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Abstract

The performance of the tools developed for graphics and animation depends on

the underlying representation of the geometric model of the objects. The geomet-

ric model in turn describes the geometry of the real world object. In this work, we

propose a unified framework for mesh editing based on the Vector Graph (VG)

representation of the geometric model. The VG representation is an instance of

the barycentric coordinates. It represents various geometric models such as tri-

angular, quad and hybrid meshes as a collection of vectors. For various mesh

editing applications, the deformations of the geometric models are considered in

terms of the deformation of the VG representation. For this task, the deformation

of a vector of the VG is modelled in terms of rotation and scaling which are ori-

entation preserving transformations. Moreover, the composition is commutative

and forms a matrix group which is also a smooth manifold. The simplicity of the

VG allows for the straight forward formulations of mesh editing approaches, such

as Deformation Transfer, Enveloping, Interpolation and Morphing. For the pro-

posed method, the major computation is involved in solving an overdetermined

system of linear equations with appropriate constraints. The efficient methods

exist for solving this systems at a large scale. This ensures the real-time execution

of the algorithm for large geometric models.

In this work, the proposed algorithms for Deformation Transfer, enveloping,

interpolation and morphing using the VG representations are compared quali-

tatively and quantitatively with state-of-the-art methods. In addition, we have

proposed a face selection algorithm which reduces the computational complex-

ity without compromising on the quality of editing. This can be applied to other

face based formulations also. Apart from computational efficiency, based on the
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experiments, it is encouraging to note that (a) the proposed Deformation Trans-

fer method preserves the shape and the geometric details of the target mesh for a

wide range of deformations, (b) the enveloped mesh using proposed enveloping

method can be edited in real-time to generate complex poses without artifacts,

(c) qualitatively the proposed interpolation scheme performs at par with the ex-

isting approaches and is computationally real-time compared to others and (d)

proposed morphing is qualitatively similar to the other approaches.

In this work, our objective is two fold. We first propose computationally ef-

ficient algorithms which ensure smooth and realistic deformations of the mesh

for various applications and then implement these algorithms in Blender as pro-

totypes for interactive user experience. The simplicity of the VG is reflected in

the implementation of all the proposed algorithms in Blender 2.82. The created

Blender add-ons are easy to use. We have included a detailed user manual for the

developed add-ons as a part of the thesis.
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CHAPTER 1

Introduction

In graphics and animation, the representation of geometric objects plays a cru-

cial role in manipulating their geometry. In practice, the data related to the object

of interest is acquired from scanners (sensors) and is stored as a collection of 3D

points, traditionally referred to as a point cloud. Based on some geometric crite-

ria, these points are connected to form edges and faces (and volume elements). A

suitable collection of points, edges, and faces (volume elements) describes a geo-

metric model of the object. If the faces are triangles, then it is called a triangular

mesh. Similarly, if the mesh is a collection of different types of n-gons, then it is

called a hybrid mesh. The choice of model depends on the application; for exam-

ple, skeletons are used in action and activity recognition. The triangular, quad,

and hybrid meshes are used in animation and computer graphics.

In computer graphics, an animator manipulates the geometry of a mesh to cre-

ate an animation sequence. Each element of a mesh, such as vertices and faces,

should be manipulated during this process. A manipulation approach should

induce smooth and realistic deformation of the mesh, and it should also be com-

putationally efficient. Hence, mesh manipulation algorithms are designed based

on a trade-off between qualitative and computational performances. In literature,

two major approaches are proposed to perform mesh manipulation tasks. In the

first approach, the mesh is manipulated directly in its original domain (R3) by

manipulating its elements with given constraints. This approach leads to smooth

and realistic deformation of the mesh, but it creates an undue overload on com-

putation due to iterative optimization process. In another approach, a suitable

differential representations [13] of a mesh is defined. Each element of this dif-
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Figure 1.1: The illustration of deformation based approach for the mesh manip-
ulation. The deformation is computed and manipulated differently for various
applications.

ferential representation is then defined resulting in desired manipulation of the

mesh. A variety of representations are reported in literature to compute either the

face deformation [1, 14, 15] or the vertex deformation [10, 16, 17, 18]. This process

is illustrated in Figure 1.2. The element deformation is manipulated differently

depending upon the applications and representations. From the deformed repre-

sentation, the mesh can easily be reconstructed back by solving a system of linear

equations with suitable constraints.

In this work, we explore four mesh editing tasks; Deformation Transfer, En-

veloping, Interpolation and morphing using Vector Graph. These editing tasks

can be used in many computer graphics and computer vision applications. The

Deformation transfer and enveloping can be used in gaming, animation, motion

capture, sport training, action recognition etc.. The interpolation can be used in

gaming, motion estimation in occlusion condition, object tracking etc.. The mor-

phing can be used in animation, object transformation visualization, understand-

ing evolution of a shape etc.. Various challenges involved in these tasks and their
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wide range of applications motivate us to present our contribution. In Defor-

mation Transfer method, the geometric details of the target should be preserved

during transfer of deformation from source meshes. In the enveloping task, the

mesh should be related with aligned control structure such that the deformed con-

trol structure should produce smooth deformed mesh and the defined relation-

ship should offer compatibility with existing hardware. Moreover, the enveloped

mesh should be deformed in real-time. The interpolation and morphing method

should produce smooth and realistic transition from one mesh to another. We try

to tackle challenges involve in these applications using Vector Graph representa-

tion as a tool. We introduce all the editing tasks in the following sections.

1.1 Deformation Transfer

Figure 1.2: Demonstration of the deformation transfer : The action of a man
(Source) is transferred to the woman (Target).

The Deformation Transfer is a process by which the deformation of a source

mesh is transferred to the target mesh. As an example of Deformation Transfer, in

Figure 4.1, the poses of a female actor (on the right) are generated according to the

poses of a male actor (on the left). It generates the target poses that are deformed

similar to the corresponding source poses with minimum human intervention. In

general, the Deformation Transfer is performed in two phases; first, a dense set of

correspondence between the reference source and the target is identified from the

sparse set of user selected markers, and in the second phase, the deformation of

the source is transferred to the target with the help of the known correspondence.
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Skeleton as Control Stucture Mesh

Enveloping

Figure 1.3: Establishing the relationship between the mesh and the control struc-
ture is known as Enveloping

As shown in Figure 1.2, the deformation computed from the source is applied to

the target reference mesh in the Deformation Transfer application. A Deformation

Transfer method should ensure that the geometric details of the target mesh are

preserved during deformation transfer.

In literature, the methods reported for deformation transfer are primarily for

triangular meshes and are not directly applicable to skeleton and hybrid meshes.

However, these methods can be applied to quad or hybrid meshes by splitting

quad faces into triangles. Moreover, various representations such as Deformation

Gradient [1], Lie body [2] are also employed to compute the triangle deforma-

tion as a linear transformation. The linear transformation is not an orientation

preserving transformation. Hence, the geometric details of the target can not be

preserved when the source mesh is deformed with large shear. In Deformation

Transfer problem, the source and the target are different, and so are their motion

properties such as the temporal positions of poses and motion trajectories. Dur-

ing Deformation Transfer, these properties should be adjusted appropriately for

the target sequence. However, existing methods requires some amount of user

interaction to adjust for these properties.
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1.2 Enveloping

Deforming a mesh by deforming the associated control structure based on an es-

tablished relationship is a standard and an efficient technique practised by skilled

animators for years. Generally, the control structure includes a skeleton, point

handles, cages, region handles or combination of them. Establishing the relation-

ship between the mesh and the control structure is known as Enveloping as illus-

trated in Figure 1.3. The enveloped mesh can be deformed by deforming the asso-

ciated control structure. As shown in Figure 1.2, the deformation of the enveloped

mesh is manipulated by manipulating the skeleton deformation. The established

relationship should produce smooth mesh deformation, encourage real-time per-

formance, and offer compatibility with existing hardware. Because of simplic-

ity, real-time performance, and compatibility with high-performance computing

hardware, the Linear Blend Skinning (LBS) [6] is the widely used enveloping tech-

nique. In this, a linear relationship is established between the mesh deformation

and the control structure deformation. During the editing process, each vertex of

the enveloped mesh is deformed independently to its neighbours by deforming

the skeleton bones. Such individualistic vertex deformation may not preserve the

mesh properties such as edge length. This relationship, if not preserved, results

in inconsistency artifacts after deformation.

In other approaches, the control structure and the vertex deformation are re-

lated indirectly via differential representations. The vertex deformation which

is computed using a differential representation, is further constrained to ensure

smooth deformation of the mesh. However, these constraints introduce non-

linearity which not only affects the computational time but also makes an en-

veloping method hard to be compatible with the high-performance computing

hardware. For real-time performance, the mesh is segmented into patches. It is

expected that the vertices of a patch undergo similar deformation. The patches

are generated based on similarities using machine learning algorithms such as

K-means [8] and mean-shift [19]. The qualitative performance of this approach

depends upon the accuracy of the segmentation. Moreover, the segmentation
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method may depend on the user input, i.e. the number of segments. As stated

earlier, all the enveloping techniques usually trade deformation quality for com-

putation.

1.3 Interpolation

Interpolation

(a)
Morphing

(b)

Figure 1.4: (a) The intermediate poses of bending action of a man are generated
using a interpolation method. (b) The horse is morphed to bunny. The intermediate
poses are generated using a morphing method.

An animation sequence is a set of consecutive poses of a mesh (an anima-

tion character), and the transition between two consecutive poses is smooth and

continues. Generating such a set is a tedious task. Hence, an animator creates a

small set of poses (keyframes) by deforming the reference mesh. The intermediate

poses between two keyframes are then generated by one of the shape interpola-

tion methods. In morphing, the intermediate poses are generated between two

meshes of different geometric objects. As shown in Figure 1.2, the deformation

is interpolated and applied to the reference mesh for the interpolation and mor-

phing applications. The interpolation and morphing are demonstrated in Figure

1.4 as well. The shape interpolation method should generate realistic and natural-

looking deformation on the interpolated poses, and it should also be computa-

tionally real-time at the same time.
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For some shape interpolation approaches, the meshes are represented in a the

high dimensional shape space, and then a trajectory between a pair of points is ap-

proximated in the shape space. A point on the trajectory is an interpolated pose.

The trajectory can be approximated in form of a geodesic. The linear interpolation

is the simplest and fastest method, but it suffers from shrinkage problem. This

problem can be addressed by introducing constraints (as a non-linearity) into the

trajectory approximation process. However, the added constraints make the tra-

jectory approximation process more complex and computationally demanding.

Moreover, this approach can’t be adopted directly for multi-pose interpolation

and the morphing.

In another approach, the shape interpolation is viewed as the interpolation of

the deformation of the mesh. In this case, the mesh is first represented by a dif-

ferential representation to compute the element (vertices or faces) deformations.

The element deformation forms a manifold, and the shape interpolation is per-

formed on the tangent space of the manifold. This approach generates smooth

and natural interpolated poses, and it can also be adopted directly for multi-pose

interpolation and the morphing. In both the applications, the deformation of each

element is processed independently to achieve the desired mesh deformation.

1.4 Problem Identification

We, in this work, propose a unified differential representation for various geo-

metric models. It is suitable for various mesh editing tasks such as deformation

transfer, enveloping, interpolation, and morphing. This representation is referred

to as the vector graph (VG) representation. In VG, each face of a mesh is repre-

sented by a set of vectors, and each vector originates from the centroid of the face

and points towards the corresponding vertex of that face. Since a mesh is a collec-

tion of faces, its VG representation is a collection of vectors. The VG is a universal

representation in the sense that it represents various types of meshes such as tri-

angular, quad, or hybrid by a collection of vectors. Moreover, from the VG, it is

straight forward to reconstruct the corresponding mesh by solving an overdeter-
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mined system of linear equations. The reconstruction process helps us to deform

the mesh by deforming its VG representation. The VG is deformed by deforming

its vectors. In this work, the deformation of a vector is modelled as a composition

of the orientation preserving transformations, i.e. rotation and scaling. This in

turn help to preserve the geometric details of the target for a wide range of de-

formations in the Deformation Transfer application. Moreover, the composition

is commutative and forms a matrix group which is a smooth manifold. Similar

to other representations, the VG is a translation-invariant representation. The VG

representation is described in details in chapter 3.

In this work, we have proposed two Deformation Transfer methods by com-

puting the shape deformation and the pose deformation using the VG represen-

tation. The shape deformation is computed between the reference source and the

reference target meshes. It is then transferred to deformed source pose to get de-

formed target pose. This approach is computationally efficient compared to the

traditional approaches, but it fails to preserve the target shape for large deforma-

tion. It also fails to keep the planarity of the quad faces. The above limitations are

overcome by using the pose deformation for the Deformation Transfer applica-

tion. The pose deformation is computed between the reference, and the deformed

source poses using the VG representation. It is then transferred to the target ref-

erence mesh via established correspondence to get deformed target pose. In this

approach, the orientation preserving property of the vector deformation preserves

the geometric details of the target for a wide range of deformations. Moreover, the

added planarity constraint in the reconstruction process preserves the planarity of

the quad faces. After performing the Deformation Transfer, the temporal proper-

ties of the target sequence are refined using Poisson Interpolation. The Deformation

Transfer application is described in chapter 4.

Next, we have explored a data-driven enveloping method using the VG. Here,

we work with the skeleton as a control structure. The skeleton deformation is a

smooth manifold similar to the vector deformation manifold. During envelop-

ing, a map between the skeleton deformation to the vector deformation is es-

tablished by computing its parameters using a set of example poses available in
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the database. The enveloped mesh is then deformed by deforming the skeleton

through the established map which leads to smooth and meaningful deformation

of the mesh. The deformation of the enveloped mesh is computationally equiv-

alent LBS [6] and qualitatively similar to non-linear methods. The enveloping

application is described in chapter 5.

We have also explored the shape interpolation and morphing using the VG by

interpolating vector deformation similar to the traditional approaches. However,

the shape interpolation is computationally demanding due to element-wise oper-

ations. To address this issue, we exploit the approach used for enveloping. Here,

the mesh segmented into patches serves as a low resolution structure. A map

between patch deformation manifold and vector deformation manifold is estab-

lished by computing its parameters using example poses in the dataset. First, the

patch deformation is interpolated and then the established map maps it to the

vector deformation for the shape interpolation. Since the dimension of the patch

deformation manifold is relatively smaller, the proposed interpolation is compu-

tationally real-time and qualitatively comparable existing methods. The estab-

lished map can also be used for the real-time deformation transfer application.

The interpolation and morphing applications are described in chapter 6.

1.5 Our Contribution

• We have proposed a unified VG representation in this work.

• We have formulated each of the following mesh editing tasks in the VG

framework. (a) Deformation Transfer, (b) Enveloping, (c) Interpolation and

(d) Morphing.

• To reduce the computational time due to redundancy, we have proposed a

face selection algorithm. This algorithm can be used with any face-based

method for mesh editing to reduce the computational time without compro-

mising on the quality.

• We show that the proposed method for Deformation Transfer preserves the
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shape and the geometric details of the target for a wide range of mesh de-

formations. We also point out the major difference between the proposed

method and the existing Deformation Transfer methods, namely the dot

product property.

• With the results of experiments carries out, we show the effectiveness of

the proposed enveloping scheme which can be used for real-time editing of

meshes using the control structure.

• Further, we show that the proposed interpolation scheme is qualitatively

comparable with state-of-the-art methods and is real-time.

• We have implemented all the proposed methods in Blender as Add-ons for

an interactive experience. The Blender add-on user manual has been in-

cluded as part of the thesis.

1.5.1 Publications

• Prashant Domadiya, Pratik Shah, Suman K Mitra, “Vector Graph Represen-

tation for Deformation Transfer Using Poisson Interpolation", IEEE Winter

Conference on Applications of Computer Vision, Lake Tahoe, California,

USA, March, 2018.

• Prashant Domadiya, Pratik Shah, Suman K Mitra, “Guided Deformation

Transfer", ACM SIGGRAPH European Conference on Visual Media Produc-

tion, London, UK, December, 2019.

1.5.2 Submitted

• Prashant Domadiya, Pratik Shah, Suman K Mitra, “Real-Time Enveloped

Mesh Editing Using Vector Graph Representation", Submitted to ACM

Transaction on Graphics, 29 July, 2020.
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1.5.3 Under Preparation

• Prashant Domadiya, Pratik Shah, Suman K Mitra, “The Real-Time Mesh In-

terpolation, Deformation Transfer and Morphing".

1.6 Organization of the Thesis

In chapter 2, we present the detailed survey of the existing methods of Defor-

mation Transfer, Enveloping, Interpolation and Morphing. We also include the

survey of other applications such as motion editing, style transfer and path edit-

ing. We describe the Vector Graph representation in detail in chapter 3. In section

3.1, we describe the mesh reconstruction process from the VG. Moreover, we show

by experiment that the vector graph is a consistent representation. We, in the sec-

tion 3.2, propose the face selection algorithm to reduce the computational time. In

section 3.3, we also present the two possible way of computing vector deforma-

tion in terms of composition of rotation and scaling transformations. We present

various properties of the vector deformation composition in the section 3.4. These

properties make the VG unique compared to other representations.

In chapter 4, we propose two approaches for Deformation Transfer using

shape deformation and pose deformation. We present the proposed Deforma-

tion Transfer framework using the shape deformation in section 4.1 in details. In

this section, we also describe the computation of the shape deformation. In sec-

tion 4.1.2, we present Poisson interpolation with boundary conditions followed

by guided deformation transfer in section 4.1.3. Here, we show that the proposed

guided Deformation Transfer preserves temporal properties of the target mesh se-

quence. In section 4.1.4, we provide the experimental details, results, comparison

with the state-of-the-art methods and limitations of this approach. We present the

proposed Deformation Transfer framework using the pose deformation in section

4.2 in details. In this section, we also describe the computation of the pose defor-

mation. In section 4.2.2, we present the importance of dot product property of the

deformation to explore the Deformation Transfer for wide range of deformation.

We show that the added planarity constraint in the reconstruction process can pre-
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serve the planarity of the quad faces of the hybrid mesh in section 4.2.3. We also

show that the Poisson interpolation can also be employed for pose deformation

in section 4.2.5.

We describe the proposed enveloping approach in chapter 5 in details. In sec-

tion 5.1, we describe the proposed approach for control structure (skeleton) as-

signment to the reference mesh and computation of the bone deformation. We

then define the vector and skeleton deformation groups in section 5.2. In section

5.3, we describe proposed enveloping process and establish a map between vec-

tor and skeleton deformation groups. After establishing this map, we formulate

the mesh deformation associated with skeleton deformation in section 5.4. Here,

we show that the relationship between skeleton and mesh deformations using

the VG is similar to that of the LBS. Finally, in section 5.5 we compare proposed

method with the four state-of-the-art methods in terms of quality of deformation

and computational time.

In chapter 6, we propose two methods for the interpolation and morphing.

We first describe the standard deformation based interpolation and morphing

method using the VG and compare these methods with other methods in sec-

tion 6.1. We then explore the learning based interpolation approach using the VG.

In this approach, we first segment the meshes into patches and computation of

the patch deformation as described in section 6.2. We then define a map between

the vector and patch deformation groups and compute the map parameters in

section 6.3. After establishing this map, we formulate the mesh deformation as-

sociated with patch deformation. In section 6.4 and 6.5, we formulate real-time

interpolation and deformation transfer using established map. We also show that

the interpolation and deformation transfer can be performed on morphed mesh

using established map in section 6.6. Finally, in section 6.7 we compare proposed

interpolation and deformation transfer methods with other state-of-the-art meth-

ods in terms of quality of deformation and computational time.

We implemented all the proposed methods in the Blender as add-ons using

Python. We document the implementation as user manual in the chapter 7. In this

chapter, we first describe system requirement, dependent Python libraries and
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basic setup procedure to use Blender add-ons. We then describe the step-by-step

process to use all the add-ons developed for Deformation Transfer, enveloping,

interpolation and morphing. Finally, we conclude the thesis in chapter 8 with

possible directions towards the future work.
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CHAPTER 2

Literature Survey

In literature, different representations of the geometric models have been pro-

posed for different applications. For example, deformation gradient is used [1]

for purpose of deformation transfer, Manifold Representation [20] (i.e. Lie Body)

is used for Deformation Transfer [2] and for mesh editing [14]. In [10], Linear

Rotation Invariant coordinates are used for interpolation task. It is important to

note that a specific representation may work well for a task and may not be ef-

fective for others. Both Manifold Representation and Linear Rotation Invariant

are computationally inefficient for enveloping and interpolation compared to the

VG representation and representation used in Deformation Gradient [1]. For en-

veloping, Linear Blend Skinning (LBS) [6] and its variant DeepLBS [7] are widely

used due to their simplicity and real-time behaviour. Since, in this work, we fo-

cus on the VG representation and wish to demonstrate its utility in all the above

mentioned mesh editing tasks, we provide a brief review of the work carried out

in Deformation Transfer, enveloping, interpolation, and morphing. The survey

captures the salient points of the state-of-the-art algorithms.

2.1 Deformation Transfer

From literature, it is evident that Deformation Transfer has attracted consider-

able attention in computer graphics and computer vision. A variety of geometric

models of a real-world object such as skeleton and hybrid meshes make the De-

formation Transfer problem challenging. Adjusting temporal properties (position

and motion trajectory) and spatial properties (shape) of the target during Defor-
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mation Transfer are two of the major challenges. A survey of the work done in the

field of deformation transfer is presented next.

Sumner and Popović in [1] proposed a deformation transfer method for tri-

angulated meshes. Initially, with little user interaction, a dense set of correspon-

dence map is established between target and source meshes vertices using the se-

lected sparse correspondence set. Next, the deformation between corresponding

triangles of reference source mesh and deformed source mesh is computed inde-

pendently for each triangle. The deformations are composed of affine transforma-

tions. These deformations of selected source triangles are then transferred to the

entire target mesh via a correspondence map established earlier with consistency

constraints to preserve the topology of the target. A face is represented by two

different vectors and a normal. This representation can not represent the line seg-

ment, quad, and n-gon faces. This method preserves spatial property (shape) of

the target but requires user interaction to adjust for the temporal properties. Zhou

et al., in [21], extends the above method to multi-component triangular meshes.

In [5], a semantic deformation transfer method is proposed. It preserves se-

mantic motion property of the target (i.e., transferring walking action of a human

to flamingo). To begin with, all meshes of the source and the target are repre-

sented by the patch-based Linear Rotation Invariant coordinated [10]. Using stan-

dard linear algebra techniques like interpolation and projection, a new target pose

is reconstructed. This method can handle large deformations and noisy meshes.

However, the representation is specific for triangular meshes only, and full user

interaction is required to adjust for the temporal properties.

A geometric modelling method is proposed in [22]. The authors suggest pro-

jecting a shape (mesh) in a higher dimensional space called the shape space. For

the Deformation Transfer problem, a geodesic is generated based on the Rieman-

nian metric which preserves isometric property in shape space between source

reference pose and its deformed pose. This method is also extended to the quad

mesh by stiffening quad face into two triangles. However, stiffening by the edge

at a diagonal of the quad face adds a constraint to the deformation of vertices of

added edge. Such constraint restricts vertices to deform w.r.t opposite diagonal.
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Moreover, as mentioned in [22], self-collision is difficult to avoid during Defor-

mation Transfer without user intervention.

Shabayek et al. in [2] extended the Lie body manifold representation of the

triangular mesh presented in [14] for deformation transfer. In contrast to the mesh

in Euclidean space, its Lie body manifold representation has certain advantages:

it requires a minimum degree of freedom, and the non-physical deformation is

not involved due to the positive determinant of the deformation. However, this

method is limited to the triangular meshes and requires full user interaction to

adjust for the temporal properties.

In [23], Anguelov et al. propose a data-driven shape completion method that

converts partial mesh/pose to complete mesh/pose retaining the shape. The pose

model handles the pose variations, and the shape model handles the shape varia-

tions. By varying PCA parameters learned from different example shape models,

a set of shape models is generated to get the desired shape variations. The method

accomplishes two sequential tasks: (1) given a partial scan of a person whose pose

is not present in the database; a whole body surface completion is carried out, and

(2) applying this method on time series motion capture data to animate the hu-

man action. This method adjusts the temporal and spatial properties of the target.

However, it can’t handle for skeleton, quad, and n-gon faces because a face is

represented by two different vectors and a normal.

Young et al. proposed a dual-domain deformation transfer method in [24].

In this method, authors suggest converting triangular meshes into dual meshes

[25]. The affine transformation between corresponding vertices of reference and

deformed dual meshes of the source are computed. The affine transformations

computed at each dual vertex are transferred to reference dual mesh of the target

via correspondence. The resultant deformed dual mesh of the target is converted

back to the original triangular mesh. The dual mesh is not defined for the skeleton,

and user interaction is required to adjust the temporal properties of the target

sequence.

The mesh may consist of a group of unorganized triangles i.e., polygon soups

and multicomponent meshes, or volumetric representation as tet-mesh. Ben-
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Chen in [26] proposed a Deformation Transfer method suitable for such repre-

sentations as tetrahedral meshes, polygon soup, multicomponent meshes etc.. In

this method, a mesh is embedded in a space (a cage) which is made up of uni-

formly structured triangles. Deforming the space also deforms the unstructured

mesh is the key idea of this method. Initially, the space deformation between the

spaces, into which reference and deformed source meshes are embedded, is ap-

proximated by variational harmonic map (VHM) using harmonic functions. The

space deformation is transferred to the target space through a sparse set corre-

spondence assigned by the user. The deformation of the target space also deforms

the target reference mesh resulting in deformed target mesh. Similarly, Chen et al.

in [27] also propose a cage based Deformation Transfer method for organized and

unorganized triangular meshes. Unlike the VHM, Greens’ coordinates [28] have

been used to compute the deformation. Here, the source sequence is a motion

capture data. Hence, the deformation is not transferred from the source, but it is

computed at the target, considering motion capture data as handles. These meth-

ods are specific to organized or unorganized triangular and tetrahedron meshes.

It could not adjust the temporal properties of the target.

Yu at el. [29] proposed a mesh editing method based on Poisson interpola-

tion. This method is used for interactive deformation computation, mesh cloning,

and smoothing. Xu et al. in [11] extended this work to mesh morphing. The

Poisson equation is a partial differential equation that describes the potential field

on charge distribution. It is not limited to Physics but has found applications

in image processing, graphics, and geometry processing. Patrick at el. in [30]

proposed an image editing method using Possison interpolation. By varying the

guidance field, authors have shown various types of editing, such as seamless

cloning, monochrome transfer, illumination change, feature exchange, etc..

2.2 Enveloping

Linear Blend Skinning (LBS) [6] is one of the widely used enveloping techniques,

and it is implemented in almost all the game engines and graphics tools. In LBS,
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the deformation of each vertex of a mesh is modeled as a linear combination of

the deformation of skeleton bones. Since LBS is linear in nature, it can easily be

implemented on the high-performance computing hardware. Though it is fast

and simple, it introduces artifacts such as candy wrapper, joint collapse, and vol-

ume loss. Moreover, since the vertices are deformed independently by deforming

skeleton bones, the inter-vertex relationship may change during the mesh defor-

mation. This leads to the inconsistency artifacts in the deformed mesh. Wang et

al. in [31], modified vertex-bone deformation relationship defined in the LBS by

replacing single weight assigned to each bone deformation with multiple weights.

This multi-weight approach overcomes candy-wrapper and joint collapse with an in-

crease in the computational cost. Mohr et al. in [32] further extend the LBS by

approximating additional bones for the skeleton to resolve the muscle bulging is-

sue. In addition, the affinity constraint imposed on weights overcomes the weight

over-fitting problem.

Kavan et al., in [33], replaces affine transformations representing the bone and

the vertex deformations in the LBS by rigid transformations to address the incon-

sistency artifacts. In this method, the bone and vertex rotations are represented

by quaternions. Next, the vertex quaternion is approximated by blending quater-

nions of skeleton bones with convex weights. The choice of center of a vertex rota-

tion isn’t arbitrary; rather, it is predicted by solving the least squares optimization

problem. This approach can avoid artifacts such as joint collapse and “candy-

wrapper" again with an increased computational requirement. Approximating

center of rotation for each vertex individually is a computationally expensive task.

Kavan et al. [34] use dual quaternions to represent the rigid transformations. The

dual quaternion is coordinate-invariant; moreover, the convex combination of a

set of dual quaternions is also a dual quaternion. Hence, the vertex deformation

approximated using a rigid transformation of skeleton bones is a rigid transfor-

mation. The dual quaternion introduces non-linearity in computation; hence it is

computationally demanding.

Mukai et al. [35] extend the LBS by introducing helper bone in addition to

the skeleton to simulate muscle bulge. In [7], authors extend the LBS by approxi-
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mating non-linear part of a vertex deformation by a neural network. Introducing

sparseness followed by simplification in the network improvises the computa-

tion efficiency of the network. The results show the increment in the quality of

the enveloping. However a large amount of data is needed to train the neural

network. To summarize, the vertex deformation is related to the skeleton bone

deformation forsaking inter-vertex properties such as edge length in the LBS and

its variants. Such individualistic vertex deformation introduces the inconsistency

artifacts during the mesh deformation.

In [8], the energy function defined in [36, 37, 38] is combined with the energy

function defined for the LBS. Further, the vertex deformation computed using the

differential representation is constrained to be As-Rigid-As-Possible (ARAP). The

ARAP constraint preserves the edge lengths and hence avoids the inconsistency

artifacts. With this constraint, the mesh can be deformed using an abstract set of

skeleton bones as well. Wang et al. [9] proposed a non-linear enveloping method

to address the “candy wrapper" and muscle bulging issues inherent to the LBS. In

this, the deformation of a triangular face of a mesh is computed as a linear trans-

formation using the deformation gradient (DG) [1], and the mesh deformation is

represented by deformation of all triangular faces collectively. The relationship

between triangular deformation and skeleton bone deformation is established us-

ing non-linear rotation regression. Since the deformation gradient uses the ver-

tex neighbors to compute the deformation, the smooth deformation on the mesh

is achieved without inconsistency artifacts. In both cases, the presence of non-

linearity imposes the additional computational requirement. It is improvised by

segmenting the mesh into parts undergoing similar deformation and simplifying

the mesh reconstruction process. It is obvious that the quality of the mesh defor-

mation depends on the efficacy of the segmentation method and the number of

segments. Identifying the appropriate number of segments is a challenging task.

Moreover, computational overload increases with the number of segments.

In [19], authors have proposed a skinning method to deform thousands of

meshes in real-time. The skinning process is split into two stages. First, the mean-

shift algorithm [39, 40] is employed to segment out a mesh into patches. Each
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segmented patch (called proxy bone) contains a set of similarly deformed faces,

and its deformation is computed using only strongly related triangles. Second,

the bone-vertex relationship is established by assigning convex weights along

with the sparsity constraint on the neighborhood. The mesh editing is difficult

to organize due to unorganized bone hierarchy. This method is improved in [41]

by merging both processes in one optimization problem with soft non-negativity,

affinity, sparseness, and orthogonality constraints. Le and colleagues, in [42], fur-

ther improvised the skinning method proposed in [19] by constraining the uni-

fied cost function with hard constraints. The qualitative and quantitative per-

formances of these methods heavily depend upon the segmentation method to

identify the appropriate number of proxy bones. However, it is difficult to solve

the trade off between the quality of deformation and computational load.

2.3 Interpolation and Morphing

Various shape interpolation and morphing [43, 44, 37, 45] are proposed to gener-

ate intermediate poses. Alexa at el. [46] suggests an interpolation scheme for 2D

and 3D triangular meshes. The deformation of a triangular face is computed as

the linear transformation, which is further decomposed into rotation and shear

matrices for the interpolation. Similarly, in [11], the linear transformation of a ver-

tex is decomposed into rotation and shear matrices using QR decomposition for

interpolation. In both cases, the rotation is interpolated by interpolating the rota-

tional angle, and the shear is interpolated linearly. The mesh is then reconstructed

by solving a constraint optimization problem. Since the deformation is computed

for each face or vertex, the computational complexity increases with the resolu-

tion of the mesh. Moreover, both the methods [46, 11] suffer from artifacts when

the rotation is large (> 180◦).

In [12], the author proposed a mesh interpolation and morphing method based

on Lie body representation [14]. The linear transformation of a triangular face

is decomposed into the rotation, scaling, and a positive definite upper triangu-

lar matrix. The large deformation is handled by identifying affected triangles.
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Moreover, this interpolation method is directly adopted to perform the morph-

ing between two different meshes. To deal with the large deformation, in [47],

a vertex rotation is approximated from a set of relative rotations computed w.r.t

its neighbors by solving a least square problem iteratively. The relative rotations

are interpolated in pursuance of the shape interpolation, so this method becomes

computationally complex compared to interpolating direct face rotation [46, 11].

A subspace interpolation method [48] is proposed for real-time interpolation by

projecting a mesh into a lower-dimensional subspace for a given set of poses.

The subspace formation is a computationally inefficient process for a given set of

poses, and the computational cost increases with the number of poses. Moreover,

this process must be repeated for a new set of poses. The approximated subspace

may not be adopted for other applications such as morphing and deformation

transfer.

Linear Rotation Invariant coordinate [10] is proposed for mesh deformation

and interpolation. A vertex deformation is represented as fundamental forms

which are further used for interpolation. This method promotes as-rigid-as-

possible deformation of the mesh without explicit constraints, although it fails

to handle large deformations. The face-based Linear Rotation Invariant coordi-

nate [15] extends the reach of Linear Rotation Invariant coordinate to the large

deformation. In this method, the triangular face deformation is computed w.r.t

its neighbors as the linear transformation, which is further decomposed into ro-

tation and shear for interpolation. Like patch-based Linear Rotation Invariant

coordinates, the relative angle and stretch for a triangular face are interpolated

in isometry-invariant coordinate (IIC) [16] to perform interpolation and morph-

ing. The interpolated mesh is reconstructed from IIC iteratively with edge length

constraints. Due to relative face deformation, this method can handle large defor-

mation efficiently. A rigid motion invariant coordinate; Pyramid coordinate [17]

is proposed for various mesh editing tasks such as interpolation, mesh deforma-

tion, and morphing. It comprises a set of pairs of angle and edge length for each

vertex computed from its one-ring neighbors. The angle and edge length are in-

terpolated linearly. The interpolated mesh is reconstructed iteratively by solving
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a non-linear system. The Pyramid coordinate preserves the geometry and shape

of the mesh for various mesh editing tasks. Similarly, in [18], Mark Alexa pro-

poses differential coordinates for morphing and mesh deformation. The differen-

tial coordinates capture the local geometry of the mesh for various mesh editing

tasks. All these methods [10, 15, 16, 17, 18] are computationally inefficient due

to element-wise operations. Moreover, the computational cost increases with the

resolution of the mesh.

The mean value coordinates are one of the widely used barycentric coordinate

first proposed in [49] for mesh deformation and interpolation. This coordinates

are generalized for 3D closed triangular meshes in [50] to perform various mesh

editing tasks. In this, the weight computation process is generalized to 3D meshes.

The mean value coordinates are a special case of barycentric coordinates. In [51],

authors have proposed the complex barycentric coordinates to deform and inter-

polate the planar shapes. The vector graph representation is a barycentric repre-

sentation of a face. Unlike other barycentric coordinates [49, 50, 51], it can be used

for enveloping and deformation transfer. Moreover, the VG representation is not

limited to triangular meshes only. It can easily be extended to quad and hybrid

meshes.

In [22], the interpolation is performed by projecting meshes into higher di-

mensional shape space followed by approximating a geodesic with as-isometric-

as-possible and as-rigid-as-possible constraints. A multi-scale approach [52] is

proposed for as-consistence-as-possible shape interpolation. In this method, the

mesh resolution is reduced from fine to coarse resolution levels. At each level,

the edge length and dihedral angles of each triangular face are computed and in-

terpolated. The reconstruction process keeps neighbor patches as consistent as

possible. This approach [52] is further simplified in [20] by abandoning the hi-

erarchical process and simplifying energy function. In [53], a multi-resolution

Mean-Shift clustering algorithm is proposed to segment the triangular mesh into

near-rigid components. A hierarchical structure then connects the rigid compo-

nents. The pose deformation computed from the hierarchical structure and the

local deformation computed for each triangle is interpolated to get intermedi-
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ate poses. All these methods [22, 52, 20, 53] can deal with large deformation,

but they are computationally burdensome due to the multi-resolution approach,

added constraints, and complex reconstruction process.

2.4 Other Mesh Editing Applications

2.4.1 Style Transfer

In the style transfer, the action style (i.e., angry, excited, etc.) of the source is trans-

ferred to the target. In [54], the authors proposed a data-driven frequency domain

approach for style transfer that can handle heterogeneous motions. It also can

transfers style to actions that are not present in the database. Such capability turns

out to be a database enhancement method. However, this method may fail if there

is a significant difference among input action and actions in the database as noted

in the [54]. In [55], authors have proposed style transfer methods based on Itera-

tive Motion Warping (IMW). This method finds a correspondence between input

joints angle curve with output joint angle curve. The IMW consists of time and

space warp. This method produces quality result and its performance is nearly

real-time. In [56], the authors proposed a data-driven style transfer method based

on regression models. In the database, the motion is labeled in terms of style and

actions. The regression parameters are estimated for the style transfer using K-

nearest neighbors for labeled data. The authors also introduce a mixture of auto

regressive models (MAR) to handle unlabeled and heterogeneous motions. This

method can also transfer style to the motion which is significantly different from

motions in the database.

2.4.2 Motion Editing

Various motion editing methods [57, 58, 59] are proposed to edit the motion prop-

erties of the existing animation. In [60], the authors have proposed an interactive

motion editing technique using a sketch interface, and combining inverse kine-

matics with multi-level B-spline interpolation. The spatial and the temporal edit-
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ing are carried out using this method. The user can edit the motion trajectories

interactively just with brush strokes using newly introduced sketch spaces; local,

global, and dynamics. The spatial motion of the meshes can be edited using their

rig models. The cardinal spline [61] interpolation is used for motion editing tech-

nique proposed in [62]. In this method, the user can define the key frames and

specify the constraints at each key frames interactively. The trajectories traced

out by human motion capture data is considered as motion curve. The new mo-

tion is generated using proposed interpolation by editing the user defined key

frames. In [63], the authors propose a motion editing and retargeting technique

for human-like-figure considering inter and intra frame relationships. The intra-

frame relationship can be edited by solving an inverse kinematic problem with

constraints. In this approach, Degree of Freedoms (DoFs) at joints are reduced

so that the Inverse Kinematics become computationally efficient. The hierarchical

B-spline [64] is used for the inter-frame motion editing. The B-spline maintains

the smooth inter-frame relationship.

In [65], the authors have proposed a motion graph for motion generation and

path synthesis of motion capture data. The motion graph is a directed graph in

which a node indicates the transition from one motion to another, and the di-

rected edge indicates a clip of annotated motion. The smooth transition from

one motion to another is created by blending two clips. Using motion graph,

the motion is generated on the user-specified path by taking a graph walk such

that it causes minimum transition error. In [66], the author proposed a motion

retargeting method on different characters of diverse physic. During retargeting,

specific features of the motion i.e., frequency, end-effector contact, are preserved

by adding space-time constraints. In the next chapter, we present the proposed

vector graph representation in detail.
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CHAPTER 3

Vector Graph Representation

The 3D scanner scans the real-world object and stores it as a collection of the sam-

ple points. Such a set of points is known as a point cloud. Connecting neighboring

points of a point cloud by edges generate faces. Combining such faces, a 3D sur-

face is generated which is known as a mesh. The faces of a mesh can be triangles,

quad, or convex polygons. The Skeleton of a real-world object consists of spe-

cial feature points (for example, a human skeleton consists of head, upper torso,

hands, legs, etc.) known as vertices, and two vertices are conditionally connected

by a link with each other (for example, a head vertex is connected only to the up-

per torso and not with hands). Various types of meshes are shown in the Figure

3.1.

The mesh and the skeleton are examples of graphs, considering vertices as

nodes and edges as links. Both the face of a mesh and link of the skeleton can be

represented by the vectors originating from the centroid of that face and pointing

towards the vertices. If a face or a link contains n vertices, then n vectors represent

the face (for skeleton n = 2 and for triangular mesh n = 3). In the rest of the

Skeleton Triangular Quad Hybrid

Figure 3.1: Various types of meshes.
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sections, we refer to the triangular mesh and skeleton as the vector graphs (VG).

Figure 3.2 shows the vector graphs of the line segment, the triangle, the quad and

the polygon faces.
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Figure 3.2: The vector graph representation of a face; (a) the line segment, (b) the
triangle, (c) the quad and (d) the polygonal.

We represent a mesh using its VG representation. In Figure 3.2, we show vec-

tor graph representations of a skeleton bone, a triangular, a quad and a polyg-

onal faces. For example, let’s consider a polygon face f consisting of vertices

[v1, v2, . . . , vr] where r is the number of vertices in a polygon. The VG representa-

tion of f is,

[v̄1, v̄2, . . . , v̄r] = [v1 − Cf , v2 − Cf , . . . , vr − Cf ] or (3.1)




v̄1

v̄2
...

v̄r



=




v1 − Cf

v2 − Cf
...

vr − Cf




(3.2)

where, Cf =
1
r ∑r

i=1 vi is the centeroid of the face f . All other faces are represented

by the VG representation similarly. Let’s consider a mesh V consists of q vertices

and l number of faces. The VG representation of the mesh is denoted as V̄ which

consist of n number of vectors. The vector-vertex relation is defined as,

VA = V̄ or BV = V̄. (3.3)
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�
v1, v2, · · · , vq

�
A =

�
v̄1, v̄2, · · · , v̄n

�
or B




v1

v2
...

vq



=




v̄1

v̄2
...

v̄n




(3.4)

where, V ∈ R3×q (or V ∈ R3q) and V̄ ∈ R3×n (or V̄ ∈ R3n) consist of vertices and

vectors. Matrix Aq×n (or B3n×3q) can be formed using mesh connectivity. Let’s

consider the face i fi = (x1, x2, . . . , xr) to understand the formation of both A and

B where, xj ∈ {1, 2, . . . , q} is the index of a vertex of the mesh V. Both the matrices

are formed as,

Aq×n =

1 · · · i + 1 i + 2 · · · i + r · · · n






...
...

...
...

...
...

...
...

0 · · · 1 − 1
r 0 · · · 0 · · · 0 x1

0 · · · 0 1 − 1
r · · · 0 · · · 0 x2

...
...

...
... . . . ...

...
...

0 · · · 0 0 · · · 1 − 1
r · · · 0 xr

...
...

...
...

...
...

...
...

(3.5)

B3n×3q =

3x1 + 1 : 3x1 + 3 3x2 + 1 : 3x2 + 3 3xr + 1 : 3xr + 3






· · · 0 · · · 0 · · · 0 · · · 0
...

...
...

...
...

... · · ·
...

· · · I3 − 1
r 1 · · · 0 · · · 0 · · · 3i + 1 : 3i + 3

· · · 0 · · · I3 − 1
r 1 · · · 0 · · · 3i + 4 : 3i + 6

...
...

...
...

. . .
... · · ·

...

· · · 0 · · · 0 · · · I3 − 1
r 1 · · · 3i + 3r + 1 : 3i + 3r + 3

...
...

...
...

...
... · · ·

...

· · · 0 · · · 0 · · · 0 · · · 3n

.

(3.6)

where, I3 and 1 represent 3 × 3 identity matrix and 3 × 3 matrix whose all the

elements are 1 respectively. Note that the first row of above matrices (A and B)

represent the indices of columns.

27



3.1 Consistency of the VG Representation and Recon-

struction

From a given VG, it is straight forward to reconstruct the mesh. The reconstruc-

tion process involves solving equation (3.3) which is an over-determined sys-

tem of linear equations. Since the VG is a translation-invariant representation

(V̄ = VA = (V + t)A where, t is the translation applied on the mesh), the re-

constructed mesh is not unique. Hence, we can reconstruct a mesh from its VG

representation by introducing positional constraints to equation (3.3) as,

argmin
V

�VA − V̄�2

subject to vl = yl, l ∈ C
or

argmin
V

�BV − V̄�2

subject to vl = yl, l ∈ C
(3.7)

where, C is a set of indies of the constrained vertices. Since the position of con-

straint vertices have already been fixed, they can be removed from the cost func-

tion. The modified cost function is,

argmin
V̂

�V̂ Â − Ṽ�2 or argmin
V̂

�B̂V̂ − Ṽ�2 (3.8)

where, Ṽ = V̄ − Vc Al (or Ṽ = V̄ − BlVc). Here, Vc ∈ R3×|C| (or Vc ∈ R3|C|)

consists of constrain vertices. The matrix Al (or Bl) contains rows (or columns) of

A (or B) corresponding to constrained vertices. Matrices Â (or B̂) is derived from

A (or B) by removing rows (or columns) corresponding to constraint vertices. The

close-form solution for equation (3.8) is,

V̂ = V̄ Â+ − Vc Â+
l or V̂ = B̂+V̄ − B̂+

l Vc. (3.9)

Here, matrices Â+ = Â�(ÂÂ�)−1 (or B̂+ = (B̂�B̂)−1B̂�) and Â+
l = Al Â+ (or B̂+

l =

B̂+Bl) depend upon the mesh structure and can be precomputed. The constrained

vertices, Vc ∈ R3×|C| (or Vc ∈ R3|C|), are appended later to V̂ to get all vertices

(V) of the reconstructed mesh. A representation of the mesh should be consistent,
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(a) (b) (c) (d) (e) (f)

Figure 3.3: The meshes of four different objects ((a) and (d)) are regenerated by
processing all the faces ((b) and (e)) and selected faces ((c) and (f)) from their VG
representation.

.

which means it should regenerate the mesh accurately. To check the consistency,

various meshes are regenerated from its VG representation as shown in Figure

3.3. The root sum squared error is computed as a quantitative analysis as shown

in Table 3.1. Both qualitative and quantitative analysis show that the VG is a

consistent representation from which the meshes can be regenerated accurately.

Model) Face
Type

Faces Error (10−13) Reconstruction Time(ms)
Full Half Full Half Full Half

Woman Triangular 19938 10342 0.88 4.86 10.41 5.29
Head Triangular 31620 16158 1.54 2.64 16.95 9.15
Elephant Triangular 84638 43686 8.11 17.8 47.14 26.21
50002 Triangular 13776 7125 1.45 2.53 6.96 3.69
Hand Quad 8279 6624 0.12 0.37 4.45 4.08

Table 3.1: Quantitative analysis of the reconstructed meshes shown in Figure 3.3
from their VG representation.
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Algorithm 1: Face Selection Algorithm
Result: A set of selected faces L f

1 L f = ∅;
2 for vi ∈ V do
3 find set (Oi) of one-ring faces of vi;
4 A f = L f ∩ Oi # already selected faces;
5 R f = Oi − A f # Remaining faces;
6 for j ∈ R f do
7 E = set of edges of face j;
8 if E doesn’t contains edges of set of faces A f or A f = ∅ then
9 A f = A f ∪ {j};

10 end
11 end
12 L f = L f ∪ A f ;
13 end

3.2 Selection of Faces

The equation (3.3) is an over-determine system of linear equations because a ver-

tex is belong to many faces. Hence the computation cost can be reduced by re-

ducing the number of equations. Randomly removing equations may make the

system under-determine or may affect the quality of reconstructed mesh. Here,

we propose a rule based face (i.e. number of equations) selection algorithm. For

each vertex of the given mesh, there corresponds a set which contains faces that

share this vertex. In that set, there are faces amongst which there is no common

edge. We first select such faces for a vertex of a mesh. Next, we select faces for

neighbour vertices of this vertex considering already selected faces similarly. This

process is repeated till the entire vertex set is exhausted. The selection process

is explained in Algorithm 1. For the triangular meshes, the number of selected

faces are approximately half the total number of faces. As shown in Figure 3.3,

the reconstructed meshes using selected faces are visually similar to ground truth

mesh and reconstructed mesh. The root sum squared error in Table 3.1 for recon-

structed meshes is very similar to the reconstructed meshes using all the faces. As

shown in Table 3.1, the number of selected faces of triangular meshes are half so

is reconstruction time without compromising the quality.

30



vi

vj

(a) (b) (c)

Figure 3.4: (a) Face selection process for vertices vi and vj. Faces in green are
selected faces. (b) Selected faces on a mesh. (c) A zoomed patch of the mesh with
selected faces (in green) using the face selection algorithm.

3.3 Computing Deformation

To model the deformation of a mesh, we compute the deformation of all the vec-

tors of its VG representation. Such local deformations collectively represent the

mesh deformation. Let’s denote v̄ri and v̄di as reference and deformed vectors

respectively. The relation between v̄ri and v̄di is defined as,

v̄di = ai Jiv̄ri (3.10)

where, Ji and ai are scaling and rotation transformations. Next, we will show

computation of the scaling ai and rotation Ji.

v̄ri

ω

v̄di
θ

o

Figure 3.5: The graphical representation of computation of rotation using Ro-
drigues’ formula.
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s̄ri
Nri

bri

ŝri

s̄di

Ndi

bdi
ŝdi

ai Ji

Figure 3.6: The deformation of the vector v̄ri to the vector v̄di is computed as
composition of scaling (ai) and rotation Ji by forming orthonormal frames.

Rodrigues’ Formula:

The rotation matrix that rotate v̄ri towards v̄di is defined using Rodrigues’ formula

as follow,

Ji =




tω2
x + e tωxωy − gωz tωxωz + gωy

tωxωy + gωz tω2
y + e tωyωz − gωx

tωxωz − gωy tωyωx + gωx tω2
z + e


 and ai =

�v̄di�2

�v̄ri�2
(3.11)

where, ω = (ωx, ωy, ωz) =
v̄ri×v̄di

�v̄ri×v̄di�2
, e = cosθ, g = sinθ and t = 1 − cosθ. θ is the

angle between both the vectors as shown in Figure 3.5.

Orthonormal Frames:

The orthonormal frames are formed for both the vectors using normals of their

corresponding faces as shown in Figure 3.6. The orthonormal frame for both v̄ri

and v̄di is formed as,

Fri = [v̂ri, bri, Nri] and Fdi = [v̂di, bdi, Ndi]. (3.12)

Here, v̂ri and v̂di are unit vectors corresponding to v̄ri and v̄di respectively. The

vectors Nri and Ndi are unit normals of the reference and the deformed faces re-

spectively. bri and bdi are their unit binormal vectors. The transformation of the
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frame Fri to Fdi is defined as,

JiFri = Fdi → Ji = FdiF�
ri and ai =

�v̄di�2

�v̄ri�2
. (3.13)

where, the transformation matrix Ji is a rotation matrix (see proof in Appendix

A.4). ai is the scaling transformation.

3.4 Properties of Vector Deformation

Various properties of the Vector Graph representation makes it useful for various

applications.

3.4.1 Orientation of Vectors

For Deformation Transfer application, the transformation computed using a rep-

resentation should be orientation preserving transformation because it is an es-

sential property which plays an important role in preserving the shape of the tar-

get for a wide range of deformations. In [1, 14, 2, 18], the triangle deformation

is modelled locally as the linear transformation which is not orientation preserv-

ing transformation. Let x̄r and ȳr are two vectors, and x̄d and ȳd are their cor-

responding deformed vectors. The relation between x̄r and x̄d can be defined as

x̄d = ax Jxx̄r as explained in section 3.3. The orientation between x̄r and ȳr is,

cos−1(x̂�rŷr) = θr (3.14)

where, x̂r = x̄r/�x̄r� and ŷr = ȳr/�ȳr� are unit vectors. Applying deformations Jx

and ax on the vector ȳr, we get ȳd = ax Jxȳr where, ax = �ȳd�/�ȳr� = �x̄d�/�x̄r�.

The orientation between x̄d and ȳd is

θd = cos−1(x̂�dŷd) = cos−1(
(ax Jxx̄r)�

�x̄d�
(ax Jxȳr)

�ȳd�
)

= cos−1((
x̄r

�x̄r�
)�(

ȳr

�ȳr�
)) = cos−1(x̂�rŷr) = θr.

(∵ J�i Ji = I3) (3.15)
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Hence, the transformation composition, rotation and scaling, preserves the orien-

tation.

3.4.2 Set of Deformation as a Manifold

As noted in [14], a triangular deformation computed as the linear transformation

should form a manifold because it is vital for statistical analysis, distance mea-

surement, and interpolation of meshes. The transformation which does not form

a manifold may lead to non-physical deformation on the mesh. Using the VG rep-

resentation, the mesh deformation is modelled as a collection of composition of

rotation and scaling of each vector. Hence, the mesh deformation using VG also

forms a group.

Definition 1. The vector deformation group gv ∈ Gv, is a tuple,

gv = (a1 J1, a2 J2, . . . , an Jn) (3.16)

where, ai ∈ R+ and Ji ∈ SO(3). The composition map,

Gv × Gv �→ Gv, (3.17)

(a1
1 J1

1 , a1
2 J1

2 , . . . , a1
n J1

n)× (a2
1 J2

1 , a2
2 J2

2 , . . . , a2
n J2

n) �→ (a1
1a2

1 J1
1 J2

1 , a1
2a2

2 J1
2 J2

2 , . . . , a1
na2

n J1
n J2

n)

(3.18)

x

y

ŷ
TxM

M

y(t)

Figure 3.7: Manifold M and tangent space TxM at point x.

The group Gv is a subgroup of the general linear group (Gl(3)) of invertible
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matrices which is a Lie group. Hence, Gv is a subgroup of the Lie group. Since

the Lie group is a smooth manifold, the Gv is also a smooth manifold denoted

as M. The dimension of the manifold M is 4Nv where, Nv is the number of

vectors in the VG representation of a mesh. Let x and y are points on the manifold

M. The tangent space at point x ∈ M is denoted as TxM. Both the manifold

and tangent space TxM are related by exponential and logarithmic maps. The

logarithm (log : y �→ ŷ) connects manifold to tangent space whilst the exponential

(exp : ŷ �→ y) connects tangent space to manifold. The point y on manifold is

related to tangent space TxM as y = x ∗ exp(log(x−1y)) = x ∗ exp(ŷ) as shown in

Figure 3.7. The geodesic between point x and y on manifold M is computed as

y(t) = x ∗ exp(t ∗ log(x−1y)), where t ∈ [0, 1].

3.4.3 Simplification Due to Commutativity of Scaling and Rota-

tion

The commutative composition of a transformation computed by a mesh represen-

tation simplifies the proposed enveloping (see transition from equation (5.26) to

equation (5.27) and interpolation (see transition from equation (6.17) to equation

(6.18) processes such that it becomes computationally real-time. Such simplifica-

tion is not possible for other representations [1, 14, 10, 47, 16]. In some of these

representations, the triangle deformation computed as the linear transformation

is represented as composition of the rotation and positive definite symmetric ma-

trices using QR-decomposition. In [14], the linear transformation is represented

as composition of rotation, scaling, and positive-definite upper triangular matrix.

These compositions are not commutative. In VG, the vector deformation compo-

sition, rotation and scaling, is commutative as,

ai Ji = Jiai (3.19)

where, ai and Ji are scaling and rotation of the vector i.
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CHAPTER 4

Deformation Transfer

In graphics and animation, animating the target object according to an example

(source object) animation sequence is a challenging problem. Moreover, this pro-

cess involves highly skilled graphic developers. Deformation Transfer is a process

that transfers the action of a source object to the target object. Deformation Trans-

fer generates an action sequence (of poses) of the target object similar to the action

sequence of the source object with minimum human intervention. As an example

of Deformation Transfer, in Figure 4.1, the poses of a female actor (on the right)

are generated according to the poses of a male actor (on the left). Deformation

Transfer to be effective, should transfer the deformation of the source to the target

automatically and should also preserve the target shape.

Figure 4.1: Demonstration of the deformation transfer : The action of a man
(Source) is transferred to the woman (Target).

It is necessary that the Deformation Transfer algorithm preserves geometric

details of the target object during the process of deformation transfer. In prac-

tice, various geometric models such as polygon/tet-mesh and skeleton are used

for various applications. For example, skeletons are used in action and activity
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recognition whereas triangular, quad hybrid meshes are used in animations and

computer graphics to model 3D objects. Handling variety of geometric models,

adjusting temporal positions and motion trajectory, and preserving the target fea-

tures are challenges for a Deformation Transfer method.

The Deformation Transfer is carry out in two phases; first, a dense set of cor-

respondence between the reference source and the target is identified from the

sparse set of user selected markers and in second phase, the deformation of source

is transferred to target with the help of known correspondence. We, in proposed

method, assume that the dense set of correspondence is available. However, if

such correspondence is not available, then any known mesh registration method

can be used for establishing the correspondence for example [1, 67]. In proposed

approach, the mesh is represented by vector graph (VG) representation which con-

sists of a collection of vectors for various types of meshes such as skeleton, trian-

gular, quad and hybrid meshes. A vector deformation is decomposed into rota-

tion and scaling. In this work, the Deformation Transfer problem is explored by

computing the shape and the pose deformations which capture shape and pose

variations respectively using the VG representation. The Deformation Transfer

using shape deformation causes artifacts on the target mesh when the deforma-

tion is large. It also fails to preserve the planarity of the quad faces. These lim-

itations are addressed in the Deformation Transfer using the pose deformation

which characterizes the pose variation in the source mesh. Here, we also bring

out the differences between this approach and the other Deformation Transfer

methods proposed in [1] and [2]. It is straight forward to move from the VG to the

mesh and vice versa. Using Deformation Transfer, the approximated poses of the

target sequence has the similar temporal properties as the source sequence. These

properties of the target sequence are further refined using Poisson Interpolation by

modifying the temporal gradient information.
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Figure 4.2: Deformation Transfer using shape deformation. The source sequence
{S1, S2, . . . , Sp−1, Sp} and initial(T1) and final (Tp) poses of target are input to the
Deformation Transfer framework. The shape deformation, Φ, is computed from
the source and the target reference poses. Target sequences {T̃1, T̃2, . . . , T̃p−1, T̃p}
and {T1, T2, . . . , Tp−1, Tp} are generated by transferring Φ to corresponding deform
source poses and by refining temporal properties using the Poisson interpolation.
∇Td and ∇T̃d are temporal gradients of pose d of the target sequence estimated
by the Deformation Transfer and the Poisson interpolation respectively.

4.1 Deformation Transfer Using Shape Deformation

Figure 4.2 outlines the Deformation Transfer approach using the shape defor-

mation (Φ) which captures the shape difference between the source and the

target reference meshes. It is computed using the VG representation through

established correspondences. The computed shape deformation is then trans-
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ferred to the deformed source poses to get corresponding deformed target poses

{T̃2, T̃3, . . . , T̃p−1, T̃p} as shown in Figure 4.2. These processes are explained in de-

tail in the following sections.

4.1.1 Shape Deformation

Here, the shape deformation computation process is explained in detail. Let’s

denote ith reference source and reference target vectors as s̄ri and t̄ri as illustrated

in Figure 4.3(a). The relation between both the vectors is defined as,

t̄ri = biRis̄ri (4.1)

where bi and Ri are scaling factor and rotation matrix respectively. The rotation

is computed using Rodrigues’ rotation formula as explained in section 3.3. The

scaling is computed as bi = �t̄ri�/�s̄ri�. Similarly, we compute the scaling factor

and the rotation matrix for each source-target vector pair.

sri

s̄ri

cs
ri

sdi

s̄di

cs
di

b
i R

i

Source

Reference Deformed

tri

t̄ri

ct
ri

tdi

t̄di
ct

di

b i
R

i

Target

Transfer

sdi

cs
di

t̂di = biRis̄di + cs
di

= t̄di + cs
di

Vector Translation

(a) (b)

Figure 4.3: (a) The deformations bi and Ri are computed from ith source and target
reference vectors. The deformations are then transferred to the corresponding ith

deformed source vector to get deformed target vector. (b) The computed deform
target vector t̄di is translated to the centroid of the corresponding source face.
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Deformation Transfer

Our objective is to estimate unknown the target sequence using the shape defor-

mation. For this task, the shape deformation is applied to the VG representation

of the deformed source poses. The reconstruction process approximates the de-

form mesh from its VG representation. In this process, the deform target vector i is

initially translated to centroids of corresponding source face as (see Figure 4.3(b)),

biRis̄di + cs
di = t̂di (4.2)

where, cs
di is the centroid of the deform source vector i. A similar relationship can

be derived for all other vectors of the deform target vectors. Collectively, all n

equations are combined in the following form,

ΦS̄d + Cs
d = ΦBSd + DSd = (ΦB + D)Sd = MSd = T̂d (4.3)

where, Φ is the shape deformation. The matrices B and D are 3n × 3q matrices

sd1

sd2

sd3

sd4

cs
1

cs
2

t̂1
d2

t̂2
d2

t̃d1

t̃d2

t̃d3

t̃d4

(a) (b)

Figure 4.4: The mesh reconstruction process. (a) Translated deform target vectors
(t̂1

d2 and t̂2
d2) to the centroids of corresponding source faces (cs

1 and cs
2). Note that

the deform target faces are disconnect. (b) The reconstructed deform target mesh
vertices t̃di.
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such that,

Φ =




b1R1 0 . . . 0

0 b2R2 . . . 0
...

... . . . ...

0 0 . . . bnRn




, BSd =




s̄1

s̄2
...

s̄n




, DSd =




cs
d1

cs
d2
...

cs
dn




and T̂d =




t̂d1

t̂d2
...

t̂dn




(4.4)

where, cs
di is the centroid of a face in which source vector i lays. The column matrix

T̂d contains vertices of the disjoint deform target faces as shown in Figure 4.4(a).

For the proper mesh, the disjoint faces should be connected. The fully connected

deform target mesh as T̃d is related with T̂d as,

ET̃d = T̂d (4.5)

where matrix E is a incident matrix and it can be derived from the mesh connec-

tivity. The deformed target mesh (T̃d) is derived by solving equation (4.5) in the

least square sense as,

T̃d = E+T̂d = E+MSd (4.6)

where, T̃d is a fully connected mesh as illustrated in Figure 4.4(b). The matrix

E+ = (E�E)−1E� is a pseudo inverse of E. The formation of matrix E and E+ can

be understood with the following example. Let’s consider a VG with four vertices

{x0, x1, x2, x3} and two faces F = [[0, 1, 2], [0, 3, 2]]. Here, n = 3, q = 2, m = 4 and

matrices,

E =




I3 0 0 0

0 I3 0 0

0 0 I3 0

I3 0 0 0

0 0 0 I3

0 0 I3 0




, D =
1
3




1 1 1 0

1 1 1 0

1 1 1 0

1 0 1 1

1 0 1 1

1 0 1 1




, B = E − D, E+ =




1
2 I3 0 0 1

2 I3 0 0

0 I3 0 0 0 0

0 0 1
2 I3 0 0 1

2 I3

0 0 0 0 I3 0




.

(4.7)
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where, I3 is the (3 × 3)identity matrix and 1 is a 3 × 3 matrix whose elements are

all 1. It is clear that t̃di is an average of vertices shared by disjoint faces (t̂1
d2 and

t̂2
d2) as shown in Figure 4.4. The reconstruction process combines all the disjoint

faces to get the proper mesh.

4.1.2 Poisson Interpolation

In this section, we discuss the Poisson interpolation proposed in [30, 11]. Consider

a set S ⊂ R2, Ω ⊂ S, a vector field g : Ω → R2 and ∂Ω the boundary of the set

Ω. Let f ∗ be a known scalar function defined over S and f be an unknown scalar

function defined over Ω. The Poisson interpolation finds the unknown scalar

function as a solution to the optimization problem,

argmin
f

� �

Ω
|∇ f − g|2 with f |∂Ω = f ∗|∂Ω (4.8)

where ∇· = [ ∂·
∂x , ∂·

∂y ]. The equation (4.8) is the Euler-Lagrange equation and its op-

timal solution is the well known Poisson equation with Dirichlet boundary con-

ditions,

Δ f = div · g over Ω with f |∂Ω = f ∗|∂Ω (4.9)

where, Δ is the Laplacian operator and div · g is the divergence of the vector field

g. The unknown function f can be derived by solving the equation (4.9).

Effect of Boundary Conditions:

Let’s consider a bunch of connected source particles S is moving in R3. The con-

nection amongst them is in the form of either a line, a triangle, or a quad at an

instance of time. We wish to generate similar trajectories for a bunch of the target

particles P , given their initial and final positions (boundary conditions). In this

problem, we consider two types of boundaries: different initial and final positions

(Non-similar boundaries), and the same initial and final positions (Similar bound-

aries). The connection between estimated target trajectories should be the same

as the source at an instance of time. This problem can be formulated as Poisson
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(a) Non-similar Boundary Condition (b) Similar Boundary Condition

Figure 4.5: The trajectories of the bunch of target particles P (in green, and gray)
are estimated using the trajectories of the bunch of connected source particles S
(in pink) with (a) non-similar boundary condition and (b) similar boundary condition.
The blue and yellow are initial and final boundaries respectively.

interpolation. The experimental results of Poisson interpolation are presented in

Figure 4.5. In this experiment, we have considered two, three, and four particles

in a bunch with linear, triangular, and quadrangular connectivity. It is interesting

to observe that Poisson interpolation maintains the shape of trajectories and con-

nections amongst the target particles P similar to S . It also adjusts their relative

positions and motion directions depending upon their boundary conditions.

Let {S1,S2, . . . ,Sh} is a set of temporal positions of the source particles S on

their trajectories and {P1,Ph} is the set of boundary positions of target particles

P . Estimated temporal positions of target particles P at y using the Poisson in-

terpolation with non-similar boundaries, is computed using equation (4.9) (see Ap-

pendix A.2 for derivation) as,

Py = Sy +
y − 1
h − 1

Ph +
h − y
h − 1

P1 −
y − 1
h − 1

Sh −
h − y
h − 1

S1. (4.10)
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(a) (b)

Figure 4.6: The trajectories of a target particle P (in blue, green, and magenta)
estimated using the trajectory of a source particle S (in red) with (a) non-similar
boundary constraint and (b) similar boundary constraint.

For similar boundaries (P1 = Ph and S1 = Sh), above equation is rewritten as,

Py = Sy + P1 − S1. (4.11)

Hence, for similar boundaries, the temporal positions of particles P get the same

translation P1 − S1 resulting in particles P have the same trajectories as the S (see

Figure 4.5(b)). For non-similar boundaries, temporal positions and so the motion

directions of particles P is adjusted according to equation (4.10) but shapes of

trajectories remain similar as S (see Figure 4.5(a)). It is the same case for the single

particle as shown in Figure 4.6.

4.1.3 Guided Deformation Transfer

The estimated target sequence {T̃1, T̃2, . . . , T̃p} has similar deformations, motion

trajectory and pose position as the source as shown in Figure 4.7(a) and (b). Since

both the source and the target are different animation characters, these proper-

ties should be adjusted accordingly for the target. The objective here is to esti-

mate unknown target sequence {T1, T2, T3, . . . , Tp−1, Tp} which consists of refined

temporal properties. The Poisson interpolation can perform this task based on

given initial and final poses T1 and Tp. Since we have transformed sequence

{T̃1, T̃2, . . . , T̃p}, its temporal gradient information is used as guiding vector field.

In terms of the Poisson interpolation frame work explained in section 4.1.2, we
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(a) Source (b) DT (c) GDT (d) Ground Truth

Figure 4.7: (a) Source sequence. (b) The target sequence generated by Deforma-
tion Transfer (DT) without Poisson interpolation. (c) The target sequence gener-
ated by Guided Deformation Transfer (GDT). The Poisson interpolation can ad-
just temporal properties of the target based on boundary conditions using tem-
poral gradients of trajectories of vertices sequence estimated by the Deformation
Transfer (DT). (d) Available target sequence in the Dyna dataset [4] considered as
ground truth.

consider X = {T1, T2, . . . , Tp}, Ω = {T2, . . . , Tp−1} and ∂Ω = {T1, Tp}. The defor-

mation transfer problem can now be put in the form of Poisson interpolation as

follows: Given X, Ω and ∂Ω above, generate {T2, T3, . . . , Tp−1}, with the condition

that the temporal gradient ∇Tk is the same as ∇T̃k. The objective function can be

formulated as follows,

argmin
Tk∈Ω

p−1

∑
k=2

�∇T̃k −∇Tk�2
2 with T1, Tp ∈ δΩ. (4.12)

From equation (4.6), we can rewrite above equation as,

argmin
Tk∈Ω

p−1

∑
k=2

�∇(E+MSk)−∇Tk�2
2 with T1, Tp ∈ δΩ. (4.13)

where, the matrices E+ and M can be computed as explained in the section 4.1.1.

To solve for Tk, setting the gradient of the objective function to zero, gives,

∀k, ΔTk = Δ(E+MSk) = E+M(ΔSk) (∵ Δ is linear operator) (4.14)
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where, Δ is a Laplacian operator so it is linear operator. ΔTk = 2Tk − Tk+1 − Tk−1

and ΔSk = 2Sk − Sk+1 − Sk−1 are denoted as Laplacian of Tk and Sk respectively.

Equation (4.14) is the Poisson equation with known boundary constraints T1 and

Tp. Since the generated system of linear equations (4.14) is symmetric and has a

unique solution, this can be solved by the Gauss-Seidel iterative successive over

relaxation method as follows,

∀k, T(x+1)
k = (1 − ω)Tx

k +
ω

2
(E+M(ΔSk) + Tx

k−1 + Tx
k+1) (4.15)

where, ω is a constant, we choose ω = 1.9 experimentally. Hence, the refined

target sequence can directly be computed from the source sequence. The equation

(4.14) can be simplified similar to equation (4.10)) as follows,

Tk = E+M(Sk −
p − k
p − 1

S1 −
k − 1
p − 1

Sp) +
p − k
p − 1

T1 +
k − 1
p − 1

Tp. (4.16)

In case of non-similar boundary condition, Poisson interpolation adjusts motion tra-

jectory and pose position based on guided field and boundary conditions. For

similar boundary condition (T1 = Tp and S1 = Sp) above equation is modified to

Tk = E+MSk + E+MS1 + T1 = E+MSk + T̃1 − T1 = E+MSk + d. (4.17)

For similar boundary condition, the Poisson interpolation doesn’t modify motion

trajectories of target sequence estimated by the Deformation Transfer, but it ad-

justs the pose position according to translation (d). Figure 4.7 shows the effect of

Poisson interpolation on estimated target action sequences. Note that, for Defor-

mation Transfer without Poisson interpolation, the temporal properties of the tar-

get are similar to the source as shown in Figure 4.7(b). Poisson interpolation with

similar boundary condition generates the same sequence, but all poses are trans-

lated by d. The Deformation Transfer using Poisson interpolation with non-similar

boundary condition adjusts temporal properties of the target according to bound-

ary poses so the target sequence is close to the ground truth as shown in Figure

4.7(c) and (d). The temporal properties of the target sequence are adjusted using
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the source guidance field (i.e., ∇Sk), so this method is called Guided Deformation

Transfer.

Person (no. of
actions × no. of
poses in a
sequence)

Proposed DG Semantic Lie Body
method [1] [5] [2]

avg max avg max avg max avg max
Person 1 (13 × 9) 0.98 10.09 3.99 26.85 5.06 46.32 2.47 28.61
Person 2 (12 × 9) 0.95 10.02 5.01 27.07 5.25 40.50 3.03 30.84
Person 3 (10 × 9) 1.28 12.78 5.38 30.39 5.62 56.50 3.41 37.01
Person 4 (13 × 9) 0.95 9.82 3.79 21.18 5.37 43.73 2.39 29.28
Person 5 (12 × 9) 0.91 8.92 4.15 22.59 3.83 29.28 1.89 22.46
Person 6 (13 × 9) 1.45 25.03 4.18 22.21 5.48 49.67 2.50 30.46
Person 7 (12 × 9) 0.98 8.79 3.95 24.51 4.28 45.69 2.26 25.26
Person 8 (13 × 9) 0.85 6.48 4.23 23.77 5.66 40.76 2.64 21.58
Person 9 (12 × 9) 1.05 9.14 4.54 26.47 5.99 50.49 2.67 27.79

Table 4.1: Comparison of proposed method with state-of-the-art methods in terms
of average and maximum of root sum squared errors computed at each vertex of
all the estimated poses of a target performing several actions.

Action (no. of
persons × no. of
poses in a sequence)

Proposed DG Semantic Lie Body
method [1] [5] [2]

avg max avg max avg max avg max
one leg jump (9× 9) 0.55 3.64 4.10 14.51 2.99 20.17 1.59 13.69
one leg loose (9× 9) 0.37 2.87 3.04 12.65 3.31 20.87 1.28 10.65
chicken wings(8× 9) 1.02 8.27 3.11 20.15 3.34 22.92 2.21 24.60
shake hips (9× 9) 1.78 6.41 4.48 23.77 2.89 15.45 2.84 21.58
jiggle on toes (9× 9) 0.72 6.08 4.10 26.69 3.36 40.50 2.01 30.84
jumping jacks (7× 9) 1.90 12.44 4.99 20.53 14.32 55.83 4.56 30.46
hips (8× 9) 0.12 0.92 4.17 11.68 2.31 10.22 0.73 4.61
shake shoulders (8× 9) 1.14 6.42 4.44 16.40 3.45 20.17 2.95 16.26
shake arms (8× 9) 1.96 10.02 4.49 21.19 6.62 34.21 3.94 29.28
running on spot (9× 9) 2.10 12.77 6.93 30.40 12.94 56.50 6.34 37.01
light hopping stiff (9× 9) 0.39 3.49 2.90 9.01 1.59 17.59 0.77 5.06
punching (8× 9) 2.12 25.03 5.12 21.42 8.97 49.67 3.25 25.26
knees (9× 9) 0.29 8.92 4.50 19.87 3.02 35.24 1.37 22.66

Table 4.2: Comparison of proposed method with state-of-the-art methods in terms
of average and maximum of root sum squared errors computed at each vertex of
all the estimated poses of an action performed by several targets.
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(a) (b) (c) (d) (e) (f)
Source Target Proposed DG Semantic Lie Body

Sequence Ground Truth Method [1] [5] [2]

Figure 4.8: (a) Sources action sequences running on spot, chicken wings and jumping
jacks (top to bottom). ((b) and (g)) Natural action sequences (ground truth) of two
different individuals from dataset [4]. ((c) and (h)) Estimated action sequences by
proposed method. ((d) and (i)) Estimated sequence by SumPop [1]. ((e) and (j))
Estimated sequence by Semantic [5]. ((f) and (k)) Estimated sequence by Manifold
[2].

4.1.4 Results and Discussion

The Deformation Transfer is implemented in Python 3.7 and tested on a core-i7-

2.8GHz computer. We have developed a deformation transfer add-on for 3D mesh

processing software Blender 2.81. All the results excluding skeleton, Figure 4.5 and

Figure 4.6, are generated using blender implementation. The code is available at

https://github.com/prashantdomadiya/DeformationTransferToolBlender.
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(a) (b) (c) (d) (e) (f)
Source Target Proposed DG Semantic Lie Body

Sequence Ground Truth Method [1] [5] [2]

Figure 4.9: (a) Sources action sequences running on spot, chicken wings and jumping
jacks (top to bottom). ((b) and (g)) Natural action sequences (ground truth) of two
different individuals from dataset [4]. ((c) and (h)) Estimated action sequences
by proposed method. ((d) and (i)) Estimated sequence by Deformation Gradient
(DG) [1]. ((e) and (j)) Estimated sequence by Semantic [5]. ((f) and (k)) Estimated
sequence by Lie Body [2].

Experiments on Mesh Dataset

We have experimented extensively on the triangular mesh dataset [4]. This

dataset consists of triangular meshes of 10 different individuals performing 13

different actions. Each action sequence contains 9 triangular meshes. However,

in this dataset, some action sequences of a few individuals are not available. Each

mesh in this dataset has 6890 vertices and 13776 faces. The coordinate values of

vertices are in meter (m) (real-world scans of humans).

In experiments, an action performed by an individual is taken as the source

49



sequence. A source performing three different actions running on spot, chicken

wings and jumping jacks is shown in Figure 4.8(a) and 4.9(a). Figure 4.8(b) and

Figure 4.9(b) are the target sequences taken from the dataset [4] and it is con-

sidered as the ground truth. Figure 4.8(c-f) and Figure 4.9(c-f) are the estimated

sequences of the target individuals by proposed method, Deformation Gradient

[1], Semantic [5] and Lie Body [2] respectively. Figure 4.8 and 4.9 indicate qual-

itative comparison of the proposed method (with non-similar boundary condition)

with three state-of-the art methods ([1, 5, 2]) for natural action sequences available

in the dataset [4]. Table 4.1 and 4.2, presents the quantitative comparison of the

proposed method with three state-of-the-art methods over the same dataset. We

have used the vertex to vertex root sum squared errors in coordinates values as a

measure of comparison. The average and maximum of root sum squared error are

taken over all poses of a sequence under consideration. Average and maximum of

root sum squared errors for a person performing several actions and for an action

performed by several persons are tabled in Table 4.1 and Table 4.2 respectively.

Modules Proposed Method DG[1] Semantic[5] Lie Body[2]
Preprocessing 10.9 2.58 4.5 (per pose) 0.89

Pose Estimation 0.025 1.20 10 1.12

Table 4.3: Computation time is in seconds for all methods. The numbers in the
table indicate the average time required for preprocessing and pose estimation
stages.

Observe that, in Figure 4.8 and 4.9, the temporal properties vary for the differ-

ent targets performing the same action as performed by the source. As explained

in section 4.1.3, the Poisson interpolation not only adjusts temporal properties but

also preserves the shape by incorporating shape deformation. As a result, the

generated target sequence is close to natural motion sequence as shown in Figure

4.8(c) and Figure 4.9(c). The same is evident from Table 4.1 and 4.2 where the av-

erage and maximum of root sum squared errors are also small compared to three

state-of-the-art methods. For the methods in [1] and [2], local deformations of

the source sequences are directly transferred to the target with smoothness con-

straints so it generates similarly deformed target sequence as the source. As a re-

sult, the target sequence imitates the same motion properties as the source rather
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Figure 4.10: Deformation transfer with non-similar boundary constraint for differ-
ent actions walk, seat, grab, phone, watch clock, scratch head, cross arms, kick (top to
bottom left to right): Source sequence is shown in green and the estimated target
sequence is shown in red. The initial poses and the final poses are shown in blue
and magenta respectively.

than adjusting it according to the target. The method in [5] is able to maintain

the shape and motion direction of the target because the source deformation is

not directly adopted but its projection on the previous pose is adopted. However,

due to this strategy, the deformation applied to the estimated poses of the target

is highly dependent on the deformation of the previous target poses. As a result,

if the deformations in previous target poses are small, this method fails to adjust

the motion of the target (see the Figure 4.8(e) and 4.9(e)) which is also reflecting

high root sum squared errors.

Table 4.3 shows the comparison of implemented methods in terms of time re-

quired to perform the deformation transfer on this dataset for each method. The

preprocessing step is required only once to estimate the shape deformation for

proposed method, generate adjacency matrix for Deformation Gradient [1] and
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Lie Body [2], and compute linear rotation invariant coordinates, for example,

poses (we have taken 5) for Semantic [5]. The estimation step includes the cost

associated with estimation of each pose of the target and also the cost of mesh

reconstruction.

Figure 4.11: Deformation transfer on quad mesh. The deformation for a cube (Top
row) is applied to the another mesh (bottom row).

Experiments on Skeleton dataset

The experiment on the UPCV action dataset [68] shows that the proposed method

can also be applied to the skeletons. This dataset contains twenty skeletons of the

different individual with twenty joints performing ten different actions. In Figure

4.10, we have shown 8 such action sequence of the target skeleton generated by

the proposed method using source skeleton sequences.

The proposed method transfer deformation from the source to the target skele-

ton sequence by adjusting the speed and motion direction without changing its

shape. For instance , in watch clock and scratch head sequences in Figure 4.10, the

source performs action using right hand while the target performs same action by

left hand. For such cases also, the estimated poses maintain the left-hand action.

Limitations

Despite the impressive results on triangular meshes and skeleton pose, the pro-

posed method causes artifact when the deformation is large as shown in Figure

4.21. Moreover, it doesn’t guarantee the planarity of the quad faces as shown in
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Figure 4.11. In the next Deformation Transfer approach, the pose deformation

can handle the large deformation, and added planarity constraint preserves the

planarity of polygon faces.

Θ2

Θp−1

Θp

S1 S2 Sp−1 Sp

Θ2

Θp−1

Θp

∇T̃2 ∇T̃p

T̃1 T̃2 T̃p−1 T̃p

∇T2 ∇Tp

T1 T2 Tp−1 Tp

Figure 4.12: The Deformation Transfer framework using the pose deformation.
The source sequence {S1, S2, . . . , Sp−1, Sp} and reference (T1) and final (Tp) poses
of target are input to the Deformation Transfer framework. The pose deformation
Θd characterized the deformation of the reference source pose S1 to Sd. The tar-
get sequences {T̃1, T̃2, . . . , T̃p−1, T̃p} and {T1, T2, . . . , Tp−1, Tp} are generated by the
Deformation Transfer and the Guided Deformation Transfer. ∇Td and ∇T̃d are
temporal gradients of pose d of the target sequence estimated by the Deforma-
tion Transfer and target sequence estimated by the Guided Deformation Transfer
respectively.
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4.2 Deformation Transfer Using Pose Deformation

Figure 4.12 outlines the Deformation Transfer framework using the pose defor-

mation. Let’s consider a sequence of p source poses {S1, S2, . . . , Sp−1, Sp}. Each

pose in the sequence can be formed by deforming the reference source pose and

this deformation is characterized by the pose deformation (Θk). The computed

pose deformation for each deformed source pose is then transferred to the refer-

ence target pose to get target sequence {T̃1, T̃2, . . . , T̃p−1, T̃p}. This target sequence

is in a way deformed similar to the source sequence. The temporal gradients of

the target poses are further refined using the Poisson interpolation to adjust for

temporal properties of the target sequence such as individual motion trajectory.

The sequence {T1, T2, . . . , Tp−1, Tp} is the refined target motion sequence using the

Poisson interpolation as shown in the Figure 4.12.

s̄ri s̄di

ai Ji

Reference Deformed

t̄ri t̄di
ai Ji

Transfer

Figure 4.13: The deformations ai and Ji computed from source reference and de-
formed vectors, are transferred to the corresponding target reference vectors.
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4.2.1 Pose Deformation and Deformation Transfer

The pose deform captures the pose variation of the source. It is computed from

the source reference and its deform pose using the VG representation, and it is

then transferred to the reference target pose. The process is illustrated in Figure

4.13. Let’s consider the reference and the deform source vectors s̄ri and s̄di. The

deformation of the vector s̄ri to the vector s̄di is characterized as,

s̄di = ai Jis̄ri (4.18)

where bi and Ri are scaling factor and rotation matrix respectively. The rotation is

computed by forming orthonormal frames as explained in section 3.3. The scaling

is computed as ai = �s̄di�/�s̄ri�. The computed deformation (ai Ji) is then trans-

ferred to the corresponding reference target vector t̄ri to get deform target vector

t̄di as,

t̄di = ai Ji t̄ri. (4.19)

Similarly, the deformation computed from all the source vectors is then trans-

ferred to the corresponding target reference vectors. The correspondence can be

established using a mesh registration method such as [1]. The pose deformation

(Θ) is formed as,

Θ =




a1 J1 0 . . . 0

0 a2 J2 . . . 0
...

... . . . ...

0 0 . . . an Jn




(4.20)

where, n is the number of vectors in the VG representation of the target mesh.

The computed pose deformation Θ transforms the VG representation of reference

target pose (T̄r) to the VG representation of deformed target pose (T̄d). The rela-

tionship is defined as,

T̄d = BT̃d = ΘT̄r (4.21)

where T̃d is the deformed target mesh and matrix B is computed from the mesh

connectivity as explained in section 3.1. The deform target mesh T̃d is approxi-
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mated by following the reconstruction process.

Reconstruction

Since the VG is a translation invariant representation, the mesh can be recon-

structed anywhere in R3. For this reason, the equation (4.21) is an overdetermined

system of linear equations. This problem can be solved by imposing positional

constraints during the mesh reconstruction process as,

argmin
T̃d

�BT̃d − T̄d�2
2

subject to t̃di = v

(4.22)

where, T̃d is a fully connected mesh in R3 and t̃di is a constrained vertex of de-

formed target mesh T̃d. Here, we set the constraint vertex t̃di at the global origin

0 ∈ R3. The matrix B is computed from the target mesh connectivity as shown

in equation 3.6. Above optimization problem can be now solved as explained in

section 3.1. The reconstructed deformed target mesh is

T̂d = B̂+(T̄d − Blv) = B̂+(T̄d − Bl0) = B̂+T̄d (4.23)

where, the matrices B̂ and Bl are computed from the mesh connectivity as ex-

plained in section 3.1. The constraint vertex t̃di is appended to T̂d to get fully

connected deform target mesh T̃d.

4.2.2 Dot Product Property

One of the main objectives of the Deformation Transfer is to preserve the geo-

metric details of the target for the wide range of deformations. Here, we explain

the importance of dot product property for this context. As explained in section

3.4.1, the vector deformation decomposition, rotation, and scaling, preserves the

dot product property for deformation transfer. The dot product between deform
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(a)

(b)

(c)

(d)
Reference Deformed

Figure 4.14: (a) A source sequence of a cube (a triangular mesh) in which twisting
and scaling effects is applied. Deformation from the source (cube) is transfered to
the target (sphere) (b) by Deformation Gradient [1],(c) by Lie Body [2] and (d) by
proposed method (only Deformation Transfer).

source (s̄di) and target (t̄di) is computed as,

�s̄�di��t̄di�cosθdi = s̄�dit̄di = (ai Jis̄ri)
�(ai Ji t̄ri) = a2

i s̄�ri t̄ri =
�s̄di�
�s̄ri�

�t̄di�
�t̄ri�

�s̄ri��t̄ri�cosθri

(4.24)

cosθdi = cosθri (4.25)

where, θri is the angle between reference source and target vectors, and θdi is the

angle between deformed source and target vectors. Each vertex of a face can be

deformed independently and it, in turn, deforms a face. In [1], such deformation is

modeled as the linear transformation (Q) which may not preserve the dot product
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property. As a result, it may not maintain the orientation difference,

v�kuk = v�1Q�Qu1 �= c2v�1u1. (4.26)

Refer to [1] for notations. To maintain the dot product property, the deformation

transferred to the target face should be in the form of either rotation, scaling, or

composition of them. The VG allows us to model the deformation of each vector

(vertex w.r.t centroid) in the form of rotation and scaling. In Lie Body [2], the tri-

angle deformation is decomposed into the rotation, scaling, and positive definite

matrix as suggested in Lie body representation [14]. Since the positive definite

matrix is not orientation preserving transformation in this decomposition, the tri-

angle deformation can’t preserve the dot product property. Moreover, in Lie Body

[2], the transformation that transforms a source triangle to its canonical form, is

transferred to the target reference. If corresponding reference the source and tar-

get triangles are in different orientations, then such transformation won’t convert

the reference target face to its canonical form. As a result, the undesirable artifacts

occur in the target mesh as shown in Figure 4.14(c).

This is a major difference between the methods proposed in Deformation Gra-

dient [1], Lie Body [2], and the VG based deformation transfer methods. To

highlight the effect of orientation difference preserving property, the deformation

(scaling and twisting) of a cube is transferred to a sphere in Figure 4.14. The Defor-

mation Transfer using Deformation Gradient [1], can not preserve the dot product

property, so the estimated deformed sphere doesn’t have the same relationship

with the corresponding deformed cube. As scaling and twisting increases, the

sphere is morphed into more of a cube like structure as shown in Figure 4.14(b).

The proposed method preserves the dot product property, and so the shape of

the sphere can be preserved for these deformations (for more results, refer Figure

4.16).

58



4.2.3 Processing Hybrid Meshes

During the Deformation Transfer, the face planarity may get disturbed for hybrid

meshes due to the non-planarity present in the source. Moreover, the mesh recon-

struction may also disturb the planarity of faces. As noted in [69], the quad faces

of a mesh should be planar as possible. Optimization in equation (4.22) doesn’t

guarantee planarity of quad faces of mesh T̃k. Hence, planarity constraint should

be added to optimization problem (4.22) to reduce non-planarity of reconstructed

faces. It is easy to impose the planarity constraint in the reconstruction process

using the VG representation. For a planar face, the vector i should be perpendic-

ular to normal (Mki) of the face. Hence, reconstruction process is constrained by

adding this term to the cost function of equation (4.22) as follows,

argmin
T̃d

w1�BT̃d − T̄d�2
2 + w2 ∑

i
|Mdi · t̃di|2

subject to t̃di = v

(4.27)

where, w1 and w2 are weights. Mdi is a unit vector computed as the average of

perpendicular unit vectors of successive pairs of vectors of the face. |Mdi · t̃di|
represents the dot product between Mdi and t̃di. The planarity constraint tries to

change vectors in such a way that the dot product with Mdi becomes close to zero

(trying to make Mdi as unit normal of the face). We choose w1 = 0.05 and w2 = 1

experimentally, because assigning a higher weight to planarity constraint allows

it to modify positions of vertices to improve planarity. Above optimization can be

rewritten as,
argmin

T̃d

w1�BT̃d − T̄d�2
2 + w2�EdT̃d�2

2

subject to t̃di = v

(4.28)

where, Ed = MdB. Matrix Md is a sparse matrix containing normals of all faces

(for formation of Md see Appendix A.1). Similar to equation (4.22), we can remove

positional constraint as follows,

argmin
T̂d

w1�B̂T̂d − bd�2
2 + w2�ÊdT̂d − ed�2

2 (4.29)
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where, Êd is void of columns from 3i + 1 to 3i + 3, ed = −E(:, 3i + 1 : 3i + 3)v

and bd = T̄d − Blv. Taking derivative with respect to T̂d in above equation (see the

derivation in Appendix A.1), we get,

(w1B̂�B̂ + w2Ê�
dÊd)T̂d = XdT̂d =w1B̂�bd + w2Ê�

ded = Yd (4.30)

T̂d =X−1
d Yd. (4.31)

For experiment purposes, we convert triangular meshes of dataset [4] into hybrid

meshes using the Blender tool TrisToQuad allowing nontriangles to merge up to

some threshold. As a result, input meshes would now contain non-planar faces.

Due to the reconstruction process and non-planarity present in input meshes, tar-

get meshes estimated by triangular face based methods in Deformation Gradient

[1] and Lie Body [2] contain non-planar faces. Proposed method reduces non-

planarity while estimating target faces as shown in Figure 4.15(c).

(a) DG (b) Lie Body (c) DT (d) GDT

Figure 4.15: Planarity error in faces indicated by color code: green-error less than
0.05, blue- error between 0.05 to 0.1, and red- error greater than 0.1. These thresh-
olds are set from Fig. 4.18. Estimated target meshes by (a) Deformation Gradient
(DG) [1] and (b) Lie Body [2] (we convert triangles into quad by Blender tool
TrisToQuad). (c) The Proposed method prevent penetration of non-planarity into
estimated target meshes. (d) Poisson interpolation doesn’t alter the planarity of a
mesh much.
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4.2.4 Correspondence and Selection of Faces

The proposed Deformation Transfer method applies to nonidentical source and

target meshes also. The effectiveness of the same is evident from the results pre-

sented in Figure 4.17. Here, we have established correspondence using Deforma-

tion Gradient [1]. Though we assume that the correspondence between source

and target faces is available, it is not a requirement since we can establish cor-

respondence based on methods available in the literature, one such method is

proposed in [1]. Here, we employ the face selection method as explained in sec-

tion 3.2 for the Deformation Transfer process to save computation overload. This

process is repeated until the entire vertex set is exhausted. The selection process is

explained in Algorithm 1. For triangular meshes, the number of selected faces are

approximately half the total number of faces. In the Dyna dataset [4], each mesh

has 13776 triangular faces and 6890 vertices. Using the above mentioned process,

we identify 7038 target faces. Since number of faces are approximately half so is

the computational time (see Table 4.5). We arrange indices of selected faces of the

target, and their corresponding source faces as two column vectors in such a way

that indices of the corresponding faces remain at identical places.

4.2.5 Guided Interpolation

The estimated target sequence {T̃1, T̃2, . . . , T̃p} has similar deformations and mo-

tion trajectory as the source. However, these properties vary with the target and

should be adjusted accordingly. The objective here is to estimate unknown tar-

get sequence {T1, T2, T3, . . . , Tp−1 , Tp} which consists of refined temporal prop-

erties. Poisson interpolation performs this task based on given initial and final

poses T1 and Tp. Since we have the target sequence {T̃1, T̃2, . . . , T̃p}, its temporal

gradient information is then used as guiding vector field. In terms of the Pois-

son interpolation frame work explained in [30], we consider X = {T1, T2, . . . , Tp},

Ω = {T2, . . . , Tp−1} and ∂Ω = {T1, Tp}. The deformation transfer problem can

now be put in the form of Poisson interpolation as follows: Given X, Ω and ∂Ω

above, generate {T2, T3, . . . , Tp−1}, with the condition that the temporal gradient
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∇Tk is the same as ∇T̃k. The objective function can be formulated as follows,

J(Tk) = argmin
Tk∈Ω

p−1

∑
k=2

�∇T̃k −∇Tk�2
2 with T1, Tp ∈ δΩ. (4.32)

To solve for Tk, setting the gradient of the objective function to zero, gives,

∀k, ΔTk = ΔT̃k (4.33)

where, Δ is a Laplacian operator. ΔTk = 2Tk − Tk+1 − Tk−1 and ΔT̃k = 2T̃k −
T̃k+1 − T̃k−1 are denoted as Laplacian of Tk and T̃k respectively. Equation (4.33) is

Poisson equation with known boundary constraints T1 and Tp. Since the gener-

ated system of linear equations (4.33) is symmetric and has a unique solution, this

can be solved by the Gauss-Seidel iterative successive over relaxation method as

follows,

∀k, T(x+1)
k = (1 − ω)Tx

k +
ω

2
(ΔT̃k + Tx

k−1 + Tx
k+1) (4.34)

where, ω is a constant, we choose ω = 1.9 experimentally. There is close form

solution of equation (4.33) available but the computational complexity is higher

than iterative process when number of poses are large. Computational complexity

of iterative and closed-form methods are 9mpi (i is number of iterations) and p3 +

(3m − 2)p2 − 6m − 1 respectively.

4.2.6 Results and Discussion

The implementation of the proposed method is tested on a core-i7-2.8 GHz

computer with 8GB memory. All the experiments are carried out using an

addon created for Blender 2.82 in Python 3.7. The implementation works

well with different types of geometric models including skeletons and triangu-

lar/quad/hybrid meshes. Please find our Blender addon at https://github.

com/prashantdomadiya/Guided-Deformation-Transfer.
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(a) (b) (c) (d)

Figure 4.16: (a) Source: A devil’s hand becoming big and twist is increasing with
pose. Estimated target (a hand) sequences (b) Deformation Gradient [1], (c) Lie
Body [2] and (d) by proposed Deformation Transfer.

Experiments on Triangular Mesh

In Figure 4.17, we have shown comparison of proposed method with two state-

of-the-art methods. In this experiment, most of the faces of the source sequence
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(a)

(b)

(c)

(d)

Figure 4.17: (a) Source: Deformation sequence of a lion. Deformation from lion
poses is transferred to cat initial pose (left most) by (b) Deformation Gradient [1],
(c) Lie Body [2] and (d) proposed method (only Deformation Transfer) .

experience transformations such as scaling and rotation, so the transformation ma-

trix computed using either Deformation Gradient [1] or Lie Body [2] preserves the

dot product property. As a result, estimated sequences by the proposed Deforma-

tion Transfer method and by two state-of-the-art methods Deformation Gradient

[1] and Lie Body[2] are quite similar. However, as explained in section 4.2.2, these

methods fail to preserve the dot product property for other transformations re-

sulting in the shape of the target can’t be maintained as evident in Figure 4.16.

In Figure 4.16, estimated target hand poses by Deformation Gradient [1], and Lie

Body [2] have lost their geometric details (observe the fingertips and palm lines)

with an increase in the size respectively. In both the experiments, the proposed

method preserves features of the target (shape and geometric details).

To compare proposed Deformation Transfer and Guided Deformation Transfer

methods, we have experimented on Dyna dataset [4] which consists of triangular

meshes of 13 actions performed by 10 persons. A few actions of some individuals

are not available in the dataset. Each mesh in the dataset consists of 13776 triangu-

lar faces and 6890 vertices. The co-ordinates of vertices are in meters. For experi-

ments, we consider 11 poses per sequence. In other words, for an action sequence

of an individual we consider the action sequence characterized by 11 poses. The

correspondence between vertices and faces between two different poses are avail-

able for this dataset. For quantitative comparison, we use root sum squared er-
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Table 4.4: Comparison of proposed Deformation Transfer (DT) and Guided Defor-
mation Transfer (GDT) methods in terms of average and maximum of root sum
squared errors. These errors are computed at each vertex of all the estimated
poses for an action performed by several targets. Note: All errors are in mm.

Action (no. of
persons × no. of
poses in a sequence)

GDT GDT DT
(faces=7038) (faces=13776) (faces=13776)
avg max avg max avg max

one leg jump (9× 9) 0.89 4.81 0.8 4.75 1.77 14.08
one leg loose (9× 9) 0.79 4.00 0.79 3.9 1.50 11.72
chicken wings(8× 9) 1.29 8.90 1.29 8.81 2.39 24.71
shake hips (9× 9) 1.31 8.25 1.32 6.80 2.96 22.06
jiggle on toes (9× 9) 1.02 6.29 1.02 6.10 2.24 30.96
jumping jacks (7× 9) 1.64 10.58 1.66 10.51 4.96 30.69
hips (8× 9) 0.69 3.08 0.69 3.08 1.05 5.95
shake shoulders (8× 9) 1.36 6.33 1.34 6.31 3.05 16.16
shake arms (8× 9) 2.14 12.51 1.96 9.54 4.02 29.34
running on spot (9× 9) 2.26 13.39 2.19 13.34 6.38 37.09
light hopping stiff (9× 9) 0.80 3.58 0.80 3.57 1.08 6.25
punching (8× 9) 1.95 19.60 1.91 17.47 3.32 25.57
knees (9× 9) 0.78 8.94 0.78 8.94 1.61 23.16

rors between vertex coordinates of estimated and ground truth sequences. The

measure of comparison is the average root sum squared and maximum root sum

squared taken over all the poses of the sequence. Average and maximum of root

sum squared errors for an action performed by several persons are presented in

Table 4.4. As explained in section 4.2.5, Guided Deformation Transfer adjusts mo-

tion trajectories of estimated target sequences by proposed Deformation Transfer

such that they are as similar as ground truth. As the result, root sum squared error

of Guided Deformation Transfer is less compared to the Deformation Transfer.

Table 4.5 compares computation time required by each of the methods to per-

form deformation transfer on various source target pairs. The preprocessing step

is required only once to generate the adjacency matrices for all methods. The pro-

posed face selection algorithm can be applied to all the methods to reduce the

computation time. The number of selected faces by the algorithm along with re-

duction in time are shown in brackets in respective columns. As shown in Table

4.5, the number of faces are reduced to approximately 49% and so is the computa-

tion time. The preprocessing time for Manifold Representation is lower than the
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Figure 4.18: Combined histogram of planarity error in quad faces for ground
truth target sequence converted from triangular meshes of dataset [4] using ‘Tris
to Quads’ in Blender (in red), generated hybrid target mesh sequence by proposed
Deformation Transfer (in green) and Guided Deformation Transfer (in blue).

Source-Target pair
# faces (#
selected
faces)

Preprocessing Pose estimation

DG [1] Lie
Body[2] Proposed DG [1] Lie

Body[2] Proposed

Cat-lion 14110 2.74 0.91 2.43 1.19 2.41 2.39
(7426) (1.44) (0.47) (1.31) (0.63) (1.27) (1.27)

Devil-human
hands

15789 2.74 1.02 2.71 1.28 2.94 2.59
(8075) (1.43) (0.53) (1.41) (0.67) (1.51) (1.33)

Alien-human faces 31620 8.73 1.97 5.38 2.44 15.79 5.22
(16456) (4.56) (1.04) (2.81) (1.29) (8.23) (2.73)

Bob-BigB 20000 4.38 1.26 3.61 1.57 4.65 3.30
(10272) (2.27) (0.66) (1.88) (0.83) (2.41) (1.72)

Dyna models 13776 2.58 0.89 2.36 1.20 2.36 2.30
(7069) (1.32) (0.46) (1.20) (0.63) (1.21) (1.18)

Dyna models 7929 NA NA 6.82 NA NA 1.59
(Hybrid meshes) (5349) (5.09) (1.25)

Table 4.5: Comparison of computational time of Deformation Transfer (DT) meth-
ods in seconds. The preprocessing is required only once for each new sequence.
The values in brackets in column 2 is the number of selected faces. All the time
durations are in seconds. The number in brackets in columns 3-8 indicate compu-
tation time required while working with selected faces only.
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(a) (b) (c) (d) (e)

Figure 4.19: (a) A hybrid mesh and its example patch. (b) Four action sequences
of hybrid meshes of the source. Generated action sequences of hybrid meshes by
proposed Deformation Transfer (DT) (c) and Guided Deformation Transfer (GDT)
(d) with non-similar boundary condition. Ground truth available in Dyna dataset [4]
(e).

proposed method and Deformation Gradient due to relatively simpler structure of

connectivity matrix but the pose estimation time is higher due to complex compu-

tation of deformation. The pose estimation time of the proposed method is higher

than the Deformation Gradient because the degree of freedom per triangular face

of VG is higher than Deformation Gradient.

Experiments on Hybrid Mesh

During experiments, we have converted triangular meshes of the dataset [4] to

hybrid meshes using Blender tool ‘Tris to Quads’ as shown in Figure 4.19 (column

1). The tool merges two triangles into a quad when the angle between them is less

than a threshold of 40◦. With a fixed threshold, the converted hybrid representa-
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tion of a triangular mesh (13776 faces) contains approximately 7500 faces.

We have estimated 13 different action sequences performed by 9 different indi-

viduals using the proposed method. Each sequence consists of 9 estimated poses

and two boundary poses. The estimated hybrid mesh, on average, consists of ap-

proximately 7500 faces. Four different source action sequences (namely one leg

jump, punching, shake shoulders and knees) are shown in Figure 4.19(b). In Figure

4.19(c) and (d), target sequences generated by Deformation Transfer and Guided

Deformation Transfer with non-similar boundary condition are presented respec-

tively. Observe that the temporal position and motion trajectory of the target are

adjusted according to the boundary poses. As a result, sequence in Figure 4.19(d)

is closer to ground truth sequence in Figure 4.19(e). Table 4.5 compares computa-

tional efforts of proposed Deformation Transfer method in seconds for triangular

and hybrid mesh inputs. The computational complexity of processing the hybrid

mesh is higher than the triangular mesh due to added planarity constraint.

To test for face planarity, planarity error at each face of estimated pose, is com-

puted. Let X = {x1, x2, . . . , xn} be the set of vectors of VG representation of a face.

N is a unit vector computed as an average of perpendicular vectors of consecutive

pairs of vectors of set X. We define the planarity error of a reconstructed face as

ep = 1
n ∑i |x̂i · N| = 1

n ∑i |cosβi| where, x̂i = xi/�xi�2 and βi is angle between x̂i

and N. The error varies between 0 to 1. The face starts loosing its planarity as

ep moves close to 1. In a hybrid mesh sequence derived from a triangular mesh

sequence, each pose has a different number of faces. Moreover, due to the thresh-

old, a pair of non-planar triangles are also converted to the quad face resulting

in non-planar quad faces. Figure 4.18 is a histogram of planarity error present in

quad faces of hybrid meshes derived from triangular meshes of the Dyna dataset

[4]. Figure 4.18, shows the planarity error present in the estimated hybrid mesh

sequences by the proposed Deformation Transfer method. Due to added planarity

constraint, the proposed method prevents non-planarity from penetrating into es-

timated target poses. This is evident from the histogram with a large peak near

zero error with a lower variation. Considering experimental results, the proposed

method improves the planarity of the quad face. The Poisson interpolation may
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Figure 4.20: Deformation transfer from source (in green) to target (in red) with
initial (in blue) and final (in magenta) poses for different actions walk, watch clock,
scratch head, phone, kick, seat (in sequence top to bottom and left to right).

disturb the planarity, but this disturbance isn’t very high see Figure 4.18 (see ex-

planation in Appendix A.3).

Experiments on Skeleton:

To show the applicability of the proposed method on skeleton sequences, we have

experimented on the UPCV action dataset [68]. The dataset consists of skeletal

sequences corresponding to ten actions performed by twenty individuals. Each

action is performed twice by an individual. Each skeleton has twenty joints. Six

such action sequences generated by proposed method using source skeleton se-

quences for the target skeleton are shown in Figure 4.20.

The proposed Guided Deformation Transfer method adjusts for the temporal

properties while deformation transfer without changing the shape of the target

skeleton. For example, in Figure 4.20, the source action (watch clock sequence) is
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transferred to target.

Shape Deformation Vs Pose Deformation

We have also experimented on large mesh deformation FAUST dataset [70]. Re-

sults are shown in Figure 4.21. In Figure 4.21 (d), we show the results of Defor-

mation Transfer using shape deformation. The shape deformation captures the

shape difference between the reference source and the target poses, so it causes

undesired artifacts for large pose deformation in the source mesh. With the pro-

posed method, we have been able to address this limitation by employing the

pose deformation for the Deformation Transfer. However, the shape deformation

is computationally less burdensome than the pose deformation as the shape de-

formation is computed once from reference source and target meshes.
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(b)

(c)

(a) (d)

Figure 4.21: Deformation Transfer for large deformation. (a) Initial pose of the
source(top) and its deformed pose (bottom). (b) Initial poses of different targets.
Estimated poses of the target by (c) Deformation Transfer using pose deformation
with similar boundary condition and (d) Deformation Transfer using shape defor-
mation.
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CHAPTER 5

Enveloping

The enveloping process establishes the relationship between deformation of the

mesh and deformation of corresponding control structure. The control structure

such as the skeleton, the point handles, the cages and the region handles are com-

mon in graphics applications. After establishing the relationship, an animator

controls the deformation of a mesh via the control structure. Most techniques ap-

proach this problem by first identifying control structure and then establishing

relation between the control structure and mesh vertex deformation.

The control structure is either constructed manually by an animator or con-

structed automatically. Assigning the control structure manually requires prior

experience and skills. Most of the 3D modelling softwares (Blender, Maya, Au-

todesk) have a provision to assign the control structure to the given model. Apart

from manual assignment, there are several methods proposed in [41, 71] which

assign the skeleton to the model mesh automatically.

Due to its simplicity, real-time performance and compatibility with high per-

formance computing hardware, Linear Blend Skinning (LBS) [6] is a widely used

enveloping technique. In this, the deformation of each vertex of the mesh is lin-

early related to the deformation of the control structure. The weights are either

manually assigned (based on animator’s experience) or are derived from available

poses (data driven approach). After computing the weights, the enveloped mesh

is deformed by deforming the control structure. In the editing process, each vertex

of the enveloped mesh is deformed independent to its neighbours by deforming

the skeleton bones. Such individualistic vertex deformation may not preserve the

mesh properties such as edge length. This relationship, if not maintained, results
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in inconsistency artifacts after deformation [6, 7].

In literature some non-linear methods are also proposed which produce high

quality deformation of the mesh. For most of these methods, a mesh is repre-

sented by its differential representation [13]. The mesh deformation is then com-

puted from deformation of the control structure. In order to ensure smooth and

natural deformation of the mesh, the mesh deformation is constrained so as to pre-

serve the properties of inter-vertex relationship such as edge length. Due to added

constraint, the mesh editing becomes computationally expensive and sometimes

incompatible with high performance computing hardware. Hence, these methods

are not suitable for real-time applications such as gaming. To achieve real-time

performance, methods based on clustering are suggested where the mesh sur-

face is segmented into patches and each vertex of the mesh undergoes the similar

deformation. The patches are generated based on geometrical similarities using

clustering techniques such as K-means [8] and mean-shift [19]. The qualitative

performance of this approach depends upon the accuracy of quality of the seg-

mentation. Moreover, the segmentation also depends on the number of segments.

In essence, all the enveloping methods are trying to deal with trade off between

deformation quality and computational performance.

In this work, we show the applicability of the Vector Graph (VG) represen-

tation [72] for data-driven enveloping. The VG is a unifying representation that

represents various types of meshes such as triangular, quad or hybrid as a collec-

tion of vectors. The mesh is reconstructed from its VG representation by solving

a system of linear equations. In this work, we have considered the skeleton of the

given mesh as its control structure. Both, the skeleton deformation and the mesh

deformation groups are smooth manifolds. We establish a map between both the

manifolds using a set of deformed poses of the mesh available in the dataset. The

image of the map belongs to the vector deformation group. We show that the vec-

tor deformation which belongs to the image of the map preserves the properties

of inter-vertex relationship without any explicit constraint on the vector deforma-

tion. In turn, the proposed method produce smooth and meaningful deformation

of the mesh. Moreover, the simplified relationship between the skeleton and the
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mesh deformations results in the computationally efficient mesh editing process.

Similar to other data-driven enveloping approaches, the proposed enveloping

process comprises of two consecutive steps; (i) assigning a skeleton to the mesh

and (ii) establishing a map between the mesh deformation and the skeleton defor-

mation. The skeleton is assigned to a reference mesh by the user using an add-on

developed in the Blender. The add-on assigns the skeleton to other deformed

poses of the mesh automatically and computes the deformations corresponding

skeletons. Next, a map is established between the skeleton and vector deforma-

tions by estimating the map parameters using example poses of the dataset. The

enveloped mesh is then deformed by deforming the skeleton through the estab-

lished map.

Organization of Chapter: In section 5.1, we describe the proposed approach

for control structure (skeleton) assignment to the reference mesh and computation

of the bone deformation. We then define the vector and skeleton deformation

groups in section 5.2. In section 5.3, we formulate describe proposed enveloping

process and establish a map between vector and skeleton deformation groups.

After establishing this map, we formulate the mesh deformation associated with

skeleton deformation in section 5.4. Here, we show that the relationship between

skeleton and mesh deformations using the VG is similar to that of the LBS. Finally,

in section 5.5 we compare proposed method with the four state-of-the-art methods

in terms of quality of deformation and computational time.

5.1 Skeleton Assignment and Deformation

For the mesh enveloping and editing, the skeleton is used as a control structure

for the given mesh. The skeleton consists of the bones and the joints. First, a user

forms a skeleton which has preferred number of bones and joints. Then the user

selects a set of four vertices of the reference mesh for each skeleton joint as shown

in Figure 5.1. The position of the joint is the mean of four selected vertices. The

proposed Blender add-on automatically fits the skeleton to the reference mesh by

shifting the skeleton joints to new joints. Next, an orthonormal frame is assigned
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to each skeleton bone at its one of the bone joints as shown in Figure 5.1. The

frame assigned to the jth bone is defined as,

Hj = [uj, cj, ej] (5.1)

where, the unit vector uj is parallel to the jth bone, cj = (êj × uj)/�êj × uj� and

ej = uj × cj. The vector êj originates from the joint j and points towards one of

the selected vertices for that joint. Note that, the orthonormal frame is formed at

only one of the two joints of a skeleton bone. Similarly, orthonormal frames are

assigned to all of the m skeleton bones. The add-on then assigns the skeleton to

other available deformed meshes.

Bone

Hand

ElbowWrist

Skeleton Joint
Selected Vertex

êj ej

uj

cj

Figure 5.1: Assigning the skeleton and the orthonormal frames to jth bone

5.1.1 Skeleton Deformation

The deformation of a skeleton bone is modelled as the transformation between the

corresponding orthonormal frames of the reference and the deformed skeleton.

Let’s denote the reference and the corresponding deformed frames assigned to jth

bone as,

Hrj = [urj, crj, erj] and Hdj = [udj, cdj, edj]. (5.2)

The transformation Rj between the jth reference frame and deformed frames is

defined as,

RjHrj = Hdj → Rj = HdjH
�
rj. (5.3)
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Since both the frames are orthonormal and their determinants are +1, the trans-

formation Rj is a rotation matrix (see Appendix A.4 for proof). In the next section,

we define the relationship between the skeleton deformation and corresponding

mesh deformation.

5.2 The Map Between the Skeleton and the Mesh De-

formations

In many mesh editing processes, the deformation of a face (triangular) of a given

mesh is modelled via some or other linear transformation. The cumulative ef-

fect of the localized deformations of the faces then contributes to the desired de-

formation of the mesh. As noted in [14], the linear transformations capturing

the face deformations form a group. The transformations which don’t form a

group may produce non-physical deformations of the mesh. After enveloping,

the deformation of a mesh is being controlled by the corresponding deformation

of the skeleton (control structure). Hence, it is expected that both the skeleton

and mesh deformations should have the similar group structures. The skeleton

deformation which is modelled as the rotations of the bones is defined as tuples

gs = (R1, R2, . . . , Rm) ∈ Gs, where Gs ∈ (SO(3))m. When using VG representa-

tion, the mesh deformation is modelled as a collection of composition of rotation

and scaling of each vector. Hence, the mesh deformation using VG also forms a

group.

Definition 2. The vector deformation group gv ∈ Gv), is a tuple,

gv = (a1 J1, a2 J2, . . . , an Jn) (5.4)

where, ai ∈ R+ and Ji ∈ SO(3). The composition map,

Gv × Gv �→ Gv, (5.5)
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Figure 5.2: Illustration of proposed enveloping process. First, skeletons are as-
signed to the reference mesh and its deformed poses. The deformation of skele-
ton is computed as a set of rotations of bones. The meshes are represented by the
VG to compute their deformation. The deformation of a vector i is computed as a
composition of scaling and rotation. The map, ψi, maps skeleton deformation to
the deformation of the vector i. The parameters of the map ψi are estimated using
p available deformed poses and their corresponding skeletons. The dashed curve
represent the mesh deformation process after establishing the all the map ψ. The
detailed description of the mesh deformation process is shown in Figure 5.3.

(a1
1 J1

1 , a1
2 J1

2 , . . . , a1
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1a2

1 J1
1 J2

1 , a1
2a2

2 J1
2 J2

2 , . . . , a1
na2

n J1
n J2

n).
(5.6)

The group Gv is a sub group of general linear group GL(3, R)n of invertible ma-
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trices which is a Lie group. The map which maps the skeleton deformation to

deformation of vector i is defined as,

ψi : Gs �→ [Gv]i. (5.7)

where, the deformation of the vector i belongs to [Gv]i. The collection of all such

maps can be defined as,

ψ = (ψ1, ψ2, . . . , ψn) : Gs �→ Gv (5.8)

where, m and n are the number of skeleton bones and vectors respectively. In

proposed data-driven enveloping process, the map ψ is established using a set of

available poses of a mesh. Generally, the number of vectors in the VG representa-

tion of a mesh depends on resolution of the mesh. The dimension of the manifold

Gv is 4n but the desired deformation of the mesh belongs to a subset of Gv. A

constraint on the deformation will restrict the vector deformation but at the cost

of the additional computational time. As shown in Figure 5.3, The map ψ maps

the skeleton deformation to the mesh deformation. The skeleton deformation is

constrained to be the rigid transformation in the proposed method, so the im-

age of the map belongs to vector deformation group Gv. As a result, the desired

and meaningful deformation of the mesh is ensured without the compromising

computational performance. In the next section, the construction of the map ψ is

explained in detail.

5.3 Enveloping

In our enveloping process, all the maps ψi, ∀i ∈ {1, 2, . . . , n} are established inde-

pendently for all the vectors of the VG. The map ψi characterizes the deformation

of ith vector deformation in terms of the skeleton deformation. The map ψi can be

approximated as shown in Figure 5.2. The parameters of the map ψi are estimated

using the p example poses available in the database.
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5.3.1 Bone-Vector Relationship

We define the relationship between the rotation of a vector i and the rotation of

the skeleton bone j as,

Rk
j Wji = Jk

i , k ∈ {1, 2, . . . , p} (5.9)

where Jk
i is the rotation of the vector i as defined in equation (3.13) and Rk

j is the

rotation of the bone j as defined in equation (5.3) corresponding to the kth pose.

Wji ∈ SO(3) is the rotational component of the map ψi. Since Wji is the same for

all available p poses, it can be estimated by solving following,

argmin
Wji

p

∑
k=1

�Rk
j Wji − Jk

i �F

subject to W �
jiWji = I3, det(Wji) = +1

(5.10)

where, F indicates Frobenius norm and I3 is the identity matrix. The problem in

equation (5.10) can be reformulated as (see Appendix A.5 for derivation),

argmax
Wji

Tr(WjiJ �
i Rj)

subject to W �
jiWji = I3, det(Wji) = +1

(5.11)

where, Rj = [R�1
j , R�2

j , . . . , R�p
j ]

� and Ji = [J�1i , J�2i , . . . , J�pi ]�. As suggested in [73],

the solution to above is,

Wji = VU� (5.12)

where, V and U are orthonormal matrices appearing in the SVD of J �
i Rj = UΣV�.

5.3.2 Bone Assignment

After approximating Wji’s, their cumulative effect on a vector rotation is charac-

terized by an underlying sparsity assumption. Here, the sparsity indicates that

the rotation of a vector depends upon the rotations of only some of the bones. For

example, the rotation of a vector associated with the hand region doesn’t depend
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upon the leg bone rotation. Hence, we propose to identify only one such bone

with the lowest cost as defined in equation (5.10). Let’s denote the index of the

identified bone corresponding to vector i as zi. We say that zth
i bone is actively

involved in deforming the vector i. After identifying the active bone, the rotation

of the vector i is computed as,

Jk
i ≈ Rk

zi
Wzii. (5.13)

Further using equation (3.13), we get,

Fk
di = [v̂k

di, bk
di, Nk

di] ≈ Rk
zi

WziiFri = Rk
zi

Wzii[v̂ri, bri, Nri] (5.14)

where, Fk
di and Fri are the orthonormal frames associated with the vector i of pose k

and the reference pose respectively. These frames are defined as indicated in equa-

tion (3.12). Since, we are interested in estimating the deformed vector, removal of

the binormal and the normal vectors from above equation leads to following sim-

plified form,

v̂k
di ≈ Rk

zi
Wziiv̂ri. (5.15)

Substituting, v̂k
di = v̄k

di/�v̄k
di� and v̂ri = v̄ri/�v̄ri� in above equation result in,

v̄k
di ≈ ak

i Rk
zi

Wziiv̄ri (5.16)

where, ak
i = �v̄k

di�/�v̄ri� is the scaling factor as defined in the equation (3.13). The

scaling component of the vector deformation should be established here to map

the bone deformation to the vector deformation. Let gzii be the scaling parameter

of the map ψi. We rewrite the equation (5.17) after including gzii as,

v̄k
di ≈ gziiR

k
zi

Wziiv̄ri, gzii ∈ R+. (5.17)

The parameter gzii can be approximated as,

gzii = ω1a1
i + ω2a2

i + · · ·+ ωpap
i (5.18)
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where, weights ωks are computed from the cosine similarity as,

ωk =
�v̄k

di, Rk
zi

Wziiv̄ri�
∑

p
r=1�v̄r

di, Rr
zi

Wziiv̄ri�
. (5.19)

The above process estimates the parameters (Wzii and gzii) of the map ψi using the

p example poses.

We have also experimented by taking appropriate convex combination of de-

formation of two skeleton bones to approximate a vector deformation. However,

the approximated vector deformation may not belong to the vector deformation

group Gv. As a result, approximating the vector deformation using one bone leads

to better mesh deformation qualitatively compared to the use of two bones as

shown in Table 5.1 (column 5 and 6 of error section) and Figure 5.5(f)-(g). It is

important to note that the computational time remains almost the same for both

the cases.

5.3.3 The Injective Map

The map ψi maps the rotation of bone zi to corresponding deformation of vector

i. When its domain is restricted to the rotation of the bone zi, the restricted map is

defined as,

ψi|Rzi
: Rzi �→ ai Ji (5.20)

where the scaling ai is the scaling parameter of the map; gzii. The rotation of the

vector i corresponding to bone zi is,

Ji = RziWzii → Rzi = JiW �
zii. (5.21)

To show that the map ψi|Rzi
is injective, let’s consider R1

zi
and R2

zi
to be the two

different rotations of the bone zi. Assuming that if the map ψi|Rzi
is not injective

then resulting vector rotations due to rotations R1
zi

and R2
zi

are same,

J1
i = J2

i → R1
zi

Wzii = R2
zi

Wzii. (5.22)
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Since Wzii is a rotation matrix, R1
zi

= R2
zi

. This proves by contradiction that the

map ψi|Rzi
is an injective map. Moreover, this map is also continuous. Similarly,

the map ψ|R = (ψ1|Rz1
, ψ2|Rz2

, . . . , ψn|Rzn
) is also an injective map. However, the

map ψi|Rzi
is not a homomorphism because,

ψi|Rzi
(R1

zi
R2

zi
) = gziiR

1
zi

R2
zi

Wzii �= gziiR
1
zi

WziigziiR
2
zi

Wzii (5.23)

= ψi|Rzi
(R1

zi
)ψi|Rzi

(R2
zi
). (5.24)

5.4 Mesh and Skeleton Relationship

Once the parameters of the map ψ are estimated, it is straight forward to edit the

enveloped mesh by editing the associated skeleton. The mesh editing process is

illustrated in Figure 5.3. The deformation of vector i is defined in (5.17) as,

v̄di = gziiRziWziiv̄ri (5.25)

where gzii ∈ R+ and RziWzii ∈ SO(3). By substituting the bone rotation defined

in (5.3) into (5.25), we get,

v̄di = gziiHdzi H
�
rzi

Wziiv̄ri (5.26)

where, Hdzi and Hrzi are the orthonormal frames associated with the reference

and the deformed skeleton bone zi. Similarly, the other deformed vectors, vdi,

are determined from the deformation of the respective skeleton bones zis. The

deformed VG representation of the mesh is obtained as,

V̄d = [v̄d1, v̄d2, . . . , v̄dn] = [Hd1, Hd2, . . . , Hdm]W = HdW (5.27)

where, W is a sparse matrix since the deformation of the vector i depends on the

deformation of the zth
i bone only. The construction of matrix W is explained in

Appendix A.6.

The deformed mesh is reconstructed from its VG representation as describe in
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GvGs

ψ|R = (ψ1|Rz1
, ψ2|Rz2

, . . . , ψn|Rzn
)

{Hd1, Hd2, . . . , Hdm}

{Hr1, Hr2, . . . , Hrm}

(R1, R2, · · · , Rm) ∈ Gs

ψ1|Rz1

ψ2|Rz2

ψn|Rzn

a1 J1,

a2 J2,
...,

an Jn







∈ Gv

V̄r

V̄d

Reconstruction

VdH̃d
M̃

Simplified Process

Figure 5.3: Illustration of mesh editing process. First, the orthogonal frames
Hd = [Hd1, Hd2, . . . , Hdm] are obtained from skeleton deformed by user in or-
der to compute bone rotations. The deformed VG, V̄d, is computed using es-
tablished map ψ|R = {ψ1|Rz1

, ψ2|Rz2
, . . . , ψn|Rzn

} from skeleton deformation. The
image of the map ψ belongs to the vector deformation manifold (Gv). The re-
construction process reconstruct the deformed mesh Vd from its VG representa-
tion. The entire process is simplified to get the deformed mesh Vd from H̃d =
[Hd1, td1, Hd2, td2, . . . , Hdm, tdm] for computationally efficient mesh editing.
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(a) (b) (c)

Figure 5.4: Demonstration of importance of positional constraints. The pose in
pink color (transperent) is the ground truth pose. (a) Reference Pose. (b) Gen-
erated pose (in green) by proposed method with one positional constraint. (c)
Generated pose (in blue) by proposed method by imposing positional constraint
on few vertices. The deformation of constrained vertices are estimated using LBS
[6].

section 3.1 using (3.9),

V̂d = V̄d Â+ − VL Â+
L = HdWÂ+ − VL Â+

L = HdK − VL Â+
L . (5.28)

where, matrices K and Â+
L are constructed and stored off-line. The matrix Hd

consists of orthonormal frames (3 × 3) of m deformed skeleton bones. The matrix

VL consists of constraint vertices which are predicted by LBS (VL = H̃dΦ) where,

the matrix Φ is computed for the constrained vertices as described in [6]. The

equation (5.28) can now be written as,

V̂d = HdK − H̃dΦÂ+
L (5.29)

where, H̃d = [Hd1, td1, Hd2, td2, . . . , Hdm, tdm] contains the orthonormal frames and

the translations tdi, i ∈ {1, 2, . . . , m} associated with the m deformed bones and is

computed as explained in [6]. Equation (5.29) can be rewritten in term of H̃d as,

V̂d = H̃dK̃ − H̃dΦÂ+
L = H̃d(K̃ − ΦÂ+

L ) = H̃dM. (5.30)
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The matrix K̃ is define as,

K̃ = [K�
1, K�

2, K�
3, 0, K�

4, K�
5, K�

6, 0, . . . , K�
3m−2, K�

3m−1, K�
3m, 0]� (5.31)

where, Ki is the ith row of the matrix K. The vector 0 (column) ensures that H̃dK̃ =

HdK. The vertices of the deformed mesh are obtained by appending VL to V̂d,

Vd = [V̂d, VL] = [H̃dM, H̃dΦ] = H̃dM̃. (5.32)

Above relationship simplifies the entire mesh editing process as illustrated in Fig-

ure 5.3. Moreover, this equation is similar to LBS [6]. The computational com-

plexity of proposed method is O(mq) where, m and q are number of bones and

vertices respectively. Table 5.2 shows a comparison of the proposed method with

the four state of the art methods in terms of computation.

The selection of constraint vertices affect the quality of the estimated deformed

mesh. In the process of vector deformation, the vector translation isn’t involved

explicitly but rather it is approximated during mesh reconstruction process. This

may result in the reconstructed deformed mesh which may not be aligned with

the ground truth pose as shown in Figure 5.4(b). In Figure 5.4(b), we have selected

only one vertex as the constraint vertex. The LBS [6] involves the translation in

the computation of vertex deformation. This ensures that the vertices which are

attached firmly with bones are predicted accurately. Selecting those vertices as

fixed positional constraint during mesh reconstruction process, we are able to ac-

curately envelope the mesh as shown in Figure 5.4(c). We have selected 0.5% to

3.9% of the total mesh vertices as constraint vertices during experiments.

5.5 Results and Experiments

In this section, we present the results of the experiments conducted. The experi-

ments include the process of enveloping followed by the mesh deformation. We

have developed a Blender 2.82 add-on in python 3.7 for interactive user experi-

ence. All the experiments have been performed on intel-i7-2.8GHz, 8 core system
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with 8 GB memory. All the state-of-the-art methods have been implemented as

single threaded python programs excluding DeepLBS [7]. The DeepLBS [7], has

been implemented using CPU version of tensorflow [74].

We have compared our enveloping method with the widely used LBS [6], its

recent variant DeepLBS [7], LBS+ARAP [8] and Rotational Regression (RR) [9] in

terms of the quality and the computation time. We have enveloped 16 different

models of various data sets: 10 (500xx) from [4], 3 (Horse, Camel and Flamingo)

from [1], 1 (Man) from [5], 1 (Hand) from [75] and 1 (Kid) from [76] using the

proposed method, for details refer to the Table 5.1 and Table 5.2.

Model Verts Train.
Poses Bones

Error
LBS DeepLBS LBS+ARAP RR Proposed(1) Proposed(2)

µ σ µ σ µ σ µ σ µ σ µ σ

50002 6890 480 33 4.65 15.85 4.64 15.81 4.51 14.95 4.34 14.99 4.35 14.99 4.80 14.99
50004 6890 480 33 4.98 20.87 4.98 20.85 4.99 20.87 4.71 17.58 4.41 18.07 4.85 18.77
50007 6890 457 33 4.41 21.69 3.36 21.56 4.19 15.69 4.09 14.97 3.93 14.97 4.34 14.97
50009 6890 312 33 3.92 14.07 3.97 14.04 3.83 10.74 3.83 10.62 3.74 8.14 4.13 10.28
50020 6890 325 33 3.63 14.39 3.60 14.36 3.64 13.31 3.49 9.22 3.41 8.85 3.89 9.47
50021 6890 382 33 4.04 18.21 4.07 18.17 4.01 13.50 3.92 11.27 3.81 11.13 4.22 12.57
50022 6890 499 33 4.63 23.77 4.63 23.64 6.43 21.76 4.48 15.27 4.37 15.27 4.94 15.27
50025 6890 515 33 3.96 21.86 3.98 21.86 4.06 16.60 3.93 12.17 3.77 12.17 4.17 12.17
50026 6890 488 33 5.54 20.77 5.45 20.72 5.06 10.98 5.04 10.84 4.82 10.66 5.30 10.66
50027 6890 409 33 3.86 16.48 3.62 12.26 3.97 12.29 3.78 12.08 3.72 12.08 4.18 12.08
Horse 8431 11 40 3.74 15.77 3.39 15.51 5.46 16.35 4.82 18.51 4.03 10.90 5.30 14.14
Camel 21887 11 29 6.57 36.50 6.57 81.26 7.14 24.43 8.10 19.60 6.69 18.78 8.09 18.78

Flamingo 26394 11 31 4.40 11.49 4.41 70.27 4.40 12.27 3.94 10.72 3.77 12.15 4.01 10.72
Man 10002 175 20 22.51 27.68 22.38 27.79 22.50 25.17 22.65 22.39 19.42 21.27 21.86 21.72
Hand 7997 44 20 2.27 12.33 2.26 12.31 2.67 7.56 4.45 12.72 2.29 8.85 2.72 8.85
Kid 59727 16 35 5.84 17.90 5.48 16.94 6.58 14.10 5.88 13.91 5.61 14.12 6.12 14.32

Table 5.1: Quantitative comparison of various methods in terms of RSS error. The
value in bracket for proposed method indicates number of bones assigned to ap-
proximate vector deformation. µ and σ represents mean and standard deviation
of the enveloping error respectively.

5.5.1 Quantitative comparison

In Table 5.1, we have compare proposed method with four state-of-the-art meth-

ods. We have first computed the Root of Sum of Squared (RSS) error for each

vertex. The RSS error for the vertex i of pose k of an enveloped mesh (say Ek
i ) is

computed as,

Ek
i =

���� 3

∑
z=1

(vk
iz − ṽk

iz)
2 (5.33)
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where vk
i = [vk

i1, vk
i2, vk

i3] and ṽk
i = [ṽk

i1, ṽk
i2, ṽk

i3] are ith vertices of kth regenerated

and ground truth poses respectively. Two statistical measures; mean and standard

deviation have been computed to quantify the deformation quality as,

µ =
1
q

q

∑
i=1

1
p

p

∑
k=1

Ek
i (5.34)

σi =

���� 1
p

p

∑
k=1

(Ek
i − µi)2 where, µi =

1
p

p

∑
k=1

Ek
i (5.35)

where, q and p are the number of vertices and poses of the enveloped mesh re-

spectively. σi is the standard deviation of error computed for the vertex i. We

compute the maximum standard deviation as,

σ = max{σ1, σ2, . . . , σq}. (5.36)

σ represents the standard deviation of the vertex where there is a maximum vari-

ation in the error.

In data driven enveloping approaches, the map which relates the skeleton and

the mesh deformations, is approximated by solving either a linear or a non-linear

optimization problem using available poses in the database. The over-fitting is

one of the common issues observed for such methods. During optimization, the

deformation of a large number of vertices are estimated accurately balancing out

the badly estimated deformations for a few vertices. This inconsistency in the es-

timation leads to an erratic distribution of enveloping error which causes incon-

sistency artifacts in deformed mesh specially at the joints. The standard deviation

defined in equation (5.35) is an appropriate measure of inconsistency. The mean

quantifies the overall enveloping error of an enveloped mesh.

In Table 5.1, both the measures µ and σ are shown for various meshes en-

veloped by LBS [6], DeepLBS [7], ARAP+LBS [8], RR [9] and proposed method.

In LBS [6], a vertex deformation is independently associated with deformation

of skeleton bones ignoring inter-vertex relationship. Such an individualistic as-

sociation yields over-fitting during the enveloping process and results in the in-
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consistency artifacts. Relatively higher µ and σ for results obtained by the LBS

endorse the same inference. A slight decrease in µ and σ in DeepLBS [7] evinces

the moderate refinement in inconsistency artifacts.

Model Verts Train.
Poses Bones

Computation Time
LBS DeepLBS LBS+ARAP RR Proposed

Env Edt Env Edt Env Edt Env Edt Env Edt
(s) (ms) (s) (ms) (s) (ms) (s) (ms) (s) (ms)

50002 6890 480 33 253.29 7.69 538.87 2262.3 315.42 313.8 114.09 22.23 552.10 6.92
50004 6890 480 33 240.02 7.43 658.04 2337.8 274.47 339.3 104.17 26.12 524.68 6.94
50007 6890 457 33 225.81 7.15 605.97 2284.5 269.82 315.9 103.10 25.15 517.67 6.82
50009 6890 312 33 152.75 7.54 457.63 1589.3 207.74 325.5 71.43 22.56 365.81 6.87
50020 6890 325 33 166.01 7.06 469.75 2269.3 219.96 314.3 71.52 24.89 371.13 6.91
50021 6890 382 33 203.93 7.49 583.91 2305.2 257.56 312.97 90.21 22.76 429.06 7.24
50022 6890 499 33 241.96 7.24 633.08 2208.4 296.58 325.6 112.80 24.34 528.76 6.99
50025 6890 515 33 256.80 6.97 381.35 2304.3 308.75 325.3 122.09 24.82 557.22 7.13
50026 6890 488 33 233.11 7.33 460.91 2258.7 283.03 327.1 110.60 22.54 544.74 6.90
50027 6890 409 33 202.32 7.28 418.90 2287.8 257.41 318.23 92.19 22.31 470.38 7.26
Horse 8431 11 40 12.10 9.07 251.09 2799.9 157.48 430.32 58.09 29.30 89.70 8.61
Camel 21887 11 29 19.23 8.15 242.01 1720.6 106.43 1067.5 116.61 30.64 156.14 8.20

Flamingo 26394 11 31 25.65 9.64 243.96 2160.1 131.89 1376.6 145.59 48.07 208.59 9.01
Man 10002 175 20 78.67 5.21 257.08 1178.5 653.86 533.1 581.46 16.91 296.80 5.10
Hand 7997 44 20 15.87 5.95 97.21 1186.1 114.91 381.4 111.20 17.50 88.88 4.72
Kid 59727 16 35 83.36 15.06 540.99 2617.0 446.18 3386.3 535.13 86.37 594.89 14.95

Table 5.2: Quantitative comparison of various methods in terms of computation
time. s and ms indicate time duration in seconds and milliseconds respectively.
Env and Edt stand for enveloping and editing respectively.

In ARAP+LBS [8] and RR [9], the mesh deformation is computed by repre-

senting mesh vertices or faces with a differential representation. In RR, the face

deformation is approximated by skeleton bone deformation based on established

non-linear relationship whereas it is constrained to be As-Rigid-As-possible in

ARAP+LBS. Similar to ARAP and RR, the VG represents faces using vector graph

as discussed in the chapter 3. The image of the map belongs to the vector deforma-

tion manifold (Gv). Hence, in these methods, smooth deformation is achieved and

inconsistency artifacts are prevented during enveloped mesh editing. As shown

in Table 5.1, the minuscule change is observed in µ for these methods compared

to LBS and DeepLBS, although, the significant reduction in σ supports our claim.

To understand the effect of number of skeleton bones to be used to compute

the vector deformation in the proposed method, we have experimented by ap-

proximating the vector deformation using convex combination of deformations

of two are more skeleton bones. Since the convex combination of rotation matri-

ces is not a rotation matrix, the approximated vector deformation doesn’t belong

to vector deformation group Gv. As shown in Table 5.1 (columns 5 and 6 in er-

88



(w)

(x)

(y)

(a) (b) (c) (d) (e) (f) (g)

Figure 5.5: (a) Reference pose, ground truth and zoomed in region of the ground
truth (top to bottom). The experimental results for (b) LBS [6] (c) DeepLBS [7] (d)
LBS+ARAP[8] (e) RR [9], (f) proposed method with 1 bone/vector (g) proposed
method with 2 bones/vector. (w) Normalized histogram of the error of all vertices
(blue) and of vertices in highlighted region (red). (x) The deformed poses and (y)
corresponding zoomed in region of interest.

ror), the significant increment in µ and negligible change in σ are observed for

two bone assignment compared to one. The increment is µ shows that the error

increases for two bone assignment compared to one bone assignment. The same

can be observed in Figure 5.5(f) and (g). Hence, the quantitative analysis suggests

the effectiveness of one bone assignment for the proposed method.

The application like gaming not only demands quality deformation but also

real-time performance while editing enveloped mesh. In Table 5.2, the compari-

son have been conducted based on enveloping and editing time. The enveloping

time is the time required to establish the mesh-skeleton deformation relationship

whereas the editing time represents time the required to deform the enveloped

mesh. The mesh editing should be in real-time for an enveloping method. The

LBS [6] is computationally the most efficient. This makes it suitable for many

applications despite its limitations. The LBS+ARAP [8] and RR [9] ensure the

smooth and realistic mesh deformation during editing but both suffer from com-

putational overload due to the presence of non-linearity. For proposed method,

we have simplified the relationship between skeleton and mesh deformations.

the proposed method turn out to be similar to the LBS [6] (see equation (5.28)) in
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terms of the computational time. Moreover, it also ensures the smooth and realis-

tic deformation comparable with nonlinear methods such as ARAP+LBS [8] and

RR [9].

(a) (b) (c) (d) (e) (f) (g)

Figure 5.6: Qualitative evaluation on training data. (a) Reference poses of en-
veloped meshes. (b) Ground truth poses available in corresponding datasets. Es-
timated poses by (c) LBS [6] (d) DeepLBS [7] (e) LBS+ARAP[8] (f) RR [9] and (g)
proposed method. Magnified portion of the poses are shown below the full pose.

90



5.5.2 Qualitative comparison

For qualitative assessment of the deformed mesh, all the training poses are re-

generated using the proposed enveloping method. The distribution of error of

the highlighted region are shown as the normalized histogram in Figure 5.5(w).

The normalized histogram in red represents the error distribution in a set of ver-

tices (in purple) near armpit. The enveloping error is computed as defined in

(5.33) for each vertex using respective ground truth pose available in the data set

[4]. The higher standard deviation of error (histogram in blue) corresponding to

LBS [6] and DeepLBS [7] as shown in Figure 5.5(b) and (c) are indicative of the

inconsistency artifact due to over-fitting. The large number of vertices are esti-

mated perfectly at the cost of poorly estimated fewer vertices. The inconsistency

artifacts around armpit regions (highlighted in purple) of meshes are shown in

Figure 5.5(b) and (c). Comparatively compact error distribution in histogram cor-

responding to ARAP+LBS [8], RR [9] and proposed method. We observe that the

standard deviation of error in the set of vertices near armpit is notably smaller

compared to those of LBS and DeepLBS. The histogram representing the error of

highlighted segment (red) shown in Figure 5.5(w) corresponding to ARAP+LBS,

RR and proposed method is closer to zero compared to those of LBS and DeepLBS

and hence endorses our inference.

In Figure 5.6 and Figure 5.7, we show a qualitative comparison between var-

ious enveloping methods. The qualitative assessment has been carried out by

comparing regenerated training meshes with corresponding ground truth mesh

in Figure 5.6. The Figure 5.7 shows comparison based on smoothness and nat-

uralness of deformation in edited enveloped meshes. As shown in Figure 5.6(c)

and Figure 5.7(b), the inconsistency artifacts are observed near joints of meshes

enveloped by LBS [6]. DeepLBS [7] improvises on the LBS and reduces the error

near the joint regions but it fails to correct large errors as shown in Figure 5.6(d)

and 5.7(c). In ARAP+LBS [8], the inconsistency artifacts are overcome by impos-

ing ARAP [36] constraint to LBS [6]. This results in smooth deformations as shown

in Figure 5.6(e) and 5.7(d). The non-linear method RR [9] also ensures the smooth

and natural deformation of enveloped meshes as shown in Figure 5.6(f) and Fig-
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(a) (b) (c) (d) (e) (f)

Figure 5.7: Qualitative evaluation on edited meshes. (a) Reference poses of en-
veloped meshes. Edited poses by (b) LBS [6] (c) DeepLBS [7] (d) LBS+ARAP[8]
(e) RR [9] and (f) proposed method.

ure 5.7(e). The proposed method is qualitatively comparable with LBS+ARAP [8]

and RR [9] as shown in Figure 5.6(g) and Figure 5.7(f).
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CHAPTER 6

Patch Based Interpolation and Morphing

An animation sequence is a set of temporally smooth consecutive poses of a mesh

(an animation character). Creating such a set of poses is a challenging task. Typi-

cally, an animator first creates a small set of poses (key-frames) by deforming the

reference mesh. The intermediate poses between two key-frames are generated

next by one of the shape interpolation methods. The shape interpolation method

should yield realistic and smoothly deformed interpolated poses. At the same

time, the method should be computationally efficient. It is in same cases redun-

dant to generate similar animation sequence for some other mesh (character) by

following the same process. This tedious task can be performed efficiently by

transferring vital information (deformation) of the available animation of a char-

acter (source) to the other character (target). This process is known as Deforma-

tion Transfer (DT) in the literature. The deformation transfer process preserves the

target’s geometric details. We have discussed about challenges and the proposed

framework for Deformation Transfer in chapter 4.

In the shape interpolation, the meshes are embedded into a higher dimen-

sional shape space. The trajectory approximation between a pair of points is then

carried out in the shape space. A point on the trajectory is an interpolated pose.

In this approach, the quality of the deformation highly depends upon the trajec-

tory approximation process and the embedding . A linear interpolation scheme is

the simplest and fastest in which the trajectory between two points in the shape

space is a line segment. However, it suffers from a shrinkage problem [10]. Such a

problem can be addressed by introducing additional constraints into the trajectory

approximation process. However, the added constraints make the trajectory ap-
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proximation process computationally inefficient. Moreover, this approach can be

directly be adopted for multi-pose interpolation and shape morphing with small

modifications.

In another approach, the shape interpolation is defined as the interpolation of

the deformations of the mesh. In this case, a mesh is first represented by the dif-

ferential representation to compute the element (vertex or face) deformation. The

deformation based approach can be easily adopted for the multi-pose interpola-

tion and the morphing. It generates realistic and smooth deformations between

the interpolated poses.

We explore the interpolation and the morphing by adopting the traditional ap-

proach using VG and learning base approach. The traditional approach is compu-

tationally inefficient due to element-wise operations compared to learning based

approach. In learning based approach, the mesh is first segmented into a set of

patches using the K-means clustering. The mesh segmented into patches serves

as a low resolution structure. We then establish a map between the patches of

segmented mesh and vectors of VG representation of mesh. We also show that

the established map for a mesh can be used for interpolation and deformation

transfer. Both interpolation and deformation transfer can also be performed on

the morphed mesh by modifying the established map. We compare both the ap-

proaches with other methods qualitatively and quantitatively.

6.1 The Deformation Based Interpolation and Mor-

phing Using the VG

In this section, we describe the deformation based interpolation and the morph-

ing tasks using the VG representation. We present the comparison of the VG rep-

resentation with the other differential representations for both the applications

as show in Figure 6.1 and 6.2. We have interpolated deformation of vectors of

VG representation. The deformation is computed between the vector of reference

mesh and the VG vectors of the deformed mesh in terms of rotation and scaling as

explained in section 3.3. For interpolation, we assume that both the meshes have
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DG [1]

LRI [10]

MR [2]

VG
t=-0.5 t=0 t=0.5 t=1 t=1.5

Figure 6.1: Demonstration of interpolation. We compare VG with three different
representation namely Deformation Gradient (DG) [1], Linear Rotation Invariant
coordinates (LRI) [10] and Manifold Representation (MR) [2]. t = −0.5 and t = 1.5
represent the extrapolation.

the same resolution and the face wise correspondence is available whereas both

meshes may have different resolution for morphing. The correspondence, if not

available, can be established by following the registration process as suggested in

[1]. As explained in section 3.4.2, the deformation between the reference mesh and

deformed mesh is a points on the manifold M. Our aim is to find a suitable path
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DG [1]

LRI [10]

MR [2]

VG
t=0 t=0.25 t=0.50 t=0.75 t=1.0

Figure 6.2: Demonstration of morphing. We compare VG with three different
representation namely Deformation Gradient (DG) [1], Linear Rotation Invariant
coordinates (LRI) [10] and Manifold Representation (MR) [2]. t = −0.5 and t = 1.5
represent the extrapolation.

between two points on the manifold M. Let’s consider rotation Ji and scaling ai

that deform a reference vector i to its corresponding deformed vector. To generate

path on the manifold, we interpolate the rotational part from unit rotation I to Ji

and scaling part from 1 to ai as,

Jt
i = exp(t ∗ log(Ji)) and at

i = exp(t ∗ log(ai)), t ∈ [0, 1]. (6.1)

The intermediate position of vector i can be computed as,

v̄t
di = at

i Jt
i v̄ri. (6.2)
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The intermediate vectors of VG representation are computed similarly. The VG

representation of intermediate pose is,

V̄t
d = [v̄t

d1, v̄t
d2, . . . , v̄t

dn] = [at
1 Jt

1v̄r1, at
2 Jt

2v̄r2, . . . , at
n Jt

nv̄rn] = Vt
d A. (6.3)

The mesh Vt
d can be reconstructed from its VG representation V̄t

d as discussed in

section 3.1. In Figure 6.1 and Figure 6.2, we compare VG representation with De-

formation Gradient (DG) [1], Linear Rotation Invariant coordinates (LRI) [10] and

Manifold Representation (MR) [2] for interpolation and morphing applications.

The performance of VG is comparable with all the three representations for in-

terpolation. For morphing, VG and Deformation Gradient performs better than

Linear Rotational Invariant and Manifold Representation. Since the deformation

of each mesh element is computed independently the approach becomes compu-

tationally inefficient for real-time applications.

During the smooth mesh deformation, the deformations of neighboring faces

of the mesh are correlated and such a relationship can help in reducing the com-

putational complexity. Assuming such a dependency, we segment the mesh into

patches by the K-means algorithm where each patch contains a set of faces whose

deformations are correlated with each other. The segmented mesh serves as a

low-resolution control structure. The patch deformations if applied directly to the

corresponding set of faces to deform the mesh, it produces discontinuity at the

boundary of the patches because of small incompatibility between the deforma-

tion of the patch and the deformation of mesh elements. In order to prevent the

discontinuity artifacts, we establish a map between the patch deformation and

the mesh deformation using poses available in the dataset. The established map

takes care of small incompatibility. Further, the mesh deformation is computed by

representing it with the Vector Graph representation [72, 3], which is a collection

of vectors. The vector deformation and the patch deformation are calculated as

the composition of rotation and scaling, which are commutative transformations.

Hence, it favours us to simplify the mesh deformation process. It is possible

to deform the low-resolution structure in real-time, followed by the mesh defor-

mation through the established map. We explore three applications; interpola-
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tion, deformation transfer, and morphing using the established map. We achieve

qualitatively similar and computationally efficient results for all three applica-

tions compared to other methods.

6.2 Mesh Segmentation

(a) # Patches=50 (b) # Patches=50 (c) # Patches=40

Figure 6.3: Three meshes with color coded segmented patches. The segmentation
is performed using K-means algorithm.

Let’s consider Y = {y1, y2, . . . , yl} is a set of rotations of l faces where,

yj ∈ [−1, 1]9p and p is number of poses. The faces are segmented into m patches

using K-means classifier based on the similarity of yj’s between the faces. The

deformation of a patch is then computed as describe below. The faces in a patch

is represented by the VG representation and hj is the set of indices of vectors for

the patch j. Assuming that the patch vertices undergo similar deformation, the

rotation of the patch j of pose k is computed by solving following constraint opti-

mization,
argmin

Rk
j

�Rk
jVrj − Vkj�F

subject to (Rk
j )

�Rk
j = I3, and, det(Rk

j ) = +1

(6.4)

where Vrj ∈ R3×|hj| and Vkj ∈ R3×|hj| consist of vectors corresponding to patch

j of reference and kth poses respectively. By solving above equation, we get the
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rotation of the patch j of pose k as,

Rk
j = XZ� (6.5)

where, X and Z are orthonormal matrices derived by computing SVD of VrjV �
kj =

XΣZ�. The scaling of the patch j is computed as,

bj =
1
|hj| ∑

t∈hj

at (6.6)

where, at = �v̄rt�/�v̄kt� is the scaling of vector t. Similar to the vector deforma-

tion group, the deformations of patches {Rk
j , bk

j } also form a group denoted as Gp

which is also a smooth manifold. The dimension of this manifold is 4m where,

m is number of patches. Since the dimension of the manifold Gp is small com-

pared to manifold Gv, manipulating deformation of patches is computationally

efficient. However, applying the patch deformation directly to affiliated faces may

cause discontinuity artifacts at the patch boundaries. To nullify such artifacts, we

establish a map between both the manifolds Gp and Gv. Figure 6.3 shows the seg-

mented patches on various meshes. Observe the woman mesh, she wears highly

deformable cloths. The patches are segmented nicely by proposed approach for

such a complex case too.

6.3 Manifold Mapping

After identifying the patches, our aim is to establish a map between patch de-

formation manifold Gp and vector deformation manifold Gv. The map χ =

(χz11, χz22, . . . , χznn) is defined as,

χ : Gp �→ Gv. (6.7)

where, χzii maps the deformation of patch zi to the deformation of corresponding

vector i. We have already knew that the vector i belongs to the patch zi based on
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v̄ri

v̄k
di

bk
zi

Rk
zi
∈ [Gp]zi

Patch Deforamtion
χzii

ak
i Jk

i ∈ [Gv]i

Vector Deformation

gp ∈ Gp
χ

χ(gp) ∈ Gv

Segmentation

Segmentation

Reference Pose

VG Representation

VG Represenation

kth Deformed Pose

Figure 6.4: The illustration of map establishment processes. The map χ between
patch deformation manifold Gp and vector deformation manifold Gv is estab-
lished using p example poses of a mesh.

segmentation information. The map χzii is defined as,

χzii : bzi Rzi �→ ai Ji. (6.8)

The map χzii is modelled as; rotation and scaling. The parameters of χzii are com-

puted using example poses available in the database. The rotation of the patch zi

and the rotation of vector i are,

Rzi Hzii = Ji (6.9)

100



where, Hzii is a rotational component of the map χzii. The relationship between

scaling of patch zi and vector i is defined as,

bzi szii = ai (6.10)

where szii ∈ R+ is the scaling component of the map χzii. These components

(Hzii and szii) are estimated using example poses available in the database. All

the maps χzii are injective maps so, the map χ is an injective map as explained in

section 5.3.3.

6.3.1 Learning χ := (H, s)

The map χzii is established by estimating its parameters using p example poses.

The rotational component is estimated by solving following optimization prob-

lem,

argmin
Hzii

p

∑
k=1

�Rk
zi

Hzii − Jk
i �F

subject to H�
ziiHzii = I3, and, det(Hzii) = +1

(6.11)

where, F is Frobenius norm. Above equation is simplified as explained in [73] as,

argmax
Hzii

Tr(HziiJ �
i Rzi)

subject to H�
ziiHzii = I3, and, det(Hzii) = +1

(6.12)

where, Rzi = [R�1
zi

, R�2
zi

, . . . , R�p
zi ]

� and Ji = [J�1i , J�2i , . . . , J�pi ]�. The rotation Hzii is

computed as suggested in [73] as,

Hzii = XZ� (6.13)

where, X and Z are orthonormal matrices derived by computing SVD of J �
i Rzi =

XΣZ�. After estimating the rotational parameter, the scaling parameters szii are

computed as,

szii = γ1 a1
i

b1
zi

+ γ2 a2
i

b2
zi

+ · · ·+ γp ap
i

bp
zi

. (6.14)
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where ak
i /bk

zi
is the ratio of the scaling of vector i and patch zi corresponding to

pose k. The convex weights γk k ∈ {1, 2, . . . , p} are computed as,

γk =
ek

∑
p
z=1 ez

, where, ek =
1

�Rk
zi

Hzii − Jk
i �F

. (6.15)

Similarly, we establish all other maps χ = {χz11, χz22, . . . , χznn} by approximating

their parameters. The deformation of a vector is not related to the deformations of

all the patches. For a humanoid mesh example, deformation of a vector belonging

to head doesn’t have any relationship with a patch belonging to the leg. Hence,

we relate deformation of a vector i and deformation of patch zi by χzii. Such

relationship leads to a sparse map.

6.3.2 Relating Patch and Mesh Deformations

After approximating parameters of the map, the vector v̄ri is deformed using ro-

tation Ji and scaling ai defined in equation 3.13 as,

v̄di = ai Jiv̄ri. (6.16)

The rotation (Ji) and scaling (ai) are computed from a patch deformation using

estimated parameters. Substituting ai = bzi szii and Ji = Rzi Hzii, in above, we get,

v̄di = bzi sziiRzi Hziiv̄ri = χziiv̄ri. (6.17)

where szii and Hzii are the parameters of the map χzii. Since scaling and rotation

commute (as explained in section 3.4.3), above equation can be rewritten as,

v̄di = bzi Rzi(sziiHziiv̄ri). (6.18)
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The deformation of vectors can be computed from corresponding patch deforma-

tion. The deformed VG representation is,

V̄d =[v̄d1, v̄d2, . . . , v̄dn] (6.19)

=[bz1 Rz1(sz11Hz11v̄r1), bz2 Rz2(sz22Hz22v̄r2), . . . , bzn Rzn(sznnHznnv̄rn)]. (6.20)

where, zi ∈ {1, 2, . . . , m} is the index of the patch in which vector i belongs to.

Above equation further be simplified as,

V̄d = [b1R1, b2R2, . . . , bmRm]K = BK. (6.21)

where the matrix K is constructed as shown in Appendix A.7. The deformed mesh

is reconstructed using reconstruction process from the deform VG representation

V̄d as explained in section 3.9,

V̂d = Ṽ Â+ = (V̄ − vc Al)Â+. (6.22)

where, vc is a constraint vertex which is set at origin of 03 ∈ R3. V̂d contains

vertices of deformed mesh, the constraint vertex vc is appended later to get the

full deform mesh Vd. We rewrite equation 6.22 as,

V̂d = Ṽ Â+ = V̄ Â+ = BKÂ+ = BM. (6.23)

where, matrix M = KÂ+ can be precomputed. Appending constraint vertex to

V̂d, we get the deformed mesh as

Vd = [BM, vc] = [BM, 03] = [BM, B03m] = BM̃ (6.24)

where, M̃ is formed by appending 03m (origin of R3m) to M at the column cor-

responding to the constraint vertex vc. The matrix M̃ is precomputed using

mesh connectivity, map parameters and VG representation of the reference mesh.

Above equation is a simplified relation between deformed mesh Vd and patch

deformation (B).
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6.4 Mesh Sequence Interpolation

(a)

(b)

(c)

(d)
t=-0.25 pose-1 t=0.25 t=0.5 t=0.75 pose-2 t=1.25

Extrapolation Interpolation Extrapolation

Figure 6.5: Comparison of proposed interpolation method with other methods.
Interpolated and extrapolated poses by (a) proposed method, (b) Linear Rotation
Invariant (LRI) coordinates [10], (c) Poisson interpolation [11] and (d) Lie body
representation [12].

Primary objective of the interpolation is to generate intermediate poses be-

tween two meshes. It typically manifests transition from one mesh to the other. In

the proposed interpolation method, the patch deformations for two meshes rep-

resent two points on the patch deformation manifold Gp. For the interpolation,

a geodesic (say βb) between these two points is approximated on the manifold

Gp. Each point on the approximated geodesic are mapped to a point on the vec-

tor deformation manifold (Gv) using established map χ = {χz11, χz22, . . . , χznn}.

Hence, the map χ maps the geodesic βb to χ(βp) = βv, where, βv is a curve on the

manifold Gv. Note that the curve βv is not a geodesic. Performing interpolation

on the patch deformation manifold Gp is computationally demanding then on Gv.

Moreover, the deformed mesh is approximate using the simplified equation (6.24).
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Hence, the proposed interpolation method is computationally real-time even for

high resolution meshes (see Table 6.1 and Table 6.2). The interpolation process is

illustrated graphically in Figure 6.6. Let’s consider two mesh poses V1 and V2. The

deformations of patch j of V1 and V2 w.r.t. reference mesh are denoted as b1jR1j

and b2jR2j respectively. The interpolation between both deformations is defined

as,

Rj(t) = R1jexp(t ∗ log(R�
1jR2j)) (6.25)

bj(t) = b1jexp(t ∗ log(b−1
1j b2j)) (6.26)

where, t ∈ [0, 1] (t ∈ R) is the interpolation (extrapolation) factor. A geodesic on

the patch deformation manifold is generated by interpolating all other patch de-

formations similarly. From the approximated geodesic using patch deformation

manifold (Gp), the curve βv on the vector deformation manifold can be generated

using on established map χ. The patch deformation matrix B which is defined in

equation (6.24) is computed for interpolation (extrapolation) factor t as,

B(t) = [b1(t)R1(t), b2(t)R2(t), . . . , bm(t)Rm(t)]. (6.27)

Substituting the patch deformation matrix B(t) into equation (6.24), the interpo-

lated pose approximated for the factor t is,

Vd(t) = B(t)M. (6.28)

The intermediate poses between V1 and V2 are generated by varying t ∈ [0, 1]

(t ∈ R for extrapolation).

6.5 Deformation Transfer

In deformation transfer, the deformation of a mesh (source) is transferred to an-

other mesh (target) to generate its deformed pose through established correspon-

dence. As shown in the Figure 6.6, the map χ between patch deformation mani-

105



Gp

Gv

B2

B1

B(t)

D2

D1

D(t)

χ

M̃x

M̃u
M̃

V1 = B1M̃ V(t) = B(t)M̃ V2 = B2M̃ U1 = B1M̃u U(t) = B(t)M̃u U2 = B2M̃u

X1 = B1M̃x X(t) = B(t)M̃x X2 = B2M̃x

Interplolation Interplolation

Interplolation

Deformed

Deformed

DeformedReference Reference

Reference

(b) Source Mesh (c) Target Mesh

(d) Morphed Mesh

(of source)

(of source)

(a)

Figure 6.6: The illustration of map establishment, interpolation and deformation
transfer processes. (a) The map χ between patch deformation manifold Gp and
vector deformation manifold Gv is established using p example poses of a mesh
(man). (b) The source meshes are interpolated by interpolating patch deformation
(B) and then multiplying it to M (see section 6.4 for derivation). (c) The established
map χ for the source (man) mesh can be transferred to the target mesh (woman) in
order to perform interpolation and deformation transfer on the target mesh (refer
section 6.5 for detailed explanation). (d) Using the patch deformations (B), the
interpolation and Deformation Transfer can also be performed on morphed mesh
(refer section 6.6 for detailed explanation)
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fold Gp and vector deformation manifold Gv of the source reference mesh (Vr) is

established using p available poses. Next, we transfer the established map χ to the

target reference mesh (Ur). Here, we assume that the face wise correspondence is

available between Vr and Ur. The correspondence can be established using mesh

registration methods available in literature such as [1]. Let’s consider ith vector

of the target mesh Ur as ūri. For Deformation Transfer, the corresponding source

vector v̄ri is replaced by the vector ūri in equation (6.17). The target deformed

vector is given by,

ūdi = bzi Rzi(sziiHziiūri) (6.29)

where, ūdi is the deformed vector corresponding to the deformed target mesh.

We compute other deformed target vectors similarly. The deformed target VG is

given by,

Ūd =[ūd1, ūd2, . . . , ūdn] (6.30)

=[bz1 Rz1(sz11Hz11ūr1), bz2 Rz2(sz22Hz22ūr2), . . . , bzn Rzn(sznnHznnūrn)] (6.31)

where zi ∈ {1, 2, . . . , m} is the index of the patch. Above equation can be simpli-

fied as,

Ūd = [b1R1, b2R2, . . . , bmRm]Ku = BKu. (6.32)

where matrix Ku can be precomputed from the map χ and target mesh Ur. It can

be formed similar to matrix K (see Appendix A.7). The matrix B is obtained from

the patch deformations of the source mesh. The deformed target mesh can be

reconstructed from its VG representation as,

Ûd = ŪÂ+
u = BKu Â+

u = BMu (6.33)

where, the connection matrix A+
u is formed from the connectivity of the target

mesh. Appending constraint vertex to Ûd, we get the deformed mesh as,

Ud = [BM, 03] = [BM, B03m] = BM̃u (6.34)
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where, M̃u is formed from the established map χ, reference target mesh and the

matrix Au. As explained in section 6.4, replacing B with B(t), the interpolation

can also be performed on target meshes (see Figure 6.11).

Gp Gv

Gx
v

χ

Vr Ur

κ (d1(l)Q1(l), d2(l)Q2(l), . . . , dn(l)Qn(l))

Morphing (l)

Figure 6.7: The map χ is established for the source mesh (a men) using p exam-
ple poses as explained in section 6.3. The morphed mesh is generated between
reference source mesh Vr and the reference target mesh Ur. To interpolate the
morphed mesh, the map χ is modified to κ using the deformation of morphed
mesh {d1(l)Q1(l), d2(l)Q2(l) , . . . , dn(l)Qn(l)} which is obtained by interpolating
deformation between Vr and Ur. l is the morphing factor l ∈ [0, 1]. The Gx

v is the
vector deformation manifold of the morphed mesh X(l).
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6.6 Interpolation for Morphed Model

In the shape morphing, the objective is to perform interpolation between a mesh

of an object (source) and a mesh of another object (target). Let’s consider the

morphed object mesh Xr(l) which represents the transition from the object Vr to

another object Ur where, l is the morphing factor. Since both the meshes (Vr and

Ur) may have different resolutions, the face wise correspondences should be com-

puted using mesh registration method such as [1]. We assume here that such a

correspondence is available between Vr and Ur. Such a correspondence is rep-

resented in the form of pairs of indices of vectors. Let’s consider any such pair

(v̄ri and ūri) corresponding to the ith vectors of meshes Vr and Ur. The relation

between v̄ri into ūri is defined as,

ūri = diQiv̄ri (6.35)

where, scaling di and rotation Qi can be computed from v̄ri and ūri as explained

in section 3.3. The morphed mesh Xr(l) is generated by interpolating the defor-

mations di and Qi using logarithm and exponential maps as,

Qi(l) = exp(l ∗ log(Qi)), di(l) = exp(l ∗ log(di)) (6.36)

x̄ri = Qi(l)di(l)v̄ri (6.37)

where, l ∈ [0, 1] is a morphing factor and x̄ri is the vector i of the morphed mesh

(Xr(l)). To perform the Deformation Transfer and the interpolation on the mor-

phed model Xr(l), the map χ = (χz11, χz22, . . . , χznn) established for the mesh Vr

is modified to the map κ = (κz11, κz22, . . . , κznn) for the morphed mesh Xr(l). The

deformed vector x̄di of the deformed morphed model Xr(l) is computed as,

x̄di = χzii x̄ri = χziidi(l)Qi(l)v̄ri = κziiv̄ri (6.38)

where, κzii is the map which maps deformation of the patch zi of the mesh Vr to

deformation of vector i of the morphed mesh. After establishing the map κ, the
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VG representation of a deformed morphed mesh is computed as,

X̄d = [x̄d1, x̄d2, . . . , x̄dn] = [bz1 Rz1(sz11Hz11d1(l)Q1(l)v̄r1),

bz2 Rz2(sz22Hz22d2(l)Q2(l)v̄r2), . . . , bzn Rzn(sznnHznndn(l)Qn(l)v̄rn)].
(6.39)

X̄d(l) = [b1R1, b2R2, . . . , bmRm]Kx (6.40)

where zi ∈ {1, 2, . . . , m} is index of the patch of the mesh Vr. The matrix Kx is

formed similarly as matrix K (see Appendix A.7). As explained in the section 6.4,

the deformed mesh can be obtained by simplifying above equation as,

Xd(l) = [b1R1, b2R2, . . . , bmRm]M̃x = BM̃x (6.41)

where, matrix M̃x is approximated from the established map κ, the VG represen-

tation of reference mesh Vr and connection matrix A of the mesh Vr. The matrix

B is obtained from the deformed source mesh Vd to generate the corresponding

deformed mesh Xd(l). We substitute B(t) in the equation (6.41) to generate inter-

polated poses of the morphed mesh Xr(l) as explained in section 6.4. This process

is illustrated in Figure 6.7.

6.7 Results and Experiments

To compare the proposed approach for interpolation, morphing and Deformation

Transfer, we have carried out experiments on various datasets. In the process, we

have created an add-on for Blender to perform these tasks. All the experiments

have been carried out using intel-i7-2.8GHz, 8 core system with 8 GB memory. All

the methods have been implemented as single threaded python programs.

We have compared our method with various interpolation [11, 10, 12] and de-

formation transfer [1, 2, 3] methods on both aspects: quality and computation.

Table 6.1 and Table 6.2, describe 23 different models used from various datasets:

10 (500xx) from [4], 6 (Horse, Camel, Flamingo, Elephant, Lion and Cat) from [1],

4 models from [5], 1 (Hand) from [75] and 2 (Kid1 and Kid2) from [76].
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t=-0.25 pose-1 t=0.5 pose-2 t=1.25
Extrapolation Interpolation Extrapolation

Figure 6.8: Interpolation and extrapolation using proposed method on various
meshes.

6.7.1 Training Error

For the proposed data-driven approach, the map between the patch deformation

manifold and the vector deformation manifold is established by solving a least

square constraint optimization problem to estimate its parameters. Hence, it may

not reproduce the example poses with 100% precision. To measure the inaccuracy

in the training process, we compute two statistical measures; orientation (Eoi) and
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Model Verts Training
Poses Segments

Training Error
Orientation Area

Mean Std Mean Std
µo(10−3) σo(10−2) µa(10−2) σa

50002 6890 480 50 3.72 2.301 3.85 1.26
50004 6890 480 50 4.45 2.60 4.24 0.14
50007 6890 457 50 3.95 2.47 3.72 0.15
50009 6890 312 50 3.00 1.65 3.18 0.09
50020 6890 325 50 2.88 1.49 3.56 0.12
50021 6890 382 50 3.03 1.57 3.66 0.09
50022 6890 499 50 3.90 1.98 3.83 0.12
50025 6890 515 50 3.17 1.67 3.66 0.14
50026 6890 488 50 4.65 2.36 3.97 0.14
50027 6890 409 50 3.45 1.58 3.57 0.11
Horse 8431 11 40 13.23 4.83 14.81 0.27
Camel 21887 11 40 4.85 2.05 8.12 0.17

Flamingo 26394 11 40 4.49 1.82 11.53 0.15
Ben 10002 175 50 15.87 3.13 14.59 0.28

Ben2 9971 150 50 15.38 4.43 19.38 0.22
Ben3 10002 150 50 54.73 28.93 96.54 0.19
Ben4 10002 250 50 13.42 3.91 19.84 0.51
Hand 7929 9 30 7.49 5.10 8.25 0.19
Kid1 59727 16 50 9.29 4.27 9.88 0.47
Kid2 59727 16 50 13.52 5.76 12.05 0.71

Elephant 42321 10 60 4.29 2.24 4.24 0.09
Lion 5000 10 40 25.21 8.56 24.23 1.59
Cat 7207 10 40 27.28 8.98 25.25 1.12

Table 6.1: The table shows configuration of various meshes and the pose estima-
tion error. std indicates standard deviation.

area (Eai) errors for the face i of the mesh as,

Eoi = |1 − cosθi| = |1 − N�
i Ñi| ∈ [0, 2], and Eai = |1 − Ai

Ãi
| ∈ R+ (6.42)

where, Ni and Ñi are unit normals of ith faces of the estimated and the ground

truth poses respectively. θi is the angle between Ni and Ñi. Ai and Ãi are areas of

ith faces of the estimated and the ground truth poses respectively. Both the errors

Eoi and Eai quantify the inaccuracy in the orientation and the area of the estimated

face i. Since the map is established using p available poses of the mesh, both the

errors are computed for every face of all available poses. We compute the mean

(µo and µa) and standard deviation (σo and σa) of the both the errors (Eoi and Eai)
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Model

Interpolation
Proposed DG [11] Lie [12] LRI [10]

Prepr. itr Prepr. itr Prepr. itr Prepr. itr
(s) (ms) (s) (ms) (s) (ms) (s) (ms)

50002 2473.68 1.10 6.3 508.52 5.16 406.7 4.72 539.76
50004 2524.92 1.04 6.44 528.00 5.26 406.34 4.76 538.47
50007 2352.46 1.06 6.38 523.48 5.14 401.70 4.76 544.54
50009 2352.46 1.06 6.38 523.48 5.14 401.7 4.77 543.78
50020 1673.24 1.12 6.42 547.66 5.04 413.38 4.68 543.11
50021 1979.06 1.08 6.42 538.12 5.22 401.58 4.79 535.20
50022 2597.2 1.06 6.36 534.74 5.2 406.60 4.72 538.74
50025 2648.54 1.05 6.30 526.08 5.04 391.44 4.65 539.47
50026 2547.58 1.10 6.48 528.32 5.24 398.88 4.74 544.13
50027 2524.22 1.03 6.32 532.16 5.16 398.38 4.79 550.49
Horse 82.98 1.06 7.76 656.68 6.28 493.18 5.82 666.27
Camel 223.94 1.33 20.44 1683.5 15.98 1249.94 15.15 1762.93

Flamingo 282.54 1.81 24.22 2021.00 19.64 1536.44 17.94 2058.73
Ben 1358.98 1.28 9.14 762.12 7.52 588.74 6.82 776.36

Ben2 1152.48 1.32 9.06 747.68 7.52 590.32 7.01 774.47
Ben3 1219.46 1.32 9.28 759.36 7.68 611.14 6.88 779.96
Ben4 2036.6 1.3 9.18 762.42 7.56 597.44 6.83 778.60
Hand 56.84 0.92 7.2 594.64 5.88 469.26 4.43 428.15
Kid1 937.5 3.31 54.94 4520.12 44.44 3344.7 40.61 4658.69
Kid2 927.12 2.56 55.24 4514.42 44.14 3337.06 40.73 4618.69

Elephant 528.12 3.46 38.92 3202.84 31.48 2369.96 28.77 3300.33
Lion 46.2 1.10 4.76 387.92 3.92 299.74 3.51 404.56
Cat 66.34 1.14 6.68 559.64 5.56 436.46 5.00 571.19

Table 6.2: The table shows configuration of various meshes and comparison of
various interpolation methods in term of computational complexity. Note that
the ms and s indicates the time in mili second and second respectively. prepr. and
itr indicate time require for preprocessing and interpolation.
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where, l and p are number of faces and poses of the mesh respectively. In the Table

6.1, the mean and the standard deviation are shown for all 23 objects. The small

mean and standard deviation of both the errors shows that the proposed method

can accurately regenerate the training poses. We have also shown the distribution

of mean error (i.e. µai and µoi) computed for every face of the mesh and as the

histogram in Figure 6.9. The error distribution on the mesh is smooth and so is

the deformation of the mesh. The highest mean error is observed at the joints of

the mesh because of the low correlation between the patch deformation and the

deformation of the vector near joints.

Model Pair
Methods DG [1] Lie body [2] GDT[3] Proposed

Lion-
Cat

Preproc. (s) 1.08 1.01 1.24 8.56
DT (ms) 1.67 5.71 6.10 0.014

Hand-
Devil

Preproc. (s) 1.22 1.09 1.35 7.68
DT (ms) 1.87 6.49 6.54 0.010

Human-
Devil

Preproc. (s) 1.53 1.35 1.72 14.96
DT (ms) 2.40 7.91 8.50 0.015

50022-
50007

Preproc. (s) 1.05 0.98 1.20 9.05
DT (ms) 1.61 5.84 6.02 0.013

Table 6.3: Comparison of proposed Deformation Transfer method with Deforma-
tion Gradient (DG) [1], Lie body [2] and Guided Deformation Transfer (GDT) [3]
in terms of preprocessing time and Deformation Transfer time. Note that s and ms
indicates the time in seconds and miliseconds.

6.7.2 Interpolation

Experiments for the proposed interpolation and extrapolation methods have been

carried out on various meshes. The Figure 6.5, shows the qualitative comparison

of the proposed interpolation method with Poisson interpolation [11], Linear Ro-

tation invariant (LRI) [10] and Lie Body [12]. As shown in the Figure 6.5(b), the

shrinkage artifacts can be observed in the interpolated pose generated by Linear

Rotation invariant [10] coordinate. The intermediate pose has shrunk to smaller

size during the interpolation. Using Poissson interpolation [11] and Lie body [12],

the transition between two consecutive poses is smooth and natural during inter-

polation and extrapolation as shown in the Figure 6.5(c) and (d). The proposed
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0 µo 0.015

Colorbar for orientation error

0 µa 0.16

Colorbar for area error

(a) (b)

Figure 6.9: (a) Distribution of orientation error on mesh (top) and correspond-
ing histogram of error (bottom). (b) Distribution of area error on mesh (top) and
corresponding histogram of error (bottom). Note that ranges of the orientation
and area errors are [0, 2] and R+ respectively. The face i with µoi ≥ 0.015 and
µai ≥ 0.15 is assigned the red color.

method is qualitatively similar to Poisson interpolation [11] and Lie body [12].

We have also performed interpolation and extrapolation on various meshes us-

ing proposed interpolation approach as shown in Figure 6.8. Note that the poses

shown in the Figure 6.8 are not used during the training process. The smooth and

realistic deformation in the interpolated poses for all the cases endorse our infer-

ence. As shown in Figure 6.8 (row three), the proposed method can interpolate

the complex folds in the cloth smoothly and naturally. We have also performed

the interpolation on the morphed meshes as shown in Figure 6.11.
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Table 6.2, describes the configuration of the various meshes and the associated

computational cost to perform interpolation. The number of patches affects not

only quality of deformation but also the computational performance in the pro-

posed method. We have identified number of patches experimentally for all 23

meshes. In Table 6.2, we have compared the propose interpolation method with

other methods [11, 10, 12] in terms of preprocessing time and interpolation time.

The preprocessing is required only once to acquire prerequisite information for in-

terpolation. The preprocessing time for proposed method depends on the number

of poses, number of patches and resolution of the mesh whereas it depends only

on resolution of the mesh for other methods. The interpolation time shown in

the Table 6.2 specifies the time required to generate an interpolated pose between

two key frames. Hence, the interpolation time is an appropriate choice to quantify

computational performance of an interpolation method. The proposed method is

able to generate approximately 289 to 1075 interpolated poses per second depend-

ing on resolution of the mesh and number of patches in the low resolution struc-

ture. Hence, the proposed method is computationally real-time. Whereas, the

other interpolation methods are computationally sluggish due to large number

of element-wise computations. Both qualitative and computational performances

endorse our claim that the proposed method is qualitatively similar and compu-

tationally efficient than other methods.

The established map for a mesh can be transferred to approximate the map for

morphed mesh as explained in the section 6.6. Once the map is approximated,

the interpolation and deformation transfer are performed on various morphed

meshes as shown in the Figure 6.11. Here, we have experimented with various

source-target pairs by performing morphing followed by deformation transfer

and interpolation on the morphed mesh. From Figure it is evident that 6.11, the

geometric details of the morphed model are preserved during interpolation and

deformation transfer. The computation time for interpolation remains the same

as the source model interpolation as shown in the Table 6.2 because the morphed

model has the same resolution and number of patches as the source mesh.
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(a)

(b)

(c)

(d)

(e)
Reference Pose Deformed poses

Figure 6.10: Comparing the proposed deformation transfer method with other
methods. The deformation from source (a) to the target (cat) using Deformation
Gradient (DG) [1] (b), Lie body [2] (c), Guided Deformation Transfer (GDT) [3] (d)
and proposed method (e).

6.7.3 Deformation Transfer

In traditional Deformation Transfer [1, 2, 3], the deformation of each triangular

face of the source mesh is transferred to corresponding triangular face of target

mesh. The geometric details of the target mesh are preserved by such meth-

ods. As explained in the section 6.5, the established map for the source can be

transferred to the target through the established correspondence. Unlike tradi-

tional approach, the patch deformation acquired from the deform source pose

is employed to deform target mesh through transferred map. We have experi-

mented on various source-target meshes as shown in Figure 6.10 and 6.11. The

proposed method is compared with other Deformation Transfer methods such

as Deformation Gradient [1], Lie Body [2] and Guided Deformation Transfer [3]

qualitatively. In Figure 6.10, the deformation transfer is performed on different
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resolution source-target meshes such as lion-cat pair. The results of the proposed

method are qualitatively similar to other methods. Apart from the Deformation

Transfer, the real-time interpolation can also be performed between two target

poses using transferred map from the source as shown in the Figure 6.11. The ge-

ometric details of the target mesh is preserved during both the interpolation and

the deformation transfer.

We have presented the computational performance of various Deformation

Transfer methods in Table 6.3. The preprocessing and the Deformation Trans-

fer times are considered for comparing the computational requirements of these

methods. The traditional methods [1, 2, 3] are computationally demanding due to

element vise computation. On other hand in the proposed method since the patch

deformation of the deform source pose is transferred to generate the deformed

target pose is computationally efficient in comparison with other Deformation

Transfer methods.
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Source

Morphing

Target

Source

Morphing

Target

Reference Interpolation DT

Figure 6.11: The interpolation is performed between two source meshes using
established map. The interpolation and Deformation Transfer (DT) can also be
performed on corresponding target meshes and morphed meshes. The morphing
factor is 0.5 for both the cases.
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CHAPTER 7

Blender Implementation

In this work, we first, propose computationally efficient algorithms that ensure

the smooth and realistic deformation of the mesh for various applications. And

then, implement these algorithms as the prototypes for an interactive experience.

In this work, all the tasks are defined in a unified framework that involves three

necessary steps. (i) The Vector Graph representation represents the mesh as a

collection of vectors. (ii) The VG of the mesh is deformed by deforming vectors.

(iii) From the deformed VG, the deformed mesh is reconstructed by solving a

simple over-determined system of linear equations. The process of deformation

of the VG (step (ii)) is different depending on the application, and it involves

fundamental geometric transformations, rotation and scaling. The other two steps

remain the same for all the tasks.

An open source software that allows us to visualize a mesh, access its data-

structure, and create an interactive tool panel in its User Interaction (UI) is needed

to implement the proposed unified framework. The Blender is the best fit. The

Blender is an open source 3D creation software developed by various profession-

als such as artists, programmers, and graphic designers. It has provisions for

rigging, animation, simulation, rendering, motion tracking, video editing, and 2D

animation. The more details are found at https://www.blender.org/. Apart from

its rich in-built functionality, it provides a platform where a user can create a UI

panel in python. We have implemented all the proposed algorithms for different

applications in Blender as an Add-ons. All other methods used for comparisons

are also implemented in Blender as Add-ons. In this chapter, we document all

the created Blender add-ons. This chapter will serve as a user manual for users.
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Our implementation may not be an optimal one, but it indeed a prototype devel-

oped as proof of concept. All the Add-ons and other supporting python codes are

available on my GitHub page.

7.1 Blender Setup

A user will require the following system configurations and basic setup to run all

the Add-ons.

OS:

All the Add-ons are tested on Ubuntu 18.04.

System:

Add-ons can be run on any system with Blender 2.81 (or 2.82) and following

python libraries must be installed.

Python Libraries:

Numpy, Scipy, Scikit-sparse, Scikit-learn

The main challenge, we face during implementation, is the compatibility of the

above python libraries in the Blender environment. Here, we found two possible

ways to access these libraries in the Blender.

1. Install these libraries directly into the system root. The version of the library

should be compatible with the inbuilt Python version of the Blender.

2. Access these libraries from Anaconda by below steps,

(a) Install Anaconda 3 (any version) from https://docs.anaconda.com/

anaconda/install/.

(b) Create a Python environment “Blender" with the version the same as

Blender’s Python.
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(c) Install all the libraries mentioned above. The Anaconda takes care of

compatibility.

(d) For this option, uninstall these libraries from the system root; other-

wise, there will be a clash between them during import.

After installing python libraries, the user will have to make a few changes in

all the Add-ons. User should first change the two variables; LibPath and FilePath.

If the libraries are installed in the root then the LibPath variable must be an empty

string. Otherwise, the LibPath must be,

LibPath=‘PathWhereAnacondaInstalled/anaconda3/envs/Blender/lib/python3.7/site-packages/’

where, the ’PathWhereAnacondaInstalled’ is the path where user install the Ana-

conda. The files generated by an Add-on are stored at FilePath, and it may require

extensive storage space sometimes. Hence, the storage directory should be cre-

ated in the hard drive. Now, everything is set to run a Blender Add-on. The

toolbox is visible in the Blender UI by activating an Add-on (Edit->Preferences-

>add-ons->install). The user manuals for all the Add-ons are provided in the next

section.

7.2 Deformation Transfer Add-on

This add-on is the implementation of the Deformation Transfer using the VG as

explained in section 4.2. When the add-on is activated by the user, the tool panel

shown in Figure 7.1 is visible in the Blender UI in Misc bar. The add-on is de-

signed to process multiple meshes at once, so the source can be a set of meshes

or skeleton poses. Note that the pose imported first in the Blender is consid-

ered as the reference pose. The user should also provide the reference target

pose along with an optional pose for Poisson interpolation (for non-similar bound-

ary condition). The user also has to provide the path of the correspondence file

(“.txt"), replacing the “Default" option. If both the source and the target meshes

have a similar configuration, then the user must not change the “Default" in the

correspondence box. The correspondence between two meshes can be estab-

lished by a mesh registration method such as [1]. We use the implementation
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Select source
meshes/skeletons
and click this button

Select target
mesh/skeleton and
click this button

Copy the path of
correspondence file

Click this button to
perform DT

Click this button
to perfom Poisson
interpolation

Figure 7.1: User interaction panel to perform Deformation Transfer in Blender
2.82.

found at https://github.com/Golevka/deformation-transfer to find the cor-

respondences. The output “.tricorr" file is further processed to get a correspon-

dence file compatible with our implementation by running a python file “Con-

vert_tricorrs_To_oneTOone.py" which is found at my GitHub page. The interactive

use of this Add-on is available as a demo video at Deformation Transfer Guide.

7.3 Enveloping

As explained in chapter 5, a mesh is first enveloped by approximating the map

using a set of example poses. The enveloped mesh is then deformed by deforming

the corresponding skeleton (control structure). A user can perform the enveloping

and the mesh editing processes interactively in the Blender using two separate

Add-ons.
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7.3.1 Enveloping Add-on

The user interface panel to perform the enveloping is shown in Figure 7.2. A user

should compute the necessary setup steps as described in section 7.1. A skeleton

and a set of example poses of a mesh are required to envelop the mesh model. The

skeleton should consist of edges as bones and vertices as joints. Such a skeleton

can be created in the Blender using its in-built tools (see the explanatory video at

Enveloping Guide). The user should follow the following steps,

Name the enveloped model

Set the number of bones whose
deformation are employed to
predict the vector deformation

Set the number of orthonormal
frames formed on a skeleton
bone

Combine the mesh and the
skeleton for further process

Assign a set of vertices to each
joint to fit the skelton to the
mesh

Get a set of example poses for
enveloping

Envelop the mesh

Figure 7.2: User interaction panel for the enveloping in Blender 2.82.

Step-1: Name the enveloped model. The name is added to the file called Riglist

which is stored in a directory. The path of the directory is assigned in the

FilePath variable.

Step-2: Assign the number of bones in Joint Per Vector box. The deformations of

the assigned number of bones are employed to predict the vector defor-

mation.
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Step-3: Assign the number of orthonormal frames formed on a skeleton bone in

Set Frames Per bone box.

Step-4: Select both the reference mesh and the skeleton and then click on the Com-

bine button to combine them in one Blender object. The user should join

each skeleton joint with four vertices of a mesh by four edges (see the

explanatory video at Enveloping Guide for guidance).

Step-5: Fit the skeleton to the mesh by clicking Relate button. The selection is

stored, and it is further used to fit the skeleton to other example poses.

Step-6: Import a set of example poses in the Blender UI and select all of them. The

skeleton is assigned automatically to all the example meshes by clicking

the Mesh seq button using information stored in the previous step.

Step-7: Click Rig button to start enveloping process.

7.3.2 Editing

After completing the enveloping process, the user can now deform the enveloped

mesh by deforming the corresponding skeleton. We have created a demo of the

mesh editing process as a video at Editing Guide. To edit the mesh, follow the

process given below,

Step- 1: Select the enveloped mesh by toggling the numbers in Model box. The

name is printed in the terminal as the user toggle the number.

Step- 2: Load the reference mesh and the corresponding skeleton in the Blender

UI by clicking the Load Ref button.

Step- 3: Deform the skeleton and then click on the Edit Pose button to deform the

mesh accordingly. The twist of the skeleton bone is not accounted in this

step.

Step- 4: A part of the mesh can be twisted by rotating the orthonormal frame

around the associated skeleton bone. For this task, the user should first
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Select the enveloped model for
editing by toggling the number

Load the referece mesh of se-
lected enveloped model and
corresponding skeleton in UI

Deform skeleton and click this
button to deform mesh

Impose the twist on the mesh

Change the angle to twist the
mesh part associated with a
skeleton bone

Figure 7.3: User interaction panel for mesh editing in Blender 2.82.

select two joints of the skeleton bone and change the twist angle value

(−180◦ to 180◦) in Angle1 box to observe the twist on the mesh part in

real-time. The Blender UI should be in the edit mode while performing

this task. However, the twist is not imposed on the mesh yet.

Step- 5: The user can impose the desired twist on the mesh part by clicking the

Edit twist button. The Blender UI should be in the object mode while

performing this task.

7.4 Interpolation and Morphing

As explained in chapter 6, we have explored two approaches for the interpolation

and morphing. The user must complete the necessary setup steps as explained in

section 7.1, before using the Add-ons created for these applications.
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7.4.1 Basic Interpolation and Morphing

Here, we have documented the usage of the Add-on for the basic interpolation

and morphing methods. The UI panel for this method is shown in Figure 7.4.

Follow the steps given below to use this Add-on,

Get the reference mesh

Get a deformed mesh or other
mesh for interpolation or mor-
phing respetively

Assign the number of interpo-
lated poses

Set lower bound of interpola-
tion factor

Set upper bound of interpola-
tion factor

Get interpolated or morphed
poses

Figure 7.4: User interaction panel in Blender 2.82 for basic Interpolation and Mor-
phing.

Step- 1: Import the reference mesh (for example, man) in the Blender UI and click

the Ref Mesh button.

Step- 2: Import, a deformed mesh, corresponds to the reference mesh (Man) for

interpolation or another mesh (Woman) for morphing. The user should

then select the mesh and click Def mesh button. Here, we assume that the

configuration of both meshes is the same.

Step- 3: Set the desired number of interpolated poses in the Num of Poses box.

Step- 4: Set the lower bound for interpolation factor in the tMin box. This value

should be 0 or less than 0 for interpolation or extrapolation, respectively.
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Step- 5: Set the upper bound for interpolation factor in the tMax box. This value

should be 1 or greater than 1 for interpolation or extrapolation, respec-

tively.

Step- 6: Click the Interpolate button to perform interpolation or morphing.

7.4.2 Establishing Map

In section 6.4 and 6.5, we have explored another approach for real-time interpola-

tion and deformation transfer. In this approach, a mesh is segmented into patches

which serve as a low-resolution structure. We then establish a map between the

patch deformation and the vector deformation using a set of example poses. The

established map is used for real-time interpolation and deformation transfer for

various meshes and the morphed meshes. The Blender Add-on to establish the

map, and the user interaction panel is shown in Figure 7.5. The video is avail-

able here at Interpolation Training Guide for this process. The user manual is given

below.

Name the model mesh

Get vertices and face informa-
tion of the example poses

Set the number of patches to
be segmented

Segment the mesh using K-
means algorithm

Visualize the color coded seg-
ments on the mesh

Established the map between
patch deformation and vector
deformation

Figure 7.5: User interaction panel in Blender 2.82 to establish the map.
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Step- 1: Give a name to the mesh in Model box.

Step- 2: Import example poses of the mesh from the database in Blender UI. The

user should select all the poses and then click Mesh seq button to get their

vertex and face information. Note that the first imported pose is consid-

ered as the reference mesh.

Step- 3: Enter the desired number of patches in the classes box. Click the Segment

button to segment out patches using the K-means algorithm.

Step- 4: Select the reference mesh and click on the Color button to visualize color-

coded patches on the reference mesh.

Step- 5: Finally, click on the Train button to establish the map between the patch

deformation and the vector deformation.

7.4.3 Real-time Interpolation and Deformation Transfer

After establishing the map, the user can perform real-time interpolation and de-

formation transfer. The user can also perform both the operations on the morphed

model. The usage of this Add-on is compiled in the video at Interpolation Guide. In

Figure 7.6, we have shown user interaction panel for these tasks. The user guide

is given below,

Real-time interpolation:

The user should first select the trained mesh by toggling the number in the

Model box. The real-time interpolation can be performed between a pair of poses

using the Interpolator section. The interpolation steps are the same as explained in

section 7.4.1.

Deformation transfer:

Here, the user can also perform the Deformation Transfer using the established

map. Follow the below steps.

1. Select the trained source mesh by toggling the number in the Model box and

then import the reference target mesh in the Blender UI.
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Select a trained model

Get the vertices and face
information of the target
mesh and set the morph-
ing factor t ∈ [0, 1]

Assign path of the cor-
respondence file, get the
vertices and face infor-
mation of reference targe
mesh and transfer the
deformation from the de-
formed source pose to the
targe.

Perform real-time interpo-
lation between two poses
of a trained mesh, a mor-
phed mesh or a target
mesh used in the Defor-
mation Transfer.

Figure 7.6: User interaction panel in Blender 2.82 to perform real-time interpola-
tion on trained models and deformation transfer on the target mesh. User can also
perform both processes for a morphed mesh.

2. The user can establish the correspondence between the source and the target

by following the process explained in section 7.2. The path to the correspon-

dence file is then copied in Face path box.

3. The map established for the source (trained model) is transferred to the se-

lected target reference mesh by clicking on the Target button.

4. Now, the user can perform Deformation Transfer by selecting deform source

poses followed by clicking DefTrans button. The real-time interpolation on

the target meshes can also be performed using the Interpolator section.
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Interpolation and Deformation Transfer on Morphed Mesh. The user first se-

lects the trained source mesh by toggling the number in Model box. The vertices

and face information of the target mesh can be acquired by clicking on the Target

button. The parameters of the established map for the trained mesh are adjusted

for the target mesh according to the morphing factor assigned in mrph box by

clicking the Morph button. The user can perform the Deformation Transfer and

the real-time interpolation on the morphed model using the Deformation Transfer

and Interpolator section of the tool panel.
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CHAPTER 8

Conclusion and Future Work

This work demonstrates the universality of the Vector Graph (VG) representa-

tion and its applicability for various mesh processing tasks such as Deformation

Transfer, Enveloping, Interpolation, and Morphing. We show that representing a

mesh as the VG and reconstructing the mesh back from its VG representation are

straightforward processes. We also show experimentally that the VG is a consis-

tent representation by reconstructing the original mesh back from its VG with a

negligible error. With just the composition of rotation and the scaling associated

with vectors of the VG, it is possible to perform various mesh processing tasks

efficiently compared to other state-of-the-art methods qualitatively and computa-

tionally. The proposed face selection algorithm reduces redundant computation

for a mesh processing task without compromising on the deformation quality.

Moreover, it is applicable to other face-based representations as well.

Deformation Transfer: In this work, we have explored two Deformation

Transfer approaches using the VG representation by computing the shape defor-

mation and the pose deformation. The shape deformation characterizes the shape

variation between the source and the target meshes. The proposed Deformation

Transfer method using the shape deformation, qualitatively, and quantitatively, is

compared with other state-of-the-art methods. Extensive experiments are carried

out on temporal sequences of human skeletons and triangular meshes to show

the effectiveness of the proposed method. The Deformation Transfer using shape

deformation causes artifacts on the target mesh when the deformation is large.

It also fails to preserve the planarity of the quad faces. These limitations are ad-

dressed in the Deformation Transfer using the pose deformation which character-
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izes the pose variation in the source mesh. Here, we also bring out the differences

between this approach and the other Deformation Transfer methods proposed in

[1] and [2]. It is interesting to notice how the dot product property affects the pro-

cess of deformation transfer and helps in preserving the shape and the geometric

details of the target for a wide range of deformations. While deforming the target

according to the source, the proposed method preserves the shape of the target.

The results of the experiments endorse the claim that the imposed planarity con-

straint improves the planarity of the quad face during the reconstruction process.

In guided Deformation Transfer, interpolating target poses using the Poisson

interpolation, adjusts the temporal position of the target poses and motion trajec-

tory of the target. The experiments carried out on temporal sequences of human

skeletons with triangular, and hybrid meshes show the effectiveness of guided

Deformation Transfer.

Enveloping: Using the VG, we have proposed a data-driven enveloping

method with the skeleton as a control structure. In this work, the mesh is rep-

resented by the VG representation to compute its deformation. As noted in the

section 5.2, both the skeleton and the mesh deformations form two groups. We es-

tablish a injective map between both the groups using available poses of a mesh in

the database. After establishing the map, we formulate the relationship between

the skeleton deformation and the mesh deformation. The experiments shown in

the section 5.5 suggest that the proposed enveloping method leads to smooth de-

formation on various enveloped meshes similar to non-linear methods and com-

putationally as efficient as the Linear Blend Skinning.

Interpolation and Morphing: We have explored the interpolation and the

morphing using the VG representation. We show that the interpolation and

the morphing can be performed on various meshes adopting the traditional ap-

proaches. However, the traditional approaches are computationally inefficient

due to element-wise operations. To address this issue, the mesh is first segmented

into a set of patches using the K-means clustering . The mesh segmented into

patches serves as a low resolution structure. A patch deformation is then com-

puted for each patch. A map is established between the patch deformation and
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vector deformation. The parameters of the map are computed using examples

poses available in the database. We also show that the established map for a mesh

can be used for interpolation and deformation transfer. Both interpolation and

deformation transfer can also be performed on the morphed mesh by modifying

the established map. We have carried out extensive experiments to show the ef-

fectiveness of the proposed method on 23 different meshes. We have compared

the proposed interpolation, deformation transfer method with other methods in

terms of quality and computational complexity as shown in section 6.7. The ex-

periments show that the proposed method performs qualitatively similar to and

computationally efficient than other methods.

Future Work

To envelop the geometric models such as clothes, face mesh, etc., it is difficult to

arrive at the skeleton-like control structure. We want to work towards developing

an appropriate control structure for such types of meshes to expand the limited

boundaries of the proposed enveloping method. In the case of facial expressions,

the deformation heavily depends on the muscle movements, and it needs to be

dealt with differently. Introducing the non-linearity during the map establishment

process using Deep Learning approaches can clear up the discontinuation.

There are various limitations of the proposed interpolation method. It causes

artifacts on the interpolated poses when the deformation is large (>180◦). This

problem can be solved by adopting the approach proposed in [47] to compute

the patch deformation. Though it is a computationally demanding approach, it

does not affect the real-time performance of the proposed interpolation due to the

low dimensions of the patch deformation manifold. The proposed interpolation

method also fails to interpolate the transition from one facial expression to an-

other because the facial deformation can not be modelled by segmented patches

accurately. This problem can be handled by replacing the patch-based structure

with other suitable structures, or it can be solved by introducing a deep learning

approach to established the map. We want to expand this work by keeping these

issues in mind.
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We would also like to explore Geometric Algebras [77, 78, 79, 80, 81] for the

Vector Graph representation because the scaling and the rotation are well defined

there. We have also neglected the vector translational which is import for the mo-

tion data. Inserting the translation to the deformation composition can expand

the reach of the VG toward motion processing applications. It can also open up

the possibility of the use of the VG in computer vision applications [82, 83, 84].

Moreover, the Deep Learning for mesh deformation [85, 86] can be a handy solu-

tion for the enveloping and interpolation and other applications. As a part of the

future work, we would also like to explore other mesh editing tasks such as mesh

registration [87, 88, 67], style transfer [55, 56, 54] and motion editing [60, 63, 64]

using the VG representation.
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CHAPTER A

Appendices

A.1 Derivation of Reconstruction Optimization

Equation

Rewriting equation (4.29),

argmin
T̂d

w1�B̂T̂d − bd�2
2 + w2�ÊdT̂d − ed�2

2 (A.1)

where, the matrix Êd is in form of, given by,

Ed =




M�
d1 0 0 0 . . . 0

0 M�
d2 0 0 . . . 0

...
...

...
... . . . ...

0 0 . . . M�
dn . . . 0

...
...

...
... . . . ...




n×3n




t̄d1

t̄d2
...

t̄dn



= MdT̄d = MdBT̃d (A.2)

where, n is number of vectors. Taking differentiation of above equation with re-

spect to T̂d and equate with zero,

2wiB̂�(B̂T̂d − bd) + 2w2Ê�
d(Ê�

dT̂d − ed) = 0 (A.3)

Above equation can be rearranged as,

(w1B̂�B̂ + w2Ê�
dÊd)T̂d = w1B̂�bd + w2Ê�

ded. (A.4)
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A.2 Effect of Boundary conditions on Poisson inter-

polation

For simplicity, let’s consider an available action sequence {U1, U2, U3, U4} and

sequence {V1, V2, V3, V4} to be estimated. Here V1 and V4 are boundary poses

which are available. Our aim is to derive Poisson equation in form of boundary

poses and gradient field. Poisson equation for V2 and V3 is represented as,

2V2 − V1 − V3 = 2U2 − U1 − U3 (A.5)

2V3 − V2 − V4 = 2U3 − U2 − U4 (A.6)

Above equations can be rearrange to,

V2 = U2 −
1
2
(U1 + U3) +

1
2
(V1 + V3) (A.7)

V3 = U3 −
1
2
(U2 + U4) +

1
2
(V2 + V4) (A.8)

Both equations depend upon each other, so one can simplify these equations as,

V2 = U2 −
2
3

U1 −
1
3

U4 +
2
3

V1 +
1
3

V4 (A.9)

V3 = U3 −
1
3

U1 −
2
3

U4 +
1
3

V1 +
2
3

V4 (A.10)

From above equation, we can generalize relation of estimated pose with boundary

conditions. Let’s consider the available sequence {U1, U2, . . . , Um} and sequence

{V1, V2, . . . , Vm} to be estimated. The generalization of above equations can be
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written as,

V2 = U2 −
m − 2
m − 1

U1 −
1

m − 1
Um +

m − 2
m − 1

V1 +
1

m − 1
Vm

V3 = U3 −
m − 3
m − 1

U1 −
2

m − 1
Um +

m − 3
m − 1

V1 +
2

m − 1
Vm

...

Vi = Ui −
m − i
m − 1

U1 −
i − 1
m − 1

Um +
m − i
m − 1

V1 +
i − 1
m − 1

Vm

...

Vm−1 = Um−1 −
1

m − 1
U1 −

m − 2
m − 1

Um +
1

m − 1
V1 +

m − 2
m − 1

Vm

A.3 Poisson interpolation and Face Planarity

Let’s consider the quad faces ui(i = 1, 2 . . . , m) of available meshes

{U1, U2, . . . , Um} and vi(i = 1, 2 . . . , m) of estimated sequence {V1, V2, . . . , Vm}.

From above relation, we can write relation among quad faces as,

vi = ui −
m − i
m − 1

u1 −
i − 1
m − 1

um +
m − i
m − 1

v1 +
i − 1
m − 1

vm. (A.11)

In our case, U1 = V1 + T so as u1 = v1 + T as the result above equation reduces

to,

vi = ui +
i − 1
m − 1

(vm − um) +
m − i
m − 1

T. (A.12)

Above equation indicate that Poisson interpolation has very little effect on pla-

narity of re-estimated face for two reasons: First, as i → 1 effect of the difference

(vm − um) is very less. Second, as i → m0, effect of the difference (vm − um) in-

creases but at the same time, the shape similarity between ui and um also increases.

Translation T translates entire pose so it doesn’t affect the planarity of faces.
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A.4 Ji is a rotation matrix

Let F is a matrix which contains three orthonormal vectors defined similarly as in

equation (3.12). The matrix F cab be written as,

F = [v̂, b, N] =




v̂x bx Nx

v̂y by Ny

v̂z bz Nz


 =




v̂x Nyv̂z − Nzv̂y Nx

v̂y Nzv̂x − Nxv̂z Ny

v̂z Nxv̂y − Nyv̂x Nz


 (A.13)

where N is a normal vector perpendicular to vector v̂ and b = (N × v̂)/�N ×
v̂�2 = N × v̂ is a unit binormal vector. The matrix Ji(= F�

diFri) defined in equation

(3.13) is computed by multiplying two such matrices. We must first prove that

these (F�
di and Fri) are rotation matrices to prove Ji as a rotation matrix. If a matrix

is the rotation matrix then it must be orthogonal and its determinant must be

+1. The matrix F is an orthogonal (F�F = I3) matrix because it contains three

orthonormal vectors. The determinant of F�F is,

det(F�F) = det(F�)det(F) = (det(F))2 = 1. (A.14)

The determinant of the matrix F is,

det(F) =v̂x[Nz(Nzv̂x − Nxv̂z)− Ny(Nxv̂y − Nyv̂x)]

− (Nyv̂z − Nzv̂y)[Nzv̂y − Nyv̂z]

+ Nx[v̂y(Nxv̂y − Nyv̂x)− v̂z(Nzv̂x − Nxv̂z)].

Further simplifying the above equation, we get,

det(F) = (Nzv̂x − Nxv̂z)
2 + (Nyv̂x − Nxv̂y)

2 + (Nyv̂z − Nzv̂y)
2 ≥ 0.

Since the determinant of matrix F is positive, the equation (A.14) can be further

simplified to,

det(F) = +1. (A.15)
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Hence, we can conclude that the matrix F ∈ SO(3) is a rotation matrix. Both ma-

trices Fdi and Fri are also defined the same as matrix F, therefore both are rotation

matrices. The matrix Ji = FdiF�
ri also satisfies both the conditions,

J�i Ji = FriF�
diFdiF�

ri = FriF�
ri = I3 (A.16)

det(Ji) = det(FdiF�
ri) = det(Fdi)det(F�

ri) = det(Fdi)det(Fri) = +1. (A.17)

Hence, the matrix Ji is a rotation matrix. The skeleton bone deformation matrix

Rj is also defined as a multiplication of orthonormal frames Hrj and Hdj. These

frames are also formed similarly as F. Hence, the matrix Rj is also a rotation

matrix.

A.5 Simplification of Equation (5.10)

Equation (5.10) can be rearranged as,

argmin
Wji

p

∑
k=1

Tr{(Rk
j Wji − Jk

i )(Rk
j Wji − Jk

i )
�}. (A.18)

Since the trace is a linear transformation, above equation is rewritten as,

argmin
Wji

p

∑
k=1

{Tr(2I3)− Tr(Rk
j Wji(Jk

i )
�)− Tr((Rk

j Wji(Jk
i )

�)�)}. (A.19)

The traces of a matrix and its transpose are the same so, above equation is further

simplified to,

argmin
Wji

p

∑
k=1

{Tr(2I3)− 2Tr(Rk
j Wji(Jk

i )
�)}. (A.20)

The first term doesn’t contain Wji so it doesn’t play any role in minimization. In

order to minimize above cost function, we need to maximize second term. Hence,
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above minimization problem can be turned into maximization as,

argmax
Wji

p

∑
k=1

Tr(Rk
j Wji(Jk

i )
�). (A.21)

The trace is linear transformation and it remains unchanged with circular shift of

multiplication of matrices. So, above equation can be rewritten as,

argmax
Wji

Tr(Wji(Ji)
�Rj) (A.22)

where, (Ji)
�Rj = ∑

p
k=1(Jk

i )
�Rk

j . The matrices Rj = [(R1
j )

�, (R2
j )

�, . . . . . . , (Rp
jp)

�]�

and Ji = [(J1
i )

�, (J2
i )

�, . . . , (Jp
i )

�]�.

A.6 Formation of Matrix W

Let’s consider that the deformation of the vector i is approximated by the defor-

mation of skeleton bone zi. The ith column of the matrix W is shown in equation

(A.23).

W =

1 i n






...
...

...
... 0

...
... gziiH

�
rzi

Wziiv̄ri
... 3zi + 1 : 3zi + 3

... 0
...

...
...

...

(A.23)

Similarly, the other columns of matrix W are filled up based on the bone-vector

relationship sets zi, i ∈ {1, . . . , n}.
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A.7 Formation of Matrix K

For example, the deformation of the vector i is approximated by the deformation

of skeleton bone zi. Hence, entries in column i of the matrix K are,

K =

1 i n






...
...

...
... 0

...
... (sziiHziiv̄ri)

... 3zi + 1 : 3zi + 3
... 0

...
...

...
...

. (A.24)

Similarly, we can fill the other columns of matrix K. The matrices Ku and Kx can

also be formed similar to the matrix K.
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