison of Human vs. Machine Learning:
It is of great interest to know whether human perception is important in
identifying spoofing and hence, humans can achieve better performance
than automatic approaches in detecting spoofing attacks. There was a bench-
mark study comparing automatic systems against human performance on a
speaker verification and synthetic speech spoofing detection tasks (synthetic
speech and voice conversion spoofs) [63].

• Robustness to High Quality Speech Synthesizers:
Recently, many representation learning-based high quality speech synthe-
sis techniques were proposed that achieved significantly better naturalness.
The Wavenet [64], GAN [65], and other end-to-end speech synthesis archi-
tectures produce high quality synthesized speech [66]. It is also shown that
low quality publicly available database can be used to produce high quality
spoof data using GAN-based speech enhancement [67]. Such high quality
synthetic speech and voice conversion techniques may further increase the
difficulties in synthetic SSD. This technique could be used to generate spoof
speech database in the next edition of ASVspoof challenge [7].

• Robustness to Signal Degradation or Noisy Conditions:
Current publicly available spoofing databases are developed in clean con-
ditions. However, the recent replay database was recorded under various
acoustic environmental conditions. For ASVspoof 2015 challenge database,
the noisy database was developed by adding various noises at different
Signal-to-Noise Ratio (SNR) levels. Further investigations are required as
to how the diversity of different noise types affects the SSD performance.
In addition, the study is required to observe the effect on SSD, when the
additive noise is added manually, and when the noise is added naturally
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via the acoustic environment. Study for different acoustical background,
microphone, etc. is reported in [6]. Hence, the countermeasures must be
developed that it should be robust to signal degradation conditions as well.

1.3 Contributions from the Thesis

The main contribution of this thesis is to propose various feature sets as front-end
countermeasures for SSD task. The feature sets are based on TEO and ESA speech
demodulation technique. Figure 1.2 shows the key features sets proposed in the
thesis. Following are the key contributions in this thesis.

Figure 1.2: Various Countermeasures Proposed in This Thesis. ESA- Energy Separa-
tion Algorithm, IF/IACC- Instantaneous Frequency/Amplitude Cesptral Coefficients,
AWFCC- Amplitude Weighted Frequency Cepstral Coefficients, TECC- Teager Energy
Cepstral Coefficients. GTFB- Gabor Teager Filterbank.

1.3.1 Proposed Feature Sets for SSD

Recent research focuses on either to improve the novel features or improving the
back-end modeling for SSD task. The features extracted are supposed to deal with
speaker variability, phonetic variability, channel effects, acoustical environment,
etc. The replay speech is mainly distorted because of background noise (such as,
air-conditioner, computer), echo, and reverberation. Replay speech gets distorted
by both interfering sounds and reverberation caused because of the recording of
target speaker’s voice from the distance. The reverberation introduces delay and
change in amplitude producing close copies of speech signal, which significantly
influences the replay components. To that effect, we propose to exploit the capa-
bilities of Teager Energy Operator (TEO) to estimate running estimate of subband
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energies for replay vs. genuine signal. We have used linearly-spaced Gabor filter-
bank in order to obtain narrowband filtered signal. The TEO has the capability to
track the instantaneous changes of a signal.

1.3.2 Speech Parametrization (Analysis) of the Feature Sets

We consider the effect of different frequency scales, type of the filterbank used,
and number of subband filters used in filterbank. In order to emphasize the higher
frequency regions, the pre-emphasized speech signal is used as an input to the
filterbank. For the natural speech, as we locate the center frequency to higher
formants the energy traces are found to have more bumps than the energy traces
obtained from the lower formants. However, these energy traces were not found
for the replay speech signal as we locate the center frequency towards higher for-
mants. The variations in TEO profiles were observed for the replay speech signal,
when recorded in different acoustical environments. The slow and fast-varying
temporal modulations obtained at different time scale have the distortion for the
replay speech signal compared to the natural speech. The spectral energy ob-
tained from the TEO, shows the difference for the natural, and its corresponding
replay speech signal in all the frequency regions, which is not captured by the
traditional spectrogram.

1.3.3 Applications of Teager Energy-based Features

The first motivation to develop various feature sets as countermeasures for Spoof
Speech Detection (SSD) task. The experimental results on the standard SSD datasets
indicate that our proposed ESA-based features perform better than the acoustic
feature sets along with the baseline system. Later, the TEO-based feature set is
applied for a variety of speech and audio processing applications, namely, Au-
tomatic Speech Recognition (ASR), Voice Assistants (VAs), Whisper Speech De-
tection (WSD), and Acoustic Scene Classification (ASC). In all these applications,
our proposed feature set gave consistently better performance compared to the
respective baselines. The overall contributions of this thesis are summarized in
Figure 1.3.

1.4 Organization of the Thesis

The organization of the rest of the chapters in the thesis is shown via a flowchart
in Figure 1.4 and briefly described next.
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Figure 1.3: Pictorial Representation of Proposed Features Applied in Different Appli-
cations. ASR -Automatic Speech Recognition, ASC= Acoustic Scene Classification, VA-
Voice Assistant, WSD- Whsiper Speech Detection.

• Chapter 2 discusses the literature search on spoofing attacks for voice bio-
metrics. Different types of spoofing attacks are discussed with focus on re-
play attacks. Various approaches or methods focusing on the traditional and
Representation Learning (RL) approaches are also discussed. The several is-
sues with the stand-alone detectors are also briefly discussed.

• Chapter 3 discusses the detailed analysis to understand modeling of replay
signal, reverberation mechanism, and relevant basics of Teager Energy Op-
erator (TEO). The reverberation introduces delay in the genuine speech com-
ponents corresponding to different transmissions and reflections that fur-
ther depends on the acoustical environmental conditions. The experiments
are performed on different databases used for SSD task to evaluate the per-
formance of proposed feature set.

• Chapter 4 discusses the proposed feature sets used for SSD task, namely, En-
ergy Separation Algorithm Instantaneous Frequency Cepstral Coefficients
(ESA-IFCC), and Energy Separation Algorithm Instantaneous Amplitude
Cepstral Coefficients (ESA-IACC). The proposed feature sets are based on
Energy Separation Algorithm (ESA), and Teager Energy Operator (TEO).
The experiments on the SSD task using the standard datasets are presented
to evaluate the proposed feature set.

• Chapter 5 discusses our earlier work extended with the generalized TEO,
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Figure 1.4: Flowchart Depicting Organization of this Thesis.

i.e., by varying the samples of past and future signal with a constant arbi-
trary integer k also known as lag parameter, and named it as Variable length
Teager Energy Operator (VTEO). We compared the Variable length Energy
Separation Algorithm (VESA)-based features with earlier proposed method,
i.e., ESA along with Hilbert transform method for SSD task. In particular, we
performed experiments on ASVspoof 2017 Version 2.0 challenge database,
and BTAS database.

• Chapter 6 discusses importance of using the combined information of AM
and FM components rather than using it alone for replay SSD task. The
AM and FM components are estimated via the Energy Separation Algo-
rithm (ESA) that works on narrowband subband filtered signals. The Instan-
taneous Amplitude (IA) obtained from the Amplitude Modulation (AM)
component of a narrowband speech signal is severely affected by the noise
and multipath interference (such as, due to replay mechanism). The noise
present in the replayed signals are explored by the IF components. In par-
ticular, this damage in AM components is exploited by the proposed feature
set.
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• Chapter 7 discusses the Teager energy-based features used for different ap-
plication, namely, Automatic Speech Recognition (ASR), Acoustic Scene Clas-
sification (ASC), and Voice Controlled Systems (VCS) along with the Whis-
per Speech Detection (WSD). The experiments are performed on standard
dataset, and found the Teager energy-based feature set perform better com-
pared to the corresponding baseline systems.

• Chapter 8 concludes and summarizes the work done in the thesis. The con-
tributions in the thesis are presented. The Chapter also discusses the appli-
cations, limitations of the present work, and future research directions for
the task of anti-spoofing presented in the thesis.

1.5 Chapter Summary

This Chapter gave an outline of the basic ASV system and introduced the problem
of anti-spoofing. The motivation and need of anti-spoofing measures (or counter-
measures for spoofing) for our research work in this thesis is discussed. The major
contributions in the thesis include a novel feature sets, analysis of the feature sets,
and applications to SSD, ASR, ASC, VCS, and WSD. The organization of various
chapters in this thesis is also presented. In the next Chapter, we discuss the back-
ground studies, and the literature corresponding to spoofing attacks along with
the limitations in the literature, and current research issues in order to understand
gap area for research and development for anti-spoofing for ASV.
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CHAPTER 2

Background on Spoofing Attacks, Databases,
Countermeasures

2.1 Introduction

This Chapter discusses the literature search on the Spoofed Speech Detection
(SSD) task [68]. In the literature [2], the spoofing attacks are broadly classified into
four types, namely, impersonation, synthetic speech (SS), voice conversion (VC),
and replay. The detailed description of each spoofing attack along with their gen-
eration method, availability, and risk factor to be considered, when dealing with
the SSD task is discussed next. Development of the vulnerability of Automatic
Speaker Verification (ASV) system to speech synthesis, voice conversion, and re-
play attacks is presented. The anti-spoofing countermeasures existing in the liter-
ature for both machine-generated, and replay speech signals are discussed. This
Chapter brings out briefly various research issues (i.e., gap area in SSD field) for
the SSD task, majority of which will be addressed in this thesis work.

We have seen a surge of research papers on spoofing detection in scientific
conferences, such as APSIPA Annual Summit and Conference [24], ICASSP, IN-
TERSPEECH, and special issues in scientific journals as reported in Table 2.1.

2.2 Spoofing Attacks

The spoofed speech can be generated by humans themselves or by using differ-
ent machine-based approaches. The impostor speech generated by humans will
be classified under impersonation (or mimicking/identical twins). On the other
hand, impostor developed using artificially using machines can be due to replay,
synthetic speech, and voice conversion techniques. A brief discussion on these at-
tacks in voice biometrics is discussed in this sub-Section along with few spoofing
algorithms as shown in Fig. 2.1.
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Figure 2.1: Different Spoofing Attacks on Voice Biometrics Along With Their Availabil-
ity, and Risk Factor. IS: INTERSPEECH. Adapted from [1, 24].

Table 2.1: List of Special Issues on ASVspoofing and Countermeasures. After [1]

No. Details of Special Issue
1 IEEE Transactions of Information Forensics special issues

on Biometrics Spoofing and Countermeasures [69]
2 IEEE Signal Processing Magazine special issue

on Biometric Security and Privacy Protection [70]
3 IEEE Journal on Selected Topics in Signal Processing on Spoofing

and Countermeasures for Automatic Speaker Verification [71]
4 Speaker and Language Characterization and Recognition:

Voice Modeling, Conversion, Synthesis and Ethical Aspects [72]
5 Advances in Automatic Speaker Verification Anti-spoofing [73]

2.2.1 Impersonation

Impersonation is defined as the process of imitating the similar voice pattern, and
speech behavior of the target speaker’s voice [40–42]. This can be done by profes-
sional mimics/impersonator (by utilizing behavioral characteristics) or by twins
(by utilizing physiological characteristics) or anyone can (try to) impersonate an-
other person [74]. The impersonators do not require any technical background
or the machines to imitate the target speaker. The study in [75] found that if the
impostor is aware of the claimed speaker’s voice, and also carries similar voice
pattern could crack the biometric system. For better imitation, the professional
imitator tries to mimic the prosodic features of a target speaker [76]. Professional
voice imitator, intend to mimic the claimed speaker’s prosody, accent, pronunci-
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ation, lexicon, and other high-level speaker traits. Such imitation may mislead
human perception, however, it is less effective in attacking ASV systems because
most ASV systems are based on the spectral features to make decisions. Just like
twins attacks, in impersonation attacks, the system is presented with natural hu-
man speech. A system to detect unnatural speech does not help. As it takes special
training to impersonate someone’s voice, impersonation attack is not considered
as a common threat to ASV systems.

In speaker recognition, we aim to extract the unique speaker features from the
speech data. However, the speaker-specific features become relatively less unique
between the twins [77]. Generally, spectrographic analysis is used to identify the
speaker’s voice. In the case of identical twins, the same technique fails to per-
form primarily due to similarity in shape and size of vocal tract system [78]. The
study reported in [79], states that the pattern of speech signals, pitch (fundamen-
tal frequency, F0) contours, formant contours, and spectrograms for identical twin
speakers are very similar, if not identical. Due to lack of uniqueness, the FAR in-
creases for ASV of identical twins. Twins attacks are also referred to as twins
fraud [77]. Recently, the Voice ID service was launched by HSBC’s phone bank-
ing business, however, it failed to recognize true speaker [80–82]. Similar twins
fraud was studied in other biometrics literature as well [77], and a dedicated doc-
toral thesis in this area [83]. The identical twins do have a similar spectrographic
pattern, however, the ASV technology has seen a significant reduction in fraud,
and has proven to be more secure than ATM pins, passwords, and memorable
phrases. In twins attacks, the system is presented with natural human speech, a
synthetic speech detection mechanism will not enhance the security of the sys-
tem. To distinguish between the twins, further study on discriminative speaker
features is required or more study in this direction is required as observed more
than four decades earlier in [74].

2.2.2 Synthetic Speech

Synthetic speech is also referred to as Text-To-Speech (TTS) voice, which takes text
as input, and generate speech as output. It emulates a human vocal production
system, and represents a genuine threat. The synthetic speech is now able to gen-
erate high quality voice due to recent advances in unit selection synthesis [43], sta-
tistical parametric [44], hybrid [45], and DNN-based TTS methods. Recently, deep
learning-based techniques, such as Generative Adversarial Network (GAN) [65],
Tacotron [84], Wavenet [64]. are able to produce very natural-sounding speech
both in timbre, and prosody. The synthetic speech uses properties of a claimed
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speaker’s voice characteristics, and spectral cues of the natural speech. The spec-
tral energy density of natural (Panel I), and synthetic (Panel II) speech signal are
shown in Fig. 2.2. It is clearly observed that the distributions of spectral ener-
gies are very different between the natural speech, and synthetic speech. The
research on synthetic speech detection has been focused on how to detect the ar-
tifacts that exist in the synthetic speech. More technical description of algorithms
are reported in [85, 86].

Figure 2.2: Spectral Energy Densities of Natural (Panel I), Synthetic Speech (Panel II),
and Voice Converted Speech (Panel III). (a) Time-domain Speech Signal, and (b) Corre-
sponding 2-Dimensional (2-D) Spectral Energy Density.

2.2.3 Voice Conversion

Voice Conversion (VC) is the process of converting the source speaker’s voice to a
sound similar to the target speaker’s voice [41,46,47]. Voice conversion deals with
the information that relates to the segmental and suprasegmental features, while
keeping the language content similar [87]. The earlier studies includes statistical
techniques, such as Gaussian Mixture Model (GMM) [88], Hidden Markov Model
(HMM) [89], unit selection synthesis [90], principal component analysis (PCA)
[91], and Non-negative matrix factorization (NMF) [92] for VC task. Recently,
DNN [93], Wavenet [64], and GAN [65] represents a technology leap.

Studies also reported in the area of signal processing techniques, such as vector
quantization (VQ) [94], and frequency warping (FW) [95]. The research on voice
conversion detection has also been focused on how to detect the artifacts arising
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from the voice conversion process. One example of the converted speech is illus-
trated in Panel III of Fig. 2.2. More technical description of converted voices are
reported in [85], [87].

2.2.4 Replay

One of the most accessible spoofing is replay attack. The attacker replays a pre-
recorded voice from the target speaker to the system to gain access [48–50]. Such
attack is meaningful for text-dependent as well as for text-independent ASV sys-
tems. With high quality record-replay audio device, the replayed speech is highly
similar to the original speech, spectral content will change slightly due to impulse
response of an device that is modelled as LTI system (primarily due to convolution
theorem). Hence, replay is a serious adversary to text-dependent ASV system.

Fig. 2.3 shows the spectrographic analysis of natural speech, and replay speech
signal taken from the ASVspoof 2017 Challenge database [5]. The Panel I of Fig.
2.3 shows the natural speech signal with the corresponding spectrogram of the
natural speech signal for the utterance, “Actions Speak Louder Than Words", and
similarly, Panel II is for the replayed speech signal. It can be observed from the
Fig. 2.3 that there is a difference in temporal as well as in spectral representation
between Panel I (natural), and Panel II (replay) speech signal due to the channel,
and noise distortion.

Figure 2.3: Spectral Energy Densities of Natural (Panel I), and Replay Speech (Panel II).
(a) Time-Domain Speech Signal, and (b) 2-Dimensional (2-D) Spectral Energy Density.
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2.3 Database for SSD

To objectively report the research progress, there is a need to provide a common
dataset along with performance metric to evaluate the spoofing countermeasures.
This was also discussed in the special session on spoofing and countermeasures
for ASV held during INTERSPEECH 2013 [68]. This special session motivated the
researchers to organize the first ASVspoof 2015 Challenge held in INTERSPEECH
2015 [2]. The database released in this challenge contains two types of spoofing
attacks, namely, synthetic speech, and voice conversion. As a follow up, the sec-
ond and third challenges were organized during INTERSPEECH 2017, and IN-
TERSPEECH 2019, respectively [5], [96]. The historical developments and key
milestones of the ASVspoof initiative are illustrated in Fig. 2.4.

Figure 2.4: The Selected Chronological Progress in ASVspoof Literature for Voice Bio-
metrics. In INTERSPEECH 2013, a Special Session was Organized and Spoofing and
Anti-Spoofing (SAS) Corpus of Speech Synthesis and Voice Conversion Spoofing Data
was Created. The First ASVspoof Challenge was Held in INTERSPEECH 2015. In 2015,
the OCTAVE Project Started which Focused on TTS, VC and Replay Spoofing Data. Only
replay attack was further carried as the Second Edition of ASVspoof Challenge in IN-
TERSPEECH 2017. The Follow Up Third ASVspoof 2019 Challenge was on Physical, and
Logical Access Attacks Going to be Held during INTERSPEECH 2019 [7]. IS indicates
INTERSPEECH.

The early studies of spoofing attacks used different speech, and speaker recog-
nition databases, such as YOHO [41, 97], NIST SRE [46, 47, 98], and WSJ [86, 99].
The databases used for anti-spoofing studies are reported in Table 2.2. Since
2015, the research community has released multiple evaluation databases, that
include SAS, ASVspoof 2015 challenge, ASVspoof 2017 challenge, ASVspoof 2019
challenge, AVspoof, RedDots Replayed, and ReMASC databases. The AVspoof
database introduces replay spoofing attacks along with synthetic speech (SS), and
voice conversion (VC) spoofing attacks. It was designed to simulate the attacks
via logical and physical access. This database was used in the BTAS 2016 Chal-
lenge [3, 100]. RedDots [4] database is developed originally for text-dependent
ASV research that was re-developed from replay attacks. This database is derived
from the original RedDots database under various recording, and playback condi-
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tions. However, standard impersonation database is not yet available publicly, the
study reported in [97] used the YOHO database that was designed for ASV sys-
tem. In this chapter, we focus on description of ASVspoof challenge datasets for
the years 2015, 2017, and 2019. Next, we will discuss about challenge databases in
details.

Table 2.2: Various Corpora for Spoofing Attacks on ASV System. After [1]

Types of Spoofing Attack Spoof Corpus
Impersonation [41] YOHO
Voice Mimicry [42] NIST

SS [99] WSJ
SS [86] WSJ
VC [46] NIST SRE 2006
VC [47] NIST SRE 2006
VC [98] NIST SRE 2006

VC, SS, and Artificial Spoof [101] NIST SRE 2006
SS and VC [85] SAS

Replay [102] RSR2015
VC and Replay [103] RSR2015

SS and VC [38] ASV Spoof 2015
SS, VC, and Replay [100] AV Spoof

Replay [4] RedDots
Replay [5] ASVspoof 2017

SS, VC, and Replay [7] ASVspoof 2019
Replay [8] ReMASC

2.3.1 ASVspoof 2015 Challenge Database

The ASVspoof 2015 Challenge database was the first major release for spoofing,
and countermeasures research in the context of ASV [38]. The database consists
of natural and spoofed speech, which is generated via speech synthesis and voice
conversion, for logical access (LA) attacks. There are no remarkable channel or
background noise effects. The database is divided into three subsets, namely,
training, development, and evaluation. The training set is given to prepare the
corresponding genuine and spoof models. These models are used to classify the
genuine and spoof speech signals of development and evaluation sets, respec-
tively. We used the development set to train the fusion parameter for that par-
ticular database. For example, the development set is used to obtain the fusion
parameter and the same parameters are used for evaluation set. The evaluation

17



subset consists of known and unknown attacks. They include the same 5 algorithms
used to generate the development dataset and hence, called as known (S1-S5) at-
tacks. In addition, other spoofing algorithms are included in unknown (S6-S10),
attacks which were used directly in the test data. The number of speakers in the
database is reported in Table 2.3. The detailed description of the database can be
found in [2, 38, 85].

Table 2.3: A Summary of ASVspoof 2015 Challenge Database. After [2]

Subset
# Speakers # Utterances

Male Female Genuine Spoof
Training 10 15 3,750 12,625

Development 15 20 3,497 49,875
Evaluation 20 26 9,404 193,404

2.3.2 AVspoof Database

AVspoof database introduces replay spoofing attacks along with synthetic speech,
and voice conversion spoofing attacks. It was designed to simulate the attacks via
logical and physical access. This database was used in the BTAS 2016 Challenge
[3, 100]. The statistics of the database are summarized in Table 2.4. This database
reports a comprehensive variety of presentation attacks including attacks, when a
genuine data is played back to an ASV system using laptop speakers, high quality
multimedia speakers, and two mobile phones. Synthetic speech attacks, such as
speech synthesis, and voice conversion replayed with laptop speakers, are also
included [100]. The ‘unknown’ attacks were introduced in the test set in order
to make the competition more challenging [100]. The organizers of the challenge
provided a baseline system, which is based on the open source Bob toolbox [100].
The baseline system consists of simple spectrogram-based ratio as features and
logistic regression as a pattern classifier [100].

Table 2.4: A Summary of AVspoof Database. After [3]

Subset
# Utterances

Genuine PA Attacks LA Attacks
Training 4,973 38,580 17,890

Development 4,995 38,580 17,890
Evaluation 5,576 43,320 20,060

PA: Physical Access, LA: Logical Access
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2.3.3 RedDots Replayed Database

RedDots database is developed originally for text-dependent ASV research that
was re-developed from the replay attacks [4]. This database is derived from the
original RedDots database under various recording and playback conditions. The
original RedDots corpus serves as the genuine speech and its replayed version
serves as a spoofed data. The spoofed data was recorded in different environ-
ments in the European Union Horizon 2020-funded OCTAVE project [104]. The
efforts were made to align with the text-dependent ASV and thus, is well posi-
tioned for the assessments of replay spoofing countermeasures. The statistics of
the RedDots replayed database are reported in Table 2.5.

Table 2.5: A Summary of the RedDots Replayed Database. After [4]

Subset
# Speakers # Utterances

Male Genuine Spoof
Training 10 1,508 9,232

Evaluation 25 2,346 16,067

2.3.4 ASVspoof 2017 Challenge Database

The ASVspoof 2017 Challenge database was built on the RedDots corpus [105],
and its replayed version [4], which is therefore a replay database, and the database
is text-dependent. The number of speakers in training, development, and evalu-
ation subsets with corresponding number of genuine and spoofed utterances are
summarized in Table 2.6. The detailed description of the database can be found
in [5, 6].

Table 2.6: A Summary of ASVspoof 2017 Challenge Version 2.0. After [5, 6]

Subset # Speakers
# Utterances

Genuine Spoofed
Training 10 1,507 1,507

Development 8 760 950
Evaluation 24 1,298 12,008

The version 2.0 database presents in depth analysis of the replay detection
performance along with description of playback and recording devices. Further-
more, ASVspoof 2017 challenge version 2.0 database was released to correct data
anomalies that were detected in the post evaluation of version 1.0 database [6].
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Along with the corrected data, more detailed description of recordings, and play-
back devices as well as acoustic environments was also reported.

2.3.5 ASVspoof 2019 Challenge

The ASVspoof 2019 challenge is an extension of the previously held two chal-
lenges (in 2015 and 2017), which focuses on countermeasures for all the three
major attack types, namely, synthetic speech, voice conversion, and (synthetic)
replay. In particular, there are two sub-challenge, namely, Logical Access (LA),
and Physical Access (PA). The statistics of the database is summarized in Table
2.7 [7]. The training dataset includes genuine and spoofed speech from the 20
speakers (8 male and 12 female). The spoof speech signals are generated using
one of the two voice conversion and four speech synthesis algorithms. The data
conditions for earlier ASVspoof 2017 challenge were created in an uncontrolled
setup and hence, this condition made the results challenging to analyze the signal
due to varying additive and convolutive noise. This uncontrolled condition was
taken care in this challenge by creating a simulated and controlled acoustic envi-
ronment conditions. Unlike previous challenge editions, ASVspoof 2019 adopts
a recently-proposed Tandem Detection Cost Function (t-DCF) as the primary per-
formance metric along with % EER [30, 106] .

Table 2.7: The Summary of ASVspoof 2019 Challenge Database. After [7]

# Speakers # Utterances

Subset Male Female
Logical Access (LA) Physical Access (PA)
Natural Spoof Natural Spoof

Training 8 12 2,580 22,800 5,400 48,600
Development 8 12 2,548 22,296 5,400 24,300

Evaluation – – 71,747 137,457

2.3.6 ReMASC Database

The ReMASC (Realistic Replay Attack Microphone Array Speech Corpus) is the
first publicly available database that is designed specifically for the protection
of Voice Assistants (VAs) (also known as Intelligent Personal Assistants (IPA))
against various replay attacks in various acoustical conditions and environments
[8]. The ASVspoof 2019 challenge consists of simulated data for clear theoretical
analysis of audio spoofing attacks in physical environments, however, it brings
a simulation-to-reality gap [8]. Recent increase for the use of VAs depends on
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voice input as the primary user-machine interaction modality, such as IPA (e.g.,
Amazon Echo, Samsung Bixby, Microsoft Cortona, and Google Home) allow users
to control their smarthome appliances, and complete many other tasks with ease.
The VAs also began to be used in vehicles to allow drivers to control their cars’
navigation systems, and other vehicle services. The number of speakers and the
acoustical environmental conditions are summarized in Table 2.8. Recently, VAs
or IPAs are used for conversational in-vehicle systems.

Table 2.8: Data Volume of the ReMASC Corpus (* Indicates Incomplete Data Due to
Recording Device Crashes). After [8]

Acoustic Environment # Subjects # Genuine # Replayed
Outdoor 12 960 6,900
Indoor 1 23 2,760* 23,104
Indoor 2 10 1,600 7,824
Vehicle 10 3,920 7,644
Total 55 9,240 45,472

2.4 Countermeasures for SS and VC Spoofing Attacks

We now give an overview of system construction for anti-spoofing against syn-
thetic speech that includes synthesized, and converted voices. The ASVspoof 2015
challenge provided a common platform to study the effectiveness of countermea-
sures. Similar to other pattern classification system, a traditional spoof detection
system consists of two parts, namely, feature extraction, and pattern classifier (as
shown in Fig. 2.5). We will discuss the traditional approach and the end-to-end
approach in more detail in this Section.

Figure 2.5: Framework for Spoof Speech Detection (SSD). After [1].

2.4.1 Handcrafted Features

There have been several earlier studies on extracting features that reflect the ar-
tifacts in the synthetic speech. For example, one study considers that the pitch
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or fundamental frequency (F0) pattern of synthetic speech is more rigid than that
of natural speech in [107], temporal structure of synthetic speech is different from
that of natural speech [108], and synthetic speech contains phase distortions [109].
However, these features were observed on adhoc databases and moreover, they
were not evaluated using a common performance evaluation metric. Hence, there
was a need to develop a shared task for synthetic speech detection, that motivated
the ASVspoof 2015 Challenge [2, 38].

In ASVspoof 2015 Challenge, it was observed that the efforts on better fea-
tures were more effective than the complex classifiers [13]. The Constant-Q Cep-
stral Coefficients (CQCC) [110], and Cochlear Filter Cepstral Coefficients Instanta-
neous Frequency (CFCC-IF) [111] offer state-of-the-art performance on ASVspoof
2015 database. The CFCC-IF feature extraction, that is developed by Speech Re-
search Lab at DA-IICT Gandhinagar represents relatively lowest equal error rate
(in terms of ranking) in ASVspoof 2015. The CQCC features are extracted with
the constant-Q transform (CQT), a perceptually-inspired alternative to Fourier-
based approaches for time-frequency analysis. The CQCC feature set has been
reported to perform well on three different databases (i.e., ASVspoof 2015 Chal-
lenge, AVspoof, and RedDots replayed database), and it delivered the state-of-
the-art performance in each case [112].

Other effective features include high-dimensional magnitude spectrum-based
features, and phase-based features as reported in a comparative study [113]. The
magnitude spectrum-based features include Log-Magnitude Spectrum (LMS), and
Residual Log-Magnitude Spectrum (RLMS); the phase-based features include Group
Delay Function (GDF), Modified Group Delay Function (MGDF), Baseband Phase
Difference (BPD), Pitch Synchronous Phase (PSP), and Instantaneous Frequency
Derivative (IFD).

The features extracted using subband processing were also explored, such as
Linear Frequency Cepstral Coefficients (LFCC) [114], Energy Separation Algorithm-
Instantaneous Frequency Cepstral Coefficients (ESA-IFCC) [13], and Constant-Q
Statistics-plus-Principal Information Coefficient (CQSPIC) [115]. The basic moti-
vation behind subband processing is that artifacts of synthetic speech manifest
differently in different subbands. Temporal features, such as instantaneous fre-
quency, and envelope are sensitive to those artifacts. Another technique for sub-
band processing is to perform a two-level scattering decomposition through a
wavelet filterbank to derive a scalogram [116].
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2.4.2 Representation Learning (RL) Literature

The RL approaches work either in form of feature learning or as a pattern clas-
sifier. With feature learning, it was observed that the use of DNN for RL fol-
lowed by GMM or SVM classifier was more successful than using DNN as a clas-
sifier. The hidden layer representation obtained from DNN was used as features
(called as spoofing vectors or s-vectors), and Mahalanobis distance for classifi-
cation [117]. The CNN and RNN classifiers were explored along with three fea-
tures, namely, Teager Energy Operator (TEO) Critical Band Autocorrelation Enve-
lope (TEO-CB-Auto-Env), Perceptual Minimum Variance Distortionless Response
(PMVDR), and raw spectrograms [118].

In [119], feature learning is followed by LDA, and GMM classifiers. The frame-
level and sequence-level features were extracted using DNN and RNN, respec-
tively, resulted in 0 % EER for all the attack types from S1 to S9, and 1.1 % EER
on all the averaged conditions [119]. Bottleneck features extracted from the DNN
hidden layers were also used with GMM classifier in [120]. In [121], the Convolu-
tional Restricted Boltzmann Machines (ConvRBM) is used for auditory filterbank
learning that performed better than the traditionally handcrafted filterbanks. The
study reported in [121] shows that ConvRBM learns better low frequency sub-
band filters on ASVspoof 2015 dataset than on TIMIT. Supervised auditory filter-
bank learning using DNN was also studied in [122]. The first and second-order
Long-Term Spectral Statistics (LTSS) were used for SSD task for synthetic speech
along with various classifiers with DNN outperforming others [123].

Recently, end-to-end DNN approaches have emerged for various speech and
audio processing applications [124], [125]. The goal of the end-to-end DNN is to
learn acoustic representation from the raw speech and audio signals as well as
perform classification task in a DNN network [126], [127]. SSD task for synthetic
speech, Convolutional Neural Network (CNN) was used for feature learning from
raw speech signals and binary classification task [128]. Along with CNN layers,
Long-Short Term Memory (LSTM) layers were used in an architecture called Con-
volutional LSTM DNN (CLDNN) trained directly on raw speech signals [129,130].
While CLDNN achieves 0 % EER for the S1-S9 conditions, it has not worked well
for S10 set (which is unit selection-based TTS spoof speech). The end-to-end DNN
and GANs approach represents a new direction of anti-spoofing study [124], [125].

In ASVspoof 2015 Challenge, the systems in [113] and [131] use DNN as the
classifiers. In [132], a DNN classifier with novel human log-likelihoods (HLL)
scoring method was proposed that performed better and achieved an average
EER of all the attack types to 0.04 %. It was shown in [132] that HLL scoring
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method is more suitable for the SSD task than the classical LLR scoring method,
especially when the spoofed speech is very similar to the human speech [132]. The
output softmax layer consists of neurons representing spoofing and human (nat-
ural) speech labels. According to the literature, the performance of various anti-
spoofing systems on ASVspoof 2015 challenge database is summarized in Table
2.9, with the system of CQCC feature set, and DNN-HLL classifier representing
the best performance [132].

Table 2.9: Comparison of Results (in % EER) on ASVspoof 2015 Challenge Database.
After [1].

Feature Set Classifier Dev Eval
CQCC [112] GMM 0.00 0.26

CFCCIF [111] GMM 2.29 1.21
LFCC [114] GMM 0.66 0.89
RFCC [114] GMM 075 1.02
MFCC [114] GMM 1.09 3.0
SCFC [114] GMM 0.25 4.45
SCMC [114] GMM 0.95 0.94
LPCC [114] GMM 0.68 1.21

IMFCC [114] GMM 0.48 1.00
RPS [114] GMM 0.37 5.30
SCC [116] GMM - 0.18

DMCC-BNF [120] GMM - 2.15
ESA-IFCC [13] GMM 1.89 6.79

ConvRBM-CC [121] GMM 2.53 4.47
DNN-IGFCC [122] GMM 0.12 0.56

LF RPS [131] SVM 1.34 6.11
DNN, RNN features [119] LDA, GMM - 1.1

LF Spectrum [131] DNN 0.03 4.38
TEO [118] DNN 2.31 -

PMVDR [118] DNN 1.44 -
LTSS [123] DNN - 0.25

E2E CNN [128] DNN - 2.89
LTSS and E2E CNN [128] DNN 0.157

E2E CLDNN [130] DNN - 4.56
CQCC [132] DNN-HLL - 0.04

Spectrogram [118] CNN 0.36 3.07
Spectrogram [118] RNN 1.04 2.46
Spectrogram [118] CNN+RNN 0.42 1.86
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2.5 Countermeasures for Replay Spoofing Attacks

We now present an overview of literature for anti-spoofing (or countermeasures)
against replay attacks.

2.5.1 Handcrafted Features

The use of high-fidelity recording devices represents a serious threat and hence,
countermeasures were proposed to guard against such attacks. The spectral peak
mapping method was proposed as a countermeasure to detect the replay attack
on a remote telephone interaction [133]. Replay attacks with far-field recordings
were addressed in [50].

The ASVspoof 2017 Challenge paid a special attention to replay speech detec-
tion. The baseline system with CQCC features and GMM classifier was provided
by the organizers as it performs well in the earlier evaluation [5]. The acoustic fea-
tures, such as Rectangular Filter Cepstral Coefficients (RFCC), Subband Spectral
Centroid Magnitude Coefficients (SCMC), Subband Spectral Centroid Frequency
Coefficients (SCFC), and Subband Spectral Flux Coefficients (SSFC) were studied
for replay SSD task. It is found that the SCMC followed by feature normalization
method outperforms other acoustic features [134]. With the analysis on Inverse
Mel Frequency Cepstral Coefficients (IMFCC), Linear Prediction Cepstral Coeffi-
cients (LPCC), and LP Residual features, it is found that high frequency regions
have more discriminative information than the other frequency regions [135]. The
effect of mean and variance normalization of CQCC feature set with Support Vec-
tor Machines (SVM) classifier was studied in [6,136]. One of the approaches used
Single Frequency Filtering (SFF), and found the importance of high resolution
temporal features [137].

The short-time AM-FM features set obtained using Energy Separation Algo-
rithm (ESA) were studied in [14, 28]. The features were also developed with sub-
band filter analysis using CFCC-IF [28], IFCC [138], Empirical Mode Decomposi-
tion Cepstral Coefficients (EMDCC) [139], transmission line cochlear model [140],
auditory inspired spatial differentiation filterbank [141], and ESA-IF-based fea-
ture estimation using cochlear filter in [142]. Excitation source-based features
were studied in [143], wavelet-based features in [144], and phase-based features
in [145]. The concept of feature switching at the decision-level, along with infor-
mation from the non-voiced segments was studied in [146].

The study in [147] shows that some phonemes carry more replay artifacts than
the others and thus, judicious use of phoneme-specific models can improve replay
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detection. The analysis of full-frequency bands with F-ratio, and multi-channel
feature extraction using attention-based adaptive filters (AAF) is studied in [148].
The analysis of replay speech signal using reverberation concept, and Teager en-
ergy profile is studied in [11].

2.5.2 Representation Learning (RL) Approaches

The three key observations from ASVspoof 2017 Challenge are the use of spectral
information in the higher frequency regions, feature normalization, and represen-
tation learning approach. It was shown that many representation learning-based
approaches did well in the ASVspoof 2017 Challenge.

First, we describe the RL approaches used in ASVspoof 2017 Challenge. End-
to-end replay spoofing detection was proposed using deep residual network (ResNet),
and raw spectrograms of speech signals [149]. It was also shown that the data
augmentation in DNN significantly improves the performance [149]. In one of
the approaches, DNN was trained to discriminate between the various channel
conditions available in the ASVSpoof 2017 challenge database, namely, recording,
playback, and session conditions [150]. In [150], the DNN features were learned
from CQCC and HFCC features followed by an SVM classifier. The model fusion
strategies using ResNet, GMM, and DNN were also explored and found to per-
form better compared to the individual systems [151]. In particular, the ASVspoof
2017 Challenge winner system used CNN and RNN for representation learning
from STFT spectrograms followed by a GMM classifier [152].

The use of ConvRBM to learn auditory filterbank followed by the AM-FM de-
modulation using ESA for the replay SSD task was studied in [153]. The Con-
vRBM learns subband filters that represent high frequency information in a much
better way when used with pre-emphasized speech signals. Combining represen-
tation learning and signal processing techniques gives significant improvement
of 0.82 % and 8.89 % EER on the development and evaluation sets, respectively. A
novel algorithm called NeuroEvolution of Augmenting Topologies (NEAT) was
used in an end-to-end anti-spoofing network [154]. The NEAT framework also
introduces a new fitness function for DNN that results in better generalization
than the baseline system, and improves the relative performance by 22 % on the
ASVspoof 2017 database [154]. A novel visual attention mechanism is employed
in deep ResNet architecture using the group delay function features (GD spec-
trum) that resulted in 0 % EER on both the development and evaluation sets,
respectively [155]. In [156] attention-based filtering is used that enhances the fea-
ture representation in both time and frequency-domains and used ResNet-based
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classifier. Class Activation Maps (CAM) using Global Average Pooling (GAP)
utilizes the implicit attention mechanism present in CNN. Hence, representation
learning approaches are very promising directions for the replay SSD compared
to the synthetic SSD task. According to the literature, the performance of various
replay anti-spoofing systems on ASVspoof 2017 challenge dataset is summarized
in Table 2.10.

2.6 Limitations and Challenges

In this Section, we discuss limitations and technological challenges that are wor-
thy of further inquiry and possible future directions.

1. Why Replay Detection is Challenging ?
Replayed speech is expressed via a convolutional model under assumptions
of LTI systems. In order to detect replay speech, we need to capture the
impulse response of the intermediate device, acoustic environment. Thus,
replay speech detection is a blind deconvolution problem and hence, getting
exact deconvolution of h(n) from r(n) is still a challenge in signal processing .

2. Diversity of Spoofing Attacks: The ASVspoof 2015 challenge database was
designed only voice conversion (VC), and synthetic speech (SS) spoofing
algorithms. This database consists of variation of seven voice conversion
spoofing techniques and only three synthetic speech generation techniques.
It is noted that ASVspoof 2017 challenge database focuses only on replay
spoof. While ASVspoof 2019 database includes synthetic speech (SS), voice
conversion (VC), and replay spoofing techniques, the spoofing voice database
is not developed using the latest neural voice generation techniques.

3. Number of Speakers: Different spoofing databases consists of a different
number of speakers either male, female or both. The number of speakers
present in ASVspoof 2015 challenge database consists of a large number of
speakers (male and female), whereas for ASVspoof 2017 challenge database,
only male speakers where considered. The studies have reported that when
the number of speakers used during training is increased, it improves the
performance in % EER. However, performance changes with the spoofing
attacks and also with the features that are used during training. Hence,
the performance measures should also justify the independence towards the
number of speakers, and the voice of the speaker under consideration.
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Table 2.10: Comparison of Results (in % EER) on ASVspoof 2017 Challenge Database.
After [1]

Feature Set Classifier Dev Eval
CQCC (BL) [5] GMM 10.35 28.48
CFCC-IF [28] GMM 6.80 34.49
EMDCC [139] GMM 28.48 28.06
AFCC [148] - 4.01 27.80
SCFC [134] GMM 24.51 24.83
HFCC [150] GMM 5.9 23.90
PNCC [157] GMM 20.78 23.74
CQCC [149] ResNet 6.32 23.14
LFRCC [143] GMM 8.38 22.28
SSFC [134] GMM 12.81 22.38
SCC [144] GMM 3.16 19.79

CQCC [151] DNN 5.18 19.41
DLFS [146] GMM 6.68 19.16
CQCC [151] ResNet 5.05 18.79
EOCm [154] - - 18.2
LPCC [158] GMM - 17.0
LFCC [134] GMM 10.31 16.54

VESA-IFCC [28] GMM 4.61 14.06
ESA-IFCC [27] GMM 4.12 12.79

ARP [148] - 9.11 12.65
LPCC [152] SVM i-vector 9.80 12.54

VESA-IACC [14] GMM 6.12 11.94
TECC [11] GMM 9.55 11.73

AWFCC [29] GMM 6.37 11.72
SCMC [134] GMM 9.32 11.49

CF [141] GMM - 10.84
ESA-IFCC [58] GMM+CNN 1.90 10.42

PPWS [147] GMM - 10.70
PPRFWS_LR [147] GMM - 9.28

AF-DRN [156] ResNet 6.55 8.99
ConvRBM-CC [153] GMM 0.82 8.89

TLC_AM [140] GMM - 8.68
FFT Features [152] LCNN 4.53 7.37
GD Spectrum [155] ResNet 0.0 0.0

BL: Baseline; -:Information not found

4. Signal Degradation Conditions: Current publicly available spoofing databases
are developed in clean conditions. However, the ASVspoof 2017 replay
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database was recorded under various acoustic environmental conditions.
For ASVspoof 2015 challenge database, the noisy database was developed
by adding various noises at different Signal-to-Noise Ratio (SNR) levels.
Further investigations are required as to how the diversity of different noise
types affects the SSD performance. In addition, the study is required to ob-
serve the effect on SSD, when the additive noise is added manually, and
when the noise is added naturally via the acoustic environment. Study for
different acoustical background, microphone. is reported in [6]. Hence, the
countermeasures must be developed that it should be robust to signal degra-
dation conditions as well.

5. Robustness in ASV Implies Vulnerability:
In practice, we would like an ASV system to be robust against variations,
such as microphone and transmission channel, intersession, acoustic noise,
speaker aging. A robust ASV system may become vulnerable to various
spoofing attacks as it tries to nullify these effects, and normalize the spoof-
ing speech towards the natural speech. Thus, robustness and anti-spoofing
security should be addressed separately. It is worth to study how features,
classifiers, and systems are designed to be both robust and secure.

6. Exploiting of Specific Frequency Region: Why ?
In practical scenarios, a replay might be done by and enlarge in air medium
that contains the air particles having mass and springiness and thus, a slug
of air will be responsive to a particular frequency band, which will empha-
size onto the spectrum of the replayed speech. The investigation for replay
detection has shown the significance of selecting a particular frequency re-
gions [135, 150].

7. Lack of Exploiting Excitation Source Information:
Less amount of work is done in using excitation source assuming that the
Glottal Closure Instants (GCI) are having sharp impulse-like nature for voiced
speech. The spectrum of the glottal source (i.e., Glottal Flow Waveform
(GFW)) for voiced speech is expected to have harmonic structure in the frequency-
domain. Thus, any deviation from the degradation in the harmonic struc-
ture could capture the signature of spoofed speech [143]. To the best of au-
thor’s knowledge, there is no study reported in analyzing this particular
aspect. We believe several excitation source information, such as Linear Pre-
diction (LP) Residual [159], Teager Energy Operator (TEO) profile, and its
Variable length version, i.e., Variable length TEO (VTEO) profile. could be
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explored in the framework of recent study reported in [143].

8. Exploring Phase-based Features:
It is important to note that the phase-based features (either time-domain an-
alytic or frequency-domain) could capture different kind of information in
spoofed speech depending upon the type of spoof. For example, in USS sys-
tem, when the speech sound units are picked up by optimizing the target
cost, in the synthesized voice, might have linear phase mismatches (if these
units are recorded in different sessions) [160]. On the other hand, for re-
played speech, the impulse response of the acoustic environment (say room)
gets convolved with the natural speech. The impulse response of an acous-
tic system (in this case room) is infinite in duration, i.e., it is Infinite Impulse
Response (IIR) in nature (due to infinite transmissions and reflections in the
given acoustic room). Thus, the nonlinear phase in frequency-domain of this
acoustic system is added to the phase of natural speech. In addition, cor-
responding effects of this nonlinear phase could be observed in temporal-
domain, such as non-integer delay in frequency components. There have
been many studies in phase features in synthetic speech detection. Phase
study remains a research topic that is worth for further investigations.

To alleviate the problems discussed above, this thesis proposes novel front-
end feature sets, which is shown to perform better than the baseline systems for
the SSD task [11, 27]. Later, the proposed feature sets are applied on various au-
dio classification tasks, such as Acoustic Scene Classification (ASC) [23], coun-
termeasures for replay SSD for Voice Assistants (VAs) or Intelligent Personal As-
sistants (IPA) [20], Whisper Speech Detection (WSD) [22], and Automatic Speech
Recognition (ASR) tasks for near-field vs. far-field scenarios [19]. The novelty
of the proposed feature sets lies in the technique used for speech demodulation,
i.e., ESA and TEO approaches. The feature extraction process is done in time-
domain. In addition, the ESA approach do not require the complex task of phase
unwrapping. The slow and fast-varying temporal modulations are accurately
estimated using ESA technique. The Teager energy profiles of the narrowband
filtered signals shows the nonlinearity around the GCI locations because of the
speech production mechanism, and shows the difference between the natural, and
its corresponding spoof speech signal. Earlier the TEO approach was applied for
speech and speaker recognition, emotion recognition, and speech enhancement
tasks [161–164]. In this thesis, we explored different applications using TEO and
ESA.
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2.7 Chapter Summary

This Chapter presented the motivation and literature towards choosing replay, SS,
and VC spoof detection for analysis of the security threat to the ASV systems. In
addition, the various types of spoof speech signals were presented briefly. The
discussion on different approaches proposed for detection of spoof speech signal
along with the corpus used in this field are also discussed. The various issues
with current approaches are discussed that needs to be addressed in the near fu-
ture. In the next Chapter, the spoofing techniques and spoof detection system
along with the various databases used in this thesis, classification system, and the
performance measures for the evaluation of countermeasures in the SSD system
are discussed.
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CHAPTER 3

Teager Energy Operator (TEO)

3.1 Introduction

In this Chapter, we introduce our proposed feature set based on the Teager Energy
Operator (TEO), namely, Teager Energy Cepstral Coefficients (TECC). The con-
cept of the proposed approach is discussed in Section 3.2 and the basic concepts
of nonlinearity in the natural speech production estimated by the Teager energy
profiles is discussed in Section 3.3. In addition, the feature extraction process is
discussed in Section 3.4. Furthermore, the analysis of Teager energy profiles of
spoof speech signals is discussed in Section 3.5. We studied modulations of en-
ergy estimated via TEO profile to emphasize the impulse that arrives because of
echo/reverberation in Section 3.6. An application to the SSD task is presented in
Section 3.7-3.8 for various databases. Finally, in Section 3.9, we summarized the
Chapter.

3.2 Basics of TEO

According to Newton’s second law of motion, for an oscillator with mass, m, and
spring constant, k, its displacement x(t) is governed by the motion equation, for
which the general solution is a cosine x(t) = Acos(ωt + φ), where A is the ampli-
tude of the oscillation, t is continuous time-domain with ω =

√
k/m is frequency

of oscillations (rad/sec), and φ is the initial phase (rad), we have following differ-
ential equation [57]:

d2x
dt2 +

k
m

x = 0. (3.1)

The instantaneous energy E, of this undamped oscillator is constant and equal
to the sum of its kinetic and potential energy, i.e.,

E =
1
2

kx2 +
1
2

mẋ2 ⇒ E =
1
2

mω2A2, (3.2)
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Figure 3.1: Schematic of Ideal Simple Harmonic Motion (SHM).

where ω = d
dt φ(t). An algorithm derived by Teager uses a nonlinear energy track-

ing operator [52]. The nth sample of a discrete-time monocomponent signal can
be expressed as:

x(n) = Acos(ωn + φ), (3.3)

from Eq. (3.3) we can write:

x(n + 1) = Acos(ω(n + 1) + φ), (3.4)

x(n− 1) = Acos(ω(n− 1) + φ). (3.5)

When we multiply above equations, we obtain,

x(n + 1)x(n− 1) = A2cos(ω(n + 1) + φ)cos(ω(n− 1) + φ), (3.6)

x(n + i)x(n− i) = [Acos(ωn + φ)]2 − A2sin2ω. (3.7)

Using Eq. (3.3) in Eq. (3.7),

A2sin2ω = x2(n)− x(n− 1)x(n + 1). (3.8)

For small values of ω, sinω ≈ ω, and hence, Teager Energy Operator (TEO),
Ψd{·}, is defined as [165]:

En = A2ω2 ≈ x2(n)− x(n− 1)x(n + 1) = ψ{x[n]}, (3.9)

where En gives the running estimate of signal’s energy, A is the amplitude, and
ω is frequency (in radians). The speech signal is the combination of several mono-
component signals [51]. Considering the speech signal, the TEO cannot be applied
directly on the speech signal as it is the summation of multicomponent signals. In
order to obtain a narrowband signal, the speech signal is passed through a band-
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pass filtered signal in order to obtain N number of subband signals [53]. The
subband signal at center frequency is obtained from ri(t) ≈ s(t) ∗ gi(t), s(t) is the
speech signal, and gi(t) is the impulse response of the ith Gabor filter. The impulse
response of the Gabor filter is given as [52]:

g(t) = exp(−b2t2)cos(ωct). (3.10)

Here, Gabor filter acts as a bandpass filter with center frequency, ωc. In this Sec-
tion, Gabor filter is used placing the center frequency to linear scale, so that the
Gabor filters are equally distributed into the entire frequency range [13, 166, 167].

3.3 Analysis of TEO Profile

In our earlier study [11], we tried to link the concept of reverberation with replay
SSD task, as the replay signal are recorded and played back, where the reverbera-
tion exist. In Figure 3.2, the synthetic sinusoidal signals (Panel I) are shown along
with their corresponding TEO profiles (Panel II). Figure 3.2(a) show the damped
sinusoidal signal with the peak amplitude of impulse is equal and Figure 3.2(b)
show the damped sinusoidal signal with decrease in amplitudes of the impulse.
Whereas, Figure 3.2(c) show the variations in the amplitude of the damped sinu-
soidal signal. It can be observed from their corresponding TEO profiles in Panel
II that for each case the TEO profile show impulse-like energies. In particular, if
the peak amplitude of the signal is constant, the TEO profiles are also constant in
terms of its amplitude, and if the amplitude of signal varies (as in case on Panel I
(b and c)), the corresponding TEO profiles also varies (highlighted by the box and
oval shapes).

The TEO profiles show high energy pulses around the Glottal Closure Instant
(GCI), because of impulse-like excitation to vocal tract system and this sudden
glottal closure produces high energy and thus, TEO produces high energy around
these regions due to the high time resolution property of TEO to estimate the sig-
nal’s energy [168]. Along with high Teager energy pulses, the bumps are observed
indicating contributions for nonlinear effects during the speech production pro-
cess [168]. This nonlinear effect is observed for real speech signal as shown in
Figure 3.3, in particular, for natural (Figure 3.3(a)) and its corresponding replay
speech signal (Figure 3.3(b)). When compared to the synthetic signal as shown
in Figure 3.2 the nonlinearities around the GCI locations are missing and hence,
the natural speech confirms the capability of TEO to represent characteristics of
airflow pattern during natural speech production.
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Figure 3.2: Panel I: Synthetic signals with (a) same, (b) decreasing, and (c) varying
sinusoidal signals along with their corresponding Teager energy profiles in Panel II.
After [16].

Figure 3.3: Teager energy profiles for (a) natural, and (b) replay speech segment. High-
lighted regions shows the contribution of nonlinear effects during speech production
process which is not observed for synthetic case. After [16].

3.4 Feature Extraction Process

The functional block diagram of the proposed TECC feature extraction is shown
in Figure 3.4. Here, the input speech signal is passed through a pre-emphasis filter
having a system function, H(z) = 1− az−1, with a typical value of a = 0.97 [169],
to emphasize high frequency regions [135]. This pre-emphasized speech signal is
then passed through a Gabor filterbank in order to obtain narrowband filtered
signals. The Gabor filter is compact, smooth, and also has optimal joint time-
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frequency resolution, and thus, distortions and noise present in distinct locations,
time or frequency, do not interfere with the filter responses [170]. The optimal
criteria here is to be able to achieve minimum time-bandwidth product that is dic-
tated by Heisenberg’s uncertainty principle in signal processing framework [170].
In particular, following statement. The temporal variance and the frequency vari-
ance of a signal, f (t)∈L2(R) (i.e., Hilbert space of square integrable functions)
satisfy,

σ2
t .σ2

ω ≥ 1/4. (3.11)

This inequality becomes equality if and only if f (t) is a Gaussian, where σ2
t .σ2

ω is
called as time-bandwidth product (which is also area of Heisenberg box). Studies
in [27] found that the linearly-spaced center frequencies have high resolution in
both the lower and higher frequency regions that make more reliable to estimate
the spectral information. Hence, the narrowband filtered signals are obtained at
center frequency, which are linearly-spaced between fmin=10 Hz, and fmax=8000
Hz. The Gabor filter has the linear phase response characteristics and hence, it
maintains the same pattern (shape) of the filtered speech signal (within the pass-
band of filter) with a delay in time which is equal to group delay function (in
seconds) of the filter [171]. The center frequency for ERB and Mel have number
of cut-off frequencies in the lower frequency regions. Motivated by the studies
of auditory perception mechanism for humans, the center frequencies of ERB and
Mel scales have narrow and wider bandwidth in the lower and higher frequency
regions, respectively [172, 173]. In case of linear scale, all the subband filters have
almost equal bandwidth and hence, have high resolution in the lower and higher
frequency regions that make more reliable to estimate the spectral information.
The filtered subband signals obtained from the linearly-spaced Gabor filterbank
are applied to the TEO block, and estimate the instantaneous energy of each sub-
band filtered speech signal. Furthermore, these Teager energy profiles are passed
through the frame-blocking, and averaged with a short window of 20 ms and
with a window shift of 10 ms followed by logarithm operation to compress the
data. To obtain a low-dimensional representation that has compact energy, Dis-
crete Cosine Transform (DCT) is applied along with Cepstral Mean Normalization
(CMN) (also known as Cepstral Mean Subtraction (CMS)) to reduce the channel
mismatch/distortion conditions [174]. Finally, retained few DCT, i.e., Teager En-
ergy Cepstral Coefficients (TECC) appended along with their ∆ and ∆∆ features
to obtain higher-dimensional feature vector.
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Figure 3.4: Block Diagram of TECC Feature Extraction. A: Gabor Filterbank, B: Narrow-
band Filtered Signals, and C: Teager Energy Profiles of Each Subband Filtered Signals.
After [11].

3.5 Analysis of Spoof Speech Signals

The power spectrum Sxx( f ) of a time series x(t) describes the distribution of
power into frequency components composing that signal. The energy spectral
density is suitable for transients (i.e., pulse-like signals) whose energy is concen-
trated around one time window. For continuous signals over all the time, the
power spectral density (PSD) is used this describes how power of a signal or time
series is distributed over frequency.

The average power P of a signal x(t) over all time is therefore given by the
following time average:

Pav = lim
T→∞

1
T

∫ T

0
|x(t)|2 dt. (3.12)

or
Pav = lim

T→∞

1
2T

∫ T

−T
|x(t)|2 dt. (3.13)

Fourier transform where the signal is integrated only over a finite interval [0, T] is
given as:

x̂(ω) =
1√
T

∫ T

0
x(t)e−iωt dt. (3.14)

This is the amplitude spectral density. Then, the PSD can be defined as:

Sxx(ω) = lim
T→∞

E
[
|x̂(ω)|2

]
. (3.15)

Wiener-Khinchin theorem is stated as the Fourier transform of autocorrelation
function. It can also be written with the frequency measured in cycles (rather than
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radians) per second and denoted by ν.

C(τ) =
∫ ∞

0
2P(ν) cos(2πντ)dν =

∫ +∞

−∞
P(ν)e−2πiντdν (3.16)

We observed the Power Spectral Density (PSD) of natural (blue color), VC (pink
color), and SS (red color) signal (from ASVspoof 2015 database) in Fig. 3.5. The
PSD shows the stability of energy as a function of frequency, and energy (varia-
tions) are strong or they are weak at each frequency [175]. From Fig. 3.5(a), we can
see very less difference between natural, and VC PSD plots they approximately
overlap on each other, and have minor difference at higher frequency regions. On
the other hand, the PSD obtained for natural and SS (as shown in Fig. 3.5(b))
shows very large difference almost for entire frequency regions.

Figure 3.5: Power Spectral Density (PSD) for (a) Natural, vs. VC, and (b) for Natural vs.
SS. After [10].

Furthermore, the Teager energy profiles of the speech segment for natural
(Panel I), VC (Panel II), and SS (Panel III) is analyzed as shown in Fig. 3.6. It
can be observed that the Teager energy traces obtained for a segment of natural
speech signal have more energy, and more bumps are observed corresponding to
the Glottal Closure Instant (GCI). Similar observation is found for segment of VC
signal. However, the bumps around the GCI locations are very less compared to
the Teager energy traces of natural signal. On the other hand, for the segment
of SS signal, it can be observed that there are smooth bumps with very less fluc-
tuations (indicating lesser energy modulations and non-linearities due to absence
of natural speech production activities) in the instantaneous Teager energy traces
compared to both natural, and VC bumps. This observation (highlighted with
black box and arrows) is the key difference, and it helps to detect the VC and SS
spoof signals from the natural speech. In addition, we observed the difference in
terms of spectral energies of Teager energy obtained from the output of the Ga-
bor filterbank (as shown in Fig. 3.7). The spectral energy obtained from Teager
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Figure 3.6: (a) Speech Segment of Natural (Panel I), VC (Panel II), and SS (Panel III)
Along With Their Corresponding Teager Energy Profiles in (b). Highlighted Regions
and Arrows Indicate Change in Teager Energy Bumps (within Two Consecutive GCIs)
for All the Cases, In Particular, for Panel III, the Bumps in TEO Profile are Very Smooth.
After [10].

energy for the natural speech preserves the formants and harmonics as shown in
Fig. 3.7(a). Similar observation for VC signal is found with very less difference
in the Teager energy (highlighted by the ovals) as shown in Fig. 3.7(b). The spec-
tral energies obtained from Teager energy for SS signals shows the distorted, and
blurred energy compared to the natural speech signal as shown in Fig. 3.7(c). We
can see that there is a loss in the energy and harmonics in the higher frequency
regions (highlighted with box) in Fig. 3.7(c).

Fig. 3.8 shows the (a) time-domain speech signal, spectral energies obtained
from (b) Short-Time Fourier Transform (STFT), and (c) Teager energy-based method
for all the speech signals (from BTAS 2016 competition dataset [100]). The Panel
I is for natural speech, and corresponding replay signals are shown in Panel II:
Played back with Laptop, and Panel III: Played back with Laptop with high qual-
ity speaker, Panel IV and Panel V are corresponding synthesized, and voice con-
verted speech signals that are played back with laptop and high quality speaker,
respectively. For all the conditions in Fig. 3.8, it can be observed that the spectral
energy density obtained from the Teager energy-based approach has high energy
across entire frequency regions (because of linearly-spaced Gabor filterbank) as
compared to the spectral energy density obtained from the traditional spectro-
gram. For natural speech signal, the formant frequencies have dark band color
showing high energy portions of the speech signal. The shape of the dark bands
shows the change from one sound unit to other w.r.t vocal tract shape. When we
compare the energies of natural and replay speech signal, the replayed speech
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Figure 3.7: Comparison of Teager Energy Features for (a) Natural, (b) VC, and (c) SS
Speech Signal from ASVspoof 2015 database. Highlighted Regions via Rectangles and
Ellipses Shows the Difference Between the Natural vs. VC, and SS. After [10].

obtained with the high quality speaker device (Panel III) has similar pattern of
energy, and formant frequency band along with similar time-domain signal pat-
tern. Whereas replay speech with normal quality device (Panel II) has distortions
in the energies. For playback speech of machine-generated speech (i.e., Panel IV
and Panel V), it can be observed that the spectral cues are not captured with tradi-
tional spectrogram Fig. 3.8(b), which is captured with the Teager energy approach
and hence, it helps to detect the natural vs. spoof speech signals.

The Teager energy profiles for a speech segment of natural (Panel I), replay
laptop (Panel II), replay with HQ laptop (Panel III), SS with HQ laptop (Panel IV),
and VC with HQ laptop (Panel V) are shown in Fig. 3.9. It can be observed that
the Teager energy profiles obtained from various speech signals shows different
energy profiles. However, Panel III shows similar pattern of Teager energy traces
with natural speech segment, because replay signal is recorded, and replayed with
HQ laptop device and hence, it is very similar to the natural counterpart and
difficult to detect. It can also be observed from Table 3.5, the HTER for replay
is better than the replay with HQ laptop. For Teager energy profiles of SS and
VC, we can clearly observe the differences between the natural and replay speech
signals. This is also strongly observed from our experimental results showing the
lower HTER for SS and VC using HQ laptop as reported in Table 3.5.
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Figure 3.8: (a) Time-domain Speech Signal, Spectral Energy Densities Using (b) STFT
Spectrogram, and (c) Teager Energy. Panel I: Natural, Replay Signals Played Back with
Panel II: Laptop, and Panel III: Laptop HQ Speaker, Panel IV: Speech Synthesis Physical
Access HQ Speaker, Panel V: Voice Conversion Physical Access HQ Speaker. High-
lighted Regions Indicates the Discriminative Regions Between the Traditional Spectrum
and Teager Energies. After [10].

.

Figure 3.9: (a) Time-Domain Speech Signal, and (b) Teager Energy Profiles of a narrow-
band signal. Panel I: Natural, Replay Signals Played Back with Panel II: Laptop, and
Panel III: Laptop HQ Speaker, Panel IV: Speech Synthesis Physical Access HQ Speaker,
Panel V: Voice Conversion Physical Access HQ Speaker. After [10].

3.6 Effect of Reverberation on Replay Speech Signal

3.6.1 Basics of Replay Speech Signal

The task of replay spoof detection is to identify whether a given speech sample is
a genuine speech or whether it is recorded version of the genuine speech through
an intermediate (recording + playback) devices. The “intermediate device" in this
context means that the devices used during the recording and playing it back in
order to obtain the replayed speech signal. In particular, during recording differ-
ent kinds of mic, speaker, tape recorder. are used. The scenario of replay spoof
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speech detection (SSD) system is shown in Figure 3.10. In particular, the Figure
3.10 shows the process of generation of the replay speech signal in two different
acoustic environments, i.e., during recording and playback, different kinds of mic,
speaker, tape recorder. are used. The genuine speech signal, s[n], can be modeled

Figure 3.10: Illustration of Replay Spoof Attack Scenario at ASV System. After [9].

as a convolution of glottal airflow, p[n], with the impulse response of vocal tract
system, h[n] [175], i.e.,

s[n] = p[n] ∗ h[n]. (3.17)

It should be noted that as convolution operation requires assumption of linear
time-invariant (LTI) system, Eq. (3.17) and subsequent analysis in this work is
valid either for a segment (10-30 ms) of speech signal s[n] or the impulse response
of vocal tract system is fixed for a speech frame, i.e., h[n] is dependent on the
index of a speech frame. On the other hand, the replay speech signal, re[n], can
be modeled as the convolution of the natural speech signal, s[n], and the impulse
response of the intermediate devices, h1[n], (playback and recording device) along
with propagating acoustic environment, and it is given by [175]:

re[n] = s[n] ∗ h1[n], (3.18)

where h1[n] have the extra convolved components due to replay. The h1[n] is lump
together with the impulse responses of recording device, playback device, and
environment as given by Eq. 3.19. The genuine speech signal, s[n], is inevitably
convolved with the impulse response of the transmitting loudspeaker, hmic[n], be-
fore further convolution with the response of the channel under test, h1[n]. The
replay signal re[n] is the channel output after further modification by the receiver
response. This is, in fact, an approximation. In order to estimate the channel im-
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pulse response alone, the combined effects of the genuine speech, the transmitting
loudspeaker, and the receiver must be removed from the replay signal using de-
convolution. In particular, it is the combination of impulse responses of recording
device, hmic[n], recording environment, a[n], playback device (speaker), hspk[n],
and playback environment, b[n], i.e., h1[n] lump together all the three impulse re-
sponses.

h1[n] = hmic[n] ∗ a[n] ∗ hspk[n] ∗ b[n]. (3.19)

In addition, if the presence of extra additive noise, η[n], is added along with
the convolution of impulse response it is more complex, then Eq. (3.18) becomes,

re[n] = s[n] ∗ h1[n] + η[n]. (3.20)

To sum up, we assume the impulse response of microphone and loudspeaker as
output of linear systems.

The speech signal recorded with the playback device contains the convolu-
tional and additive distortions from the intermediate devices. The most crucial
part in the detection of replay attack is during the process of feature extraction.
To obtain the discriminatory information of genuine and replay speech signal,
the focus should be on the representation of the spectral characteristics obtained
from the intermediate devices. Eq. (3.18) represents the convolution term that
transforms to the additive relation when converted to the real cepstral-domain
(by ignoring phase information), and it is given by [176]:

re = s + h1, (3.21)

where re, s , and h1 represents the cepstral vectors of replay, genuine speech sig-
nal, and the impulse response of intermediate devices, respectively. The features
obtained from the vector h1 can be used by subtracting the cepstral vector of gen-
uine speech signal from that of replay speech signal. The features extracted from
replay signal are also affected by the recording process.

The acoustical behavior of the speech signal recorded in different environment
have differences in the speech signal. The speech signal when recorded in noisy
environment will have distortion in the signal. However, its effect on the acous-
tical characterization of replay is yet to be analyzed. Replay speech is affected by
the reverberation, which is included during recording of the speech signal and
hence, basics of reverberation effect is explained in the next Section 3.6.2.
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3.6.2 Basics of Reverberation

The replay speech signal is the re-recording of the target speaker’s voice captured
unknowingly from a distance with the help of a recording device. The record-
ing can be done at different places, such as bedroom, balcony, canteen, office,
home. When the recording is done particularly within the closed room, the rever-
beration is introduced severely during replay mechanism. Reverberation is the
phenomenon to resist the sound after it has been stopped as a result of multiple
reflections from surfaces, such as furniture, people, air medium. within a closed
surface [177]. These reflections build up with each reflection and decay gradually
as they are absorbed by the surfaces of objects in the space enclosed. The reflec-
tions are 1st order (with only one deviation), and 2nd order (with two deviations)
from the wall, surface, and direct path without any deviations. The impulse re-
sponse is known to carry the information of the acoustic environment, however,
under assumption of Linear Time-Invariant (LTI) system [25, 178, 179]. Conven-
tionally, replay signal (with reverberation), srev[n], is modeled as a convolution of
the natural speech signal, s[n], with impulse response of acoustic environment,
r[n], [180, 181], i.e.,

srev[n] = s[n] ∗ r[n]. (3.22)

If the additive noise η[n] is present then Eq. (3.22) becomes

srev[n] = s[n] ∗ r[n] + η[n]. (3.23)

The natural speech is repeated, time-shifted, and scaled for every non-zero point
in the impulse response and the resulting signals are summed as shown via a
schematic representation in Figure 3.11. The non-stationary monocomponent sig-

Figure 3.11: Convolution of Genuine Speech with Impulse Response (i.e., Sequence of
Impulses at Different Echo Locations) in Order to Obtain the Reverberant Replay Speech
Signal. After [9].
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nals can be mathematically expressed as [182, 183]:

s[n] = a[n] cos φ[n], (3.24)

where a[n] is the slowly-varying instantaneous amplitude, and φ[n] is the instan-
taneous phase [183]. The non-stationary multicomponent signal can be defined as
the superposition of M monocomponent signals given as:

smulticompnent[n] =
M

∑
i=1

ai[n] cos φi[n]. (3.25)

As discussed earlier, reverberation includes the delay and change in amplitude
forming the close copies of genuine signal that corresponds to different reflec-
tions [184]. Modeling the reverberation and understanding how the parameters
related to the model affect both physical and perceptual properties of reverber-
ation. Different types of reverberation models are time-frequency room model,
novel signal-based measurement, reverberation decay tail measure, colouration
measure. From a signal processing viewpoint and under the assumption of a fixed
acoustic environment, reverberation can be modelled as a linear time-invariant
(LTI) system with room impulse response (RIR), h[n], with the input signal, s[n],
to give the output signal srev[n]. The reverberation process can then be written as
the convolution between the input and the RIR:

srev[n] = ∑
i

kis[n− ni], (3.26)

where s[n] and srev[n] are the genuine and reverberated signals, respectively, and
ki and ni are the change in amplitude and delay of each samples, respectively, for
i reflections that occurred in the closed room. When we compare Eq. (3.25) and
Eq. (3.26), we can say that reverberation changes monocomponent signal into
multicomponent signals. The duplicates are spectrally very close to each other
[184].

Reverberation introduces delay and attenuation to produce close copies of the
genuine signal corresponding to the different reflections of the acoustical signal in
the environment [184]. It can be observed from Figure 3.12 that the replay speech
samples are shifted from the genuine components, and the amplitude also varies
compared to the genuine signal.

Discrete early reflections (in particular, 1st or 2nd order reflections) are typically
involved in the early regions of an impulse response. The discrete early reflec-
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Figure 3.12: Segment of Speech Signal Showing the Effect of Reverberation for Replay
Signal (Dotted Line) in Terms of Delay in Each Speech Sample, and Changes in Ampli-
tude Compared to the Genuine Speech Segment (Solid Line). After [9].

tions can be simulated by means of a tapped delay line, which allows replicating
some versions of the input signal, each delayed in a different amount [185]. The
time-domain speech signal are shown for both genuine (Figure 3.13(a)), and rever-
berated speech signal in (Figure 3.13(b)). The reflections further become densely
packed in time-domain, composing the diffuse tail (as seen in Figure 3.13(b)) [185].
The time of the peak indicates, ‘how long the reflected signal will arrive at the
recording device?’, and the amplitude of the peak shows the amplitude of the re-
flected signal [185]. The first peak of the reverberated signal corresponds to the
signal that arrives directly from the source of the recording, which arrives with the
shortest possible delay. The other subsequent peaks arrives because of reflections,
each related to its particular path that come in its way. Eventually, the reflections
become sufficiently dense that they indeed overlap in time. Because energy is ab-
sorbed by environmental surfaces with each reflection (as well as by air), longer
paths produce lower amplitudes, and the overlapping echoes produce a “tail" in
the impulse response that decays with time [185].

If a room does not have any signal absorbing surfaces, such as wall, roof, and
floor, the signal bounce back between the surfaces, and takes very long (ideally
infinite) time for the signal to end. In such a room, the listener or the recording
device will hear/record both the direct signal as well as the repeated reflected sig-
nal waves. If these reverberations are more excessive, the sound will run together
with a mere loss of articulation, and it becomes muddy and also garbled [177]. The
larger rooms have few reflections resulting in slow decay of reverberated signals,
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Figure 3.13: Time-Domain Speech Signal for (a) Genuine, and (b) Reverberated (Replay).
After [9, 25].

and the decay rates are also affected by material, such as carpet, curtains, sofa-
sets. Reverberation is also found to distort the structure of source signals in the
spectral energy density as shown in Figure 3.14 via spectrogram [14, 27, 60, 185].
The time-domain speech signals for genuine (Panel I), and replay speech (Panel
II) are shown in Figure 3.14(a) corresponding to their spectral energies in Figure
3.14(b). The highlighted regions in spectral energy densities show the distortion
that are included because of reverberation. Distortion is due to decay in spectrum
and hence, a kind of energy loss [186].

TEO is applied on filtered subband signals that are obtained from the Gabor
filterbank, and estimate instantaneous energy profiles for each narrowband sig-
nal. The Teager energy profiles are passed through frame-blocking with window
length of 20 ms and shift of 10 ms followed by logarithm operation. This subband
Teager energy spectrum shows the difference between natural and replay speech
signal.

The spectral energy density obtained via traditional spectrogram, and Teager
energy spectral features shown in Figure 3.15(b) and Figure 3.15(c). The Panel
I and Panel II corresponds to the spectral energy density for natural and replay
speech signal, respectively. From Figure 3.15, it can be observed that the spec-
tral energy densities obtained from the Teager energy gave high energies in both
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Figure 3.14: (a) Time-Domain Speech Signal, and (b) Corresponding Spectral Energy
Densities via Spectrogram of Genuine (Panel I), and Replay (Panel II) Speech Signal,
Highlighted Regions Oval, and Boxes Show the Distorted Spectral Regions. After [9].

lower and higher frequencies as compared to the ones shown by the traditional
spectrogram. The similar pattern was observed for the replay speech signal (Panel
II). Highlighted regions in Figure 3.15 shows the energy differences correspond-
ing to the natural and replay signals. These energies obtained from the proposed
approach contributes to detect replay signal.

Further simulation is performed to observe the effect of reverberation on the
Teager energy profiles of synthetic speech (i.e., simulated genuine), and corre-
sponding replay signals in Figure 3.16. The train of impulses (Figure 3.16(a)) is
convolved with a damped sinusoid signal (Figure 3.16(b)) producing a convolved
signal (Figure 3.16(c)). Now, assume the convolved signal in Figure 3.16(c)) is a
simulated genuine speech signal. Now, to obtain a reverberated signal, we con-
volved the simulated genuine speech signal (Figure 3.16(e)) with a train of im-
pulses representing echo (Figure 3.16(d)), and obtained a synthetic reverberated
signal having close copies of original genuine signal (Figure 3.16(f)). The impulse
response for reverberated signal in Figure 3.16 had an echo kept with a particular
time interval, i.e., impulse arrives at every 8 ms. However, in real case scenario, it
may not be the case, i.e., the echo impulses may arrive with a small interval gap
or it may arrive with a large delay as well depending upon shape and size of the
acoustic environment.

We observed that the Teager energy traces of replay speech signal segment
recorded for different environments, such as (Panel I) balcony, (Panel II) bedroom,
(Panel III) canteen, and (Panel IV) office are as shown in Figure 3.17(b). The extra
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Figure 3.15: (a) Time-Domain Speech Signals, Comparison of Spectral Energy Density
via (a) Spectrogram, and (b) Teager Energy-Based Approach. Panel I and Panel II Shows
Natural and Corresponding Replay Speech, respectively. Highlighted Oval Regions via
Ellipses Shows the Difference in Pattern of Spectral Energy Densities. After [9].

Figure 3.16: (a-d) Train of Impulses and Echoes to Model Reverberation; (b) Damped
Sinusoid Signal; (c-e) Convolved Signal Obtained from (a) and (b); and (f) Convolved
Signal Obtained from (d) and (e). After [9].

pulses are observed when the replay speech signal is recorded in a closed room,
such as bedroom and office as shown in Figure 3.17 (Panel II and Panel IV (b)).
On the other hand, extra impulse-like energy traces are not observed for replay
speech recorded in balcony, and canteen environment Figure 3.17 (Panel I and
Panel III (b)).

The TEO profiles show high energy pulses around the Glottal Closure Instant
(GCI), because of impulse-like excitation to vocal tract system and this sudden
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Figure 3.17: (a) Time-Domain Speech Segment of Replay Signal Recorded in Balcony
(Panel I), Bedroom (Panel II), Canteen (Panel III), and Office (Panel IV) Along with Their
Corresponding Teager Energy Profiles (b). Highlighted Ovals Show the Extra Impulse-
Like Teager Energy Traces Observed Replay Speech Recorded in Closed Room.

glottal closure produces high energy (also observed in Section 3.3) and thus, TEO
produces high energy around these regions [168]. Along with high Teager en-
ergy pulses, the bumps are observed around the energy pulses, indicating signif-
icant contribution of nonlinear effects during the speech production process [168]
(please refer Section 3.3 for more details).

3.7 Experimental Setup

In this Section, we provide the details of SSD database used to perform the exper-
iments on the proposed feature sets. The performance of SSD system is evaluated
on various standard databases (as discussed in Chapter 2). In addition, the fea-
ture extraction parameters, and the model training information is also discussed
in this sub-Section.

3.7.1 Feature Parameterization

The details of the parameters used for feature extraction of various feature sets is
explained in Table 3.1.

3.7.2 Model Training and Score-Level Fusion

We used the Gaussian Mixture Model GMM with 128 mixtures for modeling the
two classes, in which the classes correspond to the genuine and bonafide class
in ASVspoof 2015 database. The GMMs are trained with the training set of the
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Table 3.1: Details of Features Extraction Parameters. After [9]

Parameters CQCC LFCC MFCC TECC
Frequency Scale - Linear Mel Linear
Subband Filters - 40 40 40

Fmin (in Hz) 15 0 0 10
Fmax (in Hz) 8000 8000 8000 8000

Dimension of a Feature Vector 90 120 39 120

database. The use of a GMM classifier comparatively perform well for the detec-
tion of genuine vs. bonafide speech in the ASVspoof 2015 challenge [187]. Final
scores are represented in terms of the log-likelihood ratio (LLR). The decision of
the test speech being genuine or bonafide is based on the LLR, i.e.,

LLR = log
p(X|H0)

p(X|H1)
, (3.27)

where p(X|H0), and p(X|H1) are the likelihood scores from the GMM for the gen-
uine and bonafide trials (with hypothesis H0 and H1), respectively, for feature
vectors, X. To obtain the complementary information of the MFCC, and TECC
feature sets, we use their score-level fusion, i.e.,

LLRcombine = (1− α)LLR f eature1 + αLLR f eature2, (3.28)

where LLR f eature1 is the log-likelihood score of MFCC, and LLR f eature2 is the score
for TECC, respectively. The weights of the scores are decided by the fusion param-
eter, α. We compared TECC results with other state-of-the-art features sets, such
as Mel Frequency Cepstral Coefficients (MFCC) [13], Constant Q Cepstral Coeffi-
cients (CQCC) [110, 112], and Cochlear Filter Cepstral Coefficients-Instantaneous
Frequency (CFCC-IF) [111].

3.8 Experimental Results of the SSD Task

3.8.1 Results on ASVspoof ASVspoof 2015 Challenge

3.8.1.1 Results on Development Set

The results obtained in % Equal Error Rate (EER) of TECC feature set on devel-
opment and evaluation sets are shown in Table 3.2. From the results, it can be
observed that on development set, the proposed feature set has much less % EER
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of 0.38 % compared to the CFCC-IF, and MFCC. However, the best performing
feature set, i.e., CQCC gave lower % EER of 0.038 %. We further used score-level
fusion of MFCC and TECC feature sets in order to obtain possible complementary
information, and further reduce the % EER on both development and evaluation
sets. However, we could not obtain the reduced % EER.

Table 3.2: Comparison of Results in % EER ASVspoof 2015 Challenge Database. Af-
ter [10]

Feature Set Development Evaluation
MFCC [13] 6.14 9.15

TECC 0.38 5.95
CFCC-IF [111] 2.29 1.211
CQCC [110] 0.0381 0.255

TECC+MFCC 0.38 6.41

Figure 3.18: Individual DET Curves of TECC, and MFCC Feature Set on Development
Dataset of ASVspoof 2015 Challenge Database. After [10].

The performance is also shown in Fig. 3.18 by the Detection Error Trade-off
(DET) curve on development set for MFCC and TECC feature sets. It can be ob-
served from the DET curve that the operating points obtained from the score of
MFCC have high miss probabilities and false alarm, whereas TECC feature set has
a significantly lower false alarm, and miss probabilities in the DET curve.

3.8.1.2 Results on the Evaluation Set

On evaluation set, the dataset is divided into two groups, namely, known (S1-S5),
and unknown attacks (S6-S10). The unknown attacks were included during the
challenge, which are not used in the training and development datasets. These
unknown attacks are challenging to detect, in particular, the S10 attack which is
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Table 3.3: Results in % EER on Evaluation Dataset for Each Spoofing Attack. Both
Known and Unknown Attacks. +:Score-Level Fusion. After [10].

Feature Set
Known Attacks Unknown Attacks

All Avg. S1-S9 Avg.
S1 S2 S3 S4 S5 Avg. S6 S7 S8 S9 S10 Avg.

MFCC 2.34 9.57 0.00 0.00 9.01 4.18 7.73 4.42 0.3 5.17 52.99 14.12 9.15 4.28
TECC 0.00 0.21 0.00 0.16 0.67 0.20 0.41 0.00 0.00 0.00 58.14 11.71 5.95 0.161

CFCC-IF 0.101 0.863 0.000 0.000 1.075 0.408 0.846 0.242 0.142 0.346 8.490 2.013 1.211 0.39
CQCC 0.005 0.106 0.000 0.000 0.130 0.048 0.098 0.064 1.033 0.053 1.065 0.462 0.255 0.163

developed using Unit Selection Synthesis (USS)-based approach. The detailed %
EER of MFCC, TECC, CFCC-IF, and CQCC on both known and unknown attacks
are reported in Table 3.3. It can be observed that for spoofing attacks (S1 to S9),
for most of the cases, TECC feature set gave lower % EER compared to the other
state-of-the-art feature sets. For known attacks, the average % EER of TECC is
0.20 %, and the average % EER for unknown attacks (S6-S9) is 0.161 %, which is
lower compared to the other feature sets. The comparison in % EER from S1 to
S9 spoofing algorithms are shown in Fig. 3.19. We can observe that the CFCC-IF
feature set has higher % EER (green dotted line) compared to the CQCC and TECC
feature sets. For individual spoofing attacks of S7, S8, and S9, it can be observed
that the % EER is equal to 0 %, which is best performing system than the CQCC
feature set. However, the TECC feature set fails to detect the S10 (USS) spoof
speech signals resulting in higher % EER of 58.14 % that increases % EER for entire
SSD task. This may be due to the fact that USS-based spoof contains concatenation
of natural speech sounds units resulting in similar bumps in TEO profiles w.r.t
nonlinearity in speech production and thus, creating a larger confusion during SS
vs. natural SSD task.

Figure 3.19: Comparison of S1-S9 Spoofing Algorithms in % EER of CFCC-IF (Green
Line), CQCC (Purple Line), and TECC Feature Set (Red Line). After [10].
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3.8.2 BTAS 2016 Database

The results obtained in EER of TECC feature set on development and evaluation
sets are shown in Table 3.4. We compared our results with the baseline system,
MFCC, and CQCC feature sets. From the experimental results, it can be observed
that the TECC feature set has much more less EER of 2.25 %, and 4.51 % on dev
and eval set, respectively, compared to the baseline system, MFCC, and CQCC
feature sets.

Table 3.4: Results (in % EER) for BTAS 2016 Database. After [10]

Subset Baseline MFCC CQCC TECC
Dev 5.91 3.66 3.05 2.25
Eval - 7.59 18.86 4.51

Fusion with TECC

Dev - 2.20 2.25 -
Eval - 4.43 4.50 -

We further used score-level fusion of MFCC and CQCC with TECC feature set
in order to obtain possible complementary information, and reduce the % EER
further on both development and evaluation sets (as shown in Table 3.4). The
score-level fusion reduced the % EER to 2.20 % with MFCC and TECC feature
sets (with fusion factor, α= 0.8) and with CQCC feature set, it reduced to 2.31 %
(with fusion factor, α= 0.9). On the other hand, on evaluation set, the score-level
fusion reduced only fusion of MFCC and TECC and gave % EER of 4.43 % (with
fusion factor, α= 0.9), whereas with CQCC feature set, the % EER did not reduce.

Table 3.5 shows the performance on evaluation set in % HTER on baseline
system, MFCC, CQCC, and TECC feature sets. It can be observed that TECC fea-
ture set gave lower % HTER compared to the other feature sets. Furthermore, we
analyzed individual presentation attack (as reported in Table 3.5). In the Table
3.5, ‘SS’ stands for speech synthesis, ‘VC’ stands for voice conversion, ‘RE’ stands
for replay, ‘LP’ stands for laptop, ‘PH1’ is Samsung Galaxy S4 phone, ‘PH2’ is
iphone 3gs, ‘PH3’ is iphone 6s, and ‘HQ’ stands for high quality speakers were
used during replay attack. It can be observed that for all the types of replay at-
tacks, we obtained lower % HTER with proposed TECC feature set. However, for
unknown attacks (highlighted with bold font), we obtained higher % HTER for
all the feature sets, which means degradation in the overall performance.

The histogram plots of log-likelihood scores obtained from the Gaussian mix-
tures corresponding to (a) MFCC, (b) CQCC, and (c) TECC are shown in Figure
3.20 for development (Panel I), and evaluation set (Panel II), respectively. It can be
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Table 3.5: Individual Attack Results (in % HTER ) for Eval Set. After [10]

Attacks Baseline MFCC CQCC TECC
SS-LP-LP 2.87 10.82 50 2.39

SS-LP-HQ-LP 2.87 14.89 50 1.75
VC-LP-LP 3.58 4.05 50 1.43

VC-LP-HQ-LP 3.39 3.99 50 1.32
RE-LP-LP 17.02 9.40 50 1.77

RE-LP-HQ-LP 11.24 28.25 50 3.02
RE-PH1-LP 52.24 29.37 50 24.77
RE-PH2-LP 51.96 27.65 50 29.87

RE-PH2-PH3 51.56 38.85 50 50.17
RE-LPPH2-PH3 20.62 47.87 50 41.92

Average 6.87 6.89 50 3.71
Bold font indicates they are unknown attacks

observed that for TECC feature sets, the LLR scores of both natural and spoof are
properly distributed resulting in less % EER as compared to the distribution cor-
responding to other feature sets on development set. Similar observation is found
on evaluation set for MFCC, and TECC feature sets. From the Figure 3.20, it can
be observed that huge change in score distributions on development (i.e., -10 to
10), and evaluation (i.e., -80 to -10) sets for CQCC feature set. This in turn results
in high % HTER for CQCC on evaluation set, as HTER depends on the threshold
of development set (which is near to 0 (Figure 3.20 Panel I (b))).

Figure 3.20: Histogram Plots for Panel I: Development, and Panel II Evaluation Set. (a)
Score Distribution of MFCC, (b) CQCC, and (c) TECC Feature Set. After [10].
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Figure 3.21: DET Curve for (a) Development, and (b) Evaluation Set. After [10].

The performance is also shown with DET curves for all the feature sets along
with their best score-level fusion in Figure 3.21(a), and Figure 3.21(b). From Figure
3.21(a), it can be observed that for MFCC, and CQCC shows high miss probability,
and false alarm probability, respectively, which is not a good case for the voice
biometric or ASV system. However, the TECC feature set along with score-level
fusion of CQCC and TECC feature set shows the reduced miss probability and
false alarm probability compared to the other feature sets. On the other hand, for
evaluation set, the DET curves for all the feature sets have high probability with
high false alarm rate, which indicate that the evaluation set is very challenging to
develop a suitable countermeasure.

3.8.3 Results on ASVspoof 2017 Challenge v2.0

3.8.3.1 Results on Development Set

This Section presents the experiments performed on development set in order to
optimize the parameters on the evaluation set, such as the approximate subband
filtered signals, and the choice of bandwidth of subband filter in Gabor filterbank.

Effect of Subband Filters

The human auditory system carries several thousands of subband filters which
results in a dense filterbank in frequency-domain [53], [166, 167]. To estimate the
Teager energy features accurately, we increased the number of subband filters in
Gabor filterbank. Results with increase in the number of subband filtered signals
are shown in Figure 3.22. It can be observed that with 40 number of subband filters
in filterbank, we obtain very high EER of 25.07 % on development set. As we
increase the number of subband filters in filterbank, the EER goes on decreasing
from the EER obtained using 40 number of subband filters. The low EER of 11.82
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% was obtained with 80 number of subband filtered signals. However, when
we further increase the subband filtered signals to 100, the EER increases. The
subband filters overlap with each other and hence, discriminative information is
lost that results to degrade the SSD performance.

Figure 3.22: Results in % EER on Development Set of ASVspoof 2017 Challenge
Database With Varying The Number of Subband Filtered Signals in a Filterbank. Af-
ter [9].

Effect of Bandwidth of Subband Filters

The formant transitions, in particular, the higher formants are important when
it comes to speaker-related information (namely, speaker identification or veri-
fication task). The higher formants or the energy present in higher frequency
indeed help to detect the replay speech signal from its natural counterpart. The
higher spectral energy information depends on the process of how it is extracted,
in particular, frequency scale used in filterbank, bandwidth of a subband filter,
shape of subband filter. The choice of the bandwidth in a subband filter should
not be much narrow neither it should be wider. If the bandwidth of the sub-
band filter is too small then the filtered signal may not capture the formant tran-
sition well, whereas if the bandwidth is too large, the features extracted might
be inaccurate [167]. Hence, after a certain bandwidth, further widening of the
bandwidth result in poor frequency resolution and hence, it degrades the perfor-
mance [27], [166, 167]. Using 80 number of subband filters as it gave lower EER
(discussed in Section 3.8.3.1), we performed further experiments by varying the
bandwidth from 50 Hz to 400 Hz of a subband filter. The results obtained by
varying the bandwidth are shown in Figure 3.23. Using 100 Hz bandwidth, we
obtained lower EER of 10.80 % on development set compared to the other choices
of bandwidths.

In addition, we also performed an experiment without integrating Gabor fil-
terbank to investigate the importance of filterbank for the proposed approach.
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Figure 3.23: Results With Varying the Bandwidth of a Subband Filter on Development
Set of ASVspoof 2017 Challenge Database. After [9].

Table 3.6 shows the results (with and without filterbank), on development and
evaluation sets for TECC feature sets. It can be observed that the EER obtained
for TECC feature set gave high EER for both development and evaluation sets.

Table 3.6: Results on ASVspoof 2017 Database Obtained With and Without Applying
Filterbank. After [9]

Feature Set Without Filterbank With Filterbank
Dev Eval Dev Eval

TECC 40.94 42.33 10.80 11.41

3.8.3.2 Results on Evaluation Set

Based on the experiment performed on development set, parameters are opti-
mized on development set, and later carried forward on the evaluation set. In
particular, 80 number of subband filters using 100 Hz bandwidth of a subband
filter in filterbank is used to extract the TECC feature set. In addition, we ana-
lyzed the effect of EER depending on replay configurations, in particular, different
acoustic environment, playback, and recording devices on the evaluation set.

In addition, we also extended our experimentation to test the accuracy on deep
learning models. From the results, it was observed that there was a big reduction
in EER for evaluation dataset for GMM-based model as compared to the Convolu-
tional Neural Network (CNN) model indicating that the proposed TECC feature
set being cepstral feature is not performing well when used with DNN as classi-
fier. In similar line, in speech recognition literature, Mel filterbank energy features
were found to be effective for DNN-based than MFCC-GMM-HMM systems. The
CNN architecture consists of convolutional, pooling, and fully-connected (FC)
layers. It is a type of Deep Neural Network which uses convolutional layers and
pooling layers in order to extract abstract feature data, followed by FC layers.
Batch Normalization is also used in order to prevent overfitting. The result for
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the experiments performed with neural network-based classifier is reported in
Table 3.7. The TECC feature set do not perform well for the neural network-based
classifier compared to the GMM-based classifier resulting in lower EER of 10.0 %
and 11.41 % on dev and eval set, respectively.

Table 3.7: Results (in % EER) with GMM and CNN Classifier on TECC feature sets.
After [11].

Classifier Dev Eval
GMM 10.80 11.41
CNN 24.84 29.49

Results using Score-Level Fusion

Table 3.8 show the results in EER on development and evaluation sets. We com-
pared TECC feature set with the other existing feature sets, namely, CQCC, MFCC,
and LFCC. On ASVspoof 2017 version 2.0 database, the post evaluation base-
line is modified from the earlier baseline in the form of having the log-energy
coefficients, and Cepstral Mean Variance Normalization (CMVN) method, the en-
hanced baseline results are reported in Table 3.8. However, we considered the
CQCC feature set with CMVN method as our first baseline to have a fair com-
parison, as the other feature sets are in the cepstral-domain. In addition, we also
considered LFCC as our second baseline, since TECC feature set is extracted with
the linear frequency scale. The MFCC feature set is also compared as it is one of
the state-of-the-art feature set used in the speech literature. From Table 3.8, it can
be observed that the relatively low EER obtained is with TECC feature set result-
ing in 10.80 % and 11.41 % on development and evaluation sets, respectively.

Furthermore, in order to increase the performance of the replay SSD task, we
further performed score-level fusion as per Eq. (6.7) to obtain possible comple-
mentary information. The low EER obtained is with score-level fusion of TECC
and LFCC feature sets that resulted in 8.10 % and 10.49 % EER at fusion weight
of α = 0.7 on development and evaluation sets, respectively. (Please note that
the performance on evaluation set was not done using oracle fusion (If ’a’ is op-
timized on the evaluation data, such fusion should be called oracle fusion)). In
addition, we also fused the scores of all the feature sets used and observed the
importance of TECC feature set. It can be observed from the Table 3.8 with the
score-level fusion of TECC along with CQCC, MFCC, and LFCC the performance
of replay detection is better compared to the other fusion of feature set, indicating
that the proposed feature set captures complementary information than the other
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Table 3.8: The Final Results (in % EER) on Development and Evaluation Sets. After [9]

Feature Set Dev Eval
CQCC (Baseline system) 9.06 13.74
CQCC (Our baseline1) 12.81 19.04

MFCC 24.19 26.90
LFCC (Our baseline2) 16.76 13.90

TECC 10.80 11.41
TECC+CQCC 8.90 11.77
TECC+MFCC 13.13 13.64
TECC+LFCC 8.10 10.49

CQCC+LFCC+MFCC 7.37 12.06
CQCC+LFCC+MFCC+TECC 6.68 10.45

feature sets alone or their fusion. The low EER obtained is 6.68 %, and 10.45 % on
development and evaluation sets, respectively.

The performance evaluation is also shown by the DET curves for CQCC, MFCC,
LFCC, and TECC feature sets along with their best score-level fusion results in
Figure 3.24. It can be observed that the FRR of CQCC, MFCC, and LFCC is very
high for the given FAR, which is not a good case for ASV system. There is signif-
icant decrease in miss probability fusing TECC feature set on development set as
shown in Figure 3.24 (a), which is further reduced when the scores are fused with
CQCC, MFCC, and LFCC feature set. We observe similar pattern of development
set, on evaluation set also as shown in Figure 3.24 (b).

Figure 3.24: DET Curves for (a) Development, and (b) Evaluation Sets. After [9].
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Effect of Replay Configurations (RC)

The updated ASVspoof 2017 challenge version 2.0 database provides the detailed
description of replay configuration, in particular, acoustic environment, playback,
and recording devices [6]. There are in total 61 distinct different replay configura-
tions. The replay utterance encompass those of a playback and recording device
along with an acoustic environment through which sound propagates [6]. On
evaluation set, the EER with all the feature sets for different replay configurations
are shown in Table 3.9. The overall performance of different replay configura-
tions has least EER using TECC feature set. Hence, TECC feature set is able to
detect different replay configurations better compared to the other feature sets.
Furthermore, we analyzed the individual replay configurations discussed in the
next sub-Section.

Table 3.9: Comparison of Feature Sets in % EER on Different Replay Configurations
(RC). After [9]

Feature Acoustic Playback Recording
Set Environment Device Device

CQCC 17.85 16.43 18.06
MFCC 26.34 24.15 24.49
LFCC 15.18 14.48 14.85
TECC 11.41 10.42 11.20

The acoustic environment listed in [6] are the actual space in which the original
speech data was re-recorded. The ASVspoof 2017 challenge version 2.0 database
has in total 26 different environments denoted from E01-E26. Different environ-
ments have the variations included with the levels of additive ambient, convolu-
tive, and reverberation noise. The level of noise in environment is assumed to be
inversely proportional to the threat that pose to the ASV system. Figure 3.25 show
the individual EER for various environmental conditions on evaluation dataset.
We can observe that using MFCC and CQCC feature sets, the EER for most of the
environments are relatively higher compared to the LFCC and TECC feature sets.
However, TECC feature set show the lower EER for different environments.

Similar to different acoustical environments, there are 26 different playback
devices denoted by P01-P26 [6]. The EER for all the different playback devices
using all the feature sets are shown in Figure 3.26. Similar to the acoustical en-
vironments, TECC feature set gave relatively lower EER for different playback
devices compared to the other feature sets.

There are 25 different recording devices used during collection of replay speech
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Figure 3.25: Individual % EER for Different Environment Conditions With CQCC,
MFCC, LFCC, and TECC Feature Sets (Difference in % EER For All The Feature Sets is
Highlighted by Oval). After [9].

Figure 3.26: Individual % EER for Different Playback Devices With CQCC, MFCC,
LFCC, and Proposed TECC Feature Sets (Difference in % EER for All the Feature Sets is
Highlighted by Oval). After [9].

denoted by R01-R25 [6]. Figure 3.27 show the EER for different recording devices
with all the feature sets on evaluation sets. Similar to acoustical environments and
playback devices, the pattern of lower EER is observed with TECC feature set for
different recording devices compared to the other feature sets.

The acoustic environment, playback devices, and recording devices are clas-
sified into three different levels of threat, namely, low, medium, and high. Fig-
ure 3.28 shows the EER for different levels of threat using CQCC, LFCC, MFCC,
and TECC feature sets for all the different replay configurations. The high-level
threats are difficult to detect because professional audio equipment, such as active
studio monitors, and studio headphones were used to produce replay samples. In
addition, samples collected from studio quality condenser microphones or hand-
held recorders are assumed to be of higher quality and hence, gives higher EER
for high-level threats. As the level of threat goes on increasing, the EER also in-
creases. The TECC feature set has lower EER for all the levels of threats compared
to the other systems.
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Figure 3.27: Individual % EER For Different Recording Devices with CQCC, MFCC,
LFCC, and TECC Feature Sets (Difference in % EER for All the Feature Sets is High-
lighted by Oval). After [9].

Figure 3.28: Different Levels of Threats, Namely, Low (L), Medium (M), and High (H)
for CQCC, LFCC, MFCC, and TECC Feature Sets on All the Replay Configurations.
After [9].

3.8.4 Results on ASVspoof 2019 Challenge Database

The organizers of ASVspoof 2019 challenge provided a baseline system for both
Logical and Physical Access (LA and PA) tasks [7]. We observed in the study [9]
that the spectral energy density obtained from the Teager energy-based approach
has high energy across entire frequency regions (because of linearly-spaced Ga-
bor filterbank) as compared to the spectral energy density obtained from the tra-
ditional spectrogram, and Moifies Group Delay (MGD) spectrum. The baseline
system utilizes two feature sets, namely, CQCC and LFCC with 512 Gaussians for
modeling genuine and corresponding spoof models in GMM. The ASVspoof 2019
challenge uses minimum Tandem- Detection Cost Function (t-DCF) as evaluation
metric along with EER [7]. Due to computational load for the available hardware,
less Gaussian mixtures were used for TECC feature extraction (i.e., 256 Gaussians
for LA and only 64 Gaussians for PA task). From Table 3.10, it can be observed
that TECC features outperform than the baseline systems. The results for the PA
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task is reported in Table 3.11. The training set of PA task, contains twice training
files that were present in LA set, which in turn increases the computational load
on the hardware and hence, we reduce Gaussian mixtures further. From Table
3.11, it can be observed that TECC feature set did not perform well for PA task,
though it perform best on LA task.

Table 3.10: Comparison of TECC Feature Set with the Other Systems for LA Task of
ASVspoof 2019 Challenge Database. After [9]

Dev Eval
Feature Sets EER t-DCF EER t-DCF

CQCC 0.43 0.0123 9.57 0.2366
LFCC 2.71 0.0663 8.09 0.211
TECC 0 0 7.51 0.1940

Table 3.11: Comparison of TECC Feature Set with the Other Systems for PA Task of
ASVspoof 2019 Challenge Database. After [9]

Dev Eval
Feature Sets EER t-DCF EER t-DCF

CQCC 9.87 0.1953 11.04 0.2456
LFCC 11.96 0.2554 13.54 0.3017
TECC 24.7 0.62441 43.62 0.8085

In addition, the comparison of ASVspoof 2017, ASVspoof 2019, and real PA of
ASVspoof 2019 challenge databases are shown in Table 3.12. On ASVspoof 2017
challenge database, an EER of 10.80 % and 11.41 % is obtained with TECC fea-
ture set on development and evaluation sets, respectively. The similar set of fea-
tures did not perform well on the controlled acoustic environment, i.e., ASVspoof
2019 challenge database that results in 24.7 % and 43.62 % EER on development
and evaluation sets, respectively. The absolute difference on development set for
both replay databases is approximately 15 %, which is a huge difference for SSD
task. The performance of the SSD system degrades in case of ASVspoof 2019
challenge database as this database is simulated, and has controlled acoustic con-
ditions. This indicates that the same feature set do not work for different acous-
tical conditions, and hence, there is a need for more generalized features for SSD
task. Furthermore, when the experiments were performed on real PA database of
ASVspoof 2019, the EER is reduced from 43.62 % to 39.16 %. This indicate that
uncontrolled acoustic environment indeed help to detect the replay signal from
the natural speech.
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Table 3.12: Results in % EER on ASVspoof 2017, ASVspoof 2019, and Real PA challenge
database. After [9]

Feature ASVspoof 2017 ASVspoof 2019 Real PA
Sets Dev Eval Dev Eval Eval

CQCC 12.81 19.04 9.7 11.04 15.71
TECC 10.80 11.41 24.7 43.62 39.16

3.9 Chapter Summary

In this Chapter, we presented potential TEO-based features to capture reverber-
ation during replay mechanism for SSD task. The genuine speech signal, s[n], is
inevitably convolved with the impulse response of the transmitting loudspeaker,
hmic[n], before further convolution with the response of the channel under test,
h1[n]. We observed that for different acoustical environments, the Teager energy
traces obtained are distinct. In particular, for a closed room (such as bedroom,
office.) extra energy traces are observed because of echo impulses. In particu-
lar, suitability of TECC feature to capture reverberation characteristics depends
upon acoustic environments for example, TECC may not perform well in out-
door environment where there is NO reverberation. Hence, these observations
motivated us to extract features that are based on the energy traces, and thus,
proposed TECC for replay SSD task.

The detailed theory of the TEO algorithm and feature extraction process was
also presented. Results are shown for the SSD task on the ASVspoof 2015, ASVspoof
2017, BTAS 2016, and ASVspoof 2019 challenge databases. We observe that TECC
feature set gave lower EER for all the different conditions of threat compared to
the other system. For high-level threat and high quality devices used during play-
back, and recording, the EER are quite high. This needs further investigation to
detect the high level replay configuration threat. In the next chapter, we will dis-
cuss ESA-based speech demodulation Instantaneous Amplitude (IA) and Instan-
taneous Frequency (IF) features for SSD task.
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CHAPTER 4

Temporal Modulation Features

4.1 Introduction

In this Chapter, we introduce the proposed feature sets used for SSD task, namely,
Energy Separation Algorithm Instantaneous Frequency Cepstral Coefficients (ESA-
IFCC), and Energy Separation Algorithm Instantaneous Amplitude Cepstral Co-
efficients (ESA-IACC). The proposed feature sets are based on Energy Separation
Algorithm (ESA), and Teager Energy Operator (TEO). The basic concepts of the
TEO and ESA are discussed in Section 4.2. The analysis of Instantaneous Fre-
quency (IF) and Instantaneous Amplitude (IA) of a subband temporal modulation
signal is also discussed along with the difference between natural and replay sig-
nal. The block diagram and feature extraction process along with importance of
feature normalization is discussed in Section 4.3. The experiments are performed
on ASVspoof 2017 and ASVspoof 2015 challenge corpora in Section 4.4.1 and Sec-
tion 4.4.2, respectively. Finally, in Section 4.5, we summarize the Chapter.

4.2 Energy Separation Algorithm (ESA)

Traditional Fourier analysis requires the signal to be stationary, and the system
under consideration should be linear. However, real-world signals, such as speech
signals are non-stationary in nature (i.e., signals whose spectral contents vary with
time) [170]. The non-stationary of speech signal is handled by short-term Fourier-
transform (assuming speech is stationary within 20-25 ms range). To that effect,
the representation of Amplitude Modulation- Frequency Modulation (AM-FM)
signal is one of the approaches used for analysis of non-stationary signals. The
AM-FM model is nonlinear in nature that describes a speech resonance as a signal
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with combination of AM and FM structure, i.e.,

R(t) = a(t)cos
[

2π

(
fct +

∫ t

0
q(τ)dτ

)
+ θ

]
, (4.1)

where R(t) is AM-FM speech signal, and fc is the corresponding speech formant
(center) frequency. The amplitude and frequency modulating signals of R(t) are
given by a(t) and q(t), respectively, and θ is a constant phase. The IF signal is
defined as f (t) = fc + q(t), and speech signal, s(t), is modeled as the sum, s(t) =

∑K
k=1 Rk(t), where K is the number of AM-FM signals [188]. The basic problem in

processing the AM-FM signal is demodulation, i.e., estimation of the information
present in the AM and FM components. For monocomponent AM-FM signal,
many successful demodulation approaches exist, such as Hilbert transform (HT)
[183], Phase-Locked Loops (PLLs) [189], and Energy Separation Algorithm (ESA)
[51].

Figure 4.1: AM-FM Estimation Using ESA on a Synthetic (having closed form Ex-
pression) Signal (Panel I), and Natural Speech Signal (Panel II) for Utterance, "Action
Speaks Louder Than Words". (a) AM-FM Signal of a[n]=0.998n(1 + 0.8cos(pi/100)n), and
x[n]=a[n]cos((pi/5)n + sin(pi/50)n), (e) Filtered Narrowband Signal at fc=1000 Hz, (c-
g) Estimated IA, and (d-h) Estimated IF at fc=1000 Hz for Synthetic Signal, and Speech
Signal, (b-f) Shows Their Corresponding Teager Energies. After [12].

An example of synthetic (having closed-form expression) signal, and real nat-
ural speech signal is considered to show the estimated IA and IF components
obtained from ESA demodulation approach in Figure 4.1. For synthetic case,
the signal is considered with a[n] = 0.998n(1 + 0.8cos(pi/100)n), and x[n] =

a[n]cos((pi/5)n + sin(pi/50)n) shown in Panel I, and Panel II shows the voiced
bandpass filtered signal with utterance, "Action speaks louder than words", in Fig-
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ure 4.1(a) and Figure 4.1(e). The speech signal is passed through a bandpass filter
having a cut-off frequency of 1000 Hz. The corresponding IA and IF are shown in
Figure 4.1(c-d) for synthetic signal whereas for speech signal, it is shown in Figure
4.1(g-h). The estimated IF in Figure 4.1(d-h) oscillates around its center frequency
of 1000 Hz, the narrow spikes are usually caused either by amplitude valleys or
by the onset of a new pitch pulse (i.e., T0=1/F0) [175].

Since speech signal has time-varying amplitude and frequency, it can be mod-
eled as AM-FM signal [52]. Hence, TEO applied to an AM-FM speech signal can
approximately estimate the squared product of IA (ai[n]), and IF (Ωi[n]) for the ith

subband filtered signal, i.e.,

Ψd

{
ai[n]cos

(
n

∑
0

Ωi[m]dm + θ

)}
≈ a2

i [n]Ω
2
i [n]. (4.2)

The ESA is applied on a single speech resonance. However, speech is a combi-
nation of several resonances and hence, these resonances needs to be separated
using bandpass subband filtering [190]. Out of several versions of discrete-time
ESA (DESA) algorithm, DESA-2 (symmetric approximation) has the advantage of
less computations per sample than the DESA-1 (asymmetric approximation) [57].
Hence, we used DESA-2 algorithm to estimate ‘ai[n]’ and ‘Ωi[n]’ of the narrow-
band filtered signal, ESA was developed and is given by (Refer Appendix B for
more details of ESA) [51, 57, 175]:

ai[n] ≈
2Ψd{xi[n]}√

Ψd{xi[n + 1]− xi[n− 1]}
, (4.3)

Ωi[n] ≈ arcsin

√
Ψd{xi[n + 1]− xi[n− 1]}

4Ψd{xi[n]}
. (4.4)

In this chapter, we focus on the ESA approach to estimate the IA and IF compo-
nents of a speech signal.

The physical significance in terms of temporal modulations at different time
scale is analyzed in Figure 4.2. The time-domain subband filtered signal around
1st formant frequency is shown in Figure 4.2(a) for natural (Panel I), and replay
(Panel II). The slow temporal modulations of a speech signal roughly correlates
with the different syllabic segments. For natural speech, slow temporal modula-
tions results in smooth amplitude envelope as shown in Figure 4.2(b) (in Panel
I). The higher peaks in the fast temporal modulations (which are also known as
Temporal Fine Structure (TFS)) as shown in Figure 4.2(c) represents the harmonic
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Figure 4.2: (a) Time-Domain Subband Filtered Speech Signal around first formant
frequency, Whose Temporal Modulations are Depicted at Different Time Scales, (b) Mod-
ulations Due to the Inter-Harmonic Interactions, and (c) Fast Temporal Modulations.
Panel I, and Panel II is for Natural and corresponding Replay Spoof Signal, respectively.
After [12, 26].

structure of the speech signal [26]. However, this observation is missing for the
replay speech (Panel II) of Figure 4.2. The slow temporal modulations for re-
play speech are having distorted amplitude envelope (Panel II) of Figure 4.2(b).
The fast temporal modulations do not represents the harmonic structure in Figure
4.2(c) of Panel II. This observation of natural and replay speech signal motivated
us to analyze more on temporal modulations for replay SSD task.

The IA and IF components estimated from the subband filtered signal is shown
in Figure 4.3 (d and e). The IA component is related to the slow temporal mod-
ulations of a speech signal Figure 4.3(b). On the other hand, the IF components
shows the fluctuations driving around the cutoff frequency, Fc = 494 Hz (as shown
in Figure 4.3(e)), and it is because of fast temporal modulations shown in Figure
4.3(c)) that represents the harmonic structure of the speech signal [26].

The comparison of the natural and replay speech signal in terms of IF compo-
nents is observed (as shown in Figure 4.4). The segment of a speech signal with
bandpass filtered around center frequency of 500 Hz for natural (Panel I), and
replay (Panel II) is shown in Figure 4.4. The highlighted dotted rectangular box
in Figure 4.4(a) shows the difference in time-domain waveform for the voiced re-
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Figure 4.3: (a) Time-Domain Subband Filtered Signal (Using Gabor Filterbank) at
Cut-Off Frequency, Fc = 494 Hz, Whose Temporal Modulations are Depicted to the
Right at Different Time Scales, (b) Modulations Due to the Inter-Harmonic Interac-
tions, (c) Fast Temporal Modulations, (d) Amplitude Envelope of the Response of (b) is
Clearly Observed, and (e) Fast Temporal Modulations are Due to the Frequency Compo-
nents [12, 26].

gion of a natural and a replay signal. The voiced region in Panel I from 2.82 s to
2.9 s has the time-varying amplitude which is normal for natural speech, whereas
for replay speech (Panel II), the same voiced region is changed to the pattern of
sinc function-like. The replay speech signal consists of repeating sinc function-
like pattern observed from 1.83 s to 1.9 s (as shown in Panel II of Figure 4.4(a)).
The IF fluctuations for natural and replay around center frequency of 500 Hz is
shown in ( Panel I and Panel II) of Figure 4.4(b). It can be observed that from
Panel I that the IF has fluctuation exactly around the center frequency of 500 Hz,
whereas this is not the case for the corresponding IF fluctuations obtained from
the replay speech. In particular, the IF fluctuates below the center frequency, and
the damping of fluctuations starts exactly from the same time duration, i.e., 1.83 s
to 1.9 s, as the pattern starts with sinc function-like pattern for replay speech.

Figure 4.5(a) shows the plot of a genuine speech utterance and Figure 4.5(b-c)
shows the respective IA and IF of a narrowband filtered signal around 1500 Hz for
a speech signal shown in Fig. 4.5(a). The output is possibly decomposed into its
corresponding AE and IF from the filterbank of various narrowband component.
The IF in Figure 4.5(c) is centered around 1500 Hz, and shows spurious fluctua-
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Figure 4.4: (a) Subband filtered segment of a speech signal around a center frequency
500 Hz of natural speech signal (Panel I), and corresponding subband filtered replay
signal (Panel II) segment, and (b) shows the corresponding IF fluctuations of natural and
replay speech segment. Highlighted region shows the change in the sinc function-like
pattern for replay speech signal (Panel II(a)), and the damping of IF components from
the center frequency for the same speech segment. After [12].

tions on both side that makes it difficult to analyze and interpret the vocal tract
system characteristics [167]. There could be two reasons for IF that has spurious
fluctuations in a speech signal and they are:

• When the amplitude approaches to zero, then the large fluctuations are ob-
served for IF. For the region 4.4 s to 4.5 s in Fig. 4.5(c), i.e., unvoiced regions
have more changes because of narrowband components have low energy in
that region as shown in Fig. 4.5(d).

• On the other hand, the region from 4.2 s to 4.25 s and 4.3 s to 4.4 s as in Fig.
4.5(c), which is voiced regions have the changes in IF connected to impulse-
like nature during speech production [167].

This is because the IF estimated from the speech signal contains the information
of both vocal tract system, and speech excitation source. As a result, IF shows
impulse-like discontinuities at the instants of glottal closure [191]. As a result, at
the instants of Glottal Closure Instants (GCI), discontinuity of impulses are ob-
served in IF. The impulse response of vocal tract system during production of a
speech signal originated GCI successively to yield a speech signal. The phase dis-
continuity occur due to superposition of impulse response that gives us the large
amplitude peaks in IF at locations of GCI.

The key advantages of ESA algorithm is that it does not require the complex
task of phase unwrapping (as required in HT-based approach) and in addition,
only five samples are required to estimate ai[n] and Ωi[n] and thus, avoid the need
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Figure 4.5: AM-FM Decomposition (a) Speech Signal, (b) IA, (c) IF of Filtered Narrow-
band Signal at fc=1500 Hz, and Fig. 4.5(d)-(e) Amplitude Envelope, and Instantaneous
Frequency, respectively, of Speech Segment Shown With Dotted Box in Fig. 4.5(a). Af-
ter [13].

for segmental block-based processing of speech, which has its own disadvantages,
such as the positioning of the window, length of analysis window, and accuracy
of IF estimation decreases primarily due to block-based processing [191].

4.3 Details of Proposed Feature Set using ESA

Recent studies observed that the spectral information present in higher frequency
regions is more distorted for replay speech [135]. Hence, to emphasize these high
frequency regions, pre-emphasis filter is used having a system function, H(z) =

1− az−1, with a typical filter coefficients of a = 0.97 [169]. This pre-emphasized
speech signal is passed through a Gabor filterbank to obtain narrowband filtered
signals. We used Gabor filter since it is compact and smooth. The Gabor filter has
optimal joint time-frequency resolution (since Fourier transform (FT) of a Gaussian
is a Gaussian, and it is infinitely differentiable function, i.e., g(t) ε C∞) [170]. The
impulse response, g(t), of a Gabor filter is given by [52] :

g(t) = exp(−b2t2)cos(ωct), (4.5)
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where ωc is the center frequency (in Hz) of the subband filter chosen as per the fre-
quency scales of Equivalent Rectangular Bandwidth (ERB), Mel, and linear. The
parameter b controls the bandwidth of a filter. The Gabor filters have the linear
phase response characteristics and hence, it maintains the same pattern (shape) of
the filtered speech signal (within the passband of subband filter) [171]. Motivated
by the studies of auditory perception mechanism for humans, the center frequen-
cies of ERB, and Mel scales have narrow and wider bandwidth in the lower and
higher frequency regions, respectively [172,173]. In case of linear frequency scale,
all the subband filters have almost equal bandwidth and hence, have good resolu-
tion in the lower, and higher frequency regions that make more reliable to extract
high resolution spectral information.

4.3.1 Frequency Scale

4.3.1.1 ERB Frequency Scale

This frequency scale is used to quantify the bandwidth of asymmetrical filters
like the auditory filter. The study reported in [172] observed that the auditory
filter bandwidths are given as:

ERB(ω) = 6.23(ω/1000)2 + 93.39(ω/1000) + 28.52. (4.6)

4.3.1.2 Mel Frequency Scale

Stevens et al. in 1937 proposed Mel scale, which is perceived pitches (subjective)
similar to the perception prediction of the human ear [173]. Spectral resolution of
Mel scale becomes lower as the frequency increases. The mathematical expression
of Mel scale is given as:

Mel(ω) = 2595log10(1 + ω/700). (4.7)

4.3.1.3 Linear Frequency Scale

In a linear frequency scale, bandwidth is equally distributed throughout all the
frequency ranges that makes it more reliable to extract the proposed features. It
effectively capture the information in the lower as well as higher frequency re-
gions. The mathematical expression of linear scale is given as:

Lin(ω) = ω. (4.8)
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The placing of center frequencies according to the frequency scale is shown in Fig-
ure 4.6. We can see that with ERB and Mel scale, only 20 subband filters are cov-
ered with approximately 1000 Hz frequency, whereas for linear frequency scale to
cover 20 subband filters, approximately 4000 Hz frequency is used. The linear fre-
quency scale has good frequency resolution in both lower and higher frequency
regions because of its equal distribution of bandwidth across the entire frequency
regions.

Figure 4.6: Placing of 40 Number Center Frequencies w.r.t ERB, Mel, and Linear Fre-
quency Scale Upto fmax=8000 Hz. After [12].

4.3.2 Feature Normalization

Most of the ASV systems perform well under clean environmental conditions.
The performance of ASV system is affected by the acoustic mismatch between
acoustic environments for training and testing [192, 193]. The speech signals are
recorded in various environmental conditions that includes the mismatch prob-
lem due to distortion involve in speech signal [5]. The Cepstral Mean Normaliza-
tion (CMN) is a simple technique to reduce this channel mismatch problem [174],
it is also known as Cepstral Mean Subtraction (CMS) [194]. The basic principle
behind CMN technique is the nature of the cepstrum under the convolution dis-
tortions operations [193]. The impulse response of a channel, h[n], is assumed
to be Linear Time-Invariant (LTI) system. Let us denote clean speech signal as,
s[n], and channel distortion as, h[n], the corrupted speech signal is the convolved
speech signal of clean, and channel distorted signal denoted by y[n]:

y[n] = s[n] ∗ h[n]. (4.9)

In cepstral-domain, the convolution operation gets converted to addition opera-
tion, and is given by Eq. (4.10) [193, 194]:

cy = cs + ch, (4.10)
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where cy, cs, and ch, represent the cepstral representation of y(n), s(n), and h(n).
Now, calculate the mean of Eq. (4.10), i.e.,

E[cy] = E[cs] + E[ch], (4.11)

where E[·] is the expected value and it is the time average across the long recorded
feature frames. Since it is assumed that channel, h[n], does not change over the
duration of an utterance, so average of ch becomes the cepstrum of the channel,
c(h). If the variation and distortion of sounds in s(n) is such that the average spec-
trum over the utterance is relatively flat, then average value of clean speech E[cs]

≈ 0. However, the cepstral mean of corrupted speech signal, y[n], has just become
the cepstrum of the channel, i.e., E[cy] = ch. Now, remove the channel distortion
by subtracting cepstral mean, E[cy], from the cepstral of corrupted speech signal,
cy [193], i.e.,

cy = cy − E[cy]. (4.12)

cy = cs + ch − ch, (4.13)

∴ cy = cs. (4.14)

Thus, we can reduce the channel distortion by subtracting the cepstral mean, E[cy]

from the cepstral of a corrupted speech signal. From Eq. (4.14), the cepstral of
corrupted speech signal is free from the channel distortion.

Figure 4.7: Schematic Block Diagram of the Proposed Feature Sets, namely, Instanta-
neous Amplitude and Frequency Cepstral Coefficients (IACC and IFCC). After [27].

The proposed feature set is extracted as per the block diagram as shown in Fig-
ure 4.7. The ESA method is applied on the Teager energy profiles, and estimates
the IA and IF components for each filtered subband speech signal. Furthermore,
these IAs and IFs profiles are passed through the frame-blocking, and averaged
with a short window of length 20 ms and with a shift of 10 ms followed by log-
arithm operation to compress the data (in a way similar to the human auditory
system) [195]. However, in our earlier studies in [27], we observed that for es-
timating IA components with logarithm operation provides lower Equal Error
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Rate (% EER), whereas IF estimated by logarithm operation did not give better
results and hence, IF components were estimated without using logarithm op-
eration. To obtain a low-dimensional representation, Discrete Cosine Transform
(DCT) is applied and retained first few DCT coefficients, namely, Instantaneous
Amplitude Cepstral Coefficients, and Instantaneous Frequency Cepstral Coeffi-
cients (i.e., IACCs and IFCCs). The performance of ASV system is known to be
affected by the mismatch environmental conditions between the training and test-
ing [192]. The replay database was recorded in various environmental conditions
that include the mismatch problem due to distortion involved in speech signal [5].
The Cepstral Mean Normalization (CMN) (also known as Cepstral Mean Subtrac-
tion (CMS)) is used to reduce the channel mismatch/distortion conditions [174].
Hence, to reduce the channel mismatch conditions, these IACCs and IFCCs were
further processed with CMN technique, and appended along with their ∆ and ∆∆
features in order to obtain higher-dimensional feature vector.

4.4 Experimental Results

In this Section, the results are shown for several experimental evaluation factors
on ASVspoof 2017 v 2.0 challenge database. The extraction of the proposed feature
sets is mainly affected by the parameters of the filterbank, namely, the shape of the
subband filter, the choice of frequency scale, and the number of subband filtered
signals. In addition, we also performed experiments on ASVspoof 2015 challenge
database.

4.4.1 Results on ASVspoof 2017 Challenge

4.4.1.1 Results with Butterworth and Gabor Filterbank

In our earlier studies, we used Butterworth filterbank to extract the feature sets
[13, 28]. We compared the results with linearly-spaced Butterworth, and Gabor
filterbanks. The spectral energy density obtained with 40 number of subband
filtered signals are shown in Figure 4.8. The time-domain speech signal for the
utterance, “Action speaks louder than words," is shown in Figure 4.8 (a), whereas
Figure 4.8 (b), Figure 4.8 (c), and Figure 4.8 (d) shows the spectral energy den-
sity obtained from the traditional spectrogram along with Butterworth and Ga-
bor filterbanks, respectively. In particular, proposed approach brings out more
dominant regions of spectral energy densities than the traditional spectrogram
(indicated via directional arrows in Figure 4.8(b) to Figure 4.8(d)). The spectral

77



energies obtained from the Gabor filterbank preserves good resolution in both
lower and the higher frequency regions (highlighted with the solid box and oval)
than the spectral energies obtained from the Butterworth filterbank. This lower
frequency information provides the lower formant information (i.e., F1 and F2),
and the higher formants (i.e., F3 and F4) are present in the higher frequency re-
gions [196]. This spectral energies obtained from the Gabor filterbank helps to
capture the information present in natural and replay speech signal. The effect of
Gabor filterbank is to smooth out the spikes, and the abrupt jumps (if any) of the
original estimates, where high frequency components are preserved [197].

Figure 4.8: Comparison of Spectral Energy Density Between Butterworth and Gabor
Filterbank. (a) Time-Domain Speech Signal, Spectral Energy Density of (b) Traditional
STFT Spectrogram, (c) Butterworth Filterbank, and (d) Gabor Filterbank Obtained
with 40 Subband Filtered Signals. Highlighted Regions Shown via Rectangular Boxes
Indicates the Spectral Energy Differences Obtained From Different Techniques. The
Direction of Arrows From Figure 4.8(b) to Figure 4.8(d) Indicates That the Proposed Ap-
proach is Able to Bring Dominant Spectral Energy Density than the Relatively Weaker
Density Regions in to the Traditional Spectrogram. After [12].

Moreover, impulse response of Butterworth filter is Infinite Impulse Response
(IIR) in nature and hence, has the nonlinear phase response while, Gabor filter
has the linear phase response characteristics [171, 198]. The nonlinear phase in
frequency-domain of this acoustic system is added to the phase of natural speech
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and hence, the results with Butterworth filterbank did not give better results [60].
The results of proposed feature set obtained with linearly-spaced Butterworth,
and Gabor filterbanks having 120-D (Static (S)+∆+∆∆) feature vector are shown
in the bar graph representation in Figure 4.9. It can be observed that the % EER
obtained on development set with Gabor filterbank for the proposed feature sets
is lower. In particular, ESA-IACC feature set gave an EER of 7.99 % which is much
lower than the results obtained from the Butterworth filterbank (17.20 %). Thus,
the choice of a filterbank should be considered as an important factor for better
estimation of IA and IF components. Hence, further set of experiments in this
Chapter are performed using Gabor filterbank.

Figure 4.9: Bar Graph Representation of Proposed Feature Sets with Butterworth, and
Gabor Filterbank. After [12].

In addition, we also performed an experiment without integrating Gabor fil-
terbank to investigate the importance of filterbank for the proposed approach (i.e.,
filterbank block in Figure 4.7). Table 4.1 shows the results (with and without filter-
bank) on development and evaluation sets for ESA-IACC and ESA-IFCC feature
sets. It can be observed that the EER obtained for both the feature sets gave high
EER for both development and evaluation set.

Table 4.1: Results on ASVspoof 2017 Database Obtained With and Without Applying
Filterbank Along with CMN on Proposed Feature Sets. After [12]

Without Filterbank With Filterbank
Feature Set Dev Eval Dev Eval
ESA-IACC 23.37 40.47 7.99 13.45
ESA-IFCC 16.57 39.23 11.84 12.93
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4.4.1.2 Effect of Frequency Scales

In this sub-Section, we investigate the effect of different frequency scales used
during estimation of IA and IF-based feature sets in the Gabor filterbank. Here,
we have studied three types of frequency scales, namely, ERB, Mel, and linear
scale. The results obtained with different frequency scale are shown in Figure
4.10. It can be observed that the EER is reduced with linear scale for both the
proposed feature sets (highlighted by oval dotted circle in Figure 4.10). For ESA-
IACC feature set, the EER obtained with ERB scale is 26.58 %, and it is reduced
to 7.99 % with linear scale. Similarly, for ESA-IFCC feature set, the EER obtained
with ERB scale is 36.17 %, and it is reduced to 24.07 % with the linear scale. Hence,
the remaining experiments in this Chapter for estimating IA and IF are carried out
with the linear frequency scale.

Figure 4.10: Results of Proposed Feature Sets w.r.t. Different Frequency Scales, namely,
ERB, Mel, and Linear (Highlighted Oval Shows the Decrease in % EER). After [12].

4.4.1.3 Effect of Number of Subband Filters

The human auditory system carries several thousands of subband filters which
results in a dense filterbank in frequency-domain [53]. Thus, in this Section, we
experimented on effect of increasing the number of subband filters. The estima-
tion of IA and IF components using ESA can be obtained more accurately when
the speech signal is filtered to a narrowband signal. Hence, to obtain the narrow-
band filtered signal, we compute the results by increasing the number of subband
filtered signals. Since the proposed feature sets are extracted with linearly-spaced
subband filters, the frequency resolution is explicitly related to the number of sub-
band filters. The subband filtered signals should be chosen such that it covers the
entire spectrum information. When the number of subband filters used in filter-
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bank is less, it might loose the information and if the subband filters are more,
then it may get overlap with the adjacent subband filters.

1. Increasing Subband Filtered Signals for IA Features: This Section presents the
experiments performed by varying the number of subband filtered signals
for IA feature set. Initially, for estimating the IA components, we kept 40
subband filters in Gabor filterbank with 200 Hz bandwidth. We further in-
creased the number of subband filters up to 140 in filterbank. It can be ob-
served that by increasing the number of subband filters, the EER keeps on
increasing as shown Figure 4.11. Relatively least EER of 7.99 % is obtained
with 40 subband filters in filterbank. The amplitude spectrum is smooth
compared to the variations/fluctuations estimated from IF components. By
increasing the number of subband filters in filterbank, IA components might
get overlapped with adjacent subband filters and hence, the computation be-
comes inaccurate. In this case, only 40 subband filters are required to cover
the entire spectrum information (i.e., available bandwidth) that can be dis-
criminative for the replay SSD task.

Figure 4.11: Results of ESA-IACC Feature Sets with Varying the Subband Filters. Af-
ter [12].

2. Increasing Subband Filtered Signals for IF Features: On the other hand, for
estimation of IF components, we have analyzed the effect of increasing the
number of subband filters on 200 Hz and 400 Hz BW as shown in Figure 4.12.
The estimation of IF estimation is exactly opposite to that of IA estimation
when it comes to the choice of number of subband filters in filterbank [53].
From Figure 4.12, we can see that as the number of subband filters is in-
creased, the EER keep on decreasing and later, we get a near-constant EER
(i.e., no further improvements in SSD performance). The least EER of 11.4
% is obtained with 120 number of subband filters in a filterbank with 200
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Hz bandwidth. Hence, for further set of experiments, we have selected 40
and 120 number of subband filtered signals in a filterbank for extraction of
ESA-IACC and ESA-IFCC feature sets, respectively.

Figure 4.12: Results of ESA-IFCC Feature Sets with Varying the Subband Filters. Af-
ter [12].

4.4.1.4 Results on Score-Level Fusion

On the development set, it is observed that instead of using Butterworth filter-
bank, the Gabor filterbank gives lower % EER. In addition, we also observed that
the linearly-spaced center frequency in Gabor filterbank gives lower % EER com-
pared to the ERB and Mel frequency scales. Furthermore, we also observed that
the estimation of IA and IF components gave the least % EER when the number of
subband filtered signals in a filterbank are kept to 40 and 120, respectively. Based
on the results obtained on the development set, similar parameters are chosen
for evaluation set. Table 4.4 shows the results in % EER on the evaluation set of
proposed feature sets. We have compared our proposed feature sets with CQCC,
MFCC, and LFCC. On the ASVspoof 2017 version 2.0 database, the baseline is
modified from the earlier baseline in the form of having the log-energy coeffi-
cients, and CMVN method. With the enhanced baseline, the results are as shown
in Table 4.4. However, we have considered the CQCC feature set with CMN as
our first baseline (abbreviated as CQCC_CMN) as these features are in cepstral-
domain so that we can compare with the other feature sets. In addition, we have
also considered LFCC as our second baseline, since proposed feature sets are ex-
tracted with the linear frequency scale, and the algorithm used for proposed fea-
ture sets are based on the linear frequency scale. We also compared results with
MFCC feature set as it is one of the state-of-the-art feature set used for various
applications in the speech literature. Furthermore, we also performed the exper-
iment by applying the CMVN method for proposed feature sets. In general, we
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found CMN is better than the CMVN technique. Thus, features extracted using
CMN (which is an approximate highpass filter) are effective for replay SSD task.
Since in replay spoof speech the higher frequency regions are more discriminative
compared to the lower frequency regions, CMN helps to apply highpass filtering
in speech and thus, boost all the more the discriminative high frequency regions.
In addition, replay signal being affected due to bandpass nature of acoustic envi-
ronment, the highpass filter may help to capture that effect. The results obtained
with CMVN (which is equivalent to adaptive gain control) for proposed feature
set gave high EER as shown in Table 4.2 and hence, we extract the proposed fea-
ture sets by applying CMN method as it gave relatively low EER for ESA-IACC,
and ESA-IFCC feature sets.

Table 4.2: Results on Development and Evaluation Set Using CMN and CMVN Tech-
nique Using 40 Subband Filtered Signals. After [12]

Dev Eval
Feature Set CMN CMVN CMN CMVN
ESA-IACC 7.99 12.48 13.45 34.04
ESA-IFCC 24.32 27.29 19.87 29.32

Table 4.3: The % EER for Score-Level Fusion at Various Fusion Factors on Evaluation
Set. After [12]

Fusion Factor Feature sets used for score-level fusion
α CQCC+ESA-IACC CQCC+ESA-IFCC MFCC+ESA-IACC MFCC+ESA-IFCC LFCC+ESA-IACC LFCC+ESA-IFCC ESA-IACC+ESA-IFCC
0 19.04 19.04 26.90 26.90 15.73 15.73 12.93

0.1 15.71 15.08 20.88 19.51 14.68 14.32 12.15
0.2 13.60 13.21 17.24 18.06 14.03 13.51 11.38
0.3 12.62 11.74 14.94 16.97 13.62 13.07 11.19
0.4 12.11 10.89 13.65 15.76 13.36 12.75 11.10
0.5 11.99 10.33 12.95 14.81 13.12 12.39 11.09
0.6 11.93 10.12 12.65 13.90 13.08 12.10 11.30
0.7 12.12 10.30 12.78 13.26 13.01 11.83 11.62
0.8 12.45 10.90 12.95 12.85 13.13 12.08 11.87
0.9 12.89 11.71 13.12 12.81 13.23 12.37 12.19
1 13.45 12.93 13.45 12.93 13.45 12.93 13.45

To explore the possible complementary information, we have used score-level
fusion (as per Eq. (6.7)). For development set, the relatively best % EER was
obtained with α =0.5 for CQCC and ESA-IACC. On the other hand, for CQCC
and ESA-IFCC feature sets, the best % EER was obtained with α =0.7 (as shown
in Figure 4.13). Similar pattern of reduced EER was observed on the evaluation
set, i.e., when CQCC is used with proposed feature sets using score-level fusion
as shown in Table 4.3. For evaluation set, the relatively least % EER was obtained
with fusion factor of α =0.5. The least % EER obtained on development set is 7.03
% with fusion of CQCC and ESA-IACC, while for evaluation set, the least EER of
10.12 % is obtained with fusion of CQCC and ESA-IFCC feature sets.
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Figure 4.13: The % EER for Score-Level Fusion at Various Fusion Factors on Develop-
ment Set. After [12].

Table 4.4: Final Results on ASVspoof 2017 Challenge Version 2.0 Database (in % EER) on
Development and Evaluation Set. The Parenthesis Bracket Shows the Weight of Fusion
Parameter α. After [12]

Feature Set Dev Eval
CQCC (Post-eval BL) 9.06 13.74

A: CQCC-CMN 12.81 19.04
LFCC (Our Baseline2) 16.76 13.90

MFCC 24.19 26.90
ESA-IACC (CMVN) 13.45 34.04
ESA-IFCC (CMVN) 19.87 29.32

B: ESA-IACC 7.99 13.45
C:ESA-IFCC 11.84 12.93

A+B 7.03 (α =0.5) 12.11 (α =0.5)
A+C 7.74 (α =0.7) 10.12 (α =0.7)
B+C 7.13 (α =0.6) 11.09 (α =0.6)

BL: Baseline

In addition, in order to capture the possible complementary information present
in IA and IF components-based features, we have used their score-level fusion (as
shown in Table 4.4). We observed that the performance obtained from the fusion
of IA and IF components gave the reduced % EER over the individual counter-
parts. These reductions in % EER indicate that both IA and IF-based feature sets
are complementary in nature. The least % EER of 7.13 % (development set, with a
fusion factor of α =0.6), and 11.09 % (evaluation set, with a fusion factor of α =0.6)
is obtained by the fusion of ESA-based features using GMM classifier.

4.4.1.5 Analysis of Replay Configurations

The replay speech signals are recorded in different acoustic environments using
different recording, and playback devices [5]. These intermediate devices are fur-
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ther classified into three different levels of threats, namely, low, medium, and
high. Figure 4.14 shows the performance of CQCC, LFCC, MFCC, ESA-IFCC, and
ESA-IACC feature sets for all the levels of threats. In particular, for acoustic en-
vironment, recording, and playback device, it can be observed that the proposed
feature set has lower % EER in each case as compared to the other feature sets.
The high-level threats pose more challenging for recording and playback devices
since very high quality devices are used to record and playback the replay signal.
Hence, these replay signals are very much similar to their natural counterparts
and thus, degrades the performance resulting in higher % EER for SSD system.

Figure 4.14: Results in % EER for Different Levels of Threats on Replay Configurations,
Namely, (a) Acoustic Environment, (b) Recording Device, and (c) Playback Device with
CQCC, MFCC, LFCC, ESA-IFCC, and ESA-IACC Feature Sets. After [12].

The acoustic environment listed in [6] are the actual space in which the orig-
inal speech data is replayed and re-recorded. The ASVspoof 2017 challenge ver-
sion 2.0 database have 26 different environments denoted from E01-E26. Different
environments have the variations with the levels of additive ambient, convolu-
tive, and reverberation noise. The Figure 4.15(a) shows the detailed % EER for
all the different environmental conditions with all the feature sets on evaluation
dataset. It can be observed that for CQCC, MFCC, and LFCC feature sets, the %
EER for all the environmental conditions are high compared to the TECC feature
set. Hence, TECC feature set (red line) shows the lower % EER for all the differ-
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ent environmental conditions. Similar to different acoustic environments, there

Figure 4.15: Individual % EER for Different Acoustic Environments With CQCC, MFCC,
LFCC, ESA-IFCC, and ESA-IACC Feature Sets. After [12].

are 25 and 26 different recording and playback devices denoted by R01-R25 and
P01-P26 [6]. Figure 4.15(b) and Figure 4.15(c) shows the detailed % EER for differ-
ent recording and playback devices with all the feature sets on evaluation dataset.
The high-level threats are difficult to detect due to the use of professional audio
equipment, such as active studio monitors, studio headphones, etc. to produce
replay samples [6]. The proposed feature set perform better in such high-level
threat is shown by the highlighted ovals in Figure 4.15. The proposed feature set
shows lower % EER for all replay configurations compared to the other feature
sets.

The performance evaluation is also shown by the DET curves for CQCC, MFCC,
LFCC, and proposed feature sets along with their best fusion results in Figure 4.16
on version 2.0 database. It can be observed that the miss probability of CQCC,
MFCC, and LFCC was very high for given FAR which is not a good case for ASV
system. There is decrease in miss probability for proposed feature sets on devel-
opment set as shown in Figure 4.16 (left side), which further reduces when fused
with CQCC feature set. For evaluation set, we observe very high FRR for all the
feature sets along with proposed feature sets as shown in Figure 4.16 (right side).
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However, the proposed feature sets and their score-level fusion with CQCC has
low FAR compared to the other feature sets.

Figure 4.16: The DET Curves for CQCC, MFCC, LFCC, and Proposed Feature Sets
Along With Best Score-Level Fusion With Factor α=0.7 (As Per Eq. 6.7) on Development
Set (Left Side), and Evaluation Set (Right Side). After [12].

Finally, we have compared our proposed feature sets with the other feature
sets that were proposed on the ASVspoof 2017 challenge version 2.0 database. A
few studies are reported on the modified database as listed in Table 4.5.

4.4.2 Results on ASVspoof 2015 Challenge

The subband filter must be as wide as possible to include the desired formant
modulations. However, narrow enough to exclude the interference of neighbor-
ing formants. The center frequencies of the bandpass filters are linearly-spaced
and used to extract the component AM-FM signals of the speech segment and
then determine the modulations around these center frequencies. Authors have
chosen linearly-spaced filterbank for Butterworth filter as opposed to the other
frequency scale, such as Mel scale, Equivalent Rectangular Bandwidth (ERB) scale
(this is in line with the recent finding reported in [167]).

4.4.2.1 Results on Development Set

Results for MFCC and proposed ESA-IFCC feature set are shown in Table 4.6.
From the results, proposed feature set captures speaker-specific information em-
bedded in natural speech (as SS and VC speech does not exactly match the human
speech) and hence, there exists differences between natural vs. spoofed classes.

87



Table 4.5: Comparison of Results (in % EER) on ASVspoof 2017 Version 2.0 Challenge
Database. After [12]

Feature Set Classifier Dev Eval
CQCC [6] (Post-eval BL) GMM 9.06 13.74
A: CQCC GMM 12.81 19.04
LFCC GMM 10.58 16.62
MFCC GMM 24.19 26.90
PNCC [157] GMM 20.78 23.74
QLNCC [157] GMM 21.81 24.67
CILPR [199] GMM 19.68 20.66
PSRMS [199] GMM 33.38 28.16
eCQCC-DA [200] DNN 13.97 13.38
CQCC [201] GMM 8.93 12.20
IFCC [201] GMM 16.20 15.90
DCTILPR [201] GMM 22.69 14.03
RMFCC [201] GMM 23.58 20.49
TECC [11] GMM 9.55 11.73
CF [141] GMM - 10.84
CM [141] GMM - 10.93
PPWS [147] GMM - 10.70
PPWS_max [147] GMM - 11.57
PPRFWS_KL [147] GMM - 9.97
PPRFWS_LR [147] GMM - 9.28
B: Proposed ESA-IACC GMM 7.99 13.45
C: Proposed ESA-IFCC GMM 11.84 12.93
A+B (α =0.5(dev) & eval)) GMM 7.03 12.11
A+C (α =0.7(dev & eval) ) GMM 7.74 10.12

- indicates information not found;
BL: Baseline

Table 4.6 indicate that the ESA-IFCC features produce much lower % Equal Error
Rate (EER) than the MFCC alone, ESA-IFCC features that are capable to classify
genuine vs. bonafide speech (i.e., for SS and VC, the features are comparatively
different than that for human (genuine/natural) speech).

It was found that linearly-scaled equi-spaced subband filters are more suitable
for IF estimation task than the ERB-scaled varying bandwidth subband filters.
In the case of gammatone filterbank, the bandwidth increases at higher frequen-
cies, making the estimation of IF less reliable. However, authors have used But-
terworth filter that has nonlinear phase that can be approximated as linear over
smaller frequency regions. For given 16 kHz sampling frequency, we have avail-
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Table 4.6: Results in Terms of EER (%) on Development Dataset Score-Level Fusion as
Per Eq. 3.28. After [13]

Feature Set 1
# EER (%) for varying α

Feature Set 2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency Range

static 6.98 6.72 6.36 6.00 5.69 5.40 5.24 5.30 5.54 6.63 8.16
MFCC ∆ 6.75 6.25 5.84 5.36 4.83 4.42 4.13 3.88 3.85 4.27 5.29 100-3000 Hz ESA-IFCC

∆∆ 6.14 5.71 5.29 4.81 4.31 3.98 3.74 3.70 3.85 4.56 5.79 13-D

static 6.98 6.28 5.67 5.05 4.48 4.17 3.91 3.80 4.06 4.78 6.38
MFCC ∆ 6.75 4.05 2.76 2.27 2.18 2.34 2.56 3.28 4.17 5.67 7.47 100-7800 Hz ESA-IFCC

∆∆ 6.14 2.98 2.17 1.98 2.12 2.42 3.00 3.63 4.62 5.75 7.18 40-D

static 6.98 6.57 6.13 5.67 5.18 4.66 4.16 3.75 3.45 3.62 5.43
MFCC ∆ 6.75 5.58 4.50 3.72 3.14 2.71 2.30 2.01 2.02 2.71 6.22 100-7800 Hz ESA-IFCC

∆∆ 6.14 5.10 4.08 3.31 2.82 2.41 2.02 1.89 2.00 2.76 6.59 13-D

Table 4.7: Results in % EER on Evaluation Dataset for Each Spoofing Attack. Both
Known and Unknown Attacks, +:Score-Level Fusion. After [13]

Feature Sets
Known Attacks Unknown Attacks

All Avg.
S1 S2 S3 S4 S5 Avg. S6 S7 S8 S9 S10 Avg.

A:MFCC 2.34 9.57 0.00 0.00 9.01 4.18 7.73 4.42 0.3 5.17 52.99 14.12 9.15
B:ESA-IFCC 2.68 4.87 0.00 0.00 12.87 4.08 10.9 2.4 3.57 3.33 37.37 9.514 6.79

A+B 0.78 3.39 0.00 0.00 5.45 1.92 4.19 1.22 0.11 1.80 54.73 12.41 7.16

able bandwidth of 7800 Hz that is divided into 40 equi-spaced frequency regions
of width ( fH − fL)/40 Hz. The phase response around each ( fH − fL)/40 Hz
width is mostly found to be linear (as observed in authors recent study reported
in [202]).

Furthermore, the score-level fusion of these features was done as per Eq. (3.28)
and is shown in Table 4.6. It was observed that for equal weighted fusion of
MFCC and ESA-IFCC score, the % EER of MFCC (6.98 %), and ESA-IFCC (5.43
%) reduces to 3.45 % for static features similar pattern was observed for ∆ and
∆∆ for higher frequency range of 100-7800 Hz. The contribution of a particular
system is decided by the weight of fusion (i.e., α). From Table 4.6, it is observed
that most of the system contribution was done with ESA-IFCC feature set as the
parameter α most of the times was biased towards ESA-IFCC. Therefore, it can
be said that the ESA-IFCC feature set has more contribution in decreasing the %
ERR and hence, could classify in a more effective way for SSD. From Table 4.6, the
proposed feature set capture the complementary information that was not observed
from MFCC alone. The % EER, is very less for score-level fusion of the MFCC and
ESA-IFCC.

4.4.2.2 Results on Evaluation Dataset

Table 4.7 shows the results for evaluation dataset with known and unknown
spoofing attacks. It was observed that SS attacks (S3, S4) were easily detected for
known attacks, while S10 (MARY TTS) in unknown attacks was the most difficult
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task to detect. These results show that performance degrades significantly with
unknown attacks. The overall average error rate for known and unknown attacks
was 6.79 % for ESA-IFCC and was significantly better than the MFCC (9.15 %) fea-
ture set. The score-level fusion (when performed with the fusion factor, α = 0.8)
gave the overall average EER of 7.16 % due to dominance of S10 unknown attack.
However, with score-level fusion of MFCC and ESA-IFCC feature set, other at-
tacks from S1 to S9 (known and unknown attacks) were detected reasonably well.

4.5 Chapter Summary

In this chapter, we discussed two proposed feature sets, namely, ESA-IFCC and
ESA-IACC for the SSD task. We presented the results using several experimental
evaluation factors, such as the shape of subband filters, frequency scales (ERB,
Mel, and linear), the number of subband filters, type of filterbank (Gabor vs. But-
terworth), etc. The AM-FM features were extracted using ESA-based speech de-
modulation approach. The ESA approach uses a nonlinear differential operator.
This study has shown that ESA method exhibit better demodulation performance
for the replay SSD task. The Gabor filterbank is used to obtain subband filtered
AM-FM speech signals. We observed that the AM-FM feature set extracted using
linearly-spaced Gabor filters gave better performance than that for ERB and Mel
scales. The frequency resolution is explicitly related to the number of subband
filters in the filterbank. The AM-FM features along with feature normalization
performed better compared to the baseline system, and many other features in the
literature. The score-level fusion of IA and IF features improve the performance,
however, further investigation is required in this direction.

The limitation of this study is to understand the rapid IF fluctuation changes
around the center frequency for voice and unvoiced region. In the next Chapter,
we extend Chapter 4 work with the generalized TEO by varying the past and
future samples instants with a constant integer known as lag parameter.
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CHAPTER 5

Variable Length Energy Separation Algorithm
(VESA)

5.1 Introduction

In the Chapter 4, we discussed our proposed ESA-based Instantaneous Ampli-
tude and Frequency feature sets. In this chapter, we extend our earlier work with
the generalized TEO, i.e., by varying the samples of past and future instants with
a constant arbitrary integer i also known as lag parameter or dependency index, and
named it as Variable length Teager Energy Operator (VTEO). The key concept be-
hind VTEO, and its Variable length Energy Separation Algorithm (VESA) is dis-
cussed in Section 5.2 and Section 5.3. We compared the VESA-based features with
earlier proposed method, i.e., ESA along with Hilbert transform method for SSD
task. In particular, we performed experiments on ASVspoof 2017 challenge and
BTAS database in Section 5.4. In addition, the experimental results using VTECC
feature set ASVspoof 2017 challenge V2.0 database is reported in Section 5.5. Fi-
nally, Section 5.6 summarizes the Chapter.

5.2 Basics of VTEO

Variable length Teager Energy Operator (VTEO) is the modified version of the
traditional TEO method [165]. TEO involves nonlinear operations on the signal,
i.e, square of current sample and multiplication of previous and next sample, i.e.,
x(n− 1) and x(n + 1), respectively. The key motivation for VTEO is the speech
signal carries dependencies (local vs. distant) in the sequence of samples of speech
signal. Thus, instead of considering only immediate past x[n− 1] and immediate
future x[n + 1], VTEO considering ith past and ith future samples. In VTEO al-
gorithm, the number of samples incorporated in energy estimation can be varied
up to i past, and i future samples, i.e., x(n− i) and x(n + i), instead of only two
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adjacent samples as in TEO [203]. VTEO gives flexibility to select these samples
to estimate the running estimate of energy required to generate the signal [204].
VTEO gives us a good measure of the energy of the oscillating signal, when the
sampling rate of the signal is greater than 8i times the frequency of oscillation in
the signal [203]. VTEO brings out hidden dependencies and dynamics of the sig-
nal [203]. For discrete-time signal, x[n] = Acos(ωn + φ), the samples of the same
signal shifted in time by index i, w.r.t present sample, can be expressed with an
assumption for i>n, x(n− i) = 0 as:

x(n + i) = Acos(ω(n + i) + φ), (5.1)

x(n− i) = Acos(ω(n− i) + φ). (5.2)

When we multiply above equations, we obtain,

x(n + i)x(n− i) = A2cos(ω(n + i) + φ)cos(ω(n− i) + φ), (5.3)

x(n + i)x(n− i) = [Acos(ωn + φ)]2 − A2sin2iω. (5.4)

On high sampling rates, it result to VTEO and is given as Eq. (5.5):

En = {ΨDI{x(n)}} = x2(n)− x(n− i)x(n + i) ≈ i2A2ω2, (5.5)

where i2A2ω2 is instantaneous estimate of signal’s energy multiplied by i2, and
referred to as VTEO for the dependency index (DI), i, which is expected to give
running estimate of signal’s energy [204,205]. To estimate the individual contribu-
tion of amplitude, a[n], and frequency, ω[n], of signal, Maragos et.al developed an
Energy Separation Algorithm (ESA) that uses nonlinear energy operator (i.e., in TEO
framework) to track the instantaneous energy of the source generating the AM-
FM signal, and separate it into its amplitude and frequency components [51, 57].
The ESA was developed to demodulate a speech signal into Amplitude Enve-
lope (AE) and Instantaneous Frequency (IF). According to Kaiser, energy in a
speech signal is a function of both amplitude and frequency [206]. However, ESA
is applied to single speech resonance, while the speech signal itself is a multi-
component signal, being the sum of several resonances. Hence, there is a need
to isolate resonances by suitable bandpass filtering. The advantage of VTEO over
TEO lies in the superior localization, and tracking instantaneous fluctuations (if
any) of the energy at a given instant of time, and it also brings out the hidden
dependencies and dynamics of the signal w.r.t. distantly located speech samples
than only the immediate adjacent samples. The VTEO has a good measure of
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Figure 5.1: Block Diagram of Proposed Variable Length Teager Energy Cepstral Coeffi-
cients (VTECC). After [16].

the energy, when the sampling rate is greater than 8i times the frequency of the
oscillation of signal [203].

5.2.1 Feature Extraction Process

The block diagram of Variable length Teager Energy Cepstral Coefficients (VTECC)
feature set is shown in Figure 5.1. VTECC is an extension of our recent study re-
ported in [10, 11]. VTECC is found to perform better for SSD task, synthetic, and
voice converted speech (SS and VC) signal as per our recent work done on the
ASVspoof 2015 challenge database [10]. The VTECC was computed by first fil-
tering the speech signal through a dense non-constant-Q Gammatone filterbank
for robust speech recognition in [207, 208]. The input speech signal is given to the
filterbank to obtain N number of subband signals [51, 52]. We have used linearly-
spaced Gabor filterbank to have almost equal bandwidth to cover the entire fre-
quency range [14,27,29]. Furthermore, these subband filtered signals are given as
input to the TEO block to estimate the energy profile of each subband filtered sig-
nals. These TEO profiles are passed through the frame-blocking, and averaging
using a short window length of 20 ms with a shift of 10 ms followed by logarithm
operation to compress the data. The Discrete Cosine Transform (DCT) is then ap-
plied for energy compaction, and retained first few DCT coefficients in order to
obtain VTECC feature set, followed by their ∆ and ∆∆ feature vector to obtain
higher-dimensional static plus dynamic feature vector. From the earlier studies
on replay SSD task, we found that the higher frequency regions are more use-
ful along with Cepstral Mean Normalization (CMN) technique. Hence, VTECC
feature set is extracted using pre-emphasis filter and CMN technique [14, 27].

We observed the Teager energy traces of the speech segment considered for
natural (blue line) and replay (red line) as shown in Figure 5.2. We can see that for
the segment of replay speech very high (impulse-like) energy traces are obtained
when compared to the segment of natural speech. In addition, we also observed
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Figure 5.2: Teager Energy Traces of the Natural (Blue Line) and Replay (Red Line)
Speech Segment. After [16].

Figure 5.3: Power Spectral Density (PSD) of Teager Energy Traces of the Natural and
Replay Speech Segment. After [16].

the Power Spectral Density (PSD) for Teager energy traces of natural and replay
speech segment as shown in Figure 5.3. The variation at each frequency com-
ponent for Teager energy traces of replay segment (red line) are more smooth
compared to that of Teager energy traces of natural segment (blue line).

5.2.2 Analysis of Variable length Teager Energy Profiles

The VTEO profiles corresponding to DI= 1 to 10 are shown in Figure 5.4. The
blue line corresponds to natural Teager energy profiles, and red line to replay
speech signals. For the initial DIs, i.e., from DI= 1 to 2 for replay signal, we cannot
see the profiles clearly as they are all merged around the glottal closure instants
(GCI’s). After DI=2 the replay signal profiles start to show the Teager energy pro-
files similar to the natural signal. Later after DI=6, more fluctuations and bumps
are observed in replay signal whereas it is reduced for the case of natural signal as
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Figure 5.4: Teager Energy Profiles with Varying the DI from DI=1 to 10. Blue and Red
Teager Energy Profiles Corresponds to Natural and Replay Signal. Highlighted Regions
Show the Difference in Teager Energy Profiles. After [16].

we increase the DI after 6. According to the results shown in experimental result
section, with DI=5 the replay signals are detected and classified well compared to
other DIs.

5.2.3 Spectral Energies of Variable length Teager Energy

Figure 5.5 show the spectral energy corresponding to each DI obtained from Vari-
able length Teager energy. The spectral energies here is shown for the natural
speech signal. It can be observed from the Figure 5.5 that with every DI we
find some differences corresponding to the first DI (shown by highlighted cir-
cles). With DI=5, we observe more spectral energy differences in lower as well
as in higher frequency regions. This spectral energy changes corresponding to
other DI helps to detect and classify it from the natural signal. This can also be
observed from the results obtained from all the DIs reported in Section 5.5, where
we obtained relatively lower % EER for DI=5.

5.3 Basics of VESA

In this Section, we propose to exploit VTEO to track the modulation energy and
estimate the instantaneous amplitude and frequency of AM-FM signal, and refer
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Figure 5.5: Spectral Energy Densities Obtained from Variable Length Teager Energy
with Varying the DI from (i) (DI=1) to (x) (DI=10). Highlighted Circles Show the Differ-
ences in Spectral Energies. After [16].

it to as VESA. The IF ω[n] and AE a[n] at any time the instant of the AM-FM
modulated signal x[n] is given by [14, 28]:

IAVESA = ai[n] ≈
2ΨDI{x[n]}√

ΨDI{x[n + 1]− x[n− 1]}
, (5.6)

IFVESA = ωi[n] ≈ arcsin

√
ΨDI{x[n + 1]− x[n− 1]}

4ΨDI{x[n]}
. (5.7)

Eq. (5.6) and Eq. (5.7) reduces to original ESA algorithm, when DI=1, for ΨDI{x(n)} =
TEO(x(n)). The frequency estimation part assumes that 0 < ωi[n] < π

2 because
the computer implementation of arcsin(u) function assumes that |u| < π

2 . Thus,
discrete ESA can be used to estimate IF < 1/4 of sampling frequency of signal [57].
The IF is modeled as the superposition of slow and fast-varying components. The
slow-varying component models the average of formant frequency, and the fast-
varying component models frequency variations around the formant frequency.
This instantaneous energy can be decomposed using Variable length Energy Sep-
aration Algorithm (VESA), and estimate the Instantaneous Amplitude and Instan-
taneous Frequency (IA-IF) of a speech signal.
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5.3.1 Proposed VESA-IFCC Feature Set

Figure 5.6 shows the block diagram of proposed VESA-IFCC feature set. Here,
the input speech signal is first split into N frequency subband signals. The ESA
is applied using VTEO with various dependency index (DI) (DI = 1 to 10) onto
each N bandpass (subband) filtered signals to estimate corresponding IAs and
IFs. Furthermore, we have discarded the IA and estimated only IF for each of the
narrowband components in order to emphasize the spectral envelope of genuine
vs. replayed speech. The IFs are segmented into overlapping short (segmental)

Figure 5.6: Schematic Diagram to Estimate Proposed VESA-IFCC Feature Set. The 3-D
Plot Before DCT Corresponds to 5000 Samples. After [28].

frames of 20 ms duration, shifted by 10 ms, and the temporal average is esti-
mate to obtain N-dimensional IFCs for every frame. The redundancy among IFCs
is exploited to obtain a low-dimensional representation by employing DCT that
has energy compaction property and thus, retaining first few DCT coefficients
that are referred to as Instantaneous Frequency Cosine Coefficients (IFCC). The
IFCC along with their delta and double-delta features were also appended result-
ing in higher-dimensional feature set denoted as VESA-IFCC. Algorithm 1 shows
the procedure for extracting VESA-IFCC features. The Amplitude and Frequency
Modulation (AM-FM) features estimate using different demodulation techniques,
namely, HT and ESA are discussed in the next Section.

5.3.2 Hilbert Transform (HT)

The Hilbert transform estimate amplitude envelope, and frequency function of a
monocomponent signal with certain conditions, namely, the frequency variation
should not be large (i.e., the signal should be narrowband), and the amplitude
variations should not be large [183, 209]. Let xa(t) be the analytic signal corre-
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Algorithm 1 The VESA-IFCC Feature Extraction from the Speech Signal. After
[28]

1: x(n)= Speech signal.
2: Consider an N-channel filterbank having linearly-spaced Butterworth filters

in time-domain.
3: for i=1 to N do
4: Perform narrowband filtering of x(n) through ith filter; xi(n).
5: Estimate VTEO profile from xi(n) as in Eq. (5.5)
6: Estimate VESA and extract IF ωi(n) as in Eq. (5.7).
7: end for
8: Segment ωi(n), i = 1, 2, ....., N into short-time frames of duration as 20 ms,

shifted by 10 ms.
9: Average IF for each frame to obtain N-dimensional IFCs.

10: Apply DCT on VESA-IFCs and retain first few coefficients to get VESA-IFCCs.

11: Append VESA-IFCCs with their first and second-order derivatives.

sponding to the real signal, x(t), then xa(t) is given by:

xa(t) = x(t) + jHx(t) = x(t) + jx̂(t); (5.8)

where quadrature signal x̂(t) is the Hilbert transform Hx(t) of x(t). The x̂(t) can
be equivalently defined through the Fourier transform as:

X̂(ω)←→ −jsgn(ω)X(ω) =

{
−jX(ω), ω > 0,

+jX(ω), ω < 0.
(5.9)

and

Xa(ω) =

{
2X(ω), ω > 0,

0, ω < 0.
(5.10)

with X̂(ω), and X(ω) being the Fourier transform of x̂(t) and x(t), respectively.
For a given signal, x(t) = a(t)cos(φ(t)), where cos(φ(t)) denotes the Hilbert fine
structure, φ(t) is instantaneous phase, and is defined as φ(t) = arctan

(
x̂(t)
x(t)

)
. The

IA, ah(t) and IF, φ′h(t) are derived from the analytic signal as:

ah(t) =
√

x2(t) + x̂2(t), (5.11)

φ′h(t) =
d
dt
(φ(t)). (5.12)

As discussed in earlier Chapter 4, we compared ESA-based technique with
VESA as they obey similar mathematical structure with having a difference in lag
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parameter or Dependency Index (DI).

Figure 5.7: Block Diagram for Feature Extraction of IA and IF-Based Features Using HT,
ESA, and VESA. After [15].

The block diagram of speech demodulation technique-based features are shown
in Figure 5.7. The IA and IF component-based feature sets proposed in the ear-
lier studies are reported in [13, 14, 27, 28]. Initially, signal is passed through the
pre-emphasis filter, and then passed through the filterbank to obtain N number
of subband signals [51–53]. We used linearly-spaced Gabor filterbank to have
almost equal bandwidth to cover the entire time-frequency range [14,27,29]. Fur-
thermore, these subband filtered signals are given as input to the HT, ESA, and
VESA block to estimate corresponding IA and IF components. These individual
IA and IF components are passed through the frame-blocking and averaging us-
ing a short window length of 20 ms with a shift of 10 ms followed by logarithm op-
eration to compress the data. The Discrete Cosine Transform (DCT), and Cepstral
Mean Normalization (CMN) technique is then applied for energy compaction,
and retained first few DCT coefficients to obtain HT, ESA, and VESA-based IA
and IF Cepstral Coefficients, (i.e., IACC and IFCC), followed by their ∆ and ∆∆ as
dynamic features to obtain higher-dimensional feature vector.

The spectral energy density obtained from all the three speech demodulation
techniques are shown in Figure 5.8 for a time-domain speech signal (a). The cor-
responding spectral energy for HT is shown in Figure 5.8(b), for ESA it is shown
in Figure 5.8(c), and for VESA, it is shown in Figure 5.8(d). The highlighted dot-
ted box in the Figure 3 shows the spectral differences for all the three different
techniques. With VESA-based spectral energy, it can be observed that the high
resolution for the harmonics, and frequency bands in the lower frequency region
is obtained.
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Figure 5.8: (a) Time-Domain Speech Signal, and its Corresponding Spectral Energy Den-
sities Using (b) HT, (c) ESA, and (d) VESA with DI=2. Dotted Box Indicates the Spectral
Energy Differences Obtained from Corresponding Demodulation Techniques.

5.4 Experimental Results Using VESA

5.4.1 Results on ASVspoof 2017 V1.0 Challenge

5.4.1.1 Results on Development Set

The results with varying the DI from DI=1 to 4 on development (dev) set of the
proposed feature set VESA-IACC are shown in Table 5.1. The results of our re-
cently proposed VESA-IFCC are also shown Table 5.1 [28]. The VESA-IACC fea-
ture set obtained an EER of 6.12 % with DI=1, whereas with VESA-IFCC the EER
is 6.61 % for DI=2. Since VESA-IACC and VESA-IFCC capture distinct informa-
tion of amplitude and frequency to explore possible complementary information
captured by them, their score-level fusion is done. Thus, to explore this individ-
ual information of both the feature sets, we have fused these features for all the
four DIs. From Table 5.1, it can be observed that after score-level fusion of VESA-
IACC and VESA-IFCC for each DI, the EER is reduced than that for individual
feature sets indicating that these two feature sets indeed capture complementary
information than the individual feature sets alone. The best lower EER was ob-
tained with the fusion of features at DI=4 resulting in the reduced EER of 0.19 %
from 7.18 % (for VESA-IACC), and 6.63 % ( for VESA-IFCC) feature sets clearly
demonstrating the potential of idea of exploring DI in TEO [203].
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Table 5.1: Results (% EER) on Dev Dataset of Proposed Feature Set on Various Depen-
dency Index (DI). After [14]

DI VESA-IACC VESA-IFCC [28] Score-Level Fusion
1 6.12 7.65 1.72
2 7.44 6.61 0.33
3 7.83 6.65 0.26
4 7.18 6.63 0.19

5.4.1.2 Results on Evaluation Set

Similarly, we extracted proposed feature sets on evaluation (eval) set as done on
dev set. We varied the DI from 1 to 4 for both VESA-IACC and VESA-IFCC feature
sets. The lower EER was obtained on VESA-IACC is with DI=2 of 11.94 %, while
with VESA-IFCC feature set, we got EER of 11.79 % with DI=4. The best lower
EER was obtained with the score-level fusion of VESA-IACC, and VESA-IFCC
feature set reducing the EER to 7.11 % on DI=4 from the individual EER of 12.27
% (for VESA-IACC), and 11.79 % (for VESA-IFCC) feature sets.

Table 5.2: Results on Eval Dataset of Proposed Feature Set on Various Dependency
Index (DI) in VTEO. After [14]

DI VESA-IACC VESA-IFCC Score-Level Fusion
1 12.08 16.16 9.11
2 11.94 13.46 7.56
3 12.09 12.34 7.15
4 12.27 11.79 7.11

5.4.1.3 Results of Score-Level Fusion

To explore the possible complementary information present in other feature sets,
namely, CQCC, LFCC, and MFCC, we have used the scores of those features and
fused them at the score-level with VESA-IACC and VESA-IFCC as shown in Table
5.3.

The score-level fusion is performed for every DI on both dev and eval datasets.
The score-level fusion with CQCC indeed helped to reduce the EER for each DI.
On dev set, the lower EER of 3.99 % was obtained when fused with DI=1 in VESA-
IACC feature set while with DI=4, the fusion of VESA-IFCC and CQCC gave
lower EER of 3.28 %. The next fusion was done with LFCC feature set, the score-
level fusion of VESA-IACC and LFCC did not reduce the EER, whereas the fusion
with VESA-IFCC reduced the EER to 0.38 % with DI=4. The VESA-IACC feature
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Table 5.3: Results (in % EER) on Score-Level Fusion of CQCC, LFCC, and MFCC with
Various Dependency Index (DI) on Dev and Eval Dataset. After [14].

Dependency Index (DI)
VESA-IACC VESA-IFCC

DI 1 2 3 4 1 2 3 4
CQCC 3.99 4.27 4.40 4.39 5.32 3.75 3.64 3.28

Dev LFCC 6.12 7.44 7.38 7.18 2.23 0.74 0.56 0.38
MFCC 4.06 4.36 4.39 4.31 3.21 1.42 2.26 1.58

CQCC 11.18 11.13 11.28 11.49 16.16 13.46 12.34 11.79
Eval LFCC 12.08 11.94 12.09 12.27 10.32 8.44 7.84 7.93

MFCC 12.08 11.94 12.09 12.27 16.16 13.46 12.34 11.79

set was extracted with the linear scale and LFCC also uses the linear scale and
hence, possibly the score-level fusion did not reduce the EER as both are mag-
nitude spectrum-based features and thus, may not carry much complementary
information. For most of the DIs, the lower EER obtained was the same as that
of the VESA-IACC feature set. On the other hand, the fusion of VESA-IFCC and
LFCC also uses linear scale, however, they carry the complementary information
of magnitude and phase spectra because of which EER is reduced. Finally, we
fused our feature sets with MFCC obtaining an EER of 4.06 % with VESA-IACC
for (DI=1) and 1.42 % for (DI=2) with VESA-IFCC features.

Similarly, the score-level fusion was performed on the eval dataset. There was
a reduction in the EER when fused with VESA-IACC (for DI=1) and CQCC re-
sulting in 11.13 %, whereas the fusion of VESA-IACC (for DI=2) with LFCC and
MFCC obtained reduced EER of 11.94 % as shown in Table 5.3. On the other hand,
the score-level fusion of VESA-IFCC with CQCC and MFCC did not reduce the
EER for all the DIs. While the score-level fusion of VESA-IFCC (with DI=4) and
LFCC reduce the EER from the individual system to 7.93 %. Table 5.4 shows the
final results of our proposed feature set. The organizers of ASV Spoof 2017 Chal-
lenge provided CQCC feature set with GMM classifier as the baseline system. In
this Section, we considered CQCC, and LFCC as two distinct baselines systems.
The proposed feature set was extracted with linearly-spaced Gabor filterbank and
thus, to compare results obtained with proposed features set, we consider LFCC
as the second baseline. At last, we used one of the well known MFCC feature set
to compare our results. The EER of all the feature sets, namely, CQCC, LFCC, and
MFCC are high on both dev and eval sets. The EER for CQCC (baseline system)
gave an EER of 10.21 % and 28.48 % on dev and eval sets, respectively.

The VESA-IACC and VESA-IFCC feature sets individually performed better
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than the CQCC, LFCC, and MFCC feature sets. The best results are obtained with
the score-level fusion of VESA-IACC and VESA-IFCC resulting in the lower EER
of 0.19 % on dev set and 7.11 % on eval set.

Table 5.4: Final Results (in % EER) on Dev and Eval Dataset of ASVspoof 2017. Af-
ter [14]

Feature Set Dev Eval
CQCC (Baseline) 10.21 28.48

LFCC 10.58 16.62
MFCC 11.21 31.30

A:VESA-IACC 6.12 11.94
B:VESA-IFCC 6.61 11.79

A+B 0.19 7.11
+: score-level fusion

(a) (b)

Figure 5.9: DET Curves on Dev and Eval Datasets. (a) The Individual DET Curves on
Dev Set of CQCC, MFCC, LFCC, VESA-IACC (A), VESA-IFCC (B), and Score-Level
Fusion A+B, and (b) Similar DET Curves on Eval Set.

The performance is also shown by the DET curve in Figure 5.9(a) for dev set
and Figure 5.9(b) for eval set for CQCC, MFCC, LFCC, VESA-IACC, and VESA-
IFCC feature sets along with score-level fusion of VESA-IACC, and VESA-IFCC.
On dev and eval sets, score-level fusion of VESA-IACC and VESA-IFCC are clearly
distinct at all the operating points of the DET curve and have a lower false alarm
and miss probabilities on the DET curve compared to the CQCC, LFCC, and
MFCC feature sets alone.
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5.4.2 Results on ASVspoof 2017 V2.0 Database and BTAS 2016

The results with varying the lag parameter also called as dependency index (DI)
from DI=1 to 4 on development set for VESA-IACC, and VESA-IFCC feature sets
on both the databases (i.e., (a) ASVspoof 2017 challenge v2.0, and (b) BTAS 2016
competition are shown in Figure 5.10). It can be observed that both IA and IF-
based feature sets gave lower EER at DI=2 on both the databases. On ASVspoof
2017 challenge v2.0 database, the EER varies from 7.31 % to 8.04 % for IA-based
features whereas for IF-based features, it varies from 20.36 % to 25.27 %. On the
other hand, for BTAS 2016 database, the variation is from 2.31 % to 2.59 % and
from 5.3 % to 6.14 % for IA and IF-based features, respectively. Hence, for further
set of experiments reported in this Chapter, VESA-based features were extracted
using DI=2.

Figure 5.10: Results for Varying DI from DI=1 to 4 on Development Set of (a) ASVspoof
2017 Challenge V2.0, and (b) BTAS 2016 Competition Database. After [15].

5.4.3 Results on Development and Evaluation Sets

Results on all the speech demodulation techniques for both ASVspoof 2017 chal-
lenge v2.0 and BTAS 2016 database are reported in Table 5.5 and Table 5.6, respec-
tively. It can be observed that on development set, HT-based features gave lower
EER, whereas for evaluation set, VESA-based features gave better performance
than the other two demodulation techniques. However, on BTAS database, the re-
sults varies for all the speech demodulation techniques with very less differences
in % EER. The advantage of VESA over ESA lies in its localization and approx-
imation to track the instantaneous fluctuations (if any) of the energy at a given
instant of time. The VESA brings out the hidden dependencies, and dynamics of
the signal w.r.t. distantly located speech samples than only immediate adjacent
samples.
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Table 5.5: Results (in % EER) of IACC and IFCC Feature Sets Using HT, ESA, and VESA
on ASVspoof 2017 Challenge V2.0 Database. After [15]

IACC IFCC
Dev Eval Dev Eval

HT 7.16 12.58 18.86 30.18
ESA 7.99 13.45 24.07 19.87

VESA (DI=2) 7.31 12.57 20.36 19.10

Table 5.6: Results (in % EER) of IACC and IFCC Feature Sets Using HT, ESA, and VESA
on BTAS 2016 Database. After [15]

IACC IFCC
Dev Eval Dev Eval

HT 2.26 3.96 5.26 7.46
ESA 2.36 4.31 5.08 9.23

VESA (DI=2) 2.31 4.73 5.31 9.13

5.4.4 Results of Score-Level Fusion

To obtain the possible complementary information between two feature sets, we
used score-level fusion of two feature sets obtained from the same demodulation
techniques. For example, the IA and IF components estimated from HT-based
method are fused together in order to obtain the reduced EER and gave good
performance. It can be observed from Table 5.7 that with score-level fusion, on
both the databases, we reduced the EER from its individual EER. We compared
our ASVspoof 2017 challenge v2.0 results with the baseline system of the same
database, i.e., CQCC feature set. The baseline system gave EER of 12.81 % and
19.04 % on development and evaluation set, respectively. The best EER obtained
on development set is with HT-based method giving an EER of 5.91 %, and on
evaluation set, the lower EER is obtained with VESA-based technique resulting in
11.45 %.

Table 5.7: Results (in % EER) of Score-Level Fusion of IACC and IFCC Feature Sets
Using HT, ESA, and VESA on ASVspoof 2017 V2.0 and BTAS 2016 Database. After [15]

ASVspoof 2017 v2.0 BTAS 2016
Dev Eval Dev Eval

CQCC (Baseline) 12.81 19.04 – –
HT 5.91 12.13 2.26 3.93
ESA 7.72 12.17 2.36 4.31

VESA (DI=2) 6.99 11.45 5.31 4.73
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Figure 5.11: DET Curves of Score-Level Fusion of IACC and IFCC on (a) Dev, and (b)
Eval Set of ASVspoof 2017 Challenge V2.0 Database. After [15].

Table 5.8 shows the performance on evaluation set in % HTER on BTAS 2016
database (with a single system) and compared our results with the baseline sys-
tem. The baseline system gave an % HTER of 6.87 % and the best performance of
our speech demodulation technique obtained an % HTER of 3.17 % with IA com-
ponent obtained from HT-based technique. The performance is also shown by the

Table 5.8: % HTER for Eval Set of BTAS 2016

System Used % HTER
Baseline 6.87

HT-IACC 3.17
HT-IFCC 6.74

ESA-IACC 3.64
ESA-IFCC 7.59

VESA-IACC (DI=2) 4.06
VESA-IFCC (DI=2) 7.14

(DET) curve in Figure 5.11 on (a) development, and (b) evaluation set of ASVspoof
2017 challenge v2.0 database. The DET curves are shown only for the score-level
fusion of IA and IF components of individual demodulation techniques, i.e., HT,
ESA, and VESA, respectively. It can be observed from the DET curves for develop-
ment set that the HT-based technique gave lower EER with less miss probability
and false alarm rate. However, for the evaluation set, the HT technique did not
perform well and with VESA method, it performed better. This fluctuations in the
performance brings out more generalized countermeasures for SSD task. Note:
We have not shown the DET curves for BTAS 2016 database results because the
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score-level fusion did not reduce the EER from the individual IA-based results.

5.5 Experimental Results Using VTECC

The experiments are performed on ASVspoof 2017 V2.0 challenge database.

5.5.1 Results with Varying Dependency Index (DI)

The results with varying the DI from DI=1 to DI=10 on development set of the
proposed VTECC feature set is shown in Figure 5.12. The VTECC feature set
obtained an EER of 9.55 % with DI=1, whereas with DI=5 the EER is reduced to
6.52 % which is relatively least % EER among all the DIs. This is because of the
spectral energies obtained with DI=5 has more energy as observed and discussed
in Figure 5.5. Hence, for further set of experiments, we considered DI=5 for VTEO
computation.

Figure 5.12: Bar Graph Plot with Varying the DI on Development Set. Highlighted Circle
Indicates the Least % EER. After [16].

We compared our results with state-of-the-art features, such as CQCC, LFCC,
and MFCC. The results obtained from these feature sets for both development
and evaluation sets are reported in Table 5.9. Here, the CQCC feature set which is
baseline system is extracted in cepstral-domain whereas in actual baseline system,
the organizers used log-energy coefficients [6].

The histogram plots of log-likelihood scores obtained from Gaussian mixtures
corresponding to (a) CQCC, (b) LFCC, (c) MFCC, and (d) VTECC are shown in
Figure 5.13 for development set. It can be observed that with VTECC feature
set, the LLR scores of both natural and replay are distributed more resulting in
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Table 5.9: Final Results on Dev and Eval Set. After [16]

Feature Set Dev Eval
CQCC (Baseline) 12.75 18.97

LFCC 10.31 15.73
MFCC 23.80 26.62
VTECC 6.52 11.93

CQCC+VTECC 5.85 10.94
LFCC+VTECC 6.52 11.93
MFCC+VTECC 6.52 11.67

Proposed VTECC is computed with DI=5

lower % EER as compared to the distribution obtained from other feature set on
development set.

Figure 5.13: Histogram Plots of Scores of (a) CQCC, (b) LFCC, (c) MFCC, and (d)
VTECC Feature Set on Development Set. After [16].

5.5.2 Results with Score-Level Fusion

In addition to the individual performance of the feature sets, we further per-
formed the score-level fusion in order to investigate the possible complementary
information of the feature sets, and reduce the % EER further. The comparison of
all the feature sets along with their score-level fusion of VTECC feature set with
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CQCC, LFCC, and MFCC is shown in Table 5.9. It can be observed that the indi-
vidual performances on development and evaluation set has higher % EER com-
pared to the VTECC feature set. The % EER is further reduced when the CQCC
and VTECC feature sets are fused at the score-level reducing the % EER to 5.85 %
and 10.94 % for fusion factor α=0.6 and α=0.8 on development and evaluation set,
respectively.

The performance is also shown in Figure 5.14 with DET curves for all the fea-
ture sets along with their best score-level fusion on development and evaluation
set, respectively. From Figure 5.14(a), it can be observed that for MFCC, CQCC,
and LFCC show high miss probability and false alarm probability which is not a
good case for the voice biometric system. However, the VTECC feature set along
with score-level fusion with CQCC and MFCC feature set show the reduced miss
probability and false alarm probability compared to the other feature sets. On the
other hand, for evaluation set, the DET curves for all the feature sets have high
probability with high false alarm rate this show that the evaluation set is challeng-
ing for given SSD taask.

Figure 5.14: Individual DET Curves of Different Feature Sets (a) Development, and (b)
Evaluation Set. After [16].

5.5.3 Results on Replay Configurations (RC)

The physical significance in terms of temporal modulations at different time scale
is analyzed in Figure 5.15. The time-domain subband filtered signal around 1st
formant frequency is shown in Figure 5.15(Panel I) for (a) natural, and replay with
(b) perfect, (c) high, and (d) low quality devices. The slow temporal modulations
of a speech signal roughly correlates with the different syllabic segments. For nat-
ural speech, slow temporal modulations results in smooth amplitude envelope as
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Figure 5.15: Panel I: Bandpass Filtered Signal Around First Formant. Panel II: Zoomed
Version of the Above Signal Panel I. Panel III: Temporal Fine Structure of Panel II with
Different Time Scale (a) Natural, and Replay with (b) Perfect, (c) High, and (d) Low
Quality Devices. After [16]

shown in Figure 5.15(a) (in Panel II). The higher peaks in the fast temporal mod-
ulations (which are also known as Temporal Fine Structure (TFS)) as shown in
Panel III of Figure 5.15(a) represents the harmonic structure of the speech signal.
However, this observation is missing for the replay speech (Panel II) of Figure
5.15(b-d). The slow temporal modulations for replay speech are having distorted
amplitude envelope (Panel II) of Figure 5.15(b). While the fast temporal modu-
lations do not represents the harmonic structure Figure 5.15(b-d) of Panel III. It
can be observed from the slow temporal modulations of replay speech that the
variations are very less. On the other hand, the fast temporal modulations indeed
show the differences for different quality of intermediate devices varying from
the perfect, high, and low. The perfect and high quality device have the similar
pattern of fast temporal modulations, however, this analysis could be very useful
for the speech signal when recorded in low quality devices (as observed in Panel
III of Figure 5.15(d)).

The level of noise in acoustic environment, playback, and recording device are
assumed to be inversely proportional to the threat for ASV system pose [6]. The
Replay Configurations consists of acoustic environment, playback, and recording
devices, respectively. These RCs are further classified into three different threat
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levels, namely, low, medium, and high. Different environments have the varia-
tions with the levels of additive ambient, convolutive, and reverberation noise.
According to the different RC, the % EER of VTECC feature set along with CQCC,
LFCC, and MFCC are shown in Figure 5.16. The least % EER for all the RCs are
obtained with the proposed VTECC feature set. It can be observed that for all
the RC, the % EER for MFCC feature set are too high compared to the LFCC and
CQCC feature sets. The high-level threats are difficult to detect due to use of pro-
fessional audio equipment, such as active studio monitors, studio headphones,
etc. to produce replay samples [6].

Figure 5.16: Bar Graph Representation for Different Replay Configurations, i.e., Acoustic
Environment, Playback, and Recording Devices (Results in % EER). After [16].

5.6 Chapter Summary

The extension of earlier speech demodulation-based features using Variable length
version of ESA, i.e., VESA is presented in this Chapter for replay SSD task, to clas-
sify the replay attack from the natural speech. We investigated the advantage of
VESA over HT and ESA by varying the Dependency Index (DI) to capture the
hidden dependencies and dynamics. The features obtained from different demod-
ulation techniques gave better results than the baseline system of both ASVspoof
2017 challenge v2.0, and BTAS 2016 database. The limitation of the work is to
investigate why particular DI gives better performance. In the next Chapter, we
will present the significance of using combination IA and IF components for SSD
task.
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CHAPTER 6

AM-FM Features

6.1 Introduction

Earlier we discussed about the individual performance of IA and IF-based fea-
tures either with ESA (Chapter 4), VESA (Chapter 5) or HT-based speech demod-
ulation techniques. In this Chapter, we will discuss the importance of using the
combined information of IA and IF components for replay SSD task in Section 6.2.
The Amplitude Weighted Frequency modulation feature set is discussed in Sec-
tion 6.3. The SSD experimental setup and results performed on standard dataset
is discussed in Section 6.4 and Section 6.5, respectively. We also performed the ex-
periments on different classifiers along with the analysis of different replay con-
figurations in Section 6.6. Finally, in Section 6.7, we summarize the Chapter.

6.2 AM-FM Features

The AM-FM modulation features corresponding to the ith subband are extracted
from the ith instantaneous frequency (IF), fi(t), and corresponding amplitude en-
velope, ai(t), where i=1, 2, 3,...., N, and N is the number of filtered subband sig-
nals [210], i.e.,

ri(t) = ai(t)cos
(

2π
∫ t

0
fi(τ)dτ

)
, (6.1)

where ri(t) ≈ s(t) ∗ gi(t), s(t) is the speech signal, and gi(t) is the impulse
response of the ith Gabor subband filter. The impulse response of the Gabor filter
is given as [52]:

g(t) = exp(−b2t2)cos(ωct), (6.2)

where ωc is the center frequency of the subband filter, and b is a parameter for
controlling the bandwidth of a subband filter. The corresponding discrete-time
impulse response, g(n), is the sampled version of Eq. (6.2). Gabor representation
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is known to have optimal joint time-frequency resolution (i.e., Heisenberg’s un-
certainty principle in signal processing framework [170] (for more details, please
refer Chapter 3, Section 3.4)). During feature extraction, choice of a particular
filterbank structure, and demodulation technique affects the performance of SSD
system.

The placing and bandwidth of the subband filter depends upon the problem of
study at hand. As in the earlier studies, it is stated that in case of speaker discrim-
ination, the linear scale performs well whereas for Automatic Speech Recognition
(ASR) problem, Mel scale has shown the better performance than the other fre-
quency scales [211], [143].

In this Chapter, Energy Separation Algorithm (ESA) is used as one of the sig-
nal demodulation technique among other approaches. According to the AM-
FM model, the formant frequencies are not constant during a single pitch period
(T0=1/F0), rather they vary around the center frequency that is approximated as
IF in a particular subband. The study of auditory neurons indicates that the anal-
ysis of the joint AM-FM signals have more spectral information than analyzing
AM and FM alone via a demodulation technique [212]. These small variations
around the center frequency is captured by the Weighted Mean Frequency (WMF)
denoted as Fi [210]:

WMFCC = Fi =
∑L

n=0 a2
i [n]Ωi[n]

∑L
n=0 a2

i [n]
, (6.3)

WACC =
L

∑
n=0

a2
i [n], (6.4)

AWFCC =
L

∑
n=0

a2
i [n]Ωi[n], (6.5)

where L is the time window length, ai[n] and Ωi[n] are estimated with Eq. (4.3),
and Eq. (4.4). The instantaneous signals a2

i [n] are used as a weighting signal for
the estimation of the Fi. The studies reported in [197,213] shows that the (squared
amplitude) weighted Fi in time-domain is equivalent to the first and second cen-
tral spectral moments of the signal, and explains weighted estimates are more
robust than the unweighted ones. The weighted frequency estimate Fi provides
more accurate formant frequencies, and is more robust to low energy or noisy
frequency bands [206]. The AM and/or FM also capture additional acoustic in-
formation pertaining to speech production mechanism, such as nonlinear source-
filter interaction, energy transfer, mode-locking behavior due to non-linearities in
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speech production mechanism, etc. [206].

6.3 Proposed Feature Extraction Algorithm

The block diagram of the AM-FM-based feature extraction process is shown in
Fig. 6.1. The study reported in [135] states that the higher frequency regions play
a major role to discriminate the replay vs. natural speech signal. To obtain a nar-
rowband speech signal, we used N = 40 linearly-spaced Gabor filterbank with
each subband filters having 200 Hz bandwidth. These extracted narrowband fil-
tered signals are demodulated using ESA to get IA (ai[n]) and IF (Ωi[n]). We ex-
tracted the features for Weighted Mean Frequency (WMF) (Fi) for each filtered
signal as per Eq. (6.3). Furthermore, these Fi’s were averaged over a short-time
window of 20 ms, and 10 ms window shift to obtain L-dimensional Weighted
Mean Frequency Coefficients (WMFC) for each frame. The low-dimensional fea-
ture vectors are obtained by applying Discrete Cosine Transform (DCT) (that has
energy compaction property [214]) on WMFC, and will be denoted as Weighted
Mean Frequency Cosine Coefficients (WMFCC). We have used post-processing
Cepstral Mean Normalization (CMN) technique, to match the distributions of the
signal.

Figure 6.1: Block Diagram of Proposed Feature Sets. After [18, 29].

A similar process was followed to extract Amplitude Weighted Frequency Co-
sine Coefficients (AWFCC) [17]. The AWFCC feature set is the combination of
IF, and squared amplitude obtained for ith subband signal. This combination of
IF and squared amplitude is averaged over a short-time window of 20 ms with
a shift of 10 ms to obtain L-dimensional Amplitude Weighted Frequency Coeffi-
cients (AWFC) for each frame followed by DCT and CMN. Similar procedure was
used to obtain Weighted Amplitude Cosine Coefficients (WACC) that contains
only denominator term in RHS of Eq. (6.3).
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6.3.1 Spectrographic Analysis

The spectral energy densities obtained from the Constant Q Transform (CQT) and
the Amplitude Weighted Frequency modulation features are shown in Fig. 6.2(b)
and Fig. 6.2(c) for a time-domain natural speech signal (Fig. 6.2(a)). The differ-
ences are shown by the box. In particular, the energy obtained by the constant
Q transform shows the distorted formants and harmonics in lower as well as in
higher frequency regions, which is captured better by the proposed feature set.

Figure 6.2: (a) Natural Speech Signal, and Corresponding Spectral Energy Density of
Constant Q Transform, and Amplitude Weighted Frequency Modulation Feature Ex-
tracted Using 40 Subband Filtered Signals. The Differences are Clearly Visible in the
Higher Frequency Regions (Highlighted by the Box).After [18].

The difference in spectral energy density of the AM-FM modulation feature
sets is shown for natural speech signal in Fig. 6.3(a). We have compared the spec-
tral energy density of amplitude weighted frequency (AWF) features (numerator
of RHS of the Eq. (6.3)) in Fig. 6.3 (b) along with squared weighted amplitude
(WA) features in Fig. 6.3 (c) and at last, weighted mean frequency (WMF) features
in Fig. 6.3 (d). The differences in spectral-domain are highlighted with the circle
and box. The spectral information shown in Fig. 6.3 (b) captures both amplitude
and frequency information of a speech signal. On the other hand, the spectral
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Figure 6.3: (a) Natural Speech Signal and Corresponding Spectral Energy Density Us-
ing 40 Subband Filtered Signals of Natural Speech Signal of (b) AWF, (c) WA, (d) WMF
Modulation Features. The Differences are Clearly Visible in the Higher Frequency Re-
gions (Highlighted by the Circles and Box). After [18].

information of Fig. 6.3 (c) (only squared weighted amplitude), and Fig. 6.3 (d)
(weighted mean frequency) do not have much of the spectral energy information.
The dynamic range of the Fig. 6.3 (d) is different as the energy present is very low
as per Eq. (6.3).

The similar analysis is observed for replay speech signals recorded in different
acoustic environments, namely, Panel I: Office, Panel II: Balcony, Panel III: Bed-
room, and Panel IV: Canteen (as shown in Fig. 6.4). It can be observed from Fig.
6.4 that the proposed approach of using amplitude weighted frequency compo-
nents (numerator of Eq. (6.3)) captures discriminatory information, and this may
be useful for SSD task. In particular, the frequency regions that are affected by
bandpass characteristics of replay device, mic, loudspeaker, etc. gets emphasized
via stronger spectral energy density due to the term, ∑L

i=0 a2
i [n]Ωi[n].
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Figure 6.4: (a) Replay Speech Signal and Corresponding Spectral Energy Densities of
(b) AWF (c) WA (d) WMF Modulation Features Using 40 Number of Subband Filtered
Signals for Replay Speech Signals Recorded in Panel I: Office, Panel II: Balcony, Panel
III: Bedroom, and Panel IV: Canteen (Highlighted Regions Shows the Spectral Energy
Difference Between Different AM-FM Modulation Features). After [18].

6.4 Experimental Setup

Since this Chapter is an extension of our recent study reported in [29], we showed
the results on ASVspoof 2017 version 1.0 database as the modified version of
database was yet to be released during that time. To bring a continuation to this
study with our earlier study, we have to keep results for both the versions of
ASVspoof 2017 challenge databases. Hence, for comparison of experimental re-
sults, we used both ASVspoof 2017 challenge version 1.0 and 2.0 database, which
is mainly based on the RedDots corpus, and its replay speech [4–6, 105]. The
version 2.0 database presents in depth analysis of the replay detection perfor-
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mance along with description of playback, and recording devices. Furthermore,
ASVspoof 2017 challenge version 2.0 database was released to correct data anoma-
lies that were detected in the post evaluation of version 1.0 database. The spoofed
data was recorded through different acoustic environments in the H2020-funded
OCTAVE project [104]. The details of both version 1.0 and 2.0 databases are given
in Table 6.1 [5].

Table 6.1: Statistics of ASVspoof 2017 Challenge Corpus. After [5, 6]

Subset # Speakers
ASVspoof Version 1.0 ASVspoof Version 2.0
Genuine Spoofed Genuine Spoofed

Training 10 1508 1508 1507 1507
Development 8 760 950 760 950

Evaluation 24 1298 12008 1298 12008

Figure 6.5: Comparison of Sample Statistics of (a) Median, (b) Standard Deviation, and
(c) Skewness for Natural (Blue Line) and Replay (Red Line) Utterance. Panel I: Train-
ing, Panel II: Development, and Panel III: Evaluation Set of ASVspoof 2017 Challenge
Version 2.0 Database. After [18].

Furthermore, we estimated the sample statistics, such as median, standard
deviation, and skewness for every utterance from the ASVspoof 2017 challenge
version 2.0 database [6]. The plots of these sample statistics are shown in Fig. 6.5
for training (Panel I), development (Panel II), and evaluation (Panel III) datasets.
The values of sample statistics for each utterance corresponding to natural speech
are plotted with blue color and the replay speech are shown with the red color.
From these plots, it can be observed that the replay speech do not contain the same
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sample statistics as that for natural speech. This indeed shows that the speech
samples of both natural and replay signals are statistically different. In particular,
training and development datasets, the sample statistics of median do not have
much difference for natural and replay signals, whereas for evaluation set, we
can see the difference (shown in Fig. 6.5(a)). The sample statistics obtained from
standard deviation, and skewness shows the difference for all the datasets (Fig.
6.5 (b and c)). The standard deviation of training and development have more
difference between natural and replay speech signal, whereas for evaluation set,
they overlap with each other showing less difference with each other and hence,
possibly create difficulty for SSD task.

Following state-of-the-art feature sets were used for comparison with pro-
posed feature set for replay SSD task. Constant Q Cepstral Coefficients (CQCC)
features are extracted with the CQT [112]. Features are extracted with 30 DCT
static coefficients appended with ∆ and ∆∆ resulting in 90-D feature vector. The
Linear Frequency Cepstral Coefficients (LFCC) features are extracted from linearly-
spaced triangular filterbank energies followed by the DCT to obtain cepstral co-
efficients using 20 ms window with a 10 ms shift. Features extracted with 40
subband filters in a filterbank resulting in 120-D (static+∆+ ∆∆). Mel Frequency
Cepstral Coefficients (MFCC) features are extracted by performing STFT analysis
over Hamming windowed segments of speech with 25 ms duration, along with a
shift of 10 ms. The resultant power spectrum is warped using a filterbank having
40 subband filters to give 13 DCT static coefficients appended with their ∆ and
∆∆ resulting in 39-D feature vector.

The proposed feature sets were extracted from 40 linearly-spaced Gabor filter-
bank with 40 DCT static and 40-∆ and 40-∆∆ coefficients resulting in total 120-D
feature vector. We have used Gaussian Mixture Model (GMM) classifier with 512
number of mixtures for modeling the classes corresponding to natural and re-
played speech utterances. Final scores are represented in terms of Log-Likelihood
Ratio (LLR). The decision of the test speech being natural or spoofed is based on
the scores of LLR:

LLR = log
P(X|H0)

P(X|H1)
, (6.6)

where P(X|H0), and P(X|H1) are the likelihood scores of natural and replay trials
(with hypothesis H0 and H1), respectively. The score-level fusion is given by:

LLR f used = αLLR f eature1 + (1− α)LLR f eature2, (6.7)
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where LLR f eature1 is a log-likelihood score of CQCC or LFCC or MFCC, and LLR f eature2

represents score for the proposed feature set. The fusion parameter, α lies between
0 < α < 1 to decide the relative weight of scores.

6.5 Experimental Results

In this Section, we have performed experiments on both the ASVspoof 2017 chal-
lenge version 1.0 [5], and version 2.0 databases [6]. In the first set of experiments,
the performance was obtained with analyzing the effect of different subband fil-
tered signals. Furthermore, we performed experiments on evaluation dataset of
ASVspoof 2017 version 2.0 database with different replay configurations. In addi-
tion, we also observed the performance on the different levels of threats, namely,
low, medium, and high for replay configurations.

6.5.1 Results of Various AM-FM Features

The spectral energy density obtained via traditional spectrogram and via AWFCC
feature set is shown in Fig. 6.6(a) and Fig. 6.6(b). The Panel I and Panel II corre-
sponds to the spectral energy density for natural and replay speech signal, respec-
tively. From the Fig. 6.6, it can be observed that the spectral energies obtained
from the AWFCC feature set gave high energies in both lower and higher fre-
quencies as compared to the spectrogram. The similar pattern was observed for
the replay speech signal (Panel II). Highlighted regions in Fig. 6.6 shows the en-
ergy differences corresponding to the natural and replay signals. These energies
obtained from the proposed approach contributes to detect replay signal.

6.5.2 Frame-Level Analysis for Speech Signal

Fig. 6.7 shows the analysis of natural and replay speech signals with Log-Likelihood
(LLR) scores obtained from the GMM classifier at the frame-level for CQCC (Fig.
6.7(a)), and AWFCC (Fig. 6.7(b)) feature sets. It can be observed from Fig. 6.7
that the LLR scores for natural speech (Panel I) have the scores above the thresh-
old (in this case, the threshold is 0). The replay signals are recorded in different
acoustical environments, such as balcony (Panel II), canteen (Panel III), and office
(Panel IV). The AWFCC feature set perfectly detects the natural and replay signals
that can be observed from the LLR scores (as shown in Table 6.2). With AWFCC
feature set, the replay speech signals scores obtained are negative whereas for nat-
ural speech, the scores are positive. On the other hand, CQCC feature set fails to
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Figure 6.6: Comparison of spectral energy density via (a) spectrogram, and (b) us-
ing AWFCC feature set. Panel I and Panel II shows natural and corresponding replay
speech. Highlighted oval regions shows the difference in pattern of spectral energy
distribution. After [18].

Figure 6.7: Frame-level analysis of LLR scores obtained for ASVspoof 2017 Challenge
database via (a) CQCC, and (b) AWFCC feature sets. Here, Panel I: Natural, Panel II:
Balcony, Panel III: Canteen, Panel IV: Office. Highlighted circle shows the difference in
LLR scores for initial frames because of silence regions. After [17].

detect the speech signal that belongs to the replay class. This is analyzed with the
frame-level LLR scores that are obtained from the GMM classifier. With AWFCC
feature set, the initial frames of the signal shows strong peak values for natural
signal that indeed helps to classify the signal that belongs to the natural class. On
the other hand, for all the replay signals, the initial frames of the signals do not
show these strong peaks and the scores are negative and hence, they detect the
speech signal in replay class. This observation was not found with CQCC feature
set, for replay speech signals, the LLR scores are positive and hence, fails to detect

122



the speech signal in replay class. This finding is in line with recent study reported
in [215].

Table 6.2: Scores Obtained from GMM Classifier on ASVspoof 2017 Version 1.0 Database
for CQCC, and AWFCC Features Set. After [5]

Panel Wave ID Key LLR Scores
CQCC AWFCC

I D_1000009 Genuine 8.6157 1.8751
II D_1001644 Balcony 3.0774 −3.0448
III D_1001074 Canteen 7.0273 −2.1653
IV D_1000789 Office 8.2764 −0.7387

6.6 Classifiers Used

6.6.1 Gaussian Mixture Model (GMM)

We have used GMM classifier with 512 mixtures in order to obtain the training
models for classification of the natural and replayed speech. Final scores are rep-
resented by Log-Likelihood Ratio (LLR) [216]. To obtain possible complementary
information of the AWFCC feature set, score-level fusion was performed with
CQCC, MFCC, and LFCC feature sets as per given Eq. (6.7).

6.6.2 Convolutional Neural Network (CNN)

The CNN architecture used is the same as proposed in [150]. This architecture
consists of three convolutional layers followed by a max-pooling layer, and three
Fully-Connected (FC) layers. The convolutional layer take a 2-D image of size
d×N as input, where d represents the dimension of the input, and N represents
the number of frames (N=256). In this architecture, the first three convolutional
layers have a filter/kernel size of [d×3, 1×3, 1×3] dimension, respectively. Each
convolutional layer has 128 subband filters. The fourth layer is a max-pooling
layer used with 1×2 kernel, and stride on the output of the third convolutional
layer. At last, three FC layers with 256 units (neurons) and a softmax layer is used
for computing the final scores. We have used dropout of 0.5 as a regularization to
all the three FC layers. All the layers consists of Rectified Linear Unit (ReLU) as
an activation function.
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6.6.3 Long Short-Term Memory (LSTM)

The third classifier used here is LSTM. The number of neurons in the input layer is
equal to the dimension of a feature vector, whereas the number of neurons in the
output (softmax) layer is two (one for natural class, and another for spoofed class).
The LSTM layer contains the 256 neurons. We have used the tanh non-linearity for
each neuron. For training the CNN and LSTM models, Adam optimizer, and 90
% overlapping input data is used, which makes the networks to learn the data-
dependency. We trained both the models for 100 epochs with 64 batch size.

6.6.4 Results with GMM, CNN, and LSTM Classifiers

The results obtained using AWFCC feature set are compared with CQCC, MFCC,
and LFCC feature sets in Table 6.3. We have used GMM, CNN, and LSTM clas-
sifiers to obtain the corresponding models for all the feature sets. The baseline
system gave an EER of 10.35 % on development (dev) set, and 28.48 % on evalu-
ation (eval) set. The CQCC with CNN and LSTM classifiers gave an EER of 21.34
% and 22.72 % on eval set, respectively. The AWFCC feature set with GMM clas-
sifier obtained a lower EER of 6.52 % (dev) and 11.83 % (eval), while with CNN
classifier, the results were comparable to the GMM classifier with EER of 6.97 %
(dev) and 13.71 % (eval) set.

Table 6.3: Results in (% EER) with GMM and CNN and LSTM Classifier. After [17]

Classifier
Feature GMM CNN LSTM

Set Dev Eval Dev Eval Dev Eval
CQCC 10.35 28.48 11.71 21.34 09.60 22.72
MFCC 11.21 31.30 15.13 26.96 30.13 41.44
LFCC 10.58 16.62 11.84 19.33 34.73 38.21

AWFCC 06.52 11.83 06.97 13.71 27.10 33.85

However, the AWFCC feature set does not perform better with LSTM classifier
as it increased the EER to 27.10 % and 33.85 % on dev and eval sets, respectively.
The frame-level GMM classifier performed better due to the initial silence regions
of natural speech signal, which is absent for replay signals (observed from the Fig.
6.7) [215]. These initial silence frames gave high LLR scores and hence, detects the
natural signal corresponding to its replay counterparts. While, CNN and LSTM
classifiers are modeled at utterance-level and hence, the effect of silence region is
averaged. Hence, utterance-level classifier fails to contribute the information that
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relates to the silence frames and thus, degrades the performance of SSD task. In
our recent study reported in [58], we observed that because of the fast fluctua-
tions for the IF components, the natural and replay models are not trained prop-
erly for neural network-based classifiers and hence, CNN and LSTM classifiers
do not perform well to detect the replay speech signals. The LSTM classifier has
the property that it deals with the dependencies of the context, because of these
fluctuations in IF components, it fails to capture the dependencies of the speech
signal with AWFCC feature set and hence, did not perform well.

Table 6.4: Results (% EER) with Classifier-level Fusion for a Fixed Feature Set. After [17]

Classifier
Feature GMM+CNN GMM+LSTM LSTM+CNN

Set Dev Eval Dev Eval Dev Eval
CQCC 05.09 20.21 04.06 19.75 09.24 22.59
MFCC 06.83 23.83 10.36 30.54 14.10 26.49
LFCC 06.29 09.98 09.53 15.84 11.64 18.86

AWFCC 01.78 06.47 04.62 10.77 06.67 13.60
+ : Classifier-level fusion for a fixed feature set

6.6.5 Results with Classifier-Level Fusion

We have fused two systems at classifier-level in order to obtain the possible com-
plementary information present in the different classifiers and the results of this
kind of fusion for all the feature sets are shown in Table 6.4. It can be observed
from Table 6.4 that the reduction in EER from the individual EER for each feature
set. The CQCC obtained a reduced EER to 5.09 % and 20.21 % on dev and eval
sets, respectively, with the fusion of GMM and CNN classifiers, and gave low
EER with the fusion of GMM and LSTM classifiers resulting in reduced EER of
4.06 % and 19.75 % on dev and eval sets, respectively. The AWFCC feature set
gave slightly lower % EER using classifier-level fusion for all the three classifiers
considered in this study. The fusion of GMM and CNN classifiers with AWFCC
feature set gave a lower EER of 1.78 % and 6.47 % on dev and eval sets, respec-
tively, while fusion of GMM and LSTM classifiers gave EER 4.62 % and 10.77 % on
dev and eval sets, respectively. On the other hand, the fusion of LSTM and CNN
reduced the EER to 6.67 % and 13.60 % (than the individual classifier) on dev and
eval sets, respectively. From Table 6.4, we observed that the combined system of
GMM and CNN classifiers captures relatively better complementary information
than the other combined systems.
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6.6.6 Results with Score-Level Fusion of Feature Sets

In addition, the proposed feature set was fused at a score-level with CQCC, MFCC,
and LFCC feature sets in order to investigate the possible complementary infor-
mation, and results are shown in Table 6.5. We observed a reduction in EER than
the individual EER feature sets.

Table 6.5: Results (% EER) with Score-Level Fusion for a Fixed Classifiers. After [17]

Feature Sets
Classifier A⊕CQCC A⊕MFCC A⊕LFCC

Dev Eval Dev Eval Dev Eval
GMM 03.39 10.85 04.01 11.83 06.52 11.83
CNN 04.32 13.42 05.83 13.33 06.96 13.60
LSTM 09.02 21.74 23.03 33.37 26.78 33.08

A: AWFCC, ⊕ : Score-level fusion of feature sets for a fixed classifier

Figure 6.8: EER (%) Plots of Different Feature Sets with Different Classifiers on (a) De-
velopment, and (b) Evaluation Set. After [18].

Table 6.6: Final Results on Dev and Eval Set. After [17]

Feature Set Classifier Dev Eval
CQCC (Baseline) GMM 10.21 28.48

LFCC GMM 10.58 16.62
MFCC GMM 11.21 31.30

AWFCC GMM 06.52 11.83
AWFCC+CQCC GMM 03.39 10.85

AWFCC GMM+CNN 01.78 06.47
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The lower EER obtained is with the fusion of AWFCC and CQCC feature set
with GMM classifier reducing the EER to 3.39 % on dev set (with a fusion factor,
α=0.6), and 10.85 % on eval set (with a fusion factor, α=0.8). The final results
using all the feature sets are shown in Table 6.6. The lower % EER is obtained
with AWFCC feature set by the classifier-level fusion of GMM and CNN. The
performance is also shown by the DET curves in Fig. 6.8(a) for dev set and Fig.
6.8(b) for eval set with AWFCC feature set obtained with GMM and CNN along
with its scores of classifier-level fusion [217]. From the DET curves, it can be
observed that both the miss probability and false alarm probability are less for
the scores obtained from the classifier-level fusion, which is a good case for ASV
system so far as its performance is considered.

Figure 6.9: Results in % EER Showing the Effect of Number of Subband Filters on Both
ASVspoof 2017 Version 1.0 (V1 Line Pattern Fill), and Version 2.0 (V2 Solid Fill) Database
(a) Results on Development Set, and (b) Results on Evaluation Set. After [18].

The results of various AM-FM feature sets are shown in Table 6.7. All the
feature sets were extracted using 40 number of subband filters with 120-D fea-
ture vector that includes 40 static appended with 40-∆ and 40-∆∆ features. The
results obtained with ASVspoof 2017 challenge version 1.0 database shows the
lower % EER with AWFCC feature set resulting in % EER of 6.52 % and 11.83 %
on development and evaluation datasets, respectively. The AWFCC feature set
indeed helps to capture the discriminatory information (in both amplitude and
frequency) between natural vs. replay speech. The AWFCC feature set preserves
both the squared amplitude information as well as the corresponding IF infor-
mation. This may be the reason for the lower EER using AWFCC feature set on
development and evaluation datasets than the other feature sets. When the re-
sults were compared with WMFCC feature set, it did not perform well because of
lower spectral energy density, and less dynamic range. When the features were
computed for AWFCC, it gave comparatively better results than the WMFCC fea-
ture sets. The similar observation is observed on the ASVspoof 2017 version 2.0
database resulting in lower % EER with AWFCC feature set compared to the other
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feature sets, namely, WACC and WMFCC (as shown in Table 6.7). In particular,
the % EER obtained on development and evaluation sets is 6.56 % and 11.78 %,
respectively.

Table 6.7: Results Using 40 Subband Filters for Various AM-FM Feature Sets. After [18]

ASVspoof V1.0 ASVspoof V2.0
Feature Set Dev Eval Dev Eval
ESA-IACC 6.48 12.00 7.99 13.45
ESA-IFCC 4.12 12.79 11.84 12.93
WMFCC 28.07 31.59 26.95 27.18
WACC 7.08 12.87 7.86 12.78

AWFCC 6.52 11.83 6.56 11.78

6.6.7 Results with Varying Number of Subband Filters

In the earlier Section 6.5.1, we found that the feature set that is extracted by com-
bination of both amplitude and frequency components (i.e., AWFCC feature set)
gave relatively lower % EER and hence, further set of experiments are performed
for only AWFCC feature set. In this Section, we performed experiments with
various number of subband filters for proposed AWFCC feature set on both the
versions (1.0 and 2.0) of ASVspoof 2017 challenge database. The AM-FM features
based on ESA demodulation technique are known to work better when the sig-
nal is a narrowband signal [54]. Since the proposed feature sets are extracted with
linearly-spaced Gabor subband filters, the frequency resolution is better captured,
and it is related to the number of subband filters used. In particular, increasing
the number of subband filtered signals provides a good frequency resolution and
thus, captures more detailed spectral characteristics. We have varied number of
subband filters of the AWFCC feature set as shown in Fig. 6.9(a) for development
set, and Fig. 6.9(b) for evaluation set on both ASVspoof 2017 version 1.0 (V1) and
version 2.0 (V2). Initially, the AWFCC feature set was computed using 40 subband
filters in Gabor filterbank with 200 Hz bandwidth. We further increased the num-
ber of subband filters up to 100 in Gabor filterbank. On ASVspoof 2017 version
1.0 database, we obtained lower % EER with 80 subband filters resulting in EER
of 6.37 % and 11.72 % on development and evaluation sets, respectively. On the
other hand, on ASVspoof 2017 version 2.0 database, we obtained reduced % EER
with 60 subband filters giving an % EER of 6.74 % and 11.03 % on development
and evaluation sets, respectively. By increasing the number of subband filters in
a filterbank, AM-FM components might get overlapped with adjacent subband
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filters and hence, their estimation becomes inaccurate. In this case, the number of
subband filters required are in the range of 60 to 80 to cover the entire spectrum
information that may help for replay SSD task.

6.6.8 Effect of Replay Configurations (RC)

The version 2.0 database of ASVspoof 2017 challenge provides a detailed descrip-
tion of acoustic environment, playback, and recording devices [6]. A combina-
tion of acoustic environment, playback, and recording device is referred to as Re-
play Configurations (RC). The RC are again classified into three different levels of
threats to the ASV system w.r.t the intermediate devices used for recording and
playback. The threat to the ASV system depends on the quality of the devices
as well as on the distance at which the device is placed from the source speaker
to record the voice. The schematic representation of different levels of threats,
namely, low, medium, and high are shown in Fig. 6.10 [5]. The high-level threat
is shown with red background, where the intermediate device is placed at a very
small distance from the source speaker. Similarly, medium and low-level threats
are shown with blue and green background, respectively, where the distance from
the source speaker to the intermediate devices is large as compared to the high-
level threat. Thus, level of threat is inversely proportional to distance of source
speaker from the intermediate devices as given by Eq. (6.8), i.e.,

Level of Threat ∝
1

Distance of Source to Device
. (6.8)

Figure 6.10: Schematic Diagram for Different Levels of Threats (Low-to-High) to the
ASV System w.r.t the Quality, and Distance of the Recording Device from the Source
Speaker. After [18].
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6.6.8.1 Effect of Acoustic Environments

The ASVspoof 2017 challenge version 2.0 database has in total 26 different envi-
ronments denoted from E01-E26 [6] . Different environments have the variations
included with levels of additive ambient, convolutive, and reverberation noise.
The acoustic environments were classified into three different levels of threat,
namely, low, medium, and high. The individual % EER for the types of threat
with all the feature sets are shown in Fig. 6.11. Form the bar graph plot, it can be
observed that for low-level threat, the % EER is less compared to that of medium,
and high-level threat for all the feature sets. The high-level threat is challenging
to detect as the acoustic environment has any extra noise-free due to which the
replay samples approximately matches to the natural speech and hence, fails to
detect the replay speech signal. However, comparing performance of all the fea-
ture sets, proposed feature set produces relatively lower % EER for all the different
levels of threats.

Figure 6.11: Results in % EER of AWFCC, CQCC, MFCC, and LFCC Feature Set Show-
ing the Performance on Three Different Levels of Threats, Namely, Low, Medium, and
High on Replayed Speech Signal, When Recorded in Different Acoustic Environments.
After [18].

According to the levels of threat, Fig. 6.12 shows the individual performance
of feature set in different acoustic environments. From the Fig. 6.12, it can be ob-
served that for most of the cases, MFCC (green line) and CQCC (blue line) shows
high % EER, whereas LFCC (violet line) and AWFCC (red line) shows lower %
EER compared to the MFCC and CQCC feature sets. The proposed feature set
gave relatively lower % EER compared to the other feature sets.
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Figure 6.12: Individual % EER for Different Environment Conditions with CQCC,
MFCC, LFCC, and AWFCC Feature Set. After [18].

6.6.8.2 Effect of Playback Devices

Similar to different types of acoustical environments, there are 26 different play-
back devices denoted by P01-P26 [6]. These playback devices also have similar
levels of threats to ASV system as different acoustic environments have. The clas-
sification of different levels of threats w.r.t the feature set is shown in Fig. 6.13. It
can be observed that our proposed feature set in all the levels of threats gave lower
% EER than the other compared feature sets. Furthermore, for low and medium-
level threats, it performed well. However, the results for high-level threats are
comparable and hence, needs further investigations on high-level threat. Simi-
lar to acoustic environment, the performance (in % EER) is obtained w.r.t various
playback devices (as shown in Fig. 6.14). The least % EER is obtained with the
proposed feature set for all the levels of threats. The high-level threats are difficult
to detect because professional audio equipment, such as active studio monitors,
and studio headphones were used to record replay samples. As the level of threat
increase from low-to-high, for playback devices, the % EER also increases.

Figure 6.13: Results in % EER of AWFCC, CQCC, MFCC, and LFCC Feature Set Show-
ing the Performance on Three Different Levels of Threats, Namely, Low, Medium, and
High on Replayed Speech Signal, When Recorded in Different Playback Device. Af-
ter [18].
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Figure 6.14: Individual % EER for Different Playback Device with CQCC, MFCC, LFCC,
and Proposed AWFCC Feature Set. After [18].

Table 6.8: Results with Score-Level Fusion. After [18]

ASVspoof v1.0 ASVspoof v2.0
Feature Set Dev Eval Dev Eval

A: CQCC (90-D (SDA)) 10.21 28.48 12.81 19.04
A1: CQCC (120-D (SDA)) - - 10.99 27.26

B: LFCC 10.58 16.62 10.31 15.73
C: MFCC 11.21 31.30 24.19 26.90

D: AWFCC 6.37 11.72 6.74 11.03
A+D 3.60 11.22 5.75 10.42
B+D 6.37 11.67 6.74 11.03
C+D 3.94 11.72 6.74 10.89

+: Score-Level Fusion, SDA:Static+Delta+Acceleration

6.6.8.3 Effect of Recording Devices

There are 25 different recording devices used during collection of replay speech
denoted by R01-R25 [6]. Similar to other two replay configurations, recording
devices are also classified into low, medium, and high-level threats to ASV sys-
tem. Similar to other two replay configurations, Fig. 6.15 shows the performance
for different levels of threats to the ASV system. It can be observed that for low
and medium-level threats, the proposed feature set gave lower % EER than the
other feature sets with a significance difference in % EER. However, for high-level
threats, very small change in % EER is observed compared to the other feature
sets. The detailed results in % EER w.r.t the different recording devices are shown
in Fig. 6.16 for all the feature sets, and observed that our proposed feature set rel-
atively gave lower % EER for various recording devices considered in this study.

Furthermore, to increase the performance of the replay SSD task, we further
performed score-level fusion as per Eq. (6.7) in order to explore possible com-
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Figure 6.15: Results in % EER of AWFCC, CQCC, MFCC, and LFCC Feature Set Show-
ing the Performance on Three Different Levels of Threats, Namely, Low, Medium, and
High on Replayed Speech Signal, When Recorded in Different Recording Device. Af-
ter [18].

Figure 6.16: Individual % EER for Different Recording Device with CQCC, MFCC,
LFCC, and AWFCC Feature Set. After [18].

plementary information. The results obtained using score-level fusion along with
individual % EER are shown in Table 6.8 for both version 1.0 and 2.0 databases.
It can be observed from the Table 6.8 that for both databases, the score-level fu-
sion of AWFCC with CQCC feature set gave reduced % EER than that for CQCC
alone. For ASVspoof 2017 version 1.0 database, the % EER with score-level fusion
of AWFCC and CQCC gave 3.60 % and 11.22 % on development and evaluation
sets, respectively. Similarly, for ASVspoof 2017 version 2.0 database, the % EER
with score-level fusion of AWFCC and CQCC gave 5.75 % and 10.42 % on devel-
opment and evaluation sets, respectively. This indicates that the complementary
information is captured by the proposed feature set than the CQCC alone.

The performance evaluation is also shown by the DET curves for CQCC, MFCC,
LFCC, and proposed feature set along with their best score-level fusion on both
version 1.0 and 2.0 databases in Fig. 6.17 and Fig. 6.18. It is observed that for
both the versions, miss probability of CQCC, MFCC, and LFCC was very high
for given FAR which is not a good case for robust ASV system. There is decrease
in miss probability for proposed feature set on development set as shown in Fig.
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6.17(a) and Fig. 6.18(a). It can be observed from the DET curves for development
set that there is reduction in the miss probability of version 2.0 DET curve (shown
with dotted circle in Fig. 6.18(a)). For version 2.0, the miss probability is high for
other acoustic feature sets than the proposed feature set. Similar pattern of DET
curve is observed for the evaluation set on both version 1.0 and 2.0 datasets as
shown in Fig. 6.17(b) and Fig. 6.18(b). The % EER is further reduced with the
score-level fusion of CQCC, and AWFCC feature sets.

(a) (b)

Figure 6.17: (a) The Individual DET Curves on Dev Set with Their Score-Level Fusion,
and (b) Similar DET Curves on Eval Set of ASVspoof 2017 Version 1.0 Database. Dotted
Circle Shows the DET Curves with Less False Alarm Probability. After [18].

(a) (b)

Figure 6.18: (a) The Individual DET Curves on Dev Set with Their Score-Level Fusion,
and (b) Similar DET Curves on Eval Set of ASVspoof 2017 Version 2.0 Database. Dotted
Circle Shows the DET Curves with Less False Alarm Probability. After [18].
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6.7 Chapter Summary

In this Chapter, our efforts to improve the performance of SSD task using combi-
nation of IA and IF components is presented. The IA component obtained from
the Amplitude Modulation (AM) component of a narrowband speech signal is
severely affected by the noise and multipath interference (due to replay mecha-
nism). The noise present in the replayed signals are exploited via the IF compo-
nents. In particular, this damage in AM components is exploited by the proposed
feature set. Experiments on ASVspoof 2017 challenge v2.0 database were per-
formed and compared the results with our earlier proposed approach and base-
line system. The significance of using both the IA and IF components in the same
pipeline improved the SSD performance. The limitation of the work is to inves-
tigate the individual contribution of IA and IF components for the SSD task. In
the next Chapter, we will discuss about various applications, such as ASR, ASC,
VCS, and WSD using the TEO-based cepstral, and spectral features on standard
datasets.
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CHAPTER 7

Other Applications

7.1 Introduction

In the Chapters 3-6, we discussed our proposed feature sets using ESA and TEO
and applied on speech signals for the various SSD tasks (such as, SS, VC, and
replay). However, our proposed feature sets is able to discriminate the variety
of natural/audio sounds, such as human speech vs. non-speech/non-music au-
dio samples. In this Chapter, to explore the potential of our proposed feature
sets in variety of natural speech, we considered the Automatic Speech Recogni-
tion (ASR) in Section 7.2. For the ASR task, we extracted filterbank energy us-
ing TEO and abbreviated as GTFB (Gabor Teager Filterbank energy) on near and
far-field speech recognition corpus, namely, LibriSpeech and CHiME-3 challenge
database, respectively. Section 7.3 discusses the study on development of coun-
termeasures for replay attacks on the Voice Assistant (VA) task on the ReMASC
corpus. Furthermore, we also explored the Teager energy-based feature set for
Whisper Speech Detection (WSD) task on the wTIMIT, and CHAINS corpus in
Section 7.4. In addition, we also explored the proposed feature sets for the acous-
tic scene classification (ASC) task on DCASE 2018 challenge database discussed
in Section 7.5. Furthermore, we also explored the Teager energy-based feature set
for Whisper Speech Detection (WSD) task on the wTIMIT, and CHAINS corpus
in Section 7.4.

7.2 Automatic Speech Recognition (ASR)

Automatic Speech Recognition (ASR) is a task that converts a speech signal into
a continuous sequence of words along with real interaction between humans and
the machines [218]. Due to huge commercial success of Voice Assistants (VAs) or
Intelligent Personal Assistants (IPAs) the far-field speech recognition is an essen-
tial technology for interactions that aims to provide access of the smart devices
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through the recognition of far-field speech [219]. This technology is applied to
smart home appliances (smart loudspeaker and TV), meeting transcription, and
onboard navigation, etc. However, in a real environment, there is a lot of back-
ground noise, multipath reflections, reverberation, and even human voice inter-
ference, leading to decrease in ASR accuracy [220].

Recent development in acoustic modelling uses approaches, such as deep learn-
ing, sequence modelling, etc., however, their performance detoriates in the case of
far-field recording conditions. The reverberant artifacts distort the speech signal
by smearing the amplitude envelopes of the speech signal [11]. The development
of a real-world applications faces a notable challenge because of reverberation.
The ASR system degrades the performance, when the far-field microphone array
signals are used instead of close-talking microphone.

The aim of the 3rd CHiME (Computational Hearing in Multisource Environ-
ments) challenge was to develop a multichannel ASR system [221]. The CHiME-
3 dataset upgrades the difficulty by providing not only artificially noisy speech
(i.e., obtained by combining clean speech with recorded background noise) but
also consists of the noisy speech recorded in public environments, such as cafe,
bus, street junction, and pedestrian areas. The CHiME-3 challenge covers dif-
ferent speakers, noise environments, and real-world problems, such as clipping,
microphone failure, recording glitches, etc.

Our goal in this work is to increase the robustness of ASR using Teager energy-
based features in noise and reverberation in order to combine them efficiently
with standard Mel Frequency Cepstral Coefficients (MFCC)-based front-ends with
GMM (Gaussian Mixture Model), and DNN (Deep Neural Network) acoustic
models in addition to use of RNN (Recurrent Neural Network) as language mod-
els. The motivation behind using TEO is its attributes to capture nonlinear aspects
of speech production [190]. The true total energy of source is estimated using
TEO, and it also preserves the amplitude and frequency modulation of a resonant
signal and hence, it improves the time-frequency resolution along with improving
the formant information representation [52]. In addition, the TEO has the noise
suppression property (for details, please see Appendix C), and it attempts to sup-
press the distortion caused by the noise signal. While there are studies in the ASR
literature that exploit noise suppression capability of TEO for ASR, however, they
are reported either for close-talking speech [164] or artificially added noise [222],
the present study extends this work for a typical noise characteristics of real far-
field scenarios.

The TEO tracks running estimate of instantaneous energy fluctuations of a
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Figure 7.1: Block diagram of Teager energy spectral features. After [19, 23].

narrowband speech signal as discussed in Chapter 3, [51, 52, 190], i.e.,

Ψd{xi[n]} = x2
i [n]− xi[n− 1]xi[n + 1] ≈ ai[n]2Ωi[n]2, (7.1)

where xi[n] is discrete-time bandpass filtered signal for ith subband filter, and
Ψd{·} represents TEO for discrete-time signals. As discussed earlier, the TEO
works on narrowband signal and hence, bandpass filtering is necessary to apply
on the input speech signal to compute ‘N’ number of subband filtered signals. The
block diagram of Gabor filterbank energy coefficients-based on TEO is shown in
Fig. 7.1. The feature extraction procedure is similar as discussed in Chapter 3,
Section 3.4.

In ASR, the lower formants and harmonics are important as the speech in-
formation is present in lower frequencies and hence, they should be preserved.
Furthermore, these subband filtered signals are given to the TEO block in order to
estimate the Teager energy profile of each subband filtered signals. These Teager
energy profiles are further passed through the frame-blocking along with aver-
aging of the speech segment using a window length of 25 ms and shift of 10 ms
followed by logarithm operation. Finally, these filterbank energy coefficients are
extracted from the speech signal. Henceforth, we will denote it as Gabor Teager
Filterbank (GTFB) feature set for the ASR task.

The spectral energy densities of the speech signal from the CHiME-3 corpus
is shown in Fig. 7.2. The comparison is done of the spectral energy densities
obtained from the Mel filterbank, and GTFB features as shown in Fig. 7.2(b), and
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Fig. 7.2(c), respectively, for both clean (Panel I) and noisy (Panel II) speech signal.
It can be observed from the spectral energy densities that the energy obtained for
the clean speech signal from the Mel filterbank has less energy density compared
to the GTFB approach. For the ASR task, the lower formants, such as F1 and F2

are important to preserve the speech content. The spectral energy obtained from
the TEO shows the sharp formants, and high energy compared to that of Mel
filterbank features. In particular, the Mel spectral energy obtained are distorted,
and have blur characteristics at the higher frequency regions.

Figure 7.2: (a) Time-domain speech signal for (Panel I) real, and (Panel II) simulated,
spectral energy density obtained from (b) Mel filterbank, and (c) GTFB. Highlighted
ovals and box shows the spectral energy differences between (b) and (c). After [19].

7.2.1 Noise Suppression Capability of TEO

Historically, noise suppression capability of TEO was originally analyzed for near-
field speech in car noise environment in [208] followed by our recent work on Wall
Street Journal (WSJ) corpus [222]. Consider a clean speech signal, s(n), degraded
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by a additive noise, η(n), and the resulting signal is given as y(n):

y(n) = s(n) + η(n). (7.2)

The TEO of the noisy speech signal is given by:

ψ[y(n)] = ψ[s(n)] + ψ[η(n)] + 2ψ̃[s(n)η(n)], (7.3)

where ψ̃[s(n)η(n)] is the cross-ψ energy of s(n) and η(n). If s(n) and η(n) can be
assumed statistically-independent, the expected value of ψ̃[s(n)η(n)] is zero and
hence, [164, 208],

E{ψ[x(n)]} = E{ψ[s(n)]}+ E{ψ[η(n)]}. (7.4)

We analyzed the Power Spectral Density (PSD) of a speech segment for far-
field data (speech signals are taken from CHiME-3 corpus).

The PSD plots obtained from the (a) street, (b) pedestrian, (c) bus, and (d) cafe
background environment obtained from with and without TEO is shown in Fig.
7.3 (from the CHiME3 corpus). Noise suppression capability of TEO which can be
clearly observed in Fig. 7.3 [207, 222].

Figure 7.3: Power Spectral Density (PSD) of a Real Speech Segment of 20 ms with Street,
Pedestrian, Bus, and Cafe Background from CHiME3 database. The PSD is Shown for
Speech Segment With and Without TEO.
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7.2.2 Experimental Setup

7.2.2.1 Near-Field and Far-Field ASR Corpus

The ASR experiments were performed on LibriSpeech and CHiME3 Corpus. The
LibriSpeech task comprises English read speech data based on the LibriVox project
[223]. The LibriSpeech database consists of two sets of clean speech data (100
hours + 360 hours), and noisy speech data (500 hours) for training. We used
100 hours of clean speech data to train the initial ASR model, and tested the
trained models on test-clean and test-other. The statistics of the database is re-
ported in [223]. In addition, we also performed experiments on CHiME-3 corpus
which uses multi-microphone tablet device in everyday environments [221]. Four
varied environments have been selected: Cafe (CAF), street junction (STR), public
transport (BUS), and pedestrian area (PED). The real speech data is of 6-channel
recordings of the sentences from the WSJ0 (Wall Street Journal) corpus. The simu-
lated data was developed by adding the clean speech utterances with the different
environment in the background during recordings. For ASR evaluation, the cor-
pus is divided into three subsets, namely, training, development, and test sets,
respectively.

Table 7.1: Statistics of CHiME3 Corpus. After [19]

Corpus Real Simulated Environment Speaker Total
Subset (R) (S) Utterances
Train 1600 7138 - 4R-83S 8738
Dev 410 410 4 4 3280
Eval 330 330 4 4 2640

7.2.2.2 Feature Representation

For Gaussian Mixture Model-Hidden Markov Model (GMM-HMM) training, MFCC
features are extracted from the speech signals using a window length of 25 ms
and shift of 10 ms. Delta and double-delta features are also appended result-
ing in 39-dimensional (D) features. Human auditory system depends upon sev-
eral thousands of subband filters, which results in dense filterbank in frequency-
domain [207]. Hence, we performed experiments to investigate the significance
of subband filters on ASR performance. The GTFB features are extracted with 60
subband filters using the process shown in Fig. 7.1.

The Fig. 7.4 shows the effect of increasing number of subband filtered signals
during feature extraction. The experiments were performed with GMM-HMM,
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Figure 7.4: Effect of Subband Filtered Signals on GTFB Feature Set. After [19].

and DNN-HMM systems varying the number of subband filters from 40 to 120. It
can be observed from the Fig. 7.4 that the features extracted using 60 number of
subband filters are found to be relatively optimal on DNN-HMM systems com-
pared to the other number of subband filtered signals and hence, further set of
experiments for GTFB features were performed with 60 number of subband fil-
tered signals. The KALDI toolkit is used to build the ASR systems for both the
corpora (for details, please see the Appendix D) [224].

7.2.3 Experimental Results

7.2.3.1 Results for Near-Field ASR

To generate the alignments for training the DNN-based model, GMM-HMM sys-
tem is used along with a tri-gram language model (LM) for decoding the ASR sys-
tem. The experiments performed consists of 6 hidden layers in DNN with 1024
neurons (sigmoid activation) in each hidden layer. The output units are 3480 for
each DNN, and the input is 11 frames (5 left context, 1 current, and 5 right context)
of 60-D features concatenated together. The performance of the ASR system is an-
alyzed using Word Error Rate (WER). The MFCC baseline using the LDA-MLLT
(Linear Discriminant Analysis-Maximum Likelihood Linear Transform) system
obtained WER of 12.28 %, and 34.92 % on test-clean and test-other dataset, re-
spectively. The results obtained with GTFB are comparable to the MFCC feature
set resulting in 12.71 % and 35.58 % WER on test-clean and test-other, respectively.
The DNN-HMM system is trained on clean speech (using standard KALDI recipe)
and tested in both clean and other conditions for MFCC and GTFB feature sets.
The experimental results of test set using the DNN-HMM systems are reported in
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Table 7.2.

Table 7.2: WER (%) on DNN-HMM System Trained on 100 Hrs of Training Data of
LibriSpeech Corpus

Subset # Hrs MFCC GTFB
Test-Clean 5.4 9.55 9.40
Test-Other 5.1 27.62 27.54

7.2.3.2 Results for Far-Field ASR

The baseline acoustic features are MFCCs (13-D). Three frames of left and right
context are concatenated to form a 91-D feature vector, which is compressed to 40-
D using LDA whose class is one of 2500 tied triphone HMM states. The tied states
are modeled by a total of 15,000 Gaussians, MLLT, and feature space maximum
likelihood linear regression (fMLLR) with speaker adaptive training (SAT). The
training set used is clean speech taken from WSJ0 corpus, and multi-noisy data
and tested on noisy speech signals. On the other hand, the enhanced speech sig-
nals were tested on the clean speech and multi-enhanced speech signal. The DNN
has 7 layers with 2048 units per hidden layer. The input layer has 5 frames of left,
and right context (i.e., 11×40 = 440 units). The DNN is trained using the stan-
dard procedure: pre-training using restricted Boltzmann machines (RBM), cross-
entropy training, and sequence discriminative training using the state-level min-
imum Bayes risk (sMBR) criterion. In addition, the N-gram rescoring, and RNN-
based LM is used for far-field ASR task. The experimental results with GMM,
DNN, and RNN-LM-based ASR system are shown in Table 7.3, which is trained
on multi-enhanced speech signal with MFCC and GTFB feature sets. The detailed
results on different noises in CHiME-3 are reported in Table 7.4 with GTFB feature
set. For all the noise conditions of CHiME-3 corpus, the GTFB feature set shows
improvements over the baseline system especially on the evaluation set.

Table 7.3: WER (%) Using Beamforming and Enhanced Methods with Proposed Feature
Set Trained on Multi-Enhanced Speech. After [19]

Method
Dev Set Eval Set

Real Sim Real Sim Avg.(Real+Sim)
MFCC GTFB MFCC GTFB MFCC GTFB MFCC GTFB MFCC GTFB

GMM-HMM 16.59 16.96 18.93 19.35 26.55 26.25 26.73 25.71 26.64 25.98
+ DNN (CE) 13.19 12.95 14.66 14.69 20.76 20.30 20.75 19.79 22.25 20.04
+ DNN (sMBR) 11.73 12.06 13.26 13.53 18.63 18.53 18.82 18.32 18.72 18.42
+ 5-gram rescoring 10.59 10.81 11.85 12.01 17.01 16.68 16.95 16.60 16.98 16.64
+ RNNLM 9.86 9.89 11.18 11.41 15.97 15.61 15.67 15.47 15.82 15.54
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Table 7.4: WER(%) for Each Noise with GTFB Feature Set. After [19]

Envt.
Dev Set Eval Set

Real Sim Real Sim
Avg. 9.89 11.41 15.61 15.47
BUS 11.71 10.41 21.63 12.10
CAF 9.29 13.75 13.37 16.01
PED 8.16 9.59 13.66 16.16
STR 10.41 11.89 13.77 17.63

Table 7.5: Speech Recognition Performance (in % WER) on Near-Field and Far-Field
Corpus. After [19]

Corpus System Subset SC RI (%)
LibriSpeech Near-field Test-Clean 9.15 4.19
LibriSpeech Near-field Test-Other 26.24 4.99
CHiME-3 Far-field - 14.68 7.20
(SC: System Combination, RI: Relative Improvement)

Furthermore, in order to combine the possible complementary information
from the amplitude and frequency of the speech signal, the posterior lattices ob-
tained from the MFCC and GTFB feature sets were combined using lattice-level
system combination (as shown in Table 7.5) [225]. The performance of the com-
bined system is 9.15% and 26.24% for test-clean and test-other on LibriSpeech cor-
pus, that results in relative improvement of 4.19% and 4.99% which is better than
the MFCC alone. On the other hand, for CHiME-3 corpus, an relative improve-
ment of 7.20% is obtained resulting in 14.68% WER. The individual noise condi-
tion performance after system combination (SC) of MFCC and GTFB on CHiME-3
corpus is reported in Table 7.6. Finally, we compared the performance of GTFB
feature set with our proposed and other systems as reported in Table 7.7.

Table 7.6: WER (%) for Each Noise Condition With the System-Level Combination (SC)
of MFCC and GTFB Feature Set. After [19]

Envt.
Dev Set Eval Set

Real Sim Real Sim
Avg. 9.43 10.79 14.78 14.59
BUS 11.37 9.96 20.56 11.11
CAF 8.70 12.58 12.29 15.11
PED 7.85 9.14 12.76 15.28
STR 9.79 11.46 13.50 16.87

In this Section, we explore the use of Teager energy spectral features-based

145



Table 7.7: Comparison With Other Systems on CHiME-3 Corpus (% in WER). After [19]

System
Dev Set Eval Set

Real Sim Real Sim
MFB [226] 11.6 14.3 22.6 25.5
PFB [226] 12.0 13.7 23.0 25.1
RAS [226] 11.8 14.6 21.6 23.1
MHE [226] 12.0 14.4 22.9 26.4
CVAE [226] 10.2 12.4 18.9 19.9
Ratemap+F0 [227] 5.51 4.82 18.56 20.03
PNCC [228] 14.23 11.85 22.12 14.88
MESSL [229] 9.00 11.5 16.3 21.00
log-Mel [230] 12.58 10.66 23.86 20.17
DOC [230] 12.00 10.18 20.35 18.53
NIN-CNN [231] 10.64 11.21 12.81 18.47
DS Beamforming [232] 13.92 13.62 26.30 21.14
MFCC+RNNLM 9.86 11.18 15.97 15.67
GTFB 12.06 13.53 18.53 18.32
GTFB+RNNLM 9.89 11.41 15.61 15.47
GTFB+RNNLM_SC 9.43 10.79 14.78 14.59

acoustic model for near and far-field ASR tasks, where the GTFB feature set was
extracted from Mel-spaced Gabor filterbank. The TEO preserves the amplitude
and frequency modulation of a resonant signal, and it improves the time-frequency
resolution. The noise suppression capability of TEO indeed helps for robust ASR
task. The performance of the ASR system degrades when far-field speech is con-
sidered instead of near-field speech and hence, far-field system are more challeng-
ing, in particular, to handle background noise, reverberation. The experiments are
performed on both LibriSpeech (near-field) and CHiME-3 (far-field) corpus. Sig-
nificant reduction in % WER was achieved using the system combination using
Minimum Bayes Risk (MBR) decoding of MFCC, and GTFB-based features.

7.3 Replay Attacks on Voice Assistants (VAs)

Voice might be the primary source of interface between humans and machines
in the near future [32]. According to major companies that are involved in the
speech recognition research believe that the perfect user interface, does not ex-
ist till date and to build it, knowledge of both sociology and technology fields
are required [35]. The developed systems allows, one to wirelessly control lights,
fans, TV, AC, security [36]. Home automation now-a-days is one of the major
growing industries that changes the lifestyle of people [35]. Few of them target
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to have luxury and sophisticated platforms, on the other hand for special need,
such as the person who are elderly and the disabled [37]. It is also useful for the
people who live alone might require helping hand at home [37]. The Voice As-
sistants (VAs) considers that a cooperative speaker can be asked to pronounce a
pre-defined sentence or phrase during both enrollment and test phases. This pro-
cess is called text-dependent speaker verification as opposed to text-independent
speaker verification in which no constraint is put on the input lexicon. In other
words, text-dependent speaker verification can be defined as a speaker verifica-
tion task in which the lexicon used during the test phase is a subset of the lexicon
pronounced by the speaker during the enrollment.

Though the Voice Assistants (VAs) are convenience and ease, it raise new secu-
rity issue because of their vulnerability to several types of spoofing attacks, such
as replay, hidden voice commands, audio adversarial [8]. These attack pose a
major threat, as they are easily conducted and hidden. These attacks can cause
security access to several systems simultaneously. To protect the VAs approaches
were proposed in [32, 233] by using the identification of the source speech sam-
ples, and rejecting the speech signals which comes from the machines. The work
presented in [32, 233] is an extension of the anti-spoofing technologies for auto-
matic speaker verification (ASV) system. The VAs usually use the far-field speech
recognition, in addition, the acoustic environmental conditions are varied from
indoor to outdoor. The feature vector also gets affected because of increase in dis-
tance, the noise-level increases rapidly and hence, it can be used for Spoof Speech
Detection (SSD) task.

In this context, the organizers of the ReMASC (Realistic Replay Attack Mi-
crophone Array Speech Corpus) released publicly available database in order to
focus on future research on the protection of VAs, and to make the simulation-to-
reality gap lesser [8]. In this Chapter, we use Teager Energy Operator (TEO)-based
feature for replay SSD task for VAs. The idea behind using the TEO is the nonlin-
ear modeling of speech production. The TEO estimate the true total energy source
of a resonance signal, and preserves both the amplitude and frequency informa-
tion [52]. The supplementary information improves the time and frequency reso-
lution and in addition, TEO has noise suppression capability that further helps to
detect replay signal from its natural counterpart [51, 208, 222].

7.3.1 Feature Extraction

The block diagram of smooth Teager Energy Cepstral Coefficients (TECC) feature
set is shown in Fig. 7.5. The TECC feature set is computed as per our earlier stud-
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Figure 7.5: Block Diagram of Smooth Teager Energy Features. After [20].

ies [10, 11]. As the speech signal is the summation of several monocomponent
signals, and Teager energy works on narrowband speech signal, we use Gabor
filterbank to obtain subband filtered signals. The Gabor filters are asymmetric,
non-constant-Q type, smoother, and broader compared to the Mels subband fil-
ters [55]. We use linearly-spaced Gabor filterbank to have almost equal bandwidth
across all the frequency regions [13, 27]. It is also superior to the Mel filterbank,
and provides higher robustness in situation when signal is degraded with addi-
tive noise and the other harmful interference (as shown in Fig. 7.7). Furthermore,
these subband filtered signals are passed through the TEO to estimate the instan-
taneous Teager energy profile. These TEO profiles, in some segments observe en-
ergy spikes, and attributes to complex peaks. This makes to degrade the accurate
detection of the signal and hence, to resolve the situation, the complex peaks and
spikes are converted into smooth energy envelopes [234]. Here, Moving Average
(MA) filter is used to smooth out complex energy peaks, and is given as [235]:

MA = f ilter(h, j, Ψd{xi[n]}), (7.5)

where h is the rectangle window with length L, and j is the constant that equals
to 1. Furthermore, the smoothed Teager energy profiles are passed through the
frame-blocking, and averaging using a short window length of 25 ms with a shift
of 10 ms followed by logarithm operation to compress the data. Finally, Discrete
Cosine Transform (DCT) is applied that has energy compaction property, and re-
taining first few DCT coefficients appended along with their delta and double-
delta feature vector resulting in higher-dimensional smooth Teager Energy Cep-
stral Coefficients (TECC) feature set.

7.3.1.1 Effect of Smoothing Filter

Fig. 7.6(a) shows the segment of a speech signal, and its corresponding Teager
energy profiles for natural (Panel I) and replay (Panel II) signals. The subband fil-
tered Teager energy profile obtained without applying smoothing filter is shown
in Fig. 7.6(b). Fig. 7.6(c) shows the smooth envelope of Teager energy profile,
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Figure 7.6: The Effect of Smoothing Filter on TEO. (a) Time-Domain Speech Segment
Panel I: Natural and Panel II: Replay, (b) Corresponding Teager Energy Profiles, and (c)
Teager Energy Profiles Obtained after Applying Smoothing Filter. After [20].

which is obtained after applying smoothing filter. It can be observed that after
applying smoothing filter the Teager energy profiles do not carry spikes and com-
plex peaks which is observed earlier in Fig. 7.6(b). In addition, the replay signal
shows the energy fluctuations at the high peaks and small variation in the si-
lence or unvoiced region. This observation is not present for the natural speech
segment. Hence, the smoothing filter for TEO helps to detect the replay signal
as compared to the TEO estimated from without applying smoothing filter (refer
Table 7.11).

7.3.1.2 Spectral Analysis

The time-domain speech and corresponding spectral energy densities obtained
from Mel and Teager energy filterbank are shown in Fig. 7.7 for natural (Panel
I) and replay (Panel II ) speech signals. It can be observed that for the natural
speech signal the spectral energy do not vary much apart from its intensity for
Teager energy spectral features. For the replay speech signal, we can see that the
formant patterns obtained from the Mel spectral energy are distorted, and fails to
capture the energy content of the signals. However, the spectral features obtained
from the Teager energy preserve this formants and harmonics characteristics of
the replay signals. This is an initial observation and difference between the natural
and replay signal obtained on the ReMASC database.

The PSD of the natural and replay signal from the ReMASC database is as
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Figure 7.7: (Top) Time-Domain Speech Signal for Natural and Replay (Panel I and II),
Corresponding Spectral Energy Density for Mel Filterbank and Teager Energy (Middle
and Last Row). After [20].

shown in Fig. 7.8. PSD is obtained for a speech segment, where the segment is
obtained by applying TEO (black line) and without applying TEO (blue line). TEO
has good noise suppression capability which is observed as shown in Fig. 7.8. In
particular, for natural speech segment Fig. 7.8 (left side) the difference is visible
in lower as well as in higher frequency regions. Similarly, in case of replay speech
segment as shown in Fig. 7.8 (right side), the difference goes on decreasing as the
frequency increases from lower-to-higher frequency. In particular, the difference
present in lower frequency shows huge gap that helps to detect replay signal from
its natural counterparts.

7.3.2 Experimental Setup

The ReMASC database is classified into two sub-sets, namely, core set (30k num-
ber of samples), the and quick evaluation set (2k number of samples covering all
the recording conditions) [8]. The experiments performed in this Section are done
on quick evaluation set. The statistics of the ReMASC database is given in [8].
Following systems were compared with smooth TECC feature set for the classifi-
cation of natural vs. replay speech signal.
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Figure 7.8: The PSD of the Natural (Left) and Replay (Right) Speech Segment Obtained
by Applying (Black Line) and Without Applying (Blue Line) TEO. After [20].

Table 7.8: The Statistics of ReMASC Database (* Indicates Incomplete Data Due to
Recording Device Crashes). After [20]

Environment # Subjects # Genuine # Replayed
Outdoor 12 960 6900
Indoor 1 23 2760* 23104
Indoor 2 10 1600 7824
Vehicle 10 3920 7644
Total 55 9240 45472

Baseline Systems: The Constant Q Cepstral Coefficients (CQCC) features were ex-
tracted with 30 static coefficients (with log-energy), resulting in total 90-dimensional
(D) feature vector (including 30-∆ and 30-∆∆).

MFCC: The MFCC feature set were extracted using 40 Mel filterbank with
fmin=10 Hz, and fmax=8000 Hz. We obtain 13-D static features appended along
with their ∆ and ∆∆ coefficients resulting in 39-D feature vector.

TECC: The TECC feature set were extracted using 40 linearly-spaced Gabor
filterbank with fmin=10 Hz, and fmax=8000 Hz. For each subband filtered signals,
we obtain 40-D static features appended along with their ∆ and ∆∆ coefficients
resulting in 120-D feature vector. The smooth TECC (TECC_sm) features were
extracted similar to TECC features.

Gaussian Mixture Model (GMM) is more popular and well known classifica-
tion technique widely used in signal processing and pattern recognition literature.
GMM is a generative model which represent each class as a weighted sum of M
multivariate Gaussians, and is given by p(x|λ) = ∑M

k=1 wk pk(x), where wk is the
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kth mixture weight, and pk(x) is a D-variate Gaussian density function with mean
vector µi and covariance matrix Σi. The model parameter is defined by λ. The de-
cision of whether the test speech being natural or spoofed depends on the scores

of Log-Likelihood Ratio (LLR) = log
P(X|H0)

P(X|H1)
, where P(X|H0) and P(X|H1) are

the likelihood scores of natural and replay speech, respectively. The score-level fu-
sion is performed to combine possible complementary information, and is given
by LLK f used = αLLK f eature1 +(1− α)LLK f eature2, where LLK f eature1 and LLK f eature2

is log-likelihood score of feature1 and feature2, respectively. The fusion parameter
(α) lies between 0 < α < 1 is tuned as weight factor.

7.3.3 Experimental Results

The experiments were performed on ASVspoof 2017 V2.0 challenge [5] and Re-
MASC database [8]. For ReMASC database, the experiments are divided into
three tasks, i.e., training done on: RedDots Pretrained database, Environment-
Independent, and Environment-Dependent. The details of three different task are
discussed below:

7.3.3.1 Task 1: RedDots Pretrained

In this experimental Section, we train the model using RedDots Replayed (ASVspoof
2017 version 2 challenge) dataset (i.e., training + development set), and tested on
the quick evaluation set of ReMASC dataset. This experiment is to evaluate the
performance of mismatch training and testing condition, as the training was done
using the data recorded in different acoustic environments. The results using dif-
ferent feature sets are shown in Table 7.9 for all the four acoustic environments. It
can be observed that the performance degrades resulting in high Equal Error Rate
(EER) around 50 % for all the environments, which is not a good case for ASV
system. This high error is due to mismatch in training and testing database.

Table 7.9: % EER on RedDots Pretrained Conditions. After [20]

Feature Set
EER

Env_A Env_B Env_C Env_D
CQCC 49.41 45.36 38.11 45.81
MFCC 47.65 28.95 42.36 33.87
TECC 47.05 37.67 36.64 43.28

TECC_sm 46.09 40.03 38.36 43.13
TECC_sm indicates TECC smooth
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7.3.3.2 Task 2: Environment-Independent

In this Section, the experiments are performed on environment-independent con-
dition on ReMASC database. In particular, the performance is evaluated, when
the training models were developed on a particular set of environments and tested
on unseen target environment. Specifically, the system models were developed
using data of three environments and tested on the target environment. The re-
sults for different feature sets are shown in Table 7.10 for all the four acoustic
environments. It can be observed that the performance is better than the RedDots
Pretrained model (except Env-D). However, the results are still not satisfactory,
in particular, for complex noise (Env-C & D), and when the signals are recorded
at different positions (Env-B). This concludes that the acoustic environment, and
recording do have high impact during training and testing of data samples.

Table 7.10: EERs on Environment-Independent Conditions. After [20]

Feature Set
EER

Env_A Env_B Env_C Env_D
CQCC 39.70 33.82 33.16 49.64
MFCC 39.55 37.22 45.60 50.00
TECC 47.59 34.43 36.48 50.00

TECC_sm 48.99 37.54 41.48 47.81

7.3.3.3 Task 3: Environment-Dependent

In this set of experiments, the performance evaluation was done on the environment-
dependent data. Specifically, the training models were generated using all the
acoustic environment from the core dataset and tested on the quick evaluation
set of ReMASC database. The training dataset were randomly selected and were
speaker-independent (i.e., speakers selected for training data were not present
during testing). We observe improvement compared with the RedDots Pre-trained
and the environment-independent model. This indicates that the information
of data present during training strengthens the performance even for unknown
speaker. The results with all the feature sets for environment-dependent task are
shown in Table 7.11. In addition, we also performed score-level fusion of CQCC
and MFCC features with smooth TECC feature set, that further improved the per-
formance of SSD task compared to its individual performance.

Table 7.12 shows the average EER over all the environments and compared
smooth TECC feature sets results with CQCC and MFCC feature set. It can be
observed from the Table 7.12 the % EER obtained with smooth TECC feature set
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Table 7.11: % EERs on Environment-Dependent Conditions. After [20]

Feature Set
% EER

Env_A Env_B Env_C Env_D
A:CQCC 19.7 10.31 9.94 9.62
B: MFCC 30.74 5.63 27.02 8.81

TECC 20.27 6.85 11.24 9.43
C: TECC_sm 18.76 8.65 10.43 10.09

A+C 16.57 7.84 8.10 8.60
B+C 18.71 5.63 10.43 8.17

performed better (11.98 % EER) compared to the other feature sets. The score-
level fusion of CQCC and smooth TECC further reduce the EER to 10.27 %. Fig.
7.9 shows the EER of CQCC, MFCC, and TECC feature set on ASVspoof 2017
challenge version 2.0 and ReMASC database. It can be observed from the plot that
EERs have large gap for CQCC and MFCC feature set as the database is changed.
With TECC feature set, less difference in EER is obtained and hence, it is more
generalized feature set compared to the other approaches.

Table 7.12: Overall Average EER for All Tasks and Tested on Quick Evaluation Dataset.
After [20]

Condition
Average EER(%)

CQCC MFCC TECC_sm A+C B+C
Task 1 44.67 38.20 41.16 - -
Task 2 39.08 43.09 43.95 - -
Task 3 12.41 18.05 11.98 10.27 10.73

In this Section, we studied the importance of smooth Teager energy profiles
for replay SSD task. In particular, the small amplitude variations for replay sig-
nals recorded in different acoustic environments helps to discriminate between
natural and replay signals, which is not present in natural signal. The Teager en-
ergy have the noise suppression capability and this difference is clearly visible in
replay signal because the replay signal carries noise along with clean speech. The
performance degrades when the training and testing samples are not from the
same acoustic background. In addition, it also fails when the testing is done for
environment-independent condition. The smooth TECC feature set performed
better compared to the baseline and MFCC features resulting in 11.98 % EER.
Furthermore, reduction in % EER was achieved using the score-level fusion of
baseline and smooth TECC resulting in 17.24 % relative improvement over the
baseline system.
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Figure 7.9: Comparison of CQCC, MFCC, and Smooth TECC on ASVspoof 2017 Chal-
lenge and ReMASC Database. After [20].

7.3.4 Energy Separation Algorithm (ESA)-Based Features

In addition to the above proposed feature set, we also performed the experi-
ments using Energy Separation Algorithm-Instantaneous Amplitude Cepstral Co-
efficients (ESA-IACC), and Energy Separation Algorithm-Instantaneous Frequency
Cepstral Coefficients (ESA-IFCC) feature extraction process is shown in Fig. 7.10.

Figure 7.10: Block Diagram of ESA-IACC, and ESA-IFCC Feature Sets. After [21, 27].

The input speech signal is passed through the pre-emphasis filter to enhance
the higher frequency regions. Furthermore, the speech signal is passed through
the linearly-spaced Gabor filterbank in order to obtain narrowband filtered sig-
nals in order to estimate the instantaneous Teager energy profile along with ESA
[51, 166, 167, 170]. The ESA provides the corresponding Instantaneous Amplitude
and Instantaneous Frequency (IA-IF) components of a narrowband filtered sig-
nals [190]. These estimated IA and IF components are further processed to obtain
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corresponding speech segments with a window length of 25 ms along with a shift
of 10 ms followed by logarithm operation to compress the data. To obtain a low-
dimensional representation that has compact energy, Discrete Cosine Transform
(DCT) is applied along with Cepstral Mean Variance Normalization (CMVN) to
reduce the channel mismatch/distortion conditions [174]. Finally, retained few
DCT coefficients, i.e., ESA-IACC , and ESA-IFCC appended along with their ∆
and ∆∆ features to obtain higher-dimensional feature vector. Please note that
the experiments performed in Section 7.3.5 for ESA-IFCC feature set are extracted
without applying pre-and-post-processing, as this process gave better results than
the other feature extraction parameters used.

Figure 7.11: Spectral Energy Densities Obtained from the Traditional STFT, and Teager
Energy-Based Approach for Different Acoustic Environments. Panel I-II: Outdoor, Panel
III-IV: Indoor 1, Panel V-VI: Indoor 2, Panel VII-VIII: Vehicle. (a) Time-Domain Signal in
Different Acoustic Environment Along with Their Corresponding, (b) Traditional STFT,
and (c) Teager Energy-Based Approach. After [21].

In addition, we also observed and compared the spectral energy densities of
traditional Short-Time Fourier Transform (STFT) spectrogram with the spectral
energy obtained from the Teager energy-based approach as shown in Fig. 7.11.
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The comparison is shown for all the acoustic environments from the ReMASC
database, in particular, outdoor (Panel I-II), indoor 1 (Panel III-IV), indoor 2 (Panel
V-VI), and vehicle (Panel VII-VIII). For outdoor environment, it can be observed
from the Fig. 7.11 that the spectral energy is not preserved for both Panel I and
Panel II. In addition, for high frequency regions, we observe high energy. How-
ever, with Teager energy-based approach, we preserve the mid and higher fre-
quency information compared to the traditional spectrogram. The spoof signal of
corresponding outdoor environment shows much more distortion in spectral en-
ergies compared to its natural counterpart. As the recording is done in the open
outdoor area, it is indeed possible that the signal carries different types of noise
along with it and hence, the performance degrades for outdoor environment. Sim-
ilarly, we observe the spectral energy differences for other acoustic environment.
In particular, for indoor 2 and vehicle acoustic environments, it can be clearly ob-
served that the spectral energy obtained from the Teager energy-based approach
preserves much more information about the formants and harmonics compared
to the traditional spectrogram and hence, the performance for these environment
is better compared to the other environments (discussed in Section 7.3.5).

7.3.5 Experimental Results

This Section describes the experiments performed on the Task 3, i.e., environment-
dependent. We observed the Power Spectral Density (PSD) obtained after apply-
ing TEO on the small speech segment for the natural, and its corresponding spoof
speech signal as shown in Fig. 7.12. The PSD for different environment, namely,
(a) outdoor, (b) indoor 1, (c) indoor 2, and (d) vehicle shows the difference from its
natural counterpart. In particular, we observe differences in the PSD plots for the
indoor 2 and vehicle environments, which indeed help us to detect the spoof sig-
nal (which is also observed from our experimental results discussed in the next
sub-Section). Furthermore, the performance for ESA-IACC, and ESA-IFCC fea-
ture sets is enhanced in the next sub-Section.

7.3.5.1 Results on ESA-IACC Feature Set

The experiments are performed by varying the number of subband filters in a
Gabor filterbank from 40 to 100 for all the acoustic environments (as shown in
Fig. 7.13). It can be observed from Fig. 7.13 that the effect of number of subband
filters indeed degrades the performance for a particular environment, and at the
same time, it performs better for the other environments. In particular, for Env
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Figure 7.12: PSD of Natural (Blue Color) Speech Segment, and its Corresponding Replay
(Red Color) Speech Recorded in (a) Outdoor, (b) Indoor 1, (c) Indoor 2, and (d) Vehicle
Acoustic Environment. After [21].

B (indoor 1), it can be observed that we get high EER for all the number of sub-
band filters. The possible reason behind it could be the environmental conditions,
which the replay spoof speech is recorded. Since indoor 1 environment is quiet
study room, the replay spoof signal will be similar to the natural speech result-
ing in less discrimination in replay speech from its natural counterpart, thereby
degradation in the SSD performance. On the other hand, the spoof signal when
recorded in other environments, i.e., indoor 2 and vehicle are able to detect as
these environments are having noise added in the replay signals that is used as
the discrimination feature from the natural speech because the Teager energy-
based features have noise suppression capability, and thus, its features are robust
to noise sensitivity.

7.3.5.2 Results on ESA-IFCC Feature Set

Similar to experiments in Section 7.3.5.1, we performed the experiments for ESA-
IFCC feature set with varying the number of subband filters from 40 to 100. It can
be observed from Fig. 7.14 that for acoustic environment indoor 2 and vehicle, the
EERs are low compared to the other two acoustic environments, namely, outdoor
and indoor 1. With increasing the number of subband filters in a filterbank, the
EER decreases and hence, it proves that the narrowband filtering for extracting
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Figure 7.13: Results in EER (%) for ESA-IACC Features Sets with Varying the Number of
Subband Filters for Different Acoustic Environments. After [21].

TEO-based features are essential for detecting spoof speech signals, which also
further depends on the acoustic environment (i.e., noisy vs. clean environment).

Figure 7.14: Results in EER (%) for ESA-IFCC features sets with varying the number of
subband filters for different acoustic environments. After [21].

7.3.5.3 Results with Score-Level Fusion

We further compared results for our proposed feature sets with the baseline sys-
tem along with LFCC feature sets in Table 7.13. It can be observed that the ESA-
IACC and ESA-IFCC feature set performed better for Env A, Env C, and Env D.
However, for Env B, the ESA-based feature sets fail to detect the replay speech sig-
nal. When compared to CQCC and LFCC feature sets, we obtained much lower
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EERs for all the environments apart from indoor 1. Furthermore, we performed
the score-level fusion of ESA-IACC and ESA-IFCC feature sets to further improve
the performance of the replay SSD task. The score-level fusion indeed helped to
get the lower EER than the individual EERs for both the feature sets. For outdoor,
indoor 2, and vehicle environment, the score-level fusion gave EER of 11.92 %,
2.07 %, and 5.18 %. It represents that the score-level fusion of both the feature sets
capture complementary information that helped us to improve the replay SSD
performance than the individual feature sets alone.

Table 7.13: Comparison (in % EER) with Other Feature Sets Along with Score-Level
Fusion Results (in % EER). After [21]

Feature sets % EER
Env A Env B Env C Env D

CQCC 15.26 17.41 6.15 6.59
LFCC 22.44 24.41 15.97 18.24

ESA-IFCC 19.36 29.11 4.06 6.22
ESA-IACC 12.59 23.84 9.81 9.11

ESA-IFCC+ESA-IACC 11.92 21.00 2.07 5.18

In this Section, we studied the importance of different acoustic environments
for replay attack detection on Voice Assistants (VAs). In particular, we found that
the noisy and clean environment indeed affect the performance to detect the re-
play speech signal from its natural counterparts. We used Energy Separation Al-
gorithm (ESA)-based Instantaneous Amplitude and Instantaneous Frequency fea-
ture sets to detect the replay signals. The speech signal when recorded in noisy
environment has distortions, however, using the ESA-IFCC feature sets; this type
of replay signals are classified from it’s natural counterpart. On the other hand,
when the signals are recorded in the clean environment, they are difficult to detect
as they might be similar to the natural signal and hence, very less differences in
them are observed. Thus, for the clean environment, our proposed feature sets
fails to classify the replay signal and hence, more detailed analysis and study is
required to detect the replay signal in such scenarios, which forms our immediate
future work.

7.4 Whisper Speech Detection (WSD)

Whisper speech detection has become a topic of research interest. The differ-
ences in whispered vs. normally-phonated speech are primarily due to the noisy
structure, lower Signal-to-Noise-ratio (SNR), absence of glottal vibrations, shift in
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formant structures, etc. [236]. In Automatic Speaker Recognition (ASR) systems,
the training and testing are performed on normal and corresponding whisper,
i.e., mismatch speech dataset and hence, the performance degrades. Several ap-
proaches have been proposed to attenuate the mismatch through feature transfor-
mations [237], model adaptation [238–241], or using alternative sensing technolo-
gies, such as throat microphone [242].

Whispered Speech Recognition (WSR) is an active field of research which is
obstructed by the lack of systematically, and suitable collected corpora. There
are few publicly available databases for parallel normal and corresponding whis-
pered speech collected for different languages, such as English [243, 244], Man-
darin language [245], Japanese [238], and Serbian language. However, the vocab-
ulary of these database are small or medium-sized and only few of them have the
corresponding transcription and are phonetically-balanced. One of the first exper-
iments on automatic whisper recognition is reported in [238]. The key goal was
to develop a speech recognizer which is specifically capable of handling whisper
on cell phones in noisy conditions. Using MFCC-HMM system, they analyzed
different mismatched train/test scenarios by taking three speech modes, namely,
whisper, low-voice speech, and neutral speech. Severe degradation in ASR was
reflected due to use of mismatch data. However, there was outstanding result
when ASR model is trained on whisper (whisper speech model), and also it was
working well enough for testing with either type of speech. Next, it was also ob-
served that covering the mouth and the cellphone with a hand can increase of
SNR in noisy environment to a certain extent.

Unlike normal speech, whisper speech does not contain fundamental frequency
(Fo) due to the absence of voice harmonic distortion, and formant shifting in the
lower frequency regions [238, 246]. In [246, 247], it has been observed that normal
and whisper speeches have different formant characteristics, where vowels of Ser-
bian and English language were used. It was observed that the formant frequency
F1 for whisper speech is greater than that of normal speech for both female and
male speakers. In addition, F2, F3, and F4 shifts depends on the type of vowels,
and they do not exhibit consistent trends [248]. This characteristics can be used
as a main attribute to classify the normal vs. whisper speech. The same study
explored that formant bandwidths for whisper vowels has a general expansion
than that of vowels.

To improve the performance of ASR system, recently various approaches have
been proposed for the conversion of an whispered speech to normal speech with
the aim of improving speech intelligibility, and naturalness [249–254]. As the use
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of voice assistants (VAs), and Text-to-Speech (TTS) systems is becoming more
common and hence, the need for the speaker to interact with such systems pri-
vately is also increasing simultaneously. In such realistic scenarios, a user may
wish to whisper to the device, and would also expect a response in a whispered
voice, as is the case with the recently released version of Amazon Alexa [255].
To further improve robustness of these ASR systems, some pre-processing can
be performed by developing clusters of normal, and whisper speech so that they
can be identified beforehand, and further processing can be done accordingly, in
particular, ASR of whispered speech [256]. Due to this reason, the classification of
these two types of speeches becomes an important part of ASR systems, especially
in the context of commercial success of IPA or VAs.

7.4.1 Acoustic Features Used

7.4.1.1 LFCC vs. MFCC

While extracting MFCC or LFCC feature sets, the speech signal is windowed and
DFT is computed for each frame to get the Short-Time Fourier Transform (STFT),
X(n, ωk). The energy in STFT is weighted by each Mel scale filter frequency re-
sponse, Vl(ω), to get the lth energy coefficient, i.e.,

Emel(n, l) =
1
Al

Ul

∑
k=Ll

|Vl(ωk)X(n, ωk)|2. (7.6)

The real cepstrum Cmel associated with the Emel(n, l) is referred to as MFCC:

Cmel[n, m] =
1
R

R−1

∑
l=0

log(Emel(n, l))cos(
2π

R
lm), (7.7)

where R is the number of subband filters. The transformation in eq. (7.7) is also
known as Discrete Cosine Transform (DCT). In this Chapter, we considered MFCC
as the baseline (state-of-the-art) feature set to compare the result [175, 257]. Both
MFCC, and LFCC use similar algorithm for feature extraction except the type of
frequency response used in order to obtain the weighted sum from the spectrum.
In general, Mel scale gives more information (resolution) to the lower frequency
regions, and less information to the higher frequency regions [258]. This arrange-
ment suggests that the MFCC fails to extract effective spectral characteristics at the
high frequency regions. Both MFCC and LFCC feature sets use triangular-shaped
filters in order to obtain the subband filtered components. This means that the
features which can retain both low frequency, and high frequency characteristics
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could be effective for classification of whisper vs. normal speech.

7.4.1.2 TECC

So far, nonlinear TEO-based features introduced very promising results in ASR of
quiet and unvoiced murmured speech as well in speech classification under stress
and noisy conditions [207, 259]. On the other side, the characteristics of whis-
pered speech might be considered to have similarities with non-audible murmur,
noise-corrupted speech and speech under stress. Due to these similarities, it was
expected that the TECC could be good descriptors of whispered speech.

The basics of TECC feature extraction process is similar to the MFCC, however,
it is having one major difference in terms of estimating the energy. For TECC fea-
ture set, the nonlinear TEO is employed that estimates the instantaneous Teager
energy instead of standard energy (Squared Energy Operator (SEO) that employ
L2 norm of a signal) [260]. Other details of TEO and TECC feature sets are given
in Chapter 3.

The nonlinear modeling mechanism of the speech production is the main mo-
tivation behind using TEO instead of standard SEO is [52]. In traditional linear
acoustic theory, it is assumed that the airflow from the vocal tract system prop-
agates as a plane wave. However, this assumption may not hold for real speech
signal as it is produced due to vortex flow interactions, which are nonlinear in
nature [261]. Since, the whispered speech is nonlinear and contains extreme tur-
bulent airflow, TEO provides an efficient way for signal processing due to its in-
herent capability to capture properties of airflow pattern. The TEO incorporates
both amplitude and frequency information and computes the ’true’ total source
energy of a resonance signal [207] along with improving time-frequency compo-
nents of rapid energy changes [260]. To obtain a low-dimensional representation
that has compact energy, Discrete Cosine Transform (DCT) is applied along with
Cepstral Mean Normalization (CMN) (also known as Cepstral Mean Subtraction
(CMS)) in order to reduce the channel mismatch/distortion conditions [174]. Fi-
nally, retained few DCT coefficients to get Teager Energy Cepstral Coefficients
(TECC) which are appended along with their ∆ and ∆∆ features to obtain higher-
dimensional feature vector (for more details, please refer Chapter 3) [11].

In addition, we compared the spectral energy densities (as shown in Fig. 7.15)
obtained from the traditional Short-Time Fourier Transform (STFT), and Teager
energy-based approach for the both corpora, namely, wTIMIT and CHAINS. In
particular, Panel I and Panel II in Fig. 7.15 shows the natural and correspond-
ing whisper speech for wTIMIT corpus and Panel III and Panel IV shows for
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Figure 7.15: Panel I and Panel II are the Natural and Corresponding Whisper Speech
from the wTIMIT Corpus, Panel III and Panel IV are the Natural and Corresponding
Whisper Speech from the CHAINS Corpus. (a) Time-Domain Speech Signal, (b) Tra-
ditional STFT Spectrogram, and (c) Spectral Energy Density Obtained from Teager
Energy-Based Approach. The Discriminative Regions are Indicated by Circle and Box
for Corresponding wTIMIT and CHAINS Corpora. After [22].

natural and whisper speech for CHAINS corpus. The spectral energies for the
time-domain signal for traditional STFT and Teager energy-based approach are
shown in Fig. 7.15 (b) and Fig. 7.15 (c), respectively. It can be observed that the
energy density obtained from the Teager energy-based approach preserves much
more information in low as well as in high frequency regions as compared to the
traditional spectrogram. In particular, the formants are well preserved for the
natural speech (refer Panel I (b)) which are not visible for the traditional spectro-
gram for wTIMIT corpus. In case of CHAINS corpus, it is observed that many
of the higher frequency information are not preserved when estimated from the
traditional spectrogram whereas the Teager energy-based approach do carry the
information in the higher frequency regions. This spectral energy obtained from
the Teager energy-based method indeed help to classify the whisper speech from
its natural counterpart.

7.4.2 Experimental Setup

7.4.2.1 Corpora Used

We performed the experiments on two corpora, namely, wTIMIT and CHAINS.
The wTIMIT corpus was collected in two phases, the first phase was recorded in
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Singapore, and the second phase was recorded in the USA [239]. In this chapter,
we used only data recorded in USA. The sampling frequency of data is set as 44.1
kHz, and all the recordings were done in clean acoustic environment. For training,
we have 9219 and 11325 for normal and whisper utterances whereas 412 whisper
utterances, and 727 normal utterances are used for testing. The CHAINS corpus is
designed to characterize speakers as individuals. The corpus contains the record-
ings of 36 speakers (20 male and 16 female) in two different sessions with a time
separation of about two months. For training, we considered 1036 normal and
whisper utterances, and 296 normal and whisper utterances for testing.

7.4.2.2 Feature Extraction Parameters

All the utterances during feature extraction process were first resampled to 16
kHz from 44.1 kHz. This is done primarily so as to reduce the number of samples
thereby saving computational cost. The process of frame-blocking is carried out
by taking a window length of 20 ms with an overlap of 10 ms. We have considered
39-D feature vector extracted from 40 number of subband filters in a filterbank for
MFCC, LFCC, and TECC feature set. This is followed by taking logarithm, and
then DCT to obtain static coefficients appending along with ∆ and ∆∆ in order to
obtain higher-dimensional feature vector.

7.4.2.3 Pattern Classifier

In this study, Gaussian Mixture Model (GMM) is used as a two-class pattern clas-
sifier, where the two classes corresponds to the speech samples of the normal vs.
whispered speech. The individual GMM is trained for each class using LFCC,
MFCC, and TECC feature sets. The Expectation Maximization (EM) algorithm is
used to find parameters of each GMM through an iterative optimization proce-
dure. The log-likelihood (llk) score s(X) for each test sample is estimated using
the trained GMM as in:

s(X) = llk(X|λw)− llk(X|λn), (7.8)

where λw, and λn represents the GMM trained on whisper, and normal speech
samples, respectively, and X represents a new testing sample. The scores obtained
helps to classify whether the unknown sample belongs to the natural or whisper.
The robustness and feature discrimination power of our proposed feature set is
also evaluated using Matthew Correlation Coefficient (MCC), F-measure, and J-
statistics. Furthermore, we used a standard evaluation metric, i.e., Equal Error
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Rate (EER) which is indicated on the Detection Error Trade-off (DET) curve for
the whisper speech detection system [217]. The DET curve is used to study the
performance of the SSD system. When operating point in the DET curve of False
Acceptance Rate (FAR), and False Rejection Rate (FRR) or miss probability is equal,
then it is referred to as EER.

7.4.3 Experimental Results

The experiments are performed on wTIMIT and CHAINS corpus with TECC fea-
ture set are shown in Table 7.14. We observed the effect of two different frequency
scales, namely, linear and Mel scale in the Gabor filterbank in order to obtain the
subband filtered signals according to the center frequencies. When the features
are extracted using linear frequency scale, the accuracy of the whisper speech de-
tection was not high as when the features were extracted using Mel frequency
scale for both the corpora. Along with observing the effect of frequency scale,
we also observed the effect of applying the CMN technique for both the corpora.
It can be observed from the Table 7.14 that the accuracy obtained from the Mel
frequency scale along with CMN technique gave better accuracy of 92.22 % on
wTIMIT, and 95.61 % on CHAINS corpus, respectively.

Table 7.14: Accuracy (in %) for WSD using TECC Feature Set on wTIMIT and CHAINS
Corpora. After [22]

Corpus CMN Frequency Scale Accuracy (%)

wTIMIT

× Linear 84.65
X Linear 90.93
× Mel 82.78
X Mel 92.22

CHAINS
X Linear 86.88
X Mel 95.61

In addition, we also observe the feature discrimination power using F mea-
sure, J-statistic, and MCC as shown in Table 7.15. It can be observed that the
TECC feature set has high values for all the measures as compared to the other
feature sets and thus, it is more discriminative to classify natural vs. whisper
speech signals for both the corpora.

Furthermore, the performance evaluation metric is computed in terms of %
EER for all the feature sets. It can be observed from the Table 7.16 that we obtain
lower EER for the TECC feature set compared to the other MFCC and LFCC fea-
ture sets. For wTIMIT corpus, the low EER with TECC feature set is 6.69 % and
for CHAINS corpus, it is 4.46 %. The performance evaluation is also shown in
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Table 7.15: Analysis of Feature Discrimination Power using F-measure, J-statistic, and
MCC. After [22]

Corpus Feature Sets MCC F-measure J-measure

wTIMIT
LFCC 0.73 0.89 0.75
MFCC 0.61 0.83 0.63
TECC 0.83 0.93 0.86

CHAINS
LFCC 0.67 0.83 0.67
MFCC 0.43 0.64 0.44
TECC 0.92 0.95 0.91

Table 7.16: Results in Terms of EER in (%) and Accuracy in (%). After [22]

Feature Sets
EER (in %) Accuracy (in %)

wTIMIT CHAINS wTIMIT CHAINS
LFCC 12.59 16.05 86.82 83.97
MFCC 17.37 5.97 80.12 94.06
TECC 6.69 4.46 92.22 95.61

Fig. 7.16 by the DET curves for MFCC, LFCC, and TECC feature sets. It can be
observed that the miss probability of MFCC, and LFCC is very high for the given
FAR, which is not a good case for whisper speech detection (WSD) system. There
is a significant decrease in miss probability for TECC feature set for wTIMIT as
shown in Figure 7.16(a). We observe similar pattern of results on CHAINS cor-
pus, as shown in Figure 7.16(b). However, the TECC and MFCC feature sets have
low miss probability, and LFCC feature set has very high miss probability.

Figure 7.16: DET Curve for TECC, MFCC and, LFCC Feature Set for (a) wTIMIT, and
(b) CHAINS Corpus. Arrow Indicates Relatively Best Performance of TECC Feature Set.
After [22].

We also analyzed the trade-off between latency period vs. accuracy (as shown
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in Fig. 7.17) for (a) wTIMIT, and (b) CHAINS corpus. Here, latency period refers
to the duration between the speech utterance produced to the system, and re-
sponse from the system in terms % of accuracy. In the other words, if a system
gives better accuracy for lower latency periods, then it means that this system
would not be waiting for the entire utterance to judge whether the utterance is
natural or whisper. Instead, lower levels of latency with higher accuracy would
ensure that faster classification of natural vs. whisper utterances. In this graph,
we considered frame-level accuracy. It can be clearly observed from the graph
that the accuracy of TECC feature set increases continuously as the latency is in-
creased. This behavior is expected because if the number of frames taking part
in accuracy calculation increases, then the average value of accuracy tend to in-
crease.

Figure 7.17: Accuracy (in % ) vs. Latency Period for TECC, MFCC, and LFCC Feature Set
for (a) wTIMIT, and (b) CHAINS Corpus. After [22].

In this Section, we explored TECC, MFCC, and LFCC feature set for normal
vs. whisper speech classification. As whispered speech contains nonlinear and
extremely turbulent airflow, the feature representation should incorporates both
amplitude and frequency information of the signal. Hence, estimating the “true"
total energy of the signal instead of estimating only kinetic energy into account
of the signal. By listening to the speech samples of natural and whisper speech,
it has been observed that the initial and the end portion of the utterance con-
sists of silence regions. These silence regions produces ambiguity to the classi-
fication architecture. We tried to eliminate these regions. However, it is not the
straightforward to remove such silent regions for the whispered signal because
the amplitude of acoustic noise is much higher than the amplitude of the whis-
per component. Hence, noise cannot be directly removed from the whispered
speech. Thus, developing efficient Voice Activity Detection (VAD) algorithms in

168



whispered speech is also a potential area of research. With this development, we
can improve the frame-level classification accuracy for the whispered speech and
also higher accuracy at low latency period.

7.5 Acoustic Scene Classification (ASC)

Acoustic Scene Classification (ASC) is a challenging research problem which is
seen as a subset of Computational Auditory Scene Analysis (CASA) [262]. It is
the task of classifying acoustical scenes and events from the surrounding noise,
silence, etc. where the environment can be a busy street, quite park, etc. Sounds
carry information about our everyday environment, and events that happens around
us. With recent advancements in technology especially in the field of machine
learning, developing methods to capture this information can be invaluable to
number of applications, such as searching for multimedia-based on audio con-
tent [263], designing automated cars, robots that depends on the context [264],
intelligent monitoring systems to recognize activities using acoustic information
and many more. It may look trivial for humans classifying an acoustical scene af-
ter hearing the audio sample. However, it is challenging to develop artificial sys-
tems that classify the acoustical scenes especially the scenes with sound sources
in real-life environments, where often multiple sounds are present.

The schematic representation of Acoustic Scene Classification (ASC) task is
shown in Fig. 7.18. In ASC task, audio signals recorded in different acoustical en-
vironments are used for the training of models. This model training uses the front-
end features which can be in cepstral-domain or the log-energy coefficients that
are obtained from the filterbank energies. Depending on the features, the models
are prepared on the training data with the traditional or neural network-based
classifiers. For the given test signal, the features are extracted and depending on
the probabilities obtained from the trained models, the test signal is classified into
corresponding acoustical scene. The first DCASE challenge was organized in 2013
to emphasize the problem of developing machines to perform ASC and to provide
a publicly available database containing non-speech and non-music audio sam-
ples. This was followed by three more challenges in 2016, 2017, and 2018, where
several researchers proposed various models using different classifiers, such as
Gaussian Mixture Models (GMMs), Support Vector Machines (SVM), tree-bagger
classifiers along with audio features. Convolutional Neural Networks (CNNs)
proved to be successful for diverse audio-related tasks, such as speech recogni-
tion, environmental sound classification, robust audio event recognition and thus,
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Figure 7.18: Schematic representation of proposed Acoustic Scene Classification (ASC)
system. After [23].

motivated researchers to use these networks for acoustical scene classification as
well [265].

7.5.1 Front-end Features

In this Section, we discuss the front-end features used for ASC task. The organiz-
ers of the DCASE 2018 challenge provided the baseline system that includes the
Mel filterbank energies along with CNN classifier. We are comparing the Teager
energy-based log-energy coefficients with the baseline system. We choose linear
scale over the Mel scale as our experimental results and the analysis of spectral
energy obtained from the Teager energy shows its better performance compared
to the Mel scale.

Fig. 7.19 shows the analysis of (a) linear, and (b) Mel frequency scale used in
Gabor filterbank. With linear frequency scale, it can be observed that the subband
filters are equally distributed across the frequency range. Whereas, with Mel scale,
initial filters are compressed at the lower frequencies and has expanded band-
width with a few number of subband filters in higher frequency regions. This can
be also observed from the placing of center frequencies for linear and Mel scale,
where the linear scale has the center frequency varying linearly from 0 to 8000 Hz.
On the other hand, for Mel scale, approximately 20 to 25 subband filters are cov-
ered within 2000 Hz frequency while the remaining 20 subband filters are placed
between the frequency range of 2000-4000 Hz. The spectral energy obtained from
the linear scale with Teager energy-based approach shows the differences in lower
as well as higher frequency regions compared to the Mel scale as shown in the last
panel of Fig. 7.19.
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Figure 7.19: Filterbank Analysis of Acoustical Scene: (a) Linear Scale vs. (b) Mel Scale.
Panel I: Filterbank Response, Panel II: Frequency Scale, and Panel III: Filterbank Ener-
gies.

7.5.2 Experimental Setup

7.5.2.1 Database

DCASE 2018 challenge provides the audio signal data for five different tasks in-
cluding acoustic sound classification, audio tagging, bird audio detection, sound
event detection in domestic environments using weakly-labeled data, and mon-
itoring domestic activities based on multi-channel acoustics. In particular, for
Task-1 (ASC), based on the data preparation, there are three different sub-challenges.
For Task-1A, the devices used for recording of development and evaluation data
are the same, while for the other two evaluations, data can be recorded using
other devices which are not used in development set. In this chapter, we focused
on Task-1A sub-challenge, i.e., ASC with pre-defined classes.

The DCASE 2018 challenge focuses on detection and classification of acoustic
scenes and events, in which there are total of 5 sub-challenges. In this chapter,
we are focusing on acoustic sound classification (Task-1). Based on the recording
devices for development and evaluation sets, the Task-1 has three sub-challenges.
The Task-1A challenge uses the same recording devices for both development and
evaluation sets. The newly recorded TUT Urban Acoustic Scenes 2018 dataset is
the largest freely available dataset that consists of ten different acoustic scenes,
such as airport, park, metro station, etc. This dataset consists of 24 hours of high
quality audio that was recorded in six European cities making it relatively much
harder than the previous datasets due to its high acoustical variability. It is the
first dataset containing data recorded in multiple countries, in addition to the
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Table 7.17: Distribution of TUT Urban Acoustic Scenes 2018 Development Data into
Train and Test Subset. After [23]

Scene Label Development Set Train Subset Test Subset
Airport 864 599 265

Bus 864 622 242
Metro 864 603 261

Metro station 864 605 259
Park 864 622 242

Public square 864 648 216
Shopping mall 864 585 279

Street, pedestrian 864 617 247
Street, traffic 864 618 246

Tram 864 603 261
Total 8640 6122 2518

data recorded with mobile devices. The total development set consists of 8640
segments of 10 seconds audio signal, i.e., 864 segments for each acoustic scene.
The development set is further sub-divided into two parts, namely, train and test
subsets. The baseline system includes convolutional neural network (CNN) with
log-Mel filterbank energies as features, and the recommended cross-validation
setup for determining the performance on the sub-tasks.

7.5.2.2 Convolutional Neural Network (CNN)

The challenge organizers provided a baseline system, where they used CNN as
the classifier with Mel filterbank energies. This baseline CNN architecture is based
on one of the top-ranked submission from DCASE 2016 [266], where changes are
made to the regularizer used and the number of layers in the network. The base-
line architecture consists of 2 convolutional layers, and 1 Fully-Connected (FC)
layer. The input layer is of size 40 × 500, where 40 represents the number of
subbands, and 500 denotes the number of frames. The first convolutional layer
consists 32 subband filters, and 7× 7 stride size, followed by batch normalization
with Rectified Linear Unit (ReLU) as the activation function. The output obtained
is passed through 2-D max-pool layer with stride size chosen as 5× 5. The second
CNN layer performs almost the same operation with changes made to the num-
ber of subband filters and pool size as 64, 4× 100, respectively. Later, the output is
flattened to give input to the dense layer with 100 neurons, and ReLU activation.
Finally, in order to obtain the probabilities, softmax is applied on the dense layer.

In this Chapter, for ASC task, we trained the filterbank Teager energies on the
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Figure 7.20: Architecture of Convolutional Neural Network (CNN) Used for ASC Task.
After [23].

CNN classifier as shown in Fig. 7.20. The CNN architecture used consists of a
series of Convolutional Block (ConvBlock), and pooling layers followed by FC
layers. A ConvBlock is a combination of two convolutional layers with 7× 7 ker-
nel size, and ReLU activation. A total of three ConvBlock with 32, 64, and 128
subband filters, respectively, are used in the architecture. The max-pooling layers
with 2× 2 kernel, and stride size are used in between the ConvBlocks in order to
capture the important discriminative information. After the third ConvBlock, a
global average pooling layer is used to pool the data across the filter maps. On
the pooled data, two FC layers are used with 256 and 100 neurons, respectively.
Finally, an output softmax layer with 10 neurons indicating the acoustical scenes
is used to classify the input data. The batch normalization and dropout layers
are used as the regularization parameters in the model. Batch normalization lay-
ers are used in between the convolutional layer, and its activation functions. The
batch normalization across the filter maps helps to improve the generalization of
the network [267]. A dropout of 0.3 was used after every pooling and FC lay-
ers. Adam optimizer with 0.001 learning rate is used to train the network with
batch size of 16 for 200 epochs. The epoch with the best accuracy on test set is
considered.

7.5.3 Experimental Results

The performance of the Teager energy-based filterbank features is shown in Table
7.18 in terms of accuracy (in %) on the test set. In particular, we compare the per-
formance of baseline and Teager filterbank energies obtained with linear and Mel
frequency scales in Gabor filterbank. It can be observed that the accuracy obtained
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from the linear frequency scale gave better results compared to the Mel frequency
scale (except for audio signals recorded in the street acoustic scene). The baseline

Table 7.18: Individual Scene Accuracy (%) on Test Set for Acoustic Scene Classification,
Subtask A in DCASE 2018 Challenge. After [23].

Scene Label Baseline
Teager-Energy based Subband Features
Mel Scale Linear Scale

Airport 72.9 49.4 52.5
Bus 62.9 51.2 57.4

Metro 51.2 49.4 64.8
Metro Station 55.4 71.4 74.1

Park 79.1 78.5 83.9
Public square 40.4 44.0 54.6

Shopping mall 49.6 77.1 77.1
Street, pedestrian 50.0 61.5 51.4

Street, traffic 80.5 85.0 83.3
Tram 55.1 72.0 73.9

Average 59.7 64.0 67.3

system gave an average accuracy of 59.7 %, with classwise results varying from
40.4 % to 80.5 %. Teager energy-based subband features that are obtained from
Mel and linear scales gave 64 % and 67.3 %, respectively, have the classwise re-
sults from 44 % to 85 % (for Mel scale) and 51.4 % to 83.9 % (for linear scale). For
individual acoustical scene classification, we have shown the confusion matrices
in Fig. 7.21 for the proposed features with linear frequency scale used in Gabor
filterbank. It can be observed from confusion matrix that with linear frequency
scale, we obtained the better performance compared to the Mel frequency scale.
For the street pedestrian scene, the Mel frequency scale performed better with less
ambiguity than with linear scale. However, for rest of the acoustical scenes, lin-
ear frequency scale gave better performance. Comparing the system performance
with linear scale, for most of the similar scenes, it gave same performance, such
as for park and street traffic approximately 83 % accuracy and metro station and
tram gave 74 % accuracy. The most difficult task is to detect the scenes of airport
and street pedestrian giving lowest performance of 52.5 % and 51.4 %, respec-
tively. This is also observed in terms of confusion matrix (as shown in Fig. 7.21),
where we can observe more ambiguity for airport, metro, and street pedestrian
classes.

In this Section, we proposed Teager energy-based log-filterbank energies for
acoustical scene classification task. We analyzed the differences of the audio sig-
nals when recorded in different acoustical environments, such as airport, bus,
tram, metro, etc. The filterbank Teager energies obtained from the linearly-spaced
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Figure 7.21: Confusion Matrix w.r.t Performance of Teager Energy-Based Subband
Filters with Linear Frequency Scale for Task 1A Performance. After [23].

Gabor filterbank gave high spectral energy density compared to the traditional
and Mel scale filterbank energies. In addition, we also observed that the per-
formance of the similar scenes gave approximately the same accuracy. For the
acoustic scenes, such as airport and street pedestrians performance is low, which
can be observed through the ambiguity in detection.

7.6 Chapter Summary

The application of Teager energy-based feature set on audio classification tasks,
namely, the ASR, VCS, WSD along with ASC task are presented in this Chap-
ter. The experiments on the ASR task shown the improved performance by GTFB
spectral features on near and far-field corpus. Significant reduction in % WER was
achieved using the system combination using MBR decoding of the MFCC and
GTFB-based features. The experiments on the replay SSD task on VAs demon-
strate that it performs better than the baseline system with CQCC feature and
GMM as pattern classifier. In addition, the experiments on the WSD with TECC
feature set performed better compared to MFCC feature set. Finally, the experi-
ments on the ASC show that the proposed Teager energy-based spectral features
performed well compared to the MFCC-based baseline. In the next chapter, we
summarize the entire thesis and present some of the limitations of work presented
in thesis and potential future research directions.
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CHAPTER 8

Summary and Conclusions

In this chapter, a summary of this thesis work is presented along with the limita-
tion of the current work and future research directions.

8.1 Summary of Work Presented in the Thesis

The following is a summary of the research work done in the entire thesis:

• In this thesis work, various signal processing-based feature sets, such as
TECC, ESA-IFCC, ESA-IACC, VTECC, VESA-IFCC, VESA-IACC, and AWFCC
are presented. The feature sets are based on Teager Energy Operator (TEO)
and Energy Separation Algorithm (ESA) using Gabor filterbank to obtain
narrowband filtered signals. Compared to the earlier studies using TEO, we
explored the TEO-based features for the Spoof Speech Detection (SSD) tasks
for ASV and VAs. The feature sets are successfully applied for various other
speech and audio processing applications as well. The motivation behind
using TEO and ESA demodulation feature was as follows:

– TEO is known to capture property of airflow pattern in the vocal tract
system during natural speech production and hence, exploit it for SSD
task.

– The ESA is used to develop narrowband filtered speech signals, which
are modeled using AM-FM signals to account for time-varying ampli-
tude envelope and instantaneous frequencies [57].

– The ESA approach do not require the computationally complex task of
phase unwrapping (as it is required for HT-based approach of analytic
signal generation).

– To estimate the IA and IF components with ESA approach, only five
consecutive samples samples are required.
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– Significance of extracting proposed feature sets with and without inte-
grating the filterbank is investigated.

– The slow and fast-varying temporal modulations obtained at different
time scales have the distortion for the replay speech signal compared
to the natural speech.

– The IF component estimated for the subband filtered signal shows the
damping in the fluctuation for the replay signal around the center (car-
rier) frequency.

– For the same time scale from where the IF fluctuation started having
tilt from its center frequency, sinc-like patterns are observed in replay
signal than its natural counterpart in the voiced regions.

– The spectral energy density obtained from the Teager Energy Operator
(TEO), shows the difference for the natural, and its corresponding re-
play speech signal in all the frequency regions, which is not captured
by the traditional spectrogram.

– Relative significance of applying the CMN (highpass filtering) vs. CMVN
(adaptive gain control) method (which is originally analyzed for robust
speaker recognition task) is analyzed.

• The background studies required to understand the SSD task and applica-
tions were discussed in Chapter 2. The detailed architecture of the TEO and
the mathematical derivation to capture reverberation during replay mech-
anism were presented in Chapter 3. The Teager energy traces obtained are
distinct for different acoustical environments. The features extracted from
the TEO along with Gabor filterbank are applied several standard spoofing
databases in the SSD task. The proposed feature set performed very well
compared to the corresponding baseline systems.

• To further improve the performance of the SSD, we explore ESA-based fea-
ture sets, namely, ESA-IFCC and ESA-IACC in Chapter 4. The experiments
performed on the IA and IF-based feature sets presented using several eval-
uation factors, such as shape of subband filters, frequency scales, and the
number of subband filters. Furthermore, in Chapter 5, we extend the work
using generalized TEO, i.e., by varying the samples of past and future signal
with a constant arbitrary integer know as lag parameter or Dependency Index
(DI). We investigate the advantage of VESA over ESA by varying the DI to
capture the hidden dependencies, and dynamics in the sequence of samples
of speech signal.
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• Furthermore, in Chapter 6, we discussed about the importance of using the
combined information of IA and IF components for replay SSD task. The
IA components estimated from the ESA technique is severely affected by
the noise and multipath interference (due to replay mechanism) this noise is
explored by the IF components. The significance of using IA and IF compo-
nents performed better compared to the baseline system on the ASVspoof
2017 spoofing database.

• After successful application for SSD task for ASV using Teager energy-based
feature sets, we have also applied TEO-based feature sets, for other applica-
tions. To show the capability of proposed feature set, we explore the use of
Teager energy spectral features-based acoustic model for near-field vs. far-
field ASR tasks, where the GTFB feature set was extracted from Mel-spaced
Gabor filterbank. The TEO preserves the amplitude and frequency modula-
tion of a resonant signal, and it improves the time-frequency resolution. The
noise suppression capability of TEO indeed helps for robust ASR task. The
experiments are performed on both LibriSpeech (near-field) and CHiME-3
(far-field) corpus. Significant reduction in % WER was achieved using the
system combination using MBR decoding of MFCC, and GTFB-based fea-
tures. The next application we explore is to develop countermeasures for
replay SSD task for Voice Assistant (VAs) task on the ReMASC corpus. The
proposed features perform significantly better compared to the CQCC fea-
ture sets using GMM as pattern classifier. In addition, we also explored
the Teager energy-based feature set for whisper speech Detection (WSD)
task on the wTIMIT and CHAINS corpus. Furthermore, the Acoustic Scene
Classification (ASC) task on DCASE 2018 challenge database using the Tea-
ger energy-based spectral features is explored to classify different acoustic
scenes. The performance of the proposed feature set gave better accuracy
compared to the MFCC feature set using CNN as classifier.

8.2 Limitations of the Current Work

Our proposed feature sets are one of the contributions towards the research in the
Spoof Speech Detection SSD task. However, there are certain limitations of our
proposed feature sets as described below:

• The amount of reverberation might be even more in some of the bonafide far
field samples compared to near-field high quality replay speech and thus,
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directly relying on the amount of reverberation to test the replay spoof is
little risky in this context, and hence, a more detailed study and generalized
countermeasure is required to overcome the replay detection task.

• Our hypothesis using TEO to capture characteristics of reverberation due
to replay, however, this may not be case for replay attack in outdoor (non-
room) acoustic environment. Hence, our method is not likely to produce
good results for replay recorded in outdoor environment.

• In addition, our approach ignore the fact bonafide utterances might also con-
tains reverberant noises, such as in smart speakers.

• For high-level threat and high quality devices used during playback, and
recording, the EERs are quite high. This needs further investigations to de-
tect the high-level replay configuration threat.

8.3 Future Research Directions

Future research directions include possible solutions to the above mentioned lim-
itations and further advancements for SSD task as described below:

• Analysis of Reverberation using AM-FM Approach: To investigate further
the effect of reverberation on AM-FM components of a signal and its rela-
tion with the TEO framework for the different acoustic environments and
intermediate device conditions on the replay speech.

• Performance of Joint Protocol of SSD system with ASV Systems: The cur-
rent studies of countermeasures and ASV systems are carried out separately.
What user would like to have is a secure and accurate ASV system. How-
ever, a more robust ASV system to noise and channel variations may become
less secure against spoofing attacks. As there is no guarantee of having a
better performing countermeasure that provides lower EER and also reli-
able for the ASV system performance. Hence, with the progress made in the
research of spoofing detection, evaluation metrics must evolve to reflect the
joint protocol system performance.

Recently, the study reported in [30, 106] proposed a tandem Detection Cost
Function (t-DCF) metric. It is an elegant solution to the assessment of com-
bined spoofing countermeasures and ASV system. One of the initial at-
tempts in this direction was reported in the mimic spoof detection task [268].
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The t-DCF is used with the assessment of ASV systems that are combined
with spoofing countermeasures (CM) as shown in Fig. 8.1 [30, 106].

Figure 8.1: Performance assessment of combined ASV system and countermeasure (CM)
that are combined as (top): CM followed by ASV, (middle): ASV followed by CM and
(end): parallel both CM and ASV. Adapted from [30].

The perfect countermeasure system has an EER of 0 %. In particular, when
the position of the miss (or false rejection), and the false alarm (or false ac-
ceptance) rate of the countermeasure (CM), i.e., Pcm

miss= Pcm
f a =0.

t-DCFCM(θ) = Casv
miss · πtar · Pasv

miss(θ) (8.1)

+Casv
f a · πnon · Pasv

f a (θ), (8.2)

where Casv
miss is the cost of ASV system rejecting a target trial, Casv

f a is the cost of
ASV system accepting a non-target trial, Pasv

miss(θ) and Pasv
f a (θ) are the position

to define FRR rate, and the FAR of the ASV system at threshold (θ).

• Joint Protocol with SSD system and VAs Systems: The task of ASV and
VAs though look similar, however, they have some important differences,
such as, different user acoustic scenarios. The VAs use the far-field speech
recognition with variety of different acoustic environment. In addition, the
VAs use the multi-microphone array and ASV in general uses single array.
This gap between the ASV and VAs degrades the performances by result-
ing in high EER. Hence, this grabs the major attention for the researchers to
develop an algorithm for the joint protocol of SSD and VAs system perfor-
mance.
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• Liveness Detection: The use of high-quality recording loudspeaker or play-
back device to record/playback the speech signal. In this process, the quality
of signal captured becomes indistinguishable from live human voice. This
high quality device makes the speech signal impossible to detect that de-
pends on the acoustic cues. This gives rise to investigate further on the live-
ness detection of human voice.

• Signal Degradation Conditions: Current publicly available spoofing databases
are developed in clean conditions. However, the recent replay database was
recorded under various acoustic environmental conditions. For ASVspoof
2015 challenge database, the noisy database was developed by adding var-
ious noises at different Signal-to-Noise Ratio (SNR) levels. Further investi-
gations are required as to how the diversity of different noise types affects
the SSD performance. In addition, the study is required to observe the effect
on SSD, when the additive noise is added manually, and when the noise is
added naturally via the acoustic environment. Hence, the countermeasures
must be developed that it should be robust to signal degradation conditions
as well.

• Robustness in ASV Implies Vulnerability:
In practice, we would like an ASV system to be robust against variations,
such as microphone and transmission channel, intersession, acoustic noise,
speaker aging, etc. A robust ASV system may become vulnerable to various
spoofing attacks as it tries to nullify these effects, and normalize the spoof-
ing speech towards the natural speech. Thus, robustness and anti-spoofing
security should be addressed separately. It is worth to study how features,
classifiers, and systems are designed to be both robust and secure.
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Appendix A. Performance Measures

A.1 % Equal Error Rate (EER)

A detection task or classification task can also be viewed as involving a trade-off
between the two types of errors, namely, miss detection and false alarm. The miss
detection or the False Rejection Rate (FRR) is the probability that the classifier fails
to detect a match between the input pattern, and a matching class in the database
[31]. FRR measures the percentage of valid inputs that are incorrectly rejected
in the classification task. The false alarm or the False Acceptance Rate (FAR) is
the probability that the classifier incorrectly matches the input pattern to a non-
matching class in the database [31]. FAR measures the percent of invalid inputs
that are incorrectly accepted in the classification task. A detection error trade-off
(DET) graph is a graphical plot of error rates for binary classification systems,
plotting the FRR vs. FAR [31]. Since FAR, and FRR are opposite functions (when
one monotonically increases, the other monotonically decreases and vice-versa),
there is a trade-off in the error reduction in the detection task and hence, the name
DET curve. The point where FRR and FAR are equal is called as the % Equal Error
Rate (EER), which is generally used as the performance measure. An example
of the DET curve is shown in Figure A.1 for the SSD task. A lower FAR means
higher security against spoof speech, i.e., a desirable attribute for spoof-resistant
ASV system. A lower FRR means higher convenience of the system performance.

A.2 Half Total Error Rate (HTER)

The performance evaluation metrics for BTAS 2016 database are considered ac-
cording to the protocol used in the BTAS 2016 speaker anti-spoofing challenge
[100]. The results on the development set are reported in terms of EER, and on the
test data in terms of Half Total Error Rate (HTER). The evaluation of the replay
attack systems was done based on the false rejection rate (FRR), and false acceptance
rate (FAR), that in turn depends upon a threshold, θ. We use the development set
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Figure A.1: An Example of the DET Curve. After [31].

to determine threshold, θdev. The evaluation performance of the system is then
computed as the HTER:

θdev = arg min
θ

FARdev(θ) + FRRdev(θ)

2
, (A.1)

HTEReval(θ) =
FAReval(θdev) + FRReval(θdev)

2
. (A.2)

A.3 % Classification Accuracy

The performance of the classification task is measured by the classification accu-
racy. If ẑi is the predicted value of the ith sample, and zi is the corresponding true
value, then the % classification accuracy (the fraction of correct prediction) over a
total of N samples is defined as [269]:

% Classification Accuracy =
1
N

N−1

∑
i=0

I(ẑi = zi)× 100, (A.3)

where I(·) is an indicator function with I=1, when ẑi = zi, otherwise I=0.
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A.4 Performance Measures from Confusion Matrix

The confusion matrix of a binary classification task shows how errors are dis-
tributed across the classes [270]. The example of a confusion matrix for a classi-
fication task is shown in Figure A.2 for genuine vs. spoof speech. The rows indi-
cate the actual classes, and columns indicate the predicted outcome of the pattern
classifier [270]. Since our task is to detect the spoof speech, we denote the results
associated with spoof class as positive, and with genuine class as negative. Given
the labels of actual and predicted classes by the classifier, there are four outcomes
possible [270]:

• True Positive (TP): Actual class is spoof and predicted spoof

• True Negative (TN): Actual class is genuine and predicted genuine

• False Positive (FP): Actual class is genuine and predicted spoof

• False Negative (FN): Actual class is spoof and predicted genuine

Figure A.2: The Details of a Confusion Matrix for the Binary Classification Task.

In the case of k-fold CV, we find the combined confusion matrix (i.e., all the
entries in the matrix are summed for all the folds). Various other performance
measures can be obtained from the confusion matrix. The numbers along the
major diagonal indicates (TP and TN) the correct decisions made by the classifier
[270]. The classification accuracy can also be obtained from TP, TN, and a total
number of instance of both the classes (i.e., P+N) as follows [270]:

Classification Accuracy (in%) =
TP + TN

P + N
. (A.4)

Another important performance measure is the F1-score, also known as F-measure.
The range of F-measure is between 1 and 0, where 1 represents the perfect predic-
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tion and 0 means the worst. The F-measure is defined as follows [270]:

F-Measure =
2TP

2TP + FP + FN
. (A.5)

The F-measure does not take TN into account. Hence, we also used another per-
formance measure called Youden’s J-statistic or informedness [271]. The range
of the J-statistic is between -1 and +1, where -1 indicates no agreement between
the observation and the prediction, and +1 represents a perfect prediction. The
J-Statistic estimates the probability of an informed decision and is given by [271]:

J-Statistic =
TP

TP + FN
+

TN
TN + FP

− 1. (A.6)

Another important performance measure is the Matthews Correlation Coefficient
(MCC) [272]. It takes into account TP, TN, FP, FN, and is generally regarded as a
balanced measure that can be used even if the classes are of very different sizes.
The range of MCC is between -1 and +1, where +1 indicates a perfect prediction,
0 means no better than just a random prediction, and -1 indicates a total disagree-
ment between the observation and the prediction. MCC is expressed as [272]:

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)(TN + FN)(TP + FN)(TN + FP)
. (A.7)

A.5 % Word Error Rate (WER)

The standard performance metric for Automatic Speech Recognition (ASR) sys-
tems is the Word Error Rate (WER) [273]. The WER is computed for the decoded
word sequence in the ASR output against the reference transcription. The % WER
is defined as follows [273]:

WER =
S + D + I

N
× 100, (A.8)

where
S = Number of substitutions (one word is replaced with another one),
D = Number of deletions (word is missed out),
I = Number of insertions (word is added),
N = Total number of words in the reference transcription.

In the case of the phone recognition task, the reference is the phonetic tran-
scription (not at the word-level), and the ASR decoder also produces phone se-
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quences in the output. In such a case, the same performance measure is applied,
however, instead of words, we use phones. Hence, it is also called the % Phone
Error Rate (PER).
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Appendix B. Energy Separation Algorithm (ESA)

In this Section, an alternative DESA that avoids the previous half sample shifts
in the estimated frequency signal by using a symmetric difference to approximate
the first derivative of x(t) is discussed [57,190]. Consider first a discrete-time AM-
FM signal x(n) = a(n)cos[φ(n)] whose instantaneous frequency signal Ωi(n) is a
finite sum of cosines. It’s symmetric difference is:

s(n) = [x(n + 1)− x(n− 1)]/2, (B.1)

s(n) = D(n) + E(n), (B.2)

where

D(n) = a(n)cosφ + (n + 1)− cosφ + (n− l)l/2, (B.3)

E(n) = [a(n + 1)− a(n)]cosφ + (n + 1)]/2 + [a(n− a(n− l)]cos[φ + (n− 1)]/2.
(B.4)

since, Ω f << 1,

c(n) = −sin
[

φ + (n + 1)− φ(n− 1)
2

]
· sin

[
φ + (n + 1) + φ(n− 1)

2

]
, (B.5)

c(n) ≈ −sin[Ωi(n)]sin[φ(n)]. (B.6)

Now Dmax ≈ amaxsin(Ωi)max and Emax ≈ 2amaxsin(Ωa/2). Hence, the order of
magnitude of D is much larger than that of E. Thus, ignoring E,

s(n) ≈ −a(n)sin[Ωi(n)]sin[φ(n)]. (B.7)

Since Om << Qc, the amplitude a(n)sin(φi(n)) of s(n) has an effective band-
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width of Ωa + Ω f . Hence,

Ψ[s(n)] = a2(n)sin4Ωi(n) (B.8)

The above analysis yields the following formulas for estimating the time-varying
frequency and amplitude envelope of the AM-FM signal:

Ωi[n] ≈
1
2

arccos
[

1− Ψd{xi[n + 1]− xi[n− 1]}
2Ψd{xi[n]}

]
, (B.9)

ai[n] ≈
2Ψd{xi[n]}√

Ψd{xi[n + 1]− xi[n− 1]}
. (B.10)

We call this the DESA-2 algorithm, where “2" implies the approximation of
first-order derivatives by differences between samples whose time indices differ
by 2. This DESA uses symmetric differences and thus, avoids having to involve
values of Ωi at non-integer time indices. The frequency estimation part assumes
that 0 < Ωi(n)π/2. Thus, the DESA-2 can be used to estimate instantaneous fre-
quencies < 1/4 the sampling frequency. This does not present a problem because
by doubling the sampling frequency it can be used to estimate frequencies up to
1/2 the original sampling frequency. Note also that the formula with arccos() can
be replaced by an arcsin() expression but this comes at the expense of an addi-
tional square-root operation per sample [57, 190].

Ωi[n] ≈ arcsin

√
Ψd{xi[n + 1]− xi[n− 1]}

4Ψd{xi[n]}
. (B.11)
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Appendix C. Noise Suppression Capability of TEO

The Teager Energy Operator (TEO) has the noise suppression capability first an-
alyzed in [208] for speech recognition applications in the car noise scenario, for
epoch estimation using various noises [274], and for person recognition in noisy
environments [275]. Here, we discuss the noise suppression capability of TEO for
the additive noise case. Let x[n] and x̂[n] = x[n] + v[n] be clean, and noisy speech
signal, where v[n] is a zero-mean additive noise signal. The TEO profiles for x[n],
and v[n] are given as:

Ψ{x[n]} = x2[n]− x[n− 1]x[n + 1], (C.1)

Ψ{v[n]} = v2[n]− v[n− 1]v[n + 1]. (C.2)

The TEO profile for the noisy speech signal x̂[n] is calculated as:

Ψ{x̂[n]} = x̂2[n]− x̂[n− 1]x̂[n + 1],

= (x[n] + v[n])2 − (x[n− 1] + v[n− 1])(x[n + 1] + v[n + 1]),

= x2[n] + 2x[n]v[n] + v2[n]− x[n− 1]x[n + 1]− x[n− 1]v[n + 1]

− v[n− 1]x[n + 1]− v[n− 1]v[n + 1].

(C.3)

Rearranging the above terms and using Eq. (C.1) and Eq. (C.2), we get,

Ψ{x̂[n]} = Ψ{x[n]}+ Ψ{v[n]}+ 2Ψ̂{x[n], v[n]}, (C.4)

where Ψ̂{x[n], v[n]} is called the cross-TEO between x[n], and v[n], which is given
by:

Ψ̂{x[n], v[n]} = x[n]v[n]− 1
2

x[n− 1]v[n + 1]− 1
2

x[n + 1]v[n− 1]. (C.5)

Considering x[n], and v[n] as random variables, the expected value of the TEO is
given as:

E [Ψ{x̂[n]}] = E [Ψ{x[n]}] + E [Ψ{v[n]}] + 2E
[
Ψ̂{x[n], v[n]}

]
, (C.6)
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where E[·] is an expectation operator. Since v[n] is a zero-mean additive noise,
and x[n] and v[n] are assumed to be statistically independent so that E

[
Ψ̂{x[n], v[n]}

]
=

0 and hence:

E
[
Ψ̂{x[n], v[n]}

]
= E [x[n]v[n]]− 1

2
E [x[n− 1]v[n + 1]]

− 1
2

E [x[n + 1]v[n− 1]] ,
(C.7)

Here, E [x[n]v[n]] = E [x[n]]E [v[n]] = 0, since E[v[n]] = 0, and similarly for
other two terms in Eq. C.7. Hence, we have,

E [Ψ{x̂[n]}] = E [Ψ{x[n]}] + E [Ψ{v[n]}] . (C.8)

The expected values in Eq. (C.8) can also be represented in terms of autocorrela-
tion as follows:

E [Ψ{x̂[n]}] = Rxx(0)− Rxx(2) + Rvv(0)− Rvv(2), (C.9)

where Rxx(τ) = E[x[n]x[n − τ]], and Rvv(τ) = E[v[n]v[n − τ]] are autocorrela-
tion functions of clean and noise signals for lag τ, respectively. It is experimen-
tally verified in [208] and [274] that, when the TEO is applied on the noise signal,
Rvv(0)− Rvv(2) ≈ 0. Hence, it can be proved that:

E [Ψ{x̂[n]}] ≈ E [Ψ{x[n]}] . (C.10)

The Eq. (C.10) indicates that TEO when applied on the noisy signal, with the
additive zero-mean noise, can suppress the noise and hence, TEO has the noise
suppression capability.
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Appendix D. ASR System Building in Kaldi

D.1 Data Preparation

• First get the wave and label files for both the training and testing set.

• Prepare wav.scp, spk2utt, utt2spk and text files for both the train and test set
as follows:
ls *.wav | cut -d "." -f 1 >../cname.txt (instead of ls *.wav> ../cname.txt
because we do not need .wav extension)
ls -d $PWD/*.wav > ../cpath.txt
cd ..
paste cname.txt cpath.txt > wav.scp
paste cname.txt cname.txt > spk2utt
paste cname.txt cname.txt > utt2spk
ls *.lab | cut -d "." -f 1 > ../labname.txt
cat *.lab > ../labcont.txt
cd..
paste labname.txt labcont.txt >text

• In kaldi/egs/ make a chime3 directory In chime3 directory make versions
of your system, e.g., s1, s2... etc. Here, we make s1 directory inside chime3
directory.

• Create a data directory in chime3. Make train and test folders inside data
directory.

• Place the training and testing files wav.scp, spk2utt, utt2spk and text in
data/train and data/test directory, respectively.

D.2 Language Model Preparation

• Create a folder named dict in the /s1/data/local. Put following files in this
folder:lexicon.txt, nonsilence_phones.txt, optional_silence.txt, silence_phones.txt
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• From the text of test set, find unique words and store them in words.txt

awk ’print $2’ < text > testwords.txt
sort -u testwords.txt > words.txt

• Use fst.sh and generate_bigram.py files. The content of the fst.sh is as fol-
lows:

# ./fst.sh contents
#!/bin/bash
. ./cmd.sh
. ./path.sh
main_dir=/home/daiict/kaldi/egs/chime3/s1/
data_dir=$main_dir/data
dict_dir=$main_dir/data/local/dict
tmp_dir=$main_dir/data/tmp
lang_dir=$main_dir/data/lang
mkdir -p $tmp_dir
utils/prepare_lang.sh $dict_dir ’!SIL’ $data_dir/local/actual_overal
$main_dir/data/lang || exit 1;

python local/generate_bigram.py $tmp_dir/words.txt
> $tmp_dir/wp_gram.txt

local/make_rm_lm.pl $tmp_dir/wp_gram.txt > $tmp_dir/G.txt

fstcompile --isymbols=$lang_dir/words.txt
--osymbols=$lang_dir/words.txt --keep_isymbols=false
--keep_osymbols=false $tmp_dir/G.txt > $lang_dir/G.fst
utils/validate_lang.pl $lang_dir

• generate_bigram.py program is used to generate the wp_gram from the dis-
trict or commodity list. The content of this file is as follows:
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#!/usr/bin/env python
import sys
from collections import defaultdict
word_list = [xx.strip().split() for xx in open(sys.argv[1])]
word_list = [ ["SENTENCE-END"] + xx + ["SENTENCE-END"] for xx in
word_list ]
suc_list = defaultdict(set)
for line in word_list:
for w1, w2 in zip(line[:-1], line[1:]):
suc_list[w1].add(w2)
list_of_keys = suc_list.keys()
list_of_keys.sort()
for ww in list_of_keys:
print ">" + ww
for ss in suc_list[ww]:
print " " + ss

• Change the paths in the fst.sh file and execute it; make sure to clear all the
errors in this step. If it runs successfully, then you have no errors of mis-
match in label files and lexicon. Do check G.fst file for binary file and not of
very small size (in few bytes).

D.3 Feature Extraction

In this Section, we will extract the MFCC feature set that will be used to build
the GMM-HMM systems, and the Mel filterbank (FBANK) feature set that will be
used to build the hybrid DNN-HMM systems. Here, “nj 10" indicates the number
of jobs to extract the features in parallel.

• The MFCC feature set is obtained as follows:

mfccdir=mfcc
for x in test train; do

steps/make_mfcc.sh --cmd "$train_cmd" --nj 10 $datadir/$x
exp/makemfcc/$x $mfccdir || exit 1;
steps/compute_cmvn_stats.sh $datadir/$x exp/makemfcc/$x $mfc-

cdir || exit 1; done
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• The FBANK feature set is obtained as follows:

fbankdir=fbank
for x in test train; do

steps/make_fbank.sh --cmd "$train_cmd" --nj 10 $datadir/$x
exp/makefbank/$x $fbankdir || exit 1;
steps/compute_cmvn_stats.sh $datadir/$x exp/makefbank/$x

$fbankdir || exit 1; done

D.4 Acoustic Modeling GMM-HMM

In this Section, we will show how to build GMM-HMM system in KALDI.

• Monophone GMM-HMM system can be build by the following commands:

expdir=mono_mfcc
steps/train_mono.sh --nj "$train_nj" --cmd "$train_cmd" $datadir/train
data/lang exp/$expdir || exit 1;
utils/mkgraph.sh --mono data/lang exp/$expdir exp/$expdir/graph ||
exit 1;
steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd"
exp/$expdir/graph $datadir/test exp/$expdir/decode || exit 1;
local/score.sh --cmd run.pl $datadir/test exp/$expdir/graph
exp/$expdir/decode || exit 1;

• The triphone GMM-HMM system will be built from the alignments gener-
ated from the monophone system. Here, we have option to vary the number
of senones and Gaussians in the triphone trees. The triphone GMM-HMM
system can be built by the following commands:
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expdir=mono_mfcc
tridir=tri_mfcc

steps/align_si.sh --boost-silence 1.25 --nj "$train_nj" --cmd "$train_cmd"
$datadir/train data/lang exp/$expdir exp/$expdir_ali || exit 1;

for sen in 1800 2000 2200 2500; do
for gauss in 12 14 16; do

gauss=$(($sen * $gauss))
steps/train_deltas.sh --cmd "$train_cmd" $sen $gauss $datadir/train
data/lang exp/$expdir_ali exp/$tridir_$sen_$gauss || exit 1;
utils/mkgraph.sh data/lang exp/$tridir_$sen_$gauss
exp/$tridir_$sen_$gauss/graph || exit 1;
steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd"
exp/$tridir_$sen_$gauss/graph $datadir/test

exp/$tridir_$sen_$gauss/decode || exit 1;

• The triphone system with the lowest % WER is selected for the LDA+MLLT
system building. For example, here a system with 2000 senones and 12
Gaussians is selected.

steps/align_si.sh --nj "$train_nj" --cmd "$train_cmd" data/train data/lang
exp/tri_mfcc_2000_24000 exp/tri_mfcc_2000_24000_ali || exit 1;
for sen in 2000 2500 3000; do
for gauss in 12 16; do

gauss=$(($sen * $gauss))
steps/train_lda_mllt.sh --cmd "$train_cmd" --splice-opts
"--left-context=3 --right-context=3" $sen $gauss data/train data/lang
exp/tri_mfcc_2000_24000_ali exp/$tridir2_$sen_$gauss || exit 1;
utils/mkgraph.sh data/lang exp/$tridir2_$sen_$gauss
exp/$tridir2_$sen_$gauss/graph2 || exit 1;
steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd"
exp/$tridir2_$sen_$gauss/graph2 data/test

exp/$tridir2_$sen_$gauss/decode3 || exit 1;
done
done
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D.5 Acoustic Modeling using DNN-HMM

• The LDA-MLLT system with the lowest % WER is selected for the hybrid
DNN-HMM experiments. First generate the alignments from the LDA-MLLT
system as follows:

expdir=exp/tri2_mfcc_2500_40000
steps/align_si.sh --nj 8 --cmd "$train_cmd" data/train data/lang
exp/$expdir exp/$expdir_ali

• To train the DNN-HMM system, the Mel filterbank features are extracted as
follows:

fbankdir=fbank
for x in test train; do

steps/make_fbank.sh --cmd "$train_cmd" --nj 10 $datadir/$x
exp/makefbank/$x $fbankdir || exit 1;
steps/compute_cmvn_stats.sh $datadir/$x exp/makefbank/$x
$fbankdir || exit 1;

done

• The hybrid DNN-HMM system using nnet3 setup in the KALDI toolkit. We
show a demo of building TDNN system with different numbers of hidden
units as follows:

for x in 500 600 700 800 900; do
datadir=nnet2_data_$features
nndir=tri2_fbank40_TDNN_$x
steps/nnet3/tdnn/train.sh --relu-dim $x $datadir/train
data/lang $expdir_ali exp/tdnn/$nndir_nnet3 || exit 1;

steps/nnet3/decode.sh $expdir/graph $datadir/test
exp/tdnn/$nndir_nnet3/decode

local/score.sh --cmd run.pl $datadir/test $expdir/graph
exp/tdnn/$nndir_nnet3/decode

done
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[246] S. T. Jovičić, “Formant feature differences between whispered and voiced sustained
vowels,” Acta Acustica united with Acustica, vol. 84, no. 4, pp. 739–743, 1998.

[247] J. B. Wilson and J. D. Mosko, “A comparative analysis of whispered and normally
phonated speech using an LPC-10 vocoder,” Rome Air Development Center Giffis
AFB NY, Tech. Rep., 1985.

217



[248] F. Nolan and C. Grigoras, “A case for formant analysis in forensic speaker iden-
tification,” International Journal of Speech, Language and the Law, vol. 12, no. 2, pp.
143–173, 2005.

[249] C. Huang, X. Y. Tao, L. Tao, J. Zhou, and H. B. Wang, “Reconstruction of whisper
in chinese by modified melp,” in 7th International Conference on Computer Science &
Education (ICCSE), Melbourne, Australia., July 4-6, 2012, pp. 349–353.

[250] I. V. Mcloughlin, H. R. Sharifzadeh, S. L. Tan, J. Li, and Y. Song, “Reconstruction
of phonated speech from whispers using formant-derived plausible pitch modula-
tion,” ACM Transactions on Accessible Computing (TACCESS), vol. 6, no. 4, pp. 1–21,
2015.

[251] R. W. Morris and M. A. Clements, “Reconstruction of speech from whispers,” Med-
ical Engineering & Physics, vol. 24, no. 7-8, pp. 515–520, 2002.

[252] H. R. Sharifzadeh, I. V. McLoughlin, and F. Ahmadi, “Reconstruction of normal
sounding speech for laryngectomy patients through a modified celp codec,” IEEE
Transactions on Biomedical Engineering, vol. 57, no. 10, pp. 2448–2458, 2010.

[253] V.-A. Tran, G. Bailly, H. Loevenbruck, and T. Toda, “Improvement to a nam-
captured whisper-to-speech system,” Speech Communication, vol. 52, no. 4, pp. 314–
326, 2010.

[254] T. Toda, M. Nakagiri, and K. Shikano, “Statistical voice conversion techniques
for body-conducted unvoiced speech enhancement,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 20, no. 9, pp. 2505–2517, 2012.

[255] M. Cotescu, T. Drugman, G. Huybrechts, J. Lorenzo-Trueba, and A. Moinet, “Voice
conversion for whispered speech synthesis,” IEEE Signal Processing Letters, vol. 27,
no. 01, pp. 186–190, 2019.

[256] J. H. Hansen, C. Zhang, and X. Fan, “Speech processing for robust speaker recogni-
tion: Analysis and advancements for whispered speech,” in Forensic Speaker Recog-
nition, Neustein and Patil (Eds.). Springer, 2011, pp. 253–272.

[257] D. A. Reynolds, “Speaker identification and verification using Gaussian mixture
speaker models,” Speech Communication, vol. 17, no. 1-2, pp. 91–108, 1995.

[258] F. Zheng, G. Zhang, and Z. Song, “Comparison of different implementations of
mfcc,” Journal of Computer Science and Technology, vol. 16, no. 6, pp. 582–589, 2001.

[259] G. Zhou, J. Hansen, and J. Kaiser, “Classification of speech under stress based on
features derived from the nonlinear teager energy operator,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Seattle, WA, USA,
May 12-15, 1998, pp. 549—-552.

[260] J. F. Kaiser, “Some useful properties of Teager’s energy operators,” in IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing ((ICASSP), vol. 3, 1993,
pp. 149–152.

[261] H. Teager, “Some observations on oral airflow during phonation,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. 28, no. 5, pp. 599–601, 1980.

218



[262] D. Wang and G. J. Brown, Computational Auditory Scene Analysis: Principles, Algo-
rithms, and Applications. Wiley-IEEE Press, 2006.

[263] Bugalho, Miguel and Portelo, José and Trancoso, Isabel and Pellegrini, Thomas
and Abad, Alberto, “Detecting audio events for semantic video search,” in INTER-
SPEECH, Brighton, United Kingdom, (UK), September 6-9, 2009, pp. 1151–1154.

[264] Eronen, Antti J and Peltonen, Vesa T and Tuomi, Juha T and Klapuri, Anssi P
and Fagerlund, Seppo and Sorsa, Timo and Lorho, Gaëtan and Huopaniemi, Jyri,
“Audio-based context recognition,” IEEE Transactions on Audio, Speech, and Language
Processing,, pp. 321–329, 2006.

[265] Valenti, Michele and Diment, Aleksandr and Parascandolo, Giambattista and
Squartini, Stefano and Virtanen, Tuomas, “DCASE 2016 acoustic scene classification
using convolutional neural networks,” in Workshop Detection Classification Acoustic
Scenes Events, Budapest, Hungary, November 2-3, 2016, pp. 95–99.

[266] Valenti, Michele and Squartini, Stefano and Diment, Aleksandr and Parascandolo,
Giambattista and Virtanen, Tuomas, “A convolutional neural network approach for
acoustic scene classification,” in IEEE International Joint Conference on Neural Net-
works (IJCNN), Budapest, Hungary, July 14-19, 2017, pp. 1547–1554.

[267] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in International Conference on Machine Learning,
Lille, France, July 6-11, 2015, pp. 448–456.

[268] H. A. Patil, P. Dutta, and T. Basu, “Effectiveness of LP based features for identifi-
cation of professional mimics in indian languages,” in Int Workshop on Multimodal
User Authentication, MMUA06, Toulouse, France, 2006, pp. 11–18.

[269] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms. Wiley-
Interscience, Second Edition, 2004.

[270] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, Elsevier,
vol. 27, no. 8, pp. 861–874, 2006.

[271] W. J. Youden, “Index for rating diagnostic tests,” Cancer, Wiley Subscription Services,
Inc., A Wiley Company, vol. 3, no. 1, pp. 32–35, 1950.

[272] B. Matthews, “Comparison of the predicted and observed secondary structure of
T4 phage lysozyme,” Biochimica et Biophysica Acta (BBA), Protein Structure, Elsevier,
vol. 405, no. 2, pp. 442–451, 1975.

[273] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., First Edition, 1993.

[274] H. A. Patil and S. Viswanath, “Effectiveness of Teager energy operator for epoch de-
tection from speech signals,” International Journal Speech Technology (IJST), Springer,
vol. 14, no. 4, pp. 321–337, Dec. 2011.

[275] H. A. Patil and M. C. Madhavi, “Combining evidences from magnitude and phase
information using VTEO for person recognition using humming,” Computer Speech
and Language, Elsevier, vol. 52, pp. 225–256, 2018.

219





List of Publications from Thesis
International Journal Papers

1. Madhu R. Kamble, Hardik. B. Sailor, Hemant. A. Patil and Haizhou. Li,
“Advances in Anti-spoofing: From the Perspective of ASVspoof Challenges,"
in APSIPA Transactions on Signal and Information Processing vol. 9, 2020.
(Invited Paper).

2. Madhu R. Kamble and Hemant. A. Patil, “Amplitude Weighted Frequency
Modulation Features for Spoof Speech Detection,” in Journal of Signal Pro-
cessing Systems (JSPS) 92 (8), 777-791, 2020 (Invited Paper).

3. Madhu R. Kamble and Hemant. A. Patil, “Detection of Replay Spoof Speech
Using Teager Energy Feature Cues Detection," in special issue on Advances
in Automatic Speaker Verification Anti-spoofing in Computer Speech and
Language, Elsevier, 65 (2021): 101140.

4. Madhu R. Kamble, T. Hemlata, and Hemant A. Patil, “Amplitude and Fre-
quency Modulation-Based Features for Detection of Replayed Spoof Speech,”
in Speech Communication, Elsevier, 125 (2020): 114-127.

Book Chapters in Coedited Book Volumes

1. Madhu R. Kamble and Hemant. A. Patil, "Effectiveness of Mel Scale-Based
ESA-IFCC Features for Classification of Natural vs. Spoofed Speech " in 7th

in B.U. Shankar et. al. (Eds.) International Conference on Pattern Recogni-
tion and Machine Intelligence (PReMI), Lecture Notes in Computer Science
(LNCS). Springer, vol. 10597, pp. 308–316, Kolkata, India, December 17-20,
2017.

2. Madhu R. Kamble, Maddala Venkata Siva Krishna, Aditya Krishna Sai Pu-
likonda and Hemant A. Patil, "Novel Teager Energy Based Subband Fea-
tures for Audio Acoustic Scene Detection and Classification", in 8th in Bhabesh
Deka et. al. (Eds.) International Conference on Pattern Recognition and
Machine Intelligence (PReMI), Lecture Notes in Computer Science (LNCS).
Springer, vol. 11941, pp. 436-444, Tezpur University (TU), Tezpur, India,
December 5-8, 2019.

221



Conference Papers

1. Madhu R. Kamble, Hemant A. Patil, M. Ali Basha Shaik, and Vikram Vij,
“Smoothed Teager Energy features for Replay Spoof Detection" submitted
for possible publications in European Signal Processing Conference EUSIPCO,
Dublin, Ireland 2021.

2. Dipesh K. Singh, Divyesh G. Rajpura, Madhu R. Kamble, Hemant A. Patil,
“Smooth Filtered Instantaneous Amplitude Features for Far-Field Speaker
Verification” submitted for possible publications in European Signal Pro-
cessing Conference EUSIPCO, Dublin, Ireland 2021.

3. Madhu R. Kamble and Hemant A. Patil, “The Impact of Room Acoustics
on Replay Speech Signal”, submitted for possible publications in European
Signal Processing Conference EUSIPCO, Dublin, Ireland 2021.

4. Madhu R. Kamble, Shekhar Nayak, M. Ali Basha Shaik, Shakti Rath, Vikram
Vij, and Hemant A. Patil, “Teager Energy Spectral Features for Near and Far-
Field Automatic Speech Recognition (ASR)", submitted in European Signal
Processing Conference EUSIPCO, Dublin, Ireland 2021.

5. Priyanka Gupta, Gauri P. Prajapati, Shrishti Singh, Madhu R. Kamble, and
Hemant A. Patil, "Design of Voice Privacy System using Linear Prediction"
in APSIPA-ASC, Auckland, New Zealand 2020, pp. 543-549.

6. Kuldeep Khoria, Madhu R. Kamble, and Hemant A. Patil, “Teager Energy
Cepstral Coefficients for Classification of Normal vs. Whisper Speech", in
European Signal Processing Conference (EUSIPCO), Amsterdam, The Nether-
lands pp. 1-5, 2020.

7. Gauri P. Prajapati, Madhu R. Kamble, and Hemant A. Patil, “Energy Sepa-
ration Based Features for Replay Spoof Detection for Voice Assistant", in Eu-
ropean Signal Processing Conference (EUSIPCO), Amsterdam, The Nether-
lands pp. 386-390, 2020.

8. Madhu R. Kamble and Hemant A. Patil, "Novel Variable Length Teager En-
ergy Profiles for Replay Spoof Detection", in Odyssey, Tokyo, Japan, May
18-21, 2020, pp. 143-150.

9. Madhu R. Kamble, Aditya Krishna Sai Pulikonda, Maddala Venkata Siva
Krishna, and Hemant A. Patil, "Analysis of Teager Energy Profiles for Spoof
Speech Detection", in Odyssey, Tokyo, Japan, May 18-21, 2020, pp. 304-311.

222



10. Madhu R. Kamble, Aditya Krishna Sai Pulikonda, Maddala Venkata Siva
Krishna, Ankur Patil, Rajul Acharya, and Hemant A. Patil, "Speech Demodulation-
based Techniques for Replay and Presentation Attack Detection", in Asia-
Pacific Signal and Information Processing Association Annual Summit and
Conference (APSIPA-ASC), Lanzhou, China, pp. 1545-1550, November 18-
21, 2019.

11. Madhu R. Kamble, Maddala Venkata Siva Krishna, Hemlata Tak, and He-
mant A. Patil, "Comparison of Frame and Utterance-level Classifiers for Re-
play Attack Detection", accepted in Asia-Pacific Signal and Information Pro-
cessing Association Annual Summit and Conference (APSIPA-ASC), Lanzhou,
China, November 18-21, 2019.

12. Madhu R. Kamble and Hemant A. Patil, “Analysis of Reverberation via Tea-
ger energy features for replay spoof speech Detection” in IEEE International
Conference on Acoustics, Speech and Signal Processing, (ICASSP) Brighton,
UK, pp. 2607-2611, 2019..

13. Madhu R. Kamble, and Hemant A. Patil, “Novel Amplitude Weighted Fre-
quency Modulation Features for Replay Spoof Detection” in 11th Interna-
tional Symposium on Chinese Spoken Language Processing (ISCSLP), Taipei,
Taiwan, pp. 185-189, November 26-29, 2018.

14. Madhu R. Kamble, Hemlata. Tak, Maddala Venkata Siva Krishna, and He-
mant. A. Patil, “Novel Demodulation-Based Features using Classifier-level
Fusion of GMM and CNN for Replay Detection” in 11th International Sym-
posium on Chinese Spoken Language Processing (ISCSLP), Taipei, Taiwan,
pp. 334-338, November 26-29, 2018.

15. Hemant A. Patil, Madhu R. Kamble, “A Survey on Replay Attack Detection
for Automatic Speaker Verification (ASV) System,” in Asia-Pacific Signal
and Information Processing Association Annual Summit and Conference
(APSIPA-ASC), Honolulu, Hawaii, USA, pp. 1047-1053, 12-15 November
2018, pp. 1047-1053.

16. Prasad Tapkir, Madhu R. Kamble, Hemant A. Patil, “Replay Spoof Detec-
tion using Power Function Based Features, in Asia-Pacific Signal and Infor-
mation Processing Association Annual Summit and Conference (APSIPA-
ASC), Honolulu, Hawaii, USA, pp. 1019-1023, 12-15 November 2018, pp.
1019-1023.

223



17. Madhu R. Kamble, “Energy Separation Algorithm based Features for Re-
play Spoof Detection,” in INTERSPEECH 2018: 4th Doctoral Consortium,
IIIT-Hyderabad, September 1st 2018.

18. Madhu R. Kambleand Hemant A. Patil, “Novel Variable Length Energy
Separation Algorithm using Instantaneous Amplitude Features For Replay
Detection,” in INTERSPEECH, Hyderabad, India, pp. 646-650, 2018.

19. Madhu R. Kamble, T. Hemlata, and Hemant. A. Patil, “Effectiveness of
speech demodulation-based features for replay spoof speech detection,” in
INTERSPEECH, Hyderabad, India, pp. 641-645, 2018.

20. Hardik. B. Sailor, Madhu R. Kamble, and Hemant. A. Patil, “Auditory Fil-
terbank Learning for Temporal Modulation Features in Replay Spoof Speech
Detection,” in INTERSPEECH, Hyderabad, India, pp. 666-670, 2018.

21. Hardik. B. Sailor, Maddala Venkata Siva Krishna, D. Chhabra, Ankur. Patil,
Madhu R. Kamble, and Hemant. A. Patil, “DA-IICT/IIITV System for Low
Resource Speech Recognition Challenge 2018”, in INTERSPEECH, Hyder-
abad, India, pp. 3187-3191, 2018.

22. Madhu R. Kamble and Hemant A. Patil, “Novel Energy Separation Based
Instantaneous Frequency Features for Spoof Speech Detection,” European
Signal Processing Conference (EUSIPCO), Kos Island, Greece, Europe, pp.
116-120, 2017.

23. Hemant A. Patil, Madhu R. Kamble, Tanvina B. Patel and Meet Soni, “Novel
Variable Length Teager Energy Separation Based IF Features for Replay De-
tection,” in INTERSPEECH, Stockholm, Sweden, pp. 12-16, 2017.

24. Hardik B. Sailor, Madhu R. Kamble and Hemant A. Patil, “Unsupervised
Representation Learning Using Convolutional Restricted Boltzmann Ma-
chine for Spoof Speech Detection,” in INTERSPEECH, Stockholm, Sweden,
pp. 2601-2605, 2017.

25. Madhu R. Kamble and Hemant. A. Patil, “Novel Energy Separation Based
Frequency Modulation Features For Spoofed Speech Classification” in 9th

International Conference on Advances in Pattern Recognition (ICAPR) , In-
dian Statistical Institute, Bangalore, India, 2017.

224



Brief Biography

Madhu R. Kamble received B.E. degree from P.V.P.I.T, Budhgaon, Sangli, Maha-
rashtra state in 2012. She did her M.E. (with Signal Processing Specialization) in
2015 from Cummins College of Engineering, Pune, Maharashtra State, India. She
was a doctoral student during July 2015-Feb 2021 at DA-IICT and currently, she
is a post doctoral fellow at EURECOM, France. She has been awarded with Rajiv
Gandhi National Fellowship (RGNF) from University Grants Commission (UGC)
for her doctoral research studies during July 2015-April 2020.

She has published 31 research papers in top conferences and peer-reviewed
journals. Her research area includes voice biometrics, Spoof Speech Detection
(SSD), Voice Assistants (VAs), Automatic Speech Recognition (ASR), Whisper Speech
Detection (WSD), and Acoustic Scene Classification (ASC). Her main research is
focused on developing signal processing-based countermeasures and analysis of
natural vs. spoof signals.

She offered a tutorial jointly with Prof. Patil on the Spoofing Attacks for Auto-
matic Speaker Verification in IEEE-WIE Conference, at AISSM’s Pune in Dec 2016.
She was co-instructor with Prof. Patil and Prof. Haizhou Li (IEEE Fellow, ISCA
Fellow) for a tutorial in Asia-Pacific Signal and Information Processing Associ-
ation Annual Summit and Conference (APSIPA-ASC), Kuala Lumpur, Malaysia,
2017. She was a research intern at Samsung Research Institute, Bangalore (SRI-B),
India during May-Nov. 2019. She is a student member of ISCA, student mem-
ber of IEEE, IEEE Signal Processing Society, IEEE Young Professionals, IEEE WIE,
and APSIPA-ASC. She is a reviewer for Computer, Speech and Language and
Nerocomputing Journal, Elsevier, IEEE Transaction on Automation Science and
Engineering (ASE), and Expert Systems, Elsevier. She received ISCA and IEEE
SPS student travel grant of 650 Euros and 1000 USD to present her papers during

225



INTERSPEECH 2017, Stockholm, Sweden, and ICASSP 2019, Brighton, UK, re-
spectively. She was selected as student volunteer during ICASSP 2019, Brighton,
UK, and awarded with 300 USD. She has been a student volunteer for ISCA sup-
ported Summer Schools, S4P 2019, S4P 2018, S4P 2017, S4P 2016, and ASAP 2016.

226


	Abstract
	List of Acronyms
	List of Symbols
	List of Tables
	List of Figures
	Introduction
	Motivation
	Key Research Challenges
	Contributions from the Thesis
	Proposed Feature Sets for SSD
	Speech Parametrization (Analysis) of the Feature Sets
	Applications of Teager Energy-based Features

	Organization of the Thesis
	Chapter Summary

	Background on Spoofing Attacks, Databases, Countermeasures
	Introduction
	Spoofing Attacks
	 Impersonation
	 Synthetic Speech
	Voice Conversion
	Replay

	Database for SSD
	ASVspoof 2015 Challenge Database
	AVspoof Database
	RedDots Replayed Database
	ASVspoof 2017 Challenge Database
	ASVspoof 2019 Challenge
	ReMASC Database

	Countermeasures for SS and VC Spoofing Attacks
	Handcrafted Features
	Representation Learning (RL) Literature

	Countermeasures for Replay Spoofing Attacks
	Handcrafted Features
	Representation Learning (RL) Approaches

	Limitations and Challenges
	Chapter Summary

	Teager Energy Operator (TEO)
	Introduction
	Basics of TEO
	Analysis of TEO Profile
	Feature Extraction Process
	Analysis of Spoof Speech Signals
	Effect of Reverberation on Replay Speech Signal
	Basics of Replay Speech Signal
	Basics of Reverberation

	Experimental Setup
	Feature Parameterization
	Model Training and Score-Level Fusion

	Experimental Results of the SSD Task
	Results on ASVspoof ASVspoof 2015 Challenge 
	Results on Development Set
	 Results on the Evaluation Set

	BTAS 2016 Database
	Results on ASVspoof 2017 Challenge v2.0
	 Results on Development Set
	Results on Evaluation Set

	Results on ASVspoof 2019 Challenge Database

	Chapter Summary

	Temporal Modulation Features
	Introduction
	Energy Separation Algorithm (ESA)
	Details of Proposed Feature Set using ESA
	Frequency Scale
	ERB Frequency Scale
	Mel Frequency Scale
	Linear Frequency Scale

	Feature Normalization

	Experimental Results
	Results on ASVspoof 2017 Challenge
	Results with Butterworth and Gabor Filterbank
	Effect of Frequency Scales
	Effect of Number of Subband Filters
	Results on Score-Level Fusion 
	Analysis of Replay Configurations

	Results on ASVspoof 2015 Challenge
	Results on Development Set
	Results on Evaluation Dataset


	Chapter Summary

	Variable Length Energy Separation Algorithm (VESA)
	Introduction
	Basics of VTEO
	Feature Extraction Process
	Analysis of Variable length Teager Energy Profiles
	Spectral Energies of Variable length Teager Energy

	Basics of VESA
	Proposed VESA-IFCC Feature Set
	Hilbert Transform (HT)

	Experimental Results Using VESA
	Results on ASVspoof 2017 V1.0 Challenge
	Results on Development Set
	Results on Evaluation Set
	Results of Score-Level Fusion

	Results on ASVspoof 2017 V2.0 Database and BTAS 2016
	Results on Development and Evaluation Sets
	Results of Score-Level Fusion

	Experimental Results Using VTECC
	Results with Varying Dependency Index (DI)
	Results with Score-Level Fusion
	Results on Replay Configurations (RC)

	Chapter Summary

	AM-FM Features
	Introduction
	AM-FM Features
	Proposed Feature Extraction Algorithm
	Spectrographic Analysis

	Experimental Setup
	Experimental Results
	Results of Various AM-FM Features
	 Frame-Level Analysis for Speech Signal

	Classifiers Used
	Gaussian Mixture Model (GMM)
	Convolutional Neural Network (CNN)
	Long Short-Term Memory (LSTM)
	Results with GMM, CNN, and LSTM Classifiers
	Results with Classifier-Level Fusion
	Results with Score-Level Fusion of Feature Sets
	Results with Varying Number of Subband Filters
	Effect of Replay Configurations (RC)
	Effect of Acoustic Environments
	Effect of Playback Devices
	Effect of Recording Devices


	Chapter Summary

	Other Applications
	Introduction
	Automatic Speech Recognition (ASR)
	Noise Suppression Capability of TEO
	Experimental Setup
	Near-Field and Far-Field ASR Corpus
	Feature Representation

	 Experimental Results
	 Results for Near-Field ASR 
	Results for Far-Field ASR 


	Replay Attacks on Voice Assistants (VAs)
	Feature Extraction
	Effect of Smoothing Filter
	Spectral Analysis

	Experimental Setup
	Experimental Results
	Task 1: RedDots Pretrained
	Task 2: Environment-Independent
	Task 3: Environment-Dependent

	Energy Separation Algorithm (ESA)-Based Features 
	Experimental Results
	Results on ESA-IACC Feature Set
	Results on ESA-IFCC Feature Set
	Results with Score-Level Fusion


	Whisper Speech Detection (WSD)
	Acoustic Features Used
	LFCC vs. MFCC
	TECC

	Experimental Setup
	Corpora Used
	Feature Extraction Parameters
	Pattern Classifier

	Experimental Results

	Acoustic Scene Classification (ASC)
	Front-end Features
	Experimental Setup
	Database
	Convolutional Neural Network (CNN)

	Experimental Results

	Chapter Summary

	Summary and Conclusions
	Summary of Work Presented in the Thesis
	Limitations of the Current Work
	Future Research Directions

	Appendix Performance Measures 
	% Equal Error Rate (EER)
	Half Total Error Rate (HTER)
	% Classification Accuracy
	Performance Measures from Confusion Matrix
	% Word Error Rate (WER)

	Appendix Energy Separation Algorithm (ESA)
	Appendix Noise Suppression Capability of TEO
	Appendix ASR System Building in Kaldi
	Data Preparation
	Language Model Preparation
	Feature Extraction
	Acoustic Modeling GMM-HMM
	Acoustic Modeling using DNN-HMM

	Bibliography
	List of Publications from the Thesis

