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Abstract

Accurate prediction of the macroscopic traffic stream variables such as speed and

flow is essential for the traffic operation and management in an Intelligent Trans-

portation System (ITS). Adverse weather conditions like fog, rainfall, and snow-

fall affect the driver’s visibility, vehicle’s mobility, and road capacity. Accurate

traffic forecasting during inclement weather conditions is a non-linear and com-

plex problem as it involves various hidden features such as time of the day, road

characteristics, drainage quality, etc. With recent computational technologies and

huge data availability, such a problem is solved using data-driven approaches.

Traditional data-driven approaches used shallow architecture which ignores the

hidden influencing factor and is proved to have limitations in a high dimensional

traffic state. Deep learning models are proven to be more accurate for predict-

ing traffic stream variables than shallow models because they extract the hidden

features using the layerwise architecture.

The impact of weather conditions on traffic is dependent on various hidden

features. The rainfall effect on traffic is not directly proportional to the distance

between the weather stations and the road segment because of terrain feature

constraints. The prolonged rainfall weakens the drainage system, affects soil ab-

sorption capability, which causes waterlogging. Therefore, to capture the spatial

and prolonged impact of weather conditions, we proposed the soft spatial and

temporal threshold mechanism. Another concern with weather data is the traffic

data has a high spatial and temporal resolution compared to it. Therefore, miss-

ing weather data is difficult to ignore, the spatial interpolation techniques such as

Theissen polygon, inverse distance weighted method, and linear regression meth-

ods are used to fill out the missing weather data.
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The deep learning models require a large amount of data for accurate predic-

tion. The ITS infrastructure provides dense and complete traffic data. The instal-

lation and maintenance of ITS infrastructures are costly; therefore, the majority

of road segments are dependent on cost-effective alternate sources of traffic data.

The alternate source of traffic data provides sparse, incomplete, and erroneous

information. To overcome the data sparsity issue, we proposed a mechanism to

generate fine-grained synthetic traffic data using the SUMO traffic simulator. We

studied the impact of rainfall on the traffic stream variables on the arterial, sub-

arterial, and collector roads. An empirical model is designed and calibrated for

a variety of traffic and weather conditions. The Krauss car-following model in

SUMO is upgraded to use the proposed empirical model for computing the ve-

hicle speed. The simulation model is validated by comparing the synthetic data

with the ground truth data under various traffic and weather conditions. We find

that the empirical model accurately captures the effect of rainfall on the traffic

stream variables, and the synthetic data shows a very good match with the ground

truth data.

We adopted multiple deep learning models because of their underlying char-

acteristics to extract the spatiotemporal features from the traffic and weather data.

Convolutional Neural Network (CNN) model has the characteristics to extract

neighboring pixels correlation. The sequence learning models, Recurrent Neu-

ral Network (RNN) and Long Short Term Memory (LSTM) learn dependencies in

the data based on the past and the current information. We designed the hybrid

deep learning models, CNN-LSTM and LSTM-LSTM. The former model extracts

the spatiotemporal features and the latter model uses these features as memory.

The latter model predicts the traffic stream variables depending upon the memory

and the temporal input. The hybrid models are effective in learning the long-term

dependency between the traffic and weather data.

We performed various experiments to validate the deep learning models, we

use the synthetic traffic data generated by SUMO using the empirical model for

different road types (arterial, sub-arterial, and collector) and different road net-

works (single, small, and large). The results show that the deep learning model
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trained with the traffic and rainfall data gives better prediction accuracy than the

model trained without rainfall data. The performance of the LSTM-LSTM model

is better than the other models in all the scenarios. Considering the large road

network, where roads are prone to waterlogging, under long-term dependency

LSTM-LSTM outperforms the other deep learning models including RNN, CNN,

LSTM, CNN-LSTM, and existing models. For the worst-case scenario, the traffic

prediction error of LSTM-LSTM is between 3-15% for 15 to 60-minute future time

instances, which is in line with the accuracy needed for ITS applications.
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CHAPTER 1

Introduction

The Intelligent Transportation System (ITS) technologies compute the information

about the current and the future traffic conditions [1]. ITS applies Information and

Communication Technology (ICT) for data collection and processing, advanced

information retrieval techniques, and advanced computation technologies for the

operation and management of the transportation network. There are a number

of ITS applications such as Advanced Traffic Management Systems (ATMS) [2],

Advanced Traveller Information Systems (ATIS) [3], etc. The traveler information

applications such as ATIS inform the drivers about the expected travel time, ex-

pected congestion, and suggest the shortest and fastest route. The traffic manage-

ment applications such as ATMS ensure optimal efficiency of the transportation

network and solve the problem of traffic congestion. Short-term traffic predic-

tion is defined as the process of estimating the traffic conditions in the short-term

future given the historical and the current traffic information [4]. The accurate

short-term traffic prediction helps traffic management authorities to develop more

sophisticated strategies to anticipate and mitigate network-related problems such

as traffic congestion. Similarly, an individual traveler gets to benefit from the ac-

curate short-term traffic prediction, by using this predictive information to plan

their journey by choosing the most efficient transport option (route, time of the

day) to avoid traffic congestion and optimize travel time.

In this thesis, the short-term refers to a prediction horizon of up to one hour

which is the optimal time for individual navigation and global urban traffic plan-

ning, and is in agreement with literature studies [5, 6, 7]. The short-term traffic

prediction focuses on estimating the value of traffic stream variables such as traf-
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fic flow and speed on the road segment. The road segment is the portion of a road

with uniform characteristics such that the traffic stream variables remain constant

on it. Traffic flow is the number of vehicles passing the road segment per unit

time. Traffic speed is the average of all vehicle’s speeds on the road segment at a

particular time.

The traffic stream variables are measured from sensors installed on the road

segment such as inductive loops, radar, or the devices mounted on traffic signals

such as the camera. These devices are installed and maintained by designated ser-

vices and come under ITS infrastructure. Other cost-effective alternate sources of

traffic data are taxi GPS, cellular data, etc. Prediction of traffic stream variables is

a challenging problem. These variables are affected by several factors like time of

the day, road condition, non-recurrent events such as accidents, road construction,

weather conditions, social gatherings, etc. Therefore traffic stream characteristic

is non-linear and complex. To predict the traffic stream variables two types of ap-

proaches are used: Model-driven and Data-driven. The model-driven approach

simulates the traffic system and explores the vehicle’s performance and behavior

in the road network.

The data-driven approaches learn the features from examples (data), and these

methods need a considerable amount of data to discover patterns. With intel-

ligent computational technologies and massive data availability, traffic stream

variables prediction is addressed frequently using data-driven approaches. The

data-driven approaches are categorized as: parametric and non-parametric. Para-

metric methods summarize the data with a fixed set of parameters independent

of the amount of training data, assuming that the collected data follows a similar

distribution. These approaches assume that the data is stationary, i.e., mean and

variance remain unchanged. The time-series based methods such as AutoRegres-

sive Integrated Moving Average (ARIMA) [8, 9, 10], and the Kalman filter [11, 12]

based methods come under the parametric category for short-term traffic stream

variables prediction. Due to the traffic stream’s non-linear and complex nature,

linear methods do not provide an accurate prediction. The non-parametric ap-

proaches use a flexible number of parameters, which increases as the model starts
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learning from the data. The collected data need not follow a similar distribu-

tion. Machine learning, artificial neural network, and deep learning methods fall

under this category. There are methods under machine learning and artificial neu-

ral network category like k Nearest Neighbor (kNN) [13], Bayesian network [14],

Support Vector Regression (SVR) [15] and, Artificial Neural Network (ANN) [16]

for traffic stream variables prediction, and their results show that non-parametric

models provide more accurate forecast than the parametric models.

Traffic stream variables depend upon various hidden features. Both para-

metric and non-parametric (machine learning and artificial neural network) ap-

proaches ignore the hidden influencing factors because of the shallow architec-

tures. For complex learning problems, deep architecture proves to have an ad-

vantage over shallow architecture [16]. The multiple linear and non-linear units

stacked in layerwise fashion provide the ability to learn features at a different

level of abstraction. The deep learning algorithm uses the multi-layer architec-

ture to extract the inherent features in data from a lower level to a higher level

[16]. The deep learning method has been used to solve the traffic stream variables

prediction problem. The traffic variable’s future value depends on the current

and historical traffic data. Therefore, the traffic stream variables prediction is con-

sidered as a sequence learning problem, where the future outcome is based on

the past sequence. The deep learning model called a Recurrent Neural Network

(RNN) [17], and it’s variant, Long Short Term Memory (LSTM) [18] is designed for

the sequence learning problem. The RNN uses memory cells to capture the tem-

poral information from the previous sequence and uses this information along

with the current input for future prediction. The LSTM uses a gating mechanism

to extract longer temporal dependency. Zhao et al. [19] used LSTM for the short-

term traffic stream variables prediction. The results show that the LSTM model’s

accuracy is higher than the shallow machine learning model and non-recurrent

neural networks.

The traffic condition on the adjacent road will affect the traffic condition on the

target road in the near future. Therefore, traffic stream variables have a spa-

tiotemporal correlation. The Convolutional Neural Network (CNN) has shown
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a powerful ability to extract the neighboring pixel correlation. Zhang et al. [20]

used the CNN model for traffic speed prediction considering the spatiotempo-

ral dependency. Their results show the improvement over machine learning and

parametric approaches.

1.1 Motivation

Adverse weather conditions like fog reduces visibility, rainfall affects the vehi-

cle’s mobility, and snowfall affects the road capacity. During inclement weather

conditions, some trips will be postponed or canceled. The traffic stream variables

get affected due to the rainfall because of poor visibility, waterlogging, and in-

creased aquaplaning. After hefty snowfall, the thick sheet of snow decreases the

road capacity, affecting the traffic stream variables. In developing countries like

India, where the cities are densely populated, roads are narrow, and have weak

drainage systems, the impact of prolonged heavy rainfall (greater than 100 mm

in 6 hours) is significant on the traffic conditions. The commute time between

two points increases because of road closure due to accidents, tree falls, or mas-

sive waterlogging. Ibrahim et al. [21] observed that rainfall intensity values 0-0.01

in/hr, 0.01-0.25 in/hr and > 0.25 in/hr causes speed reduction of 2-4%, 5-8% and

9-14%, respectively. M. Agarwal et al. [22] observed that light to heavy rainfall

causes 2-6% speed reduction and 2-14% capacity reduction on the freeway roads

system. Kyte et al. [23] observed the reduction in operating speed due to different

weather condition. The wet surface causes 9.5 km/hr reduction, snowfall causes

16.4 km/hr reduction and wind >24 km/hr causes 11.7 km/hr reduction in oper-

ating speed. Therefore, traffic stream variables prediction during adverse weather

conditions needs attention. Deep learning models are complex and can extract the

hidden features from the traffic data. We would like to examine, whether the deep

learning model traffic prediction accuracy improves with the inclusion of weather

data.

The deep learning models require dense and complete traffic data for accurate

prediction. The ITS infrastructure consists of traffic sensors (e.g. loop detectors,
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traffic cameras, etc.) that provide dense and complete traffic data. The ITS re-

quires infrastructure for communicating raw data and aggregated traffic informa-

tion, computation infrastructure for processing raw data from individual traffic

sensors to generate the aggregated traffic information. The ITS Report of U.S. De-

partment of Transportation [24] describes the deployment and maintenance cost

of the ITS infrastructure for various projects. According to the report, Caltrans

Performance Measurement System (PeMS) collects traffic data in real-time from

nearly 40,000 individual detectors spanning the freeway system across all the ma-

jor metropolitan areas of California. PeMS is also an Archived Data User Service

(ADUS) that provides over ten years of data for historical analysis. The system

costs about $3.5 million a year considering the deployment and maintenance cost

of hardware and software (in 2013). Due to the high cost of sensor deployment

and maintenance the alternative source of traffic data such as GPS, cellular data

are explored. But these cost-effective data provide sparse, erroneous, and incom-

plete information. To provide dense traffic data to the deep learning models for

accurate prediction, fine-grained synthetic data is needed which approximates the

measured data. The synthetic traffic data is given to the deep learning model to

predict the traffic stream variables during adverse weather conditions. Various

stakeholders can use the results of such models. The urban development authori-

ties can identify the road segments and drainage systems that need improvement.

The traffic engineers can use this data to compare various prediction models to

mitigate congestion and provide travel time estimation. The general users can

better plan their trips, such as postpone trips or change routes to avoid water-

logged sites.

1.2 Observations

In literature [25, 26], the traffic stream variables prediction is performed during

inclement weather conditions. The weather data is interpolated from the nearest

station to the target road segment. The temporal traffic and weather sequence are

considered in both studies. The past and current traffic and weather data corre-
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sponds to the target road segment is used for traffic forecasting. A. Koesdwiady et

al. [27] predicts the traffic stream variables during adverse weather condition. The

spatiotemporal traffic and weather data corresponding to adjacent road segments

are considered in this study. As per their assumption, rainfall data is complemen-

tary, therefore with the past and recent traffic data only the most recent rainfall

data is needed for the traffic prediction.

There are few gaps in the literature studies. The traffic disruption during rain-

fall is not directly related to the rainfall value because of the terrain feature con-

straint. The two road segments are distant apart but due to terrain features, wa-

terlogging at one road segment affects the other road segment in the near future.

Therefore, data related to waterlogging, water flow path, soil absorption capabil-

ity, drainage capacity, and other hidden parameters should be taken into account.

Drainage capacity is a function of time if maintenance is not proper. If the in-

coming water rate is more than the drainage capacity, waterlogging will happen.

Soil and surface act as a sink, and due to prolonged rainfall, total outlet capac-

ity reduces. Baghel A., in a technical report, studied the causes of urban floods

in Mumbai and Chennai city of India [28]. As per the report, the urban flood is

not because of road design but because of the weak drainage system. These pa-

rameters are not static that can be used directly from the city soil and drainage

dataset to predict the traffic stream variables. These parameters are a function

of history in terms of soil absorption capability and drainage maintenance. For

many cities and roads, these datasets are not available. To accurately predict the

traffic stream variables, consideration of these features is important. Similarly,

there is a need for more extended historical information about weather data than

traffic data to capture the prolonged weather effect. The impact of weather condi-

tions such as rainfall is varied as per road types. The broad roads with excellent

drainage systems are less prone to waterlogging compared to the narrow roads

with the poor drainage system. The roads passing through the densely populated

areas are more affected due to the rainfall compared to the freeway roads. All

these factors make the traffic stream variables prediction during adverse weather

conditions a challenging problem.
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The future traffic condition on the target road depends on its previous traffic con-

ditions and the road’s hidden characteristics, such as point of interest, peak hour

time, etc. Therefore, the traffic condition on the target road is affected by the

surrounding traffic and weather conditions and its own traffic condition. For ex-

ample, the target road gets affected due to the water flow from the adjacent roads

and if the target road is narrow and prone to waterlogging then the situation gets

worse. To predict the traffic stream variables on the target road segment, there

is a need to extract the spatiotemporal and temporal dependency. Therefore, a

deep learning model that extracts the hidden features considering spatiotemporal

and temporal dependencies is the favorable choice for traffic forecasting during

adverse weather conditions.

In literature, the impact of rainfall on traffic stream variables is mainly studied for

the expressway roads of developed countries where the road infrastructure and

drainage systems are excellent. The analyses are performed on the city-specific

traffic and weather data obtained from the traffic sensors and weather stations. In

developing countries, roads are relatively narrow and surrounded by dense in-

frastructure. Further, the drainage capacity is weak and impermeable. The heavy

rainfall under such conditions causes waterlogging. As per the Uber movement

data [29], heavy rain (≥ 100 mm in 6 hours) in Mumbai, India, reduces the traffic

speed by 60% and increases the travel time by 75%. Aiding to the problem, limited

traffic monitoring infrastructure is available in the majority of the location due to

the high maintenance and deployment cost. The majority of the road segments

depend on the alternate source of traffic data for the traffic-related information.

The traffic data generated by alternative sources are sparse and erroneous. Also,

the traffic data from ITS infrastructure in the majority of the locations are private

and not available as open source. Therefore, comparing various predictive models

on a similar data-set is not possible. Hence, it is necessary to generate synthetic

data that provides an abstraction of real-world traffic conditions and solves the

above limitations.
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1.3 Thesis Contribution

Traffic stream variables prediction during adverse weather conditions is a non-

linear and complex problem that depends upon various hidden features. The

suitable deep learning model should extract these hidden features from the traffic

and the weather data. We used multiple deep learning models for traffic forecast-

ing during adverse weather conditions. CNN is the suitable model, known for

finding the neighboring pixel correlation [30]. In the transportation domain, the

traffic condition on the target road is significantly affected by the traffic and the

weather condition in the surrounding areas. Also, the past and the current traf-

fic and weather condition affects the future traffic condition on the road segment.

The recurrent neural network such as RNN and LSTM is suitable for extracting

the spatiotemporal dependence between the target and surrounding road’s traf-

fic and weather data for past and current time instances. The traffic condition

on the target road has spatiotemporal dependence with the traffic and weather

data in surrounding areas and temporal dependence on traffic data of its own.

We design two hybrid models, CNN-LSTM and LSTM-LSTM. The former model

extracts the spatiotemporal correlation, whereas, the latter model uses this spa-

tiotemporal feature as memory, and based on this memory and temporal data the

model predicts the future traffic condition.

Deep learning models are known for extracting the hidden influential features

from the input data. These models are complex and require a large amount of data

for extracting hidden features. Considering the complexity of the deep learning

model, our objective is to examine whether the traffic prediction accuracy of the

deep learning models improves with the inclusion of weather data during adverse

weather conditions.

To overcome the traffic data sparsity issue, we proposed a mechanism to gen-

erate fine-grained synthetic traffic data. We study the impact of rainfall on traffic

stream variables on different types of roads such as freeways, city roads, etc. We

generate the synthetic traffic data for different rainfall intensities and a variety of

roads using a realistic simulation setup. We use the Simulator for Urban MObility
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(SUMO) [31] for simulations, which is a widely-used open source traffic simula-

tor. The car-following model is used to derive vehicle speed, such that the distance

between the following and leading vehicle should be maintained. A major limita-

tion of SUMO is that its car-following models do not use the weather parameters

for computing vehicle speed and other mobility-related parameters. Hence, addi-

tional work is required to incorporate the weather parameters in the SUMO road

networks that influence the traffic stream variables. To deal with the SUMO’s

shortcoming, we design an empirical model that quantifies the effect of rainfall

on different types of roads under diverse weather conditions. These quantified

values are associated with the road segment (called edge in SUMO) and made

available to the car-following model. The car-following model is adapted to use

these additional parameters while computing vehicle speed and other mobility-

related parameters.

The weather data have various hidden dependencies. It has spatial and tempo-

ral significance. The weather conditions on the distant road may affect the traffic

on the target road at a future time instance. The impact of prolonged rainfall is

significant on traffic stream variables. In an ideal situation, we can have data cor-

responding to each feature such as hydrology map, drainage data, soil data that

would be useful for extracting the correlation. Also if there is no computation

limitation, weather data from all the stations in the city for extended timestamps

are passed to the model. But the data-set is not available for the majority of the

location and passing data from all stations and for extended timestamps increases

the number of parameters. We proposed the spatial and temporal soft threshold

mechanism that captures the weather condition’s spatial and prolonged impact.

To consider the impact of weather conditions on other road segments, we need to

take into account the weather data from other weather stations while predicting

the traffic stream variables at the target road segment. We apply the soft spatial

threshold to limit the number of weather stations to consider for a target road

segment. For a particular geographical location, the weather data corresponds to

all weather stations up to threshold distance is taken into account. For all the re-

maining weather stations in that geographical location, a distance-based weighted
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average is used to incorporate their weather readings. The prolonged impact of

weather conditions is captured by defining a soft temporal threshold. The soft

temporal threshold captures the impact of prolonged rainfall and at the same

time limits the length of the weather data sequence. The weather sequence up

to a particular threshold value and for the extended sequence the weighted mov-

ing average of the past weather reading is considered.

The traffic data is collected from the sensors located on the road segment, weather

data is interpolated to the road segment based on the distance (nearest weather

station). The collection frequency of the traffic and weather data is different. The

traffic data has high spatial and temporal resolution compared to the weather

data. Therefore missing weather data can’t be ignored. We used spatial interpola-

tion techniques such as the Thiessen polygon method, inverse distance weighted

method, and linear regression methods to fill out the missing values.

To examine whether deep learning model traffic prediction accuracy improves

with the inclusion of weather data during adverse weather conditions, we per-

form the experiment to forecast the traffic on the road systems of San Diego.

For synthetic data validation, a reference scenario is created and calibrated using

the real data, to verify the implemented empirical model’s effectiveness. The sim-

ulator’s synthetic data is compared with the real data to validate the proposed em-

pirical model. We generate the synthetic data for different types of roads (freeway,

city roads) and road networks (small and large) for different rainfall intensities.

We examine the deep learning models (RNN, CNN, LSTM, CNN-LSTM, LSTM-

LSTM) performance on generated synthetic data. The models are compared based

on their prediction accuracy and complexities. The models are compared with the

models proposed in the literature study to examine the best deep learning model

for traffic prediction under inclined weather conditions.

1.4 Organization of the Thesis

Chapter 2 surveys proposals for the impact of weather conditions on the traffic

stream variables. Traffic stream variables prediction methods are discussed and
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compared. Detail review of the traffic stream variables prediction during adverse

weather conditions is discussed. The chapter is concluded with remarks on the

limitation of the related work and contributions of the thesis. Chapter 3 defines

the problem related to traffic forecasting and synthetic data generation along with

the assumptions. Chapter 4 describes the concerns related to the input traffic and

weather data and the detailed mechanism to solve those concerns. Chapter 5

describes the adopted deep learning models and algorithm with the hyperparam-

eters requires for optimal learning. The proposed hybrid models are discussed in

detail. Chapter 6 studies the performance of deep learning models under various

experimental setups. We examine whether the weather variable improves the pre-

diction accuracy of the deep learning model. The generated synthetic data is com-

pared with the ground truth data. The proposed hybrid model’s performance on

synthetic data is examined for various scenarios. The model complexity in terms

of space and time is discussed in detail. Finally, the conclusion and future work

are written in chapter 7.
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CHAPTER 2

Related Work

Adverse weather conditions such as rainfall, snowfall, fog, etc., can significantly

affect the travel demand, driving behavior, and traffic flow characteristics. Ad-

vances in sensor technologies make it possible to collect real-time traffic data un-

der various traffic conditions, including adverse weather conditions. Automatic

Travel Information System (ATIS) applications such as route guidance system and

Automatic Traffic Management System (AMTS) applications such as traffic light

control system at junction require accurate traffic stream variables prediction of

the road segment for their efficient working. The purpose of the ATMS/ATIS is

to improve the overall traffic system performance, e.g., congestion control, reduc-

ing emissions, noise, and travel times. The recent advancements in computation

technologies and traffic data wealth have rendered promising opportunities to the

data-driven forecasting approaches. In data-driven forecasting approaches, mod-

els are developed using data from the real system, and this data is used to fit the

mathematical structures. We discuss the related work in data-driven approaches

for traffic stream variables prediction in section 2.1 and the impact of weather

conditions on traffic stream variables in section 2.2.
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2.1 Data-Driven Approaches for Traffic Stream Vari-

ables Prediction

Figure 2.1: Classification of Data-driven Approaches.

Figure 2.1 shows the classification of the data-driven approaches. The data-driven

approach is classified into two types parametric and non-parametric.

Parametric methods summarize the data with a fixed set of parameters (θ).

Given the parameters, the traffic stream variable’s future prediction is indepen-

dent of the observed data, assuming θ captures every information about the data.

So the complexity of the model is bounded even if the amount of data is un-

bounded [32]. The parametric models use significantly less training data than

the other data-driven approaches because the data’s complexity is bounded.

These approaches assume that data is stationary, i.e., the mean and the vari-

ance remain unchanged. These approaches are classified into two categories: the

time-series model and the Kalman filter-based model. The time-series model uti-

lizes the historical and real-time traffic data to predict the future traffic stream

variables. The Kalman Filter is an efficient recursive filter that estimates the inter-

nal state of a linear dynamic system from a series of noisy measurements [33].

In non-parametric approaches, the number of the parameters is flexible and

not fixed in advance. The non-parametric techniques are further classified into

three categories: statistical machine learning, neural network, and deep learning.
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Statistical machine learning learns the patterns in the data and applies the learn-

ing for the unseen data. The neural network is an architecture consisting of the

input layer, the hidden layer, and the output layer, with connections between each

layer’s nodes. Information is transformed from the input layer to the output layer

through linear and nonlinear transformations. Deep learning is a neural network

composed of multiple hidden layers. This multi-layer architecture helps to extract

inherent features in data from the lowest level to the highest level. Therefore, a

huge amount of structure in the data can be discovered. In traffic stream vari-

ables prediction, the data-driven model predicts the output at some future time

instance. The length of time into the future for which predictions are to be made

is called a prediction horizon. In data-driven approaches, the model’s accuracy

is reported in terms of the prediction error. The prediction error is defined as the

difference between the actual outcome and the predicted outcome.

2.1.1 Parametric Approaches

Parametric models are based on a finite set of known parameters θ about the mod-

elled population [32]. Given the parameters, future predictions y are independent

of the observed data, D:

P(y|θ) = P(y|θ, D)

Depending on the parametric model used, the knowledge of the parameters can

be utilized in these models, which could help understand the different behaviors

of the traffic stream variables.

The parametric techniques include the time-series and the Kalman filter-based

techniques for traffic stream variables prediction.

The time-series model utilizes the historical and the real-time traffic data to

predict the traffic stream variables at the next time instance. The basic time-series

model assumes that future value depends upon the past observations with added

random noise [34]. In AutoRegressive Moving Average (ARMA) model, AutoRe-

gressive (AR) technique predicts the future value of the variable using a linear
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combination of the past value of the variable, while Moving Average (MA) tech-

nique uses the past prediction error in a regression model. Since most of the

time-series have non-stationary characteristics, the ARMA model is generalized to

handle non-stationarity by applying differentiation (computing the difference be-

tween consecutive operations). This generalization of the ARMA model is called

AutoRegressive Integrated Moving Average (ARIMA) . M. Hamid et al. [8] uses

the ARIMA model for traffic flow prediction, applied the Box-Jenkins method

for model identification. This method selects the appropriate model (whether to

choose AR or MA component), based on the ARIMA model’s stationarity and

parameters. The traffic data is collected across the urban arterials in Amman, Jor-

dan. The traffic data collection frequency is 1 minute. The traffic flow prediction

error is 10.6 vehicle-count/minute on an absolute scale for a 1-minute prediction

horizon. A heuristic approach with the ARIMA model is introduced to optimize

the ARIMA traffic flow model [35]. In a Box-Jenkins method, the coefficient vector

defines the number of past values used by the model to predict the next value. For

example, AR (3) model uses the last three past values to predict the next value. T.

Thomas et al. [35] used subset ARIMA, where coefficient vector defines the sub-

set of past values to be used for the next value prediction. For example, the AR

(1, 3) model uses only the last and third last values of the time-series for predic-

tion. As per their observation, compared to the full ARIMA model, the subset

ARIMA model gave more stable and accurate results. The traffic data is collected

across the cross-section of the Netherlands. The traffic data collection frequency

is 5-minute. Their results show a 5% traffic flow prediction error for a 30-minute

prediction horizon.

In time-series data, the presence of variations that repeats every certain period

is called seasonality, which is dealt with using the SARIMA (Seasonal ARIMA)

model for traffic flow prediction [9]. The parameters of the SARIMA models

are estimated using the least square estimation method. The experiment is per-

formed on the traffic data collected from the Virginia Department of Transporta-

tion. It is observed that for less than 5% cases, traffic flow prediction error is

greater than 20%, and the average traffic flow prediction error is less than 7%.
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Overall, SARIMA gives a 2% error improvement over the ARIMA model for a

15-minute prediction horizon. The linear regression, historical average, ARIMA,

and SARIMA are compared by Chung and Rosalion [36], the author concludes

that during normal traffic conditions SARIMA outperforms the other algorithms.

Still, these methods do not respond well to external system changes such as road

accidents.

The Kalman filtering method is a traffic forecasting parametric model and can

cast the regression problem in state space by minimizing the variance to obtain the

optimal solution [33]. Kalman filter-based traffic volume prediction is introduced

by Iwao and Yorgos [11]. The time-series method ignores the dependency of the

adjacent road segment’s traffic conditions on the target road segment. As per the

author, the prediction parameters are improved using the most recent prediction

error, and better volume prediction on a road segment is achieved by taking into

account the data from the adjacent road segments. The experiment is performed

on the freeways of Nagoya city, and it is observed that the average traffic flow

prediction error is less than 9% for the 15-minute prediction horizon. In the AR

model, the simplifying linearity hypothesis reduces the prediction accuracy in

traffic stream prediction because traffic stream characteristics are non-linear and

complex. To solve the linearity assumption of linear time-series methods, N. Bari-

mani et al. [12] proposed the extended Kalman filter, which solves the non-linear

regression in time-series problems by transforming the data into a high dimen-

sional reproducing kernel Hilbert space. For the 15-minute prediction horizon,

the average traffic flow prediction error of 3.76% is observed on Minnesota’s free-

ways road segment. Table 2.1 summarizes the works on parametric approaches

for traffic stream variables prediction. The summary shows the studied data, the

method used for traffic flow prediction, and the analysis results.
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Table 2.1: Parametric Approaches for Traffic Flow Prediction, PH stands for Prediction
Horizon.

Research

Work

Data Collec-

tion

Collection

Frequency

Method PH Accuracy

Hamed et

al. [8]

Urban arteri-

als in Amman,

Jordan’s capi-

tal

1-min ARIMA 1-min Average ab-

solute error

(veh/min)

10.6

Thomas et

al. [35]

5 km cross-

section of the

Netherlands

5-min ARIMA with

heuristic

30-

min

5% error is re-

ported

BILLY et al.

[9]

Virginia De-

partment of

Transporta-

tion’s

5-min Seasonal ARIMA 15-

min

≤5% cases

with error

≥ 20% and

average traffic

flow prediction

error is ≤

7%. 2% error

improvement

over ARIMA

Iwao and

Yorgos [11]

Nagoya City 5-min Kalman Filter 15-

min

the average

prediction

error is ≤ 9%

Nasim et al.

[12]

Minnesota 5-min Extended Kalman

Filter

15-

min

For 15-min

prediction

horizon aver-

age error is

3.76%.

In a traffic network, it is common that many variables are highly correlated.

The linear model assumes that the explanatory variables are statistically inde-
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pendent. Besides, roads are inter-connected, and traffic stream characteristic is

nonlinear; hence it is difficult for linear models to capture the stochastic charac-

teristics. These techniques only consider the temporal variation of traffic stream

variables. It is necessary to predict traffic stream variables from a network per-

spective because the transportation networks are complex and highly correlated.

2.1.2 Non-parametric Approaches

A non-parametric method is a mathematical inference method that does not rely

on assumptions that the data are drawn from a given probability distribution.

Non-parametric models assume that the data distribution cannot be defined based

on a finite set of parameters, but they can be defined by assuming infinite-dimensional

parameters. The number of parameters is determined from the data. There-

fore, these models require more data compared to the parametric models. The

amount of information that parameter θ can capture about the data can grow as

the amount of data grows. The major advantage of the non-parametric model

over the parametric model is that these models can handle non-linear and com-

plex traffic stream characteristics and can also extract the spatial and temporal

dependency between the traffic stream variables. The non-parametric models are

robust in dealing with situations like missing variables and outliers in the input

data. The drawback of a non-parametric model is that the model requires a huge

amount of data, and the model training and learning is a computationally intense

task. The non-parametric models are a black box; each independent variable’s

cause and effect are not known. It is not possible to determine the mutual in-

terrelation between the variables. The non-parametric models are classified into

the statistical machine learning model, the neural network model, and the deep

learning model.

The k Nearest Neighbor (kNN) is a non-parametric method used for classifica-

tion and regression. It searches for an entry in the training data that are similar to

the test data. These found entries are called the nearest neighbors of the test data

[37]. The distance functions (Euclidean, Manhattan, Minkowski ) are used to find

the similarity measure [38]. Davis and Nihan [13] used the kNN method for the
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short-term freeway traffic forecasting. Their result analysis shows that the kNN

performance is comparable with but not better than the parametric approaches.

The traffic flow root mean square error for the 1-minute prediction horizon of the

kNN model is 13.8 vehicle-count per minute, whereas the ARIMA model is 13.0

vehicle-count per minute. Chang et al. [39] used kNN to consider the spatiotem-

poral dependency for traffic forecasting. The model’s input parameters include

the k value for the nearest neighbor and the d value for the sequence length (past

data to consider). This model performed effectively under shockwaves. Shock-

waves are described as transitioning from one traffic state to another, free flow to

stopped or stopped back to flowing traffic. Their results show the traffic flow pre-

diction error improvement of 9.3% over ARIMA for 15 minutes prediction hori-

zon. The accuracy of this model depends on the optimal value of parameters k

and d. Computation cost can be high if the algorithm needs to compute the dis-

tance between the current and all previous traffic states for every prediction. P.

Cia et al. [40] proposed the improved kNN model for extracting the spatiotempo-

ral correlation for traffic forecasting, the neighbors are selected according to the

Gaussian Weighted Euclidean Distance. The results show the traffic flow predic-

tion error improvement of 3% over kNN and 7% over the historical average for

5-minute prediction horizon.

Another approach in statistical machine learning is the Bayesian network for

traffic forecasting. A Bayesian network is a directed graphical model that repre-

sents the conditional independence between the set of random variables [41]. It

can handle the non-linearity and non-stationarity in the traffic data. It can also

extract the spatiotemporal dependencies for traffic forecasting. Information from

the other road segments is useful in predicting the traffic conditions at the target

road segment in the transportation network. It is difficult to directly describe the

correlation of traffic conditions on other road segments to the traffic conditions on

the target road segment because various variables are involved. These variables

need to be determined to access this relationship. In the transportation domain,

to make the problem more tractable, it is assumed that the traffic condition on the

target road segment is dependent only on its immediate neighboring road seg-
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ments [14].

S. Sun et al. [14] modeled the transportation network as a Bayesian network. The

authors used the Principle Component Analysis (PCA) to find the highly corre-

lated road segment, which selects only a subset of neighboring road segments as

nodes of a Bayesian network. PCA reduces the dimensionality of a data-set con-

sisting of many interrelated variables (road segments in this case) while retaining

as much as possible of the variation present in the data-set. The joint probabil-

ity between cause node (data used for forecasting) and effect node (data to be

forecast) is described using the Gaussian Mixture Model (GMM). The parameters

are estimated via the Competitive Expectation-Maximization (CEM) algorithm.

GMM is a probabilistic model that assumes that all the data points are generated

from a mixture of a finite number of Gaussian distributions with unknown pa-

rameters. CEM is an iterative statistical algorithm that calculates the unknown

parameters of Gaussian distributions using maximum likelihood estimation. The

traffic flow prediction root mean square error improvement is 12.6 vehicle-count

per 15 minutes over the AutoRegressive (AR) method. The above method limits

the scalability of the Bayesian prediction model which degrades the performance.

In the transportation network, due to the various external system changes, the

traffic condition’s dependency between other and target road segments is not di-

rect. Also, the implementation of the Bayesian network requires domain knowl-

edge, and the outcome depends upon the choice of the root node (prior), which is

not directly learned from the data.

Support Vector Regression (SVR) is a statistical machine learning approach in

which the best fit line to the data is referred to as hyperplane. The data points

on either side of the hyperplane that is closest to the hyperplane are called sup-

port vectors which are used to plot the boundary line [42]. To perform this task,

SVR used a set of mathematical functions that are defined as the kernel. A Ker-

nel projects the non-linear data onto a higher dimension space making it easier

to classify the data where it could be linearly divided by a plane. SVR has been

proved to outperform the other regression methods in high dimensional data [43].

SVR is used by J. Hu et al. [44] for traffic flow prediction. The model uses a Par-
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ticle Swarm Optimization (PSO) algorithm to optimize SVR parameters to pre-

dict the traffic flow. The mean absolute error and percentage error improvement

of SVR in traffic flow prediction (vehicle-count/5-minute) with PSO is 6.34 and

8.27%, respectively, compared to multiple linear regression. Gaurav et al. [45]

uses Bayesian SVR (BSVR) for traffic speed prediction. The SVR does not provide

any information about the uncertainty in prediction. Bayesian methods are used

to select the suitable hyperparameters and estimate variance (error bar) associated

with each prediction. The Bayesian SVR shows the traffic flow error improvement

of 6.07% over SVR for a 15-minute prediction horizon. Jeong et al. [46] used online

learning weighted SVR for traffic flow prediction. As per the author, other meth-

ods assign equal weights to each time-series data point regardless of their relative

order in the data set. Therefore, the author used the SVR with weighted learning

methods, and their results show that the average error improvement over SVR is

2.8%. The major limitation of SVR is that it requires domain knowledge; for ex-

ample, the kernel needs to be set correctly to achieve the optimal result [47].

Feature engineering is a process where domain knowledge is used to hand-craft

the features. These hand-crafted features reduce the complexity of the data and

make the pattern more visible to the learning algorithm. The above-discussed

algorithm used hand-crafted features. The performance of the above-discussed

algorithm depends on how accurately the features are identified and extracted.

Also, kNN, SVR, and Bayesian consider simplifying assumptions (limited scala-

bility in terms of time and space) that need to be addressed.

Artificial Neural Network (ANN) are biologically inspired computational net-

works [48]. ANN architecture has three layers, input layer, hidden layer, and

output layer. A node or neuron in a layer is connected to all or subsets of nodes

in the subsequent layer. Each connection of the neural network is associated with

a weight that finds the input data’s correlation. Each node has an activation func-

tion that defines the output of the nodes. The activation function is used to in-

troduce non-linearity in the modeling capabilities of the network. Kranti K. et al.

[49] used ANN for short-term traffic flow prediction on the non-urban highway

for heterogeneous traffic conditions. This study’s main objective is to investigate
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whether an artificial neural network can be used for short-term prediction of traf-

fic flow in case of heterogeneous traffic conditions, specifically for Indian road

scenarios. The model incorporates vehicle category, traffic volume, speed, den-

sity, time, and day of the week as input variables. The results show that the ANN

model was able to predict the vehicle count accurately even if vehicle category

and their corresponding speeds were considered distinct variables. The root mean

square error of the ANN model is 0.85 for a 5-minute prediction ahead. A. Csikós

et al. [50] used ANN for traffic speed prediction, where the model is trained using

real and synthetic data generated from Visim [51] because of traffic data scarcity

on an urban road. As part of data pre-processing, the feature selection method

proposed by P. Devijver and K. Josef [52] is used, which greatly reduces the num-

ber of parameters. The designed model gives a 17.35% traffic speed prediction

error.

Table 2.2 summarizes the works on non-parametric (machine learning and

ANN) approaches for traffic stream variables prediction. The summary shows

the studied data, the non-parametric method used for traffic flow prediction, and

the used method’s accuracy. Compared with table 2.1, we conclude that in most

researches, the prediction error is improved with the machine learning and artifi-

cial neural network methods due to non-linear and complex characteristics of the

transportation network.

Table 2.3 compares the data-driven approach (parametric and non-parametric)

with their key points.

The non-parametric (machine learning and artificial neural network) methods re-

quire prior knowledge of the specific domain for feature extraction, and their ar-

chitecture is shallow. The traffic stream variables In general, literature [5, 25, 26,

54] show that the deep learning models have good predictive power and robust-

ness as compared to the parametric and non-parametric (machine learning and

ANN) models. Deep learning models extract features with less prior knowledge

and handle a large amount of data and the high dimension of features. A deep

learning architecture discovers a massive amount of structure in the data because

of multi-layer architecture.
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Table 2.2: Non-parametric Approaches for Traffic Flow Prediction, PH stands for Pre-
diction Horizon.

Research
Work

Data Collec-
tion

Collection
frequency

Method PH Accuracy

Nihan and
David [13]

I5, Washing-
ton State

1-min KNN 1-min RMS error of
kNN is 13.8,
RMS of ARIMA
is 13.0.

Chang et
al. [39]

Suwon toll-
gate, Korea

15-min KNN-NPR 15-
min

average 9.3% er-
ror improvement
over ARIMA

P. Cia et al.
[40]

Freeways,
Liuliqiao Dis-
trict, Beijing

5-min kNN with
Gaussian
Weighted
Euclidean
Distance

5-min error improve-
ment of 3% over
kNN and 7% over
historical average

S. Sun et
al. [53]

UTC/SCOOT
system in
Traffic Man-
agement
Bureau of
Beijing

15-min Bayesian Net-
work

15-
min

RMSE improve-
ment of 12.6
compared to AR
model.

Hu et al.
[44]

Ring Road of
Beijing

15-min SVR with PSO 15-
min

MAPE improve-
ment of 8.27%
compared to lin-
ear regression.

Gaurav et
al. [45]

Pan Island
Expressway
(PIE) in
Singapore

5-min Bayesian SVR 15-
min

MAPE 6.07%

K. Kumar
et al. [49]

NH-
58,Muzaffar-
nagar, India

5-min ANN 5-min MAE is .6281

A. Csikós et
al. [50]

District 6, Bu-
dapest

5-min ANN 5-min 17.35% predic-
tion error

Nagare and Bhatia [54] use the BackPropagation Neural Network (BPNN) for

traffic flow prediction. The BPNN consists of the input layer, one or more hidden

layers, and the output layer. During the training phase, the input is fed to the

hidden layer whose output is the feature vector. The feature vector is a vector

that contains information describing data’s important characteristics. It is then

combined with the model’s weights or parameters to predict the final output. The
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Table 2.3: Comparison Between Data-Driven Approaches.

Data driven
Approach

Methods Key Points

Parametric ARIMA, SARIMA,
KARIMA, Kalman
Filter, Extended
Kalman Filter

Suitable for low order model
− Based on linear model assumption

− Guaranteed to converge
− Number of parameters are fixed

Non paramet-
ric (Machine
learning and
ANN)

kNN, SVR, ANN,
Bayesian Network

− Parameters are data dependent
− Require large amount of data
− Computationally expensive
− Guaranteed to converge

predicted value is then compared with the measured value, and the difference (the

error) is propagated backward through the network to update the parameters.

Their results show that the average error improvement of BPNN is up to 2.09%

as compared with SVR and up to 11.54% as compared with ARIMA for a 15-

minute prediction horizon. Huang et al. [55] used a Deep Belief Network (DBN)

model for traffic flow prediction. It is a stack of Restricted Boltzmann Machine

(RBMs). The RBM has only two layers - the visible layer and the hidden layer.

In RBMs, the task is to learn a probability distribution over the input data, which

closely approximates the input distribution. Their results show that the model

achieves close to 5% improvement over the SVR and kNN methods for traffic

flow prediction considering a 15-minute prediction horizon.

Autoencoder is the artificial neural network that learns to compress and encode

data such that the compact representation of data is close to the original input [56].

Autoencoder is used for dimensionality reduction. In the case of the traffic data,

this method extracts the most influential feature from the data. The hidden layer

of the autoencoder gives a compact representation of the data. Yisheng et al. [5]

used Stacked AutoEncoder (SAE) to learn spatiotemporal traffic state features for

short-term traffic flow prediction. In the SAE, multiple autoencoders are stacked

such that the output from the hidden layer is fed as an input to other autoencoder

layers. The average traffic flow prediction accuracy improvement of SAE is up to
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4.8% as compared with BPNN, over 15.34% compared with the SVR.

Convolutional Neural Network (CNN) is a successful model in computer vi-

sion, image processing, and natural language processing tasks [57]. CNN is ideal

to obtain the local spatial relationships in the input data. Local features can be

extracted based on the small size weight matrix (3 × 3, 5 × 5, 7 × 7). All the data

points share the same weight matrix (filter); therefore, the number of parameters

is not huge as compared to other models [30]. Also, it performs the parallel op-

eration, speeds up the processing as compared to the other learning models. W.

Zhang et al. [20] performs traffic speed prediction on the road considering the

traffic state on the adjacent road. The two-dimensional space-time matrix (im-

age) is passed to the CNN to extract a spatiotemporal feature vector containing

abstract information about adjacent roads’ traffic states. CNN is preferable over

other deep learning models because parameters are shareable making it compu-

tationally less expensive.

Traffic state forecasting is the sequential problem in which the current state’s

output depends on the past traffic state. The recurrent learning models, Recur-

rent Neural Network (RNN) and Long Short Term Memory (LSTM), are designed

for the sequence learning task in deep learning approaches. The BPNN, DBN,

CNN, and SAE consider each input independently. The output doesn’t depend

upon previous observations. RNN suffers from a vanishing gradient problem

and doesn’t hold onto long temporal dependencies. LSTM solves these shortcom-

ings. It uses the gating mechanism (input, forget, and output gate) and holds

long and short temporal dependencies [18]. Z. Zhao et al. [19] used both LSTM

and RNN for traffic flow prediction. For the 15-minute prediction horizon, traf-

fic flow accuracy improvement of RNN is 5.92% as compared with the SVR, and

1.06% as compared with the SAE. The author compared LSTM with the nonrecur-

rent neural network, and the results show that the average prediction accuracy

improvement of LSTM is 10.45% as compared to SAE and 18.3% as compared to

SVR.

Table 2.4 summarizes the deep learning approaches for traffic stream vari-

ables prediction. The summary shows the studied data, data collection frequency,
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deep learning method used for traffic stream variables prediction, and the used

method’s accuracy. Compared with the table 2.2, the error improvement of LSTM

is significant, approximately 15% over shallow non-parametric models, and for

all the other deep learning models, the error improvement is more than 2%. We

conclude that the deep learning models have better prediction power than the

parametric and shallow non-parametric approaches, as observed from the litera-

ture study.

Table 2.4: Deep Learning Approaches for Traffic Stream Variables Prediction, PH stands
for Prediction Horizon.

Research
Work

Data Col-
lection

Collection
Frequency

Met-
hod

PH Accuracy

Huang et
al. [55]

PeMS, Cal-
ifornia

15-min DBN 15-
min

≈5% accuracy im-
provement over SVR
and Bayesian

Yisheng et
al. [5]

PeMS, Cal-
ifornia

5-min SAE Multi
step

4.8% accuracy im-
provement over BPNN
and 15.34% over SVR.

W. Zhang
et al. [20]

I-5 Seattle 5-min CNN 5-min 2.8% error improve-
ment over SVR and
4.3% over SARIMA

Z. Zhao et
al. [19]

Beijing 5-min RNN
and
LSTM

Multi
step

15-min prediction ac-
curacy improvement of
RNN is 5.92% over
SVR, 1.06% over SAE.
Average prediction ac-
curacy improvement of
LSTM is 10.45% over
SAE and 18.3% over
SVR.

The data-driven approaches discussed above consider temporal or spatiotem-

poral traffic data for traffic forecasting. The traffic stream characteristics are non-

linear, dynamic, and complex. The deep learning model represented traffic fea-

tures without prior knowledge and proved to have a better prediction accuracy

of traffic stream variables than linear and nonlinear shallow learning models [5,

25, 26, 54]. The models that extract the spatiotemporal dependencies are more ac-

curate in traffic forecasting as compared to the model that only extracts temporal

dependencies [58]. Similarly, the model that is dependent on past traffic informa-
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tion while predicting future traffic stream variables is more accurate as compared

to the model that is independent of past traffic information [19]. Therefore, the

learning model that considers past and current traffic information from adjacent

and target road segments is the most appropriate for traffic forecasting.

2.2 Weather Impact on Traffic Stream Variables

The adverse weather conditions such as rainfall, snowfall, fog, etc., affect the traf-

fic stream variables such as traffic speed and flow on the road segment. The heavy

rainfall and fog affect the driver’s visibility, waterlogging due to prolonged rain-

fall and heavy snowfall affects the road capacity, which affects the traffic speed

and flow on the road segment. In this section, we discuss the literature studies

that consider the weather variables for traffic stream variables prediction (section

2.2.1) and the studies that consider the impact of weather on traffic conditions in

terms of traffic demand and operation (section 2.2.2).

2.2.1 Traffic Prediction During Adverse Weather Conditions

The majority of the traffic prediction domain research focuses on addressing traf-

fic prediction under normal traffic conditions. Abnormal traffic conditions, such

as non-recurrent traffic congestion caused by planned events such as road works

or unplanned events such as adverse weather conditions and accidents cannot

be neglected. Short-term traffic prediction is more important during abnormal

conditions because of the uncertainty of how traffic conditions evolve.

There is very few research that incorporates the weather data for short-term

traffic variables prediction. Zhao et al. [59] used the parametric approach to ex-

amine the impact of snowy and icy conditions on traffic speed data from Buffalo,

New York. The author used the linear regression model to estimate the average

freeway speed as a weather condition function.

W. Qiao et al. [25] used the non-parametric k Nearest Neighbor (kNN) algorithm

to predict travel time on a path (origin to destination). As per the author, a traffic

sensor on a source road segment is paired with its nearest rainfall station based on
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the GPS coordinates. The Euclidean distance-based correlation is used to find the

correlated k neighbors (road segments and weather stations). The rainfall variable

is taken as a point value considering the traffic at a road segment. Their results

show that kNN gives an average error improvement of 18% over the ARIMA

model for future 30-minute travel time prediction.

Y. Jia et al. [26] used the DBN and LSTM deep learning model for traffic flow

forecasting on a road segment considering hourly rainfall data. Rainfall data is

used as point data in their research. They take into account the temporal depen-

dency of traffic and weather data. Their results show that for 30-minute traffic

flow prediction, prediction accuracy improvement of LSTM is 2% over DBN, 4%

over BPNN, and 9% over ARIMA. Both [25, 26] consider rainfall data as point

data. Rainfall value from the nearest station is interpolated to the target road seg-

ment. The correlation between traffic and rainfall is not a direct measurement

of the distance between the road and weather stations because of terrain feature

constraints. During prolonged heavy rainfall, water flow from one road segment

to another, waterlogging blocks the majority of the road segment, which affects

the traffic variables of other road segments. Therefore, the nearest station’s rain-

fall data will not capture the impact of rainfall on other roads. There is a need to

capture the spatiotemporal dependency between the traffic and weather data of

target and adjacent road segments under such a scenario. These studies extract

the temporal dependency of traffic and weather data to predict the future traffic

conditions ignoring the spatial dependency.

A. Koesdwiady et al. [27] used spatiotemporal input data and the DBN model

is used to predict the traffic flow during adverse weather conditions. They take

into account the spatiotemporal dependency of adjacent roads’ weather and traf-

fic data while predicting the traffic flow on the target road. As per the author,

with k past traffic data sequence, the most recent rainfall data value is sufficient

because rainfall is complementary data. The performance of the model in terms

of mean absolute error is 0.002 and 0.0087 as compared to the ANN and least

square method for 5-minutes prediction horizon, respectively. The author as-

sumes that the rainfall data is complementary while predicting traffic flow on
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a road segment. The prolonged impact of weather conditions is significant on

traffic stream variables. Waterlogging due to saturated soil absorption capability,

weakened drainage system greatly affects the traffic stream variables on the target

and adjacent road segments. The extended weather sequence is needed to capture

the prolonged impact of weather variables. Table 2.5 summarizes the parametric

and non-parametric approaches for traffic stream variables prediction during ad-

verse weather conditions. The summary shows the studied data, the data-driven

method used for traffic stream variables prediction during adverse weather con-

ditions, and the used method’s accuracy. The shallow non-parametric approaches

show error improvement over parametric approaches as observed from the stud-

ies. The deep learning model shows better traffic prediction accuracy than the

parametric and the shallow non-parametric model during adverse weather con-

ditions.

Table 2.5: Parametric and Non-parametric Approaches for Traffic Stream Variables Pre-
diction During Adverse Weather Condition, PH stands for Prediction Horizon.

Research
Work

Data Col-
lection

Collection
Frequency

Method PH Accuracy

Y. Zhao et
al. [59]

Buffalo 1-hour Linear
regression
(Parametric)

1-
hour

Model achieve R2 score
56.1%

W. Qiao et
al. [25]

I-95, Mary-
land

5-min kNN (Non-
parametric
(Machine
learning))

Multi
step

error improvement of
18% over the ARIMA
model

Y. Jia et al.
[26]

Ring road,
Beijing,
China

2-min traf-
fic and
1-hour of
rainfall
data

DBN (Non-
parametric
(Deep learn-
ing))

10-
min
and
30-
min

For 30-min traffic flow
prediction, error im-
provement of DBN 2%
over BPNN, and 9%
over ARIMA

A. Koesd-
wiady et al.
[27]

San Fran-
cisco,
California

15-min DBN (Non-
parametric
(Deep learn-
ing))

15-
min

MAE improvement of
.002 and .0087 over
ANN and least square
method, respectively.
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2.2.2 Study of Weather Impact on Traffic Stream Variables

The majority of the work considering traffic prediction during adverse weather

conditions is performed on dense traffic data obtained from sensor devices in-

stalled on a road segment [13, 25, 26, 27]. The deployment of ITS infrastructure

is costly. Therefore, in most locations, limited ITS infrastructure is available for

traffic monitoring, and the available traffic data are very sparse. Deep learning

algorithms require a large amount of data to predict the traffic stream variables

during adverse weather conditions. With limited ITS infrastructure and sparse

traffic data, it is difficult to predict the traffic stream variables accurately. There-

fore, there is a need to generate realistic fine-grained traffic data during adverse

weather conditions. To generate fine-grained synthetic data, we should first ob-

serve the impact of rain on traffic stream variables. We further used these obser-

vations to generate traffic data during rainfall for a variety of roads.

Ibrahim et al. [21] observed that the rainfall intensity values 0-0.01 in/hr, 0.01-

.25 in/hr and >0.25 in/hr causes speed reduction of 2-4%, 5-8% and 9-14% and ca-

pacity reduction of 2-4%, 5-10% and 11-18%, respectively. This study’s traffic data

were from the freeway traffic management system of the Queen Elizabeth Way in

Mississauga, Ontario. The regression analysis is used to select the proper mod-

els for representing the flow-occupancy and speed-flow relationship. The multi-

ple regression analysis techniques were used to test for the significant differences

in traffic operations between different weather conditions. As per their observa-

tion, adverse weather conditions reduce the slope of flow-occupancy function and

cause a downward shift in the speed-flow function. M. Kyte et al. [23] used the

regression analysis to study the effect of weather on free-flow speed on an inter-

state freeway in Idaho. As per their observation, wet surface causes 9.5 km/hr

reduction, snowfall causes 16.4 km/hr reduction, and wind > 24 km/hr causes

11.7 km/hr reduction in operating speed, respectively. M. Agarwal et al. [22]

classifies the rain and the snow events by their intensity levels and identifies how

precipitation intensity changes the impact of speed and capacity of roadways. The

previous research on weather impact is obtained from studies outside the United

States. This study used the traffic data and the rainfall data collected from the
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Minnesota traffic management center and the national climate data center. For

this study, the author used the statistical analysis using the Bonferroni method.

This allows many comparison statements to be made (or confidence intervals to

be constructed) while still assuring an overall confidence coefficient is maintained

[60]. As per their observation, heavy rainfall causes 14% reduction, and heavy

snowfall causes 22% reduction and fog with visibility < 0.25 mile causes 11% re-

duction in traffic density, respectively. As per their observation, the light to heavy

rainfall causes 1-7% speed reduction on freeway roads. Using the same data and

the additional data from cities in the United States of America, Rakha et al. [61]

concluded that the light and heavy rainfalls cause a speed reduction of 2-3.6%

and 6-9%, respectively on the freeways. J. Weng et al. [62] observe that snowfall

affect the road capacity by 33%, the traffic speed by 10-40% and traffic flow by

12-50%. This study is performed on the expressway in Beijing, China. The heavy

snowfall (thickness≥ 30cm) affects the traffic flow and the speed on a subsequent

day. Due to slippery ice, the road condition is affected, which decreases the traffic

speed by 30% and traffic flow by 40%. Hammad et al. [63] studied the impact of

fog on traffic stream variables. During fog, a traffic speed reduction of 6-18% is

observed on the expressway. There is no road capacity reduction observed. For

the peak and the off-peak hours, traffic speed is affected, but there is no significant

decrease in traffic flow. For night time, the impact of fog on traffic speed and flow

is significant, as drivers avoid unnecessary trips and the vehicle slows down to

avoid any accident. The worst effect of rainfall on traffic variables is captured in

literature until heavy rainfall conditions [21, 22, 23]. The urban flood or massive

waterlogging, in reality, worsens the situation. The impact of rainfall on traffic

stream variables is studied in literature considering the developed country’s free-

way or expressway, where road conditions and drainage systems are exceptional.

In developing countries, heavy rainfall causes waterlogging, affecting the traffic

condition on the road segments. The study considering the impact of prolonged

rainfall on different types of roads is needed to observe the impact of waterlog-

ging or urban flood on traffic stream variables. Table 2.6 summarizes the works

on impact of rainfall on traffic speed.
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Table 2.6: Reduction in Traffic Speed for Different Weather Condition as Observed in
Literature.

Research Rainfall Snowfall Wind
Ibrahim et al. [21] 2-14%
kyte et al. [23] 9.5 km/hr 16.4 km/hr 11.7 km/hr

M. Agarwal et al. [22] 1-7% 3-10% 2-9%
Rakha et al. [61] 2-9% 5-16% 2-10%
Hu et al. [64] 2.6-18.4%

J. Weng et al. [62] 10-40%

2.3 Summary

The traffic stream variables prediction is a non-linear and complex problem. The

machine learning and neural network approaches ignore the hidden influencing

factor because of shallow architectures. The deep learning model extracts the in-

fluential hidden features from the input data and provides better prediction ac-

curacy. Whether the deep learning model can improve traffic stream variables

prediction accuracy with additional input, like rainfall variable, is an important

question that needs to be answered.

There are limited studies that forecast traffic during adverse weather conditions.

The majority of the work focuses on temporal dependency. The traffic on the tar-

get road gets affected due to the traffic and weather conditions on the adjacent

road segments. Therefore, spatiotemporal dependencies should be taken into ac-

count while predicting the traffic stream variables.

To capture the impact of waterlogging or water flow path during heavy rainfall,

there is a need to capture the impact of rainfall on other road segments while pre-

dicting the traffic stream variables. Similarly, the prolonged impact of rainfall is

significant on traffic stream variables which can’t be neglected.

The impact of rainfall on traffic operation is captured until heavy rainfall condi-

tions on developed countries’ freeway road segments. The prolonged heavy rain

causes massive waterlogging in developing countries due to weak drainage sys-

tems, narrow roads, and encroachments. Therefore, a study capturing the impact

of prolonged heavy rainfall on traffic operation on different roads is needed con-

sidering developing countries’ scenario.
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The majority of the work considering the traffic prediction during adverse weather

conditions is performed on the dense traffic data obtained from the ITS infras-

tructure. The deployment and maintenance of ITS infrastructure are costly, and

therefore only a few of the roads worldwide have dense traffic data. The alternate

cost-effective traffic data sources such as taxi GPS and cellular data are sparse

and incomplete. To overcome the limitation, realistic fine-grained synthetic data

is needed that can accurately describe the effect of rainfall on traffic stream vari-

ables. The dense traffic data is private and not available for comparison of various

learning methods. The fine-grained synthetic data can also be useful for training

and testing in ITS and comparing multiple methods on a similar data-set.
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CHAPTER 3

Problem Description

Accurate traffic forecasting is important for the applications of the ITS such as

ATIS and AMTS. In ATIS, accurate traffic information informs about traffic con-

gestion which can be used to reduce the uncertainty of the future traffic state,

improves resource utilization, provides expected delays, alternate routes, travel

time estimates, etc. Short-term traffic stream variable’s forecasting during ad-

verse weather conditions such as rainfall, snow, fog, etc., is needed for both trav-

elers and traffic management applications. Our objective is to predict the traffic

stream variables on the road segment at some future time instance during ad-

verse weather conditions. The traffic stream variables of our interest are traffic

speed and flow. The traffic speed is the average of individual vehicle speed on

the road segment for a particular time. The traffic flow is the number of vehicles

passing the road segment in a given time.

Figure 3.1 shows the representation of the system i.e., set of inputs, output,

and function that maps the inputs to the output. For a particular geographical

area, we have a large road network that consists of road segments linked with

each other. Each road segment has traffic data corresponds to it, which is gener-

ated periodically by various sources. The traffic data contains the traffic stream

variables values such as average traffic speed, traffic flow, traffic density, etc. We

also have multiple weather stations located in the same geographical area. Each

weather station provides weather reading periodically. The weather data contains

weather variables such as temperature, precipitation, snow, visibility, wind speed,

etc. Weather stations also provide the weather forecast value, which gives an in-

sight into the future weather conditions. Figure 3.2 shows the different sources of
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Figure 3.1: System Representation.

Figure 3.2: Different Sources of Input Data.

the input traffic and weather data. The traffic data is collected either from the ITS

infrastructure or from an alternate source. ITS infrastructure provides dense and

complete traffic information but they require high deployment cost [24]. Traffic

sensors data and video camera data come under this category. The alternative

source of traffic data is cost-effective. The Wifi, GPS, cellular data, social media

data are the cost-effective but sparse and erroneous source of traffic information.

The weather variables are measured from various devices such as rainfall amount

over a particular period is measured by a rain gauge, radar, and satellite. The

radar and satellite data provide a volumetric measure of rainfall for an area while

a rain gauge provides data from a very specific point. The other devices such

as an anemometer are used for measuring wind speed, the barometer is used for

measuring atmospheric pressure, etc.

Traffic data is collected from the sensors installed on the road segment and
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weather data is interpolated from the stations based on the distance between the

road segment and station. Therefore, for a road segment, traffic data is more accu-

rate as compared to the weather data. The correlation between the weather station

and road segment is not directly related to the distance between them because of

the terrain feature constraint. The rainfall at the current time instance will affect

the traffic stream variables at some near-future time instance. The water flows

or waterlogging at the adjacent road will affect the target road at the future-time

instance. The immediate effect of rainfall is visible on traffic speed. Rainfall af-

fects visibility and therefore, the vehicles slow down their speed to avoid crash

risk. The impact of rainfall on traffic flow is not immediate. The traffic flow gets

affected if, for some duration, the average speed slows down. Road capacity re-

duces because of a weak drainage system that causes waterlogging due to pro-

longed rainfall, which affects the traffic speed and flow.

The collection frequency of traffic data and weather data is different. Traffic data is

denser as compared to weather data. The weather data doesn’t give fine-grained

information about the impact of rainfall on traffic stream variables. This makes

the traffic prediction during adverse weather conditions a complex problem.

The roads that are not immediate neighbors but due to terrain features, the

distant road segment may affect the traffic stream variables of the target road

segment during adverse weather conditions. Therefore, weather data related to

other road segments should be taken into account to predict the traffic stream

variables. We need a mechanism that considers the weather data corresponds to

other road segments but also, limits the number of stations to be considered for

the target road segment. Similarly, to capture the prolonged impact of rainfall,

the model needs a more extended sequence of rainfall data compared to the traf-

fic data. Therefore, we need a mechanism that captures the prolonged impact

of rainfall. The traffic and weather sequence along with information related to

the weather condition spatial and prolonged significance is passed to the learn-

ing model. The learning model is a mathematical function that converts the set

of inputs to the output using some learning module. In our case, the output is

traffic stream variables value at some future time instance. So our one of the ob-
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jectives in this research is to predict the accurate traffic stream variables during

adverse weather conditions. We need a learning model that extracts the hid-

den features such as waterlogging, road characteristics, drainage system, water

flow path, etc., to make an accurate prediction of traffic stream variables. If we

have dense data corresponds to each feature, we will pass these data as input to

our learning model. In the absence of these datasets, it is necessary to provide a

large amount of fine-grained traffic and weather information such that the learn-

ing model extracts the hidden features to forecast traffic during adverse weather

conditions.

The fine-grained traffic data collected from ITS infrastructure is not available

for a majority of the locations because of the high deployment and maintenance

cost. The alternate source of traffic data provides sparse and incomplete informa-

tion. Therefore, a mechanism to generate the fine-grained traffic data is needed.

The traffic condition on a road segment depends upon various parameters. For

example, broad roads with excellent drainage systems are less prone to waterlog-

ging as compared to narrow roads with a poor drainage system. These parameters

should be considered while generating realistic fine-grained data during adverse

weather conditions. Our other objective in this research is to generate fine-grained

realistic traffic data considering weather-related parameters.

Section 3.1 gives the definition and mathematical representation of the traffic pre-

diction system along with objective and performance metrics. Section 3.2 gives

the definition and mathematical representation of the synthetic data generation

system. Section 3.3 list out the assumptions related to the traffic prediction prob-

lem.

3.1 Problem Statement for Traffic Stream Variables Pre-

diction

Input traffic data and weather data are generated periodically. An aggregation pe-

riod is the aggregation of all data points for a single resource over a specified pe-

riod, which defines the granularity of the data. The traffic and weather data may
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or may not have the same aggregation period. Time-series data is a set of data col-

lected sequentially at the aggregation period. For a particular geographical area,

time-series traffic data from the road segments and time-series weather data from

the weather stations are provided as inputs. This time-series traffic and weather

data are spatiotemporal data because it provides the traffic and weather reading

from past and current time instances along the geographical area. The length

of the sequence (past information) is called lag. This spatiotemporal data up to

a particular lag value is used to predict the future traffic stream variables. The

prediction horizon is how far ahead the model predicts the future traffic stream

variables. Our goal is to predict the traffic stream variables on the road segment

at the prediction horizon. Figure 3.3 shows the system representation of the input

data in our model and the definition of the input data is provided below.

Figure 3.3: System Representation of the Input Data.

Definition 1: Traffic data A geographical area has N number of road segments.

Xi
t is a traffic data during tth time interval at ith road segment. The traffic data

contains information about the traffic flow and average traffic speed.

Xi
t = (Average traffic speed, traffic flow )

Pj is the set of road segments other than i (target road segment) and p is the lag
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value.

Xt = (Xi
t, Xi

t−δ, . . . , Xi
t−pδ), {(X j

t, X j
t−δ, . . . , X j

t−pδ), X j ∈ Pj}

Xt is the spatiotemporal traffic data from all N road segments in the geographical

area for past and current timestamps. δ is the aggregation period.

Definition 2: Weather Data A geographical area has M number of weather sta-

tions. These weather stations provide weather data. A Weather data is a sequence

of weather readings for past and current timestamps. Wk
t denotes the observed

weather value during tth time interval at kth weather station. The weather reading

contains information about precipitation, snow, and visibility.

Wk
t = (precipitation, snow, visibility)

Pk is the set of k weather stations out of M and p is the length of the sequence or

lag value. fspatial captures the weather impact from M − k stations at time t. Ŵt

stores the spatial significance of weather variable.

Ŵt = fspatial({WM−k
t }),

The prolonged impact of weather variable is captured using ftemporal, Wk
t stores the

temporal significance of weather variables during tth time interval at kth weather

station. q is the extended sequence length such that q >> p.

Wk
t = ftemporal(Wk

t−qδ′ , . . . , Wk
t−(p+1)δ′), q >> p

Wt = {({Wk
t , Wk

t−δ′ , . . . , Wk
t−pδ′}, Ŵt, Wk

t ), Wk ∈ Pk}

Wt is the spatiotemporal weather data from k weather stations for past and current

timestamps alongwith spatial and temporal information. δ
′

is the aggregation

period and δ
′ ≥ δ.

Our goal is to predict the traffic stream variables at target road segment i for

prediction horizon tg such that tg = t + gδ. Yi
tg

is the predicted value and f is the
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function that maps the input (Xt and Wt) to the predicted output.

Yi
tg = f (Xt, Wt) (3.1)

For each predicted Yi
tg

value at target road segment i for prediction horizon tg,

there is true Xi
tg

value. Our objective is to predict Yi
tg

which is in the agreement of

the Xi
tg

, by defining an appropriate loss function Ł(θ), where θ are the parameters

to be learned. Here, T is the prediction horizon and S is the total number of

samples.

min Ł(θ) =
1
S

S

∑
i=1

T

∑
g=1
|Yi

tg − Xi
tg | (3.2)

Figure 3.4 shows the system representation of the prediction model. The predic-

tion or learning model learns the parameters that help the model to map the given

inputs into the desired output. The objective of the learning model is to minimize

the difference between the measured and predicted value of the traffic stream

variables. The model keeps on learning till it gets converges.

Figure 3.4: System Representation of the Learning Model.

In this research, three loss functions evaluate model effectiveness: the Mean

Absolute Error (MAE), the Root Mean Square Error (RMSE), and the Mean Ab-

solute Percentage Error (MAPE). These metrics find the mean error between the

actual and predicted value of the traffic stream variables for sample data. They

are defined as,

MAE =
1
S

S

∑
i=1

T

∑
g=1
|Yi

tg − Xi
tg |
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RMSE =

√√√√[ 1
S

S

∑
i=1

T

∑
g=1

(Yi
tg
− Xi

tg
)2

]

MAPE =
1
S

S

∑
i=1

S

∑
g=1

|Yi
tg
− Xi

tg
|

Xi
tg

3.2 Problem Statement for Synthetic Traffic Data

One of our objectives in this research is to solve the traffic data sparsity issue.

The learning models require a large amount of data for accurate traffic predic-

tion. In the absence of dense traffic data, the fine-grained realistic synthetic traffic

data during adverse weather conditions will be used as a traffic data input in our

learning model. The quality of the prediction depends upon how fine-grained

and realistic is our synthetic data. The traffic data during rainfall depends upon

various parameters such as road characteristics, time of the day, rainfall average,

etc. Our goal is to generate synthetic traffic data using a realistic simulation setup

that considers these parameters.

Road type R is a parameter that captures the road characteristics. It contains

information related to the road such as road segment id, number of lanes, eleva-

tion, and route.

R = (road segment id, number of lanes, elevation, route)

Time of the day Td is categorised into three category. Peak hour, off-peak hour

and night time.

Rainfall average α is a parameter that captures the impact of prolonged rain-

fall.

Friction parameter µ captures the impact of rainfall on vehicle mobility.

ur is the traffic speed in the real traffic data-set during adverse weather con-

ditions. Our objective is to derive vehicle speed uw which is a function of all the

above parameters, such that
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uw = fsynthetic(R, α, µ, Td)

uw ≈ ur

3.3 Assumptions

The assumptions in this research related to the traffic stream variables prediction

and synthetic traffic data generation during adverse weather conditions are as

follows:

• Traffic data provides accurate traffic stream variables information.

• Traffic data obtained from ITS infrastructure is dense and complete.

• Traffic data obtained from alternate sources are sparse and incomplete.

• Weather stations provides accurate weather information.
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CHAPTER 4

System Model and Proposed Approach

In this chapter, the system model discusses the limitations related to the traffic

stream variables prediction during adverse weather conditions and the solutions

offered to overcome those limitations in section 4.1. The proposed approach dis-

cusses the detailed mechanism to solve the related concerns for accurate traffic

forecasting in section 4.2.

4.1 System Model

Traffic stream variable prediction during adverse weather conditions is a non-

linear and complex problem. Traffic forecasting involves various hidden factors

such as time of the day, road characteristics, and non-recurrent events such as

weather conditions, road construction, etc. To predict the traffic stream variables,

traffic and weather data are required. The learning model predicts the future

value of the traffic stream variables based on the input traffic and weather data.

It requires dense and complete traffic and weather data for each road segment to

predict the traffic stream variables. The ITS infrastructure provides dense traf-

fic data, but deployment and maintenance are costly. Hence limited roads have

dense and complete traffic data. The alternate traffic data source, such as taxi GPS,

cellular data, etc., provides sparse and incomplete traffic data.

Also, the traffic stream variables during adverse weather conditions depend upon

various hidden features such as water flow path, drainage system, soil absorption

capability, etc. The hydrology map gives information on the water flow path.

The drainage data gives the real-time status of the drainage capacity. The soil
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data gives the real-time soil absorption capability. If we have fine-grained data

corresponds to these hidden features, we will provide the data directly to our

model. If there are no computational limitations, then all of the past and current

information corresponds to these data-sets for a particular geographical location

is provided to the learning model to predict the traffic stream variables accurately.

In reality, the data related to the other features (drainage, soil, etc.) are not avail-

able in most locations. Also, these features are a function of history in terms of

drainage maintenance and soil absorption capability. These data are not static

that can be used directly from the soil and drainage data-set of the geographical

location. On the other hand, every system has computational limitations. There-

fore complete past information is not available to the learning model. Apart from

this, to accurately predict the traffic stream variables, the learning model should

consider the non-linear, dynamic, and complex transportation network character-

istics.

Figure 4.1: System Model.

Figure 4.1 shows the system model. Our system model has traffic data (Xt)

and weather data (Wt) as input. The input data is passed to the learning model

to predict the future traffic stream variables, such that Yi
tg
= f (Xt, Wt). The main

challenge with traffic data is the sparsity problem, it cannot be monitored on some

roads or of certain periods. To accurately predict the traffic stream variables on a
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road segment, there is a need to overcome the traffic data sparsity issue. There-

fore, synthetic traffic data is needed to solve this issue. A fine-grained realistic

synthetic data will provide a good approximation of the actual traffic data to pre-

dict the traffic stream variables. To generate realistic synthetic data during rain-

fall, we study the impact of rainfall with different intensities on various roads. We

simulate the roads prone to waterlogging during prolonged rainfall and those that

are not, using Simulator for Urban Mobility (SUMO) [31]. In SUMO, the vehicle

speed is derived from the car-following model such that the minimum distance

between the following and the leading vehicle on the same lane is maintained. In

a current SUMO version, the implemented car-following model does not use the

weather-related parameters for computing mobility-related parameters. There-

fore, an empirical model is needed that quantifies rainfall’s impact on the differ-

ent types of roads. Based on the road type and rainfall intensity, the quantified

values are associated with the road segment, and these values are passed to the

car-following model. This model needs to be adapted to use the weather-related

parameters while computing the vehicle speed.

The traffic data is more granular compared to the weather data. Therefore with

the weather data, a missing value is a significant concern. The interpolation of the

weather data is needed to fill out the missing values. We studied and compared

various interpolation techniques such as the Theissen polygon, inverse distance

weighted method, and linear regression method.

With weather data, another concern is to capture the spatial significance and

the prolonged impact of the weather conditions. Prolonged heavy rainfall weak-

ens the drainage system and the soil absorption capability, which results in wa-

terlogging and water flows from one road segment to another. The extended rain-

fall sequence is needed to capture the prolonged impact of rainfall. To limit the

weather data sequence length, we propose the soft temporal threshold mecha-

nism. The model’s input should consider the past weather sequence up to the

threshold value as a sequence length. Model’s input also includes moving weighted

average of rainfall value to capture the extended or prolonged weather variable’s

impact. Similarly, to capture the effect of waterlogging and water flow due to
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rainfall on the target road segment’s traffic stream variables, the input should

also consider the rainfall value (intensity) on the other road segments. We pro-

pose the soft spatial threshold mechanism to limit the number of weather sta-

tions to consider for the target road segment. The model’s input should consider

the weather data from all the stations in the geographical area that are threshold

distance apart. The input should also include the weighted average of weather

readings for all the other stations where distance is more than the threshold.

The learning model takes the input traffic and weather data for short-term

traffic stream variables prediction on the target road segment. The model should

extract the hidden features from the input data. It should consider the non-linear

and complex transportation network characteristics during adverse weather con-

ditions. The model should depend upon the learned features instead of hand-

crafted features for optimal performance because hand-crafted features require

prior domain knowledge. Traffic conditions on the road segment during adverse

weather conditions depend upon various hidden features. Therefore, deep learn-

ing models are an optimal choice because their multi-level architecture extract

hidden influential features in data from a lower level to a higher level. Deep

learning models are robust and don’t require hand-crafted features for optimal

performance. The traffic condition on the target road during adverse weather

conditions has a spatiotemporal dependency on the other road segments. Also,

the evolution of future traffic conditions is always related to traffic conditions in

current and past time instances. Therefore deep learning models that extract the

spatiotemporal correlation and consider sequence learning are favorable choices

as the learning model.

The Convolutional Neural Network (CNN) model is known for extracting lo-

cal connections between the pixels from the one-dimensional, and two-dimensional

data [30]. In our problem, the traffic condition at the target road segment is depen-

dent on the traffic and weather conditions on the other road segments. Therefore,

CNN is a suitable model to extract the spatiotemporal features between the target

and other road segments. The spatiotemporal traffic and weather data for past

and current time instances are provided as the input to the CNN for regression
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prediction.

In a time-series prediction or sequence learning problem, the future outcome is

dependent on the current and past observations, i.e., the output from the cur-

rent timestamp is provided as the input to the next timestamp and so on. The

deep learning model designed for the sequence learning problem is the Recurrent

Neural Network (RNN) and it’s variant Long Short Term Memory (LSTM). The

RNN uses memory cells to capture the temporal information from the previous

sequence and uses this information along with the current input for future pre-

diction [65]. RNN suffers from the vanishing gradient problem and doesn’t hold

long temporal dependencies. LSTM solves this problem with the help of a gat-

ing mechanism and, therefore, holds long and short temporal dependencies [18].

The spatiotemporal traffic and weather data are used as the input to the recurrent

learning models for traffic stream variables prediction.

The traffic conditions on the target road segment are affected by the surround-

ing area’s traffic and weather conditions and traffic conditions of its own. The

traffic data sequence of the target road segment contains hidden features like road

condition, peak hour traffic behavior, and point of interest influence. All these

features affect the traffic condition on the target road irrespective of the traffic

condition on the other road segments. Therefore, the traffic stream variables pre-

diction during adverse weather conditions on the target road has the spatiotem-

poral dependency on other road’s traffic and weather conditions and temporal

dependency on its own traffic characteristics. LSTM model learns the effective

temporal features to predict the traffic stream variables on the target road seg-

ment based on the past and the current traffic data sequence. The hybrid mod-

els, CNN-LSTM and LSTM-LSTM are designed to extract the spatiotemporal and

temporal dependency. There are two submodels in our hybrid model, one which

extracts spatiotemporal features, and the other uses the spatiotemporal features

and temporal input to predict the traffic stream variables. In the LSTM model,

the hidden layer is a memory block, where the cell memorizes the temporal fea-

tures and passes this information to the next cell state. In LSTM memory cells, the

current cell state depends upon the previous cell state and the current input [66].
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This cell state is initialized randomly during model training. In our model, we

initialize the memory or the cell state of LSTM with the spatiotemporal features

extracted by the CNN or LSTM model. Our latter LSTM model learns the hidden

features, which depend on the spatiotemporal features of the adjacent road’s traf-

fic and weather conditions and its temporal features. These deep learning models

predict the traffic stream variables with the objective that the difference between

the predicted and actual value should be minimum. Accurate prediction of traffic

stream variables is an integral component in the ITS applications.

4.2 Proposed Model

This section discusses the solutions to overcome the limitations related to the in-

put traffic and weather data.

Fine-grained realistic synthetic traffic data is required to overcome the traffic

data sparsity issue. The impact of rainfall on the traffic stream variables differs for

different road types. The broad and freeway road segments are the least affected,

whereas narrow and street roads are the most affected. To generate the synthetic

traffic data considering the impact of rainfall on different roads, there is a need to

study the impact of rainfall on different road segments. Section 4.2.1 discusses the

input traffic and weather data and the impact of rainfall on various roads. Section

4.2.2 discusses the synthetic data generation method. The prolonged impact of

weather variables is significant on the traffic stream variables. To accurately pre-

dict the traffic stream variables, weather data’s spatial and temporal significance

needs to be taken into consideration. Section 4.2.3 discusses the soft spatial and

temporal mechanisms and weather data interpolation techniques. Section 4.2.4

shows the spatiotemporal representation of the input data.

4.2.1 Input Data

In our model, traffic and weather data are used as an input to predict the traf-

fic stream variables at the prediction horizon. There are two types of traffic data

sources, ITS infrastructure (primary) and alternate source (secondary). The traffic

48



data is collected from the road segment. There are different types of roads in the

transportation system. We study various roads to observe the impact of inclined

weather conditions on the traffic stream variables. The roads are classified into

four categories, namely, arterial, sub-arterial, collector, and local, based on their

function and capacity. The arterial roads are the high-capacity urban roads. They

are the major connecting roads across the country designed for high-speed unin-

terrupted travel, for example, expressways or freeways. The sub-arterial roads

connect the traffic from collector roads to freeways by carrying large traffic vol-

umes, such as state highways. The collector roads connect traffic from the local

roads to the sub-arterial road. These roads are mostly passing through the city

area and occupy significant city traffic. Local roads are mainly the neighborhood

street system. These roads mainly carry the local traffic. Section 4.2.1.1 discusses

the traffic data from the ITS infrastructure. Section 4.2.1.2 discusses the traffic

data from the alternate source. Section 4.2.1.3 discusses the weather data studied

in this research.

4.2.1.1 Traffic Data from ITS Infrastructure: Traffic Sensors

Traffic data corresponds to the ITS infrastructure is collected from the Caltrans

Performance Measurement System (PeMS) [67]. Caltrans (California Department

of Transportation) requires a freeway performance measurement system that ex-

tracts information from the real-time and historical traffic data. PeMS provides

traffic information that helps various stakeholders such as traffic engineers, plan-

ners, freeway users, researchers, and traveler information service providers. A

loop detector is used for measuring traffic flow and occupancy. Two single-loop

detectors are placed nearby forms a double-loop detector, which directly mea-

sures traffic speed. These loop detectors are wire loops embedded in each lane of

the roadway at regular intervals on the network; every half-miles away. A road

segment in Caltrans traffic data is a freeway segment that contains a loop detec-

tor(s) [68]. PeMS aggregates data at the 5-minute interval and provides value for

average speed and vehicle count per 5-minute. There are 12 districts in Califor-

nia, data from San Diego (district 11), along I-5, SR-163, and SR-75, are used in
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this research. Figure 4.2 shows the location of these roads on a map.

Figure 4.2: Selected Road Stretches of San Diego.

I-5 is a 168 km long arterial road in the San Diego, 124 loop detectors are lo-

cated on the North headway. It is a 12 lane road with six lanes on each headway

(North, South). SR-163 is a 17.8 km long road, and eleven loop detectors are lo-

cated on the North headway. It is an eight-lane road, four lanes on each headway.

SR-75 is a 21 km long road, and eighteen loop detectors are located on the North

headway. It is a five-lane road with three lanes on the North headway and two

lanes on the South headway. Input features in traffic data are "timestamp", "lati-

tude", "longitude", "road segment", "average speed", "average flow", and "average

occupancy" aggregated from all lanes on the single headway, "average speed",

"flow", and "occupancy data" individually across all the lanes. The list of geomet-

ric features of the roads is shown in table 4.1.
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Table 4.1: List of Geometric Features of the Roads.

Road Lanes Length
Number of

Loop Detector
Data Attribute

I-5

(Arterial)

12,

six lanes

on each

headway

(North,

South)

168km 124 Timestamp, latitude,

longitude, road

segment, average

speed, average flow,

and average occupancy

aggregated from all lanes

on single headway,

average speed,

flow, and occupancy data

individually across

all lanes.

SR-163

(Sub-arterial)

8,

four lanes

on each

headway

17.8km 11

SR-75

(Sub-arterial)

5,

three lanes

on North

headway

and two

lanes on

South

headway

21km 18

We selected the three different roads based on their characteristics. For the

I-5, we use the traffic data corresponds to the road passing through the country-

side (Del Mar to Pacific Beach); the elevation is 70-119 m. The part of I-5 passing

through the Downtown area between the El Camino Real to the Naval Base, we

called it I-5D for this research, the elevation is 41-72 m. We selected the Down-

town area of San Diego because the roads passing through the densely populated

areas are much affected by the rainfall as compared to the countryside area. I-5 is

the broad road compared to the SR-163 and SR-75. The SR-163 passing through

the routes Cabrillo to Miramar and SR-75 passing through the routes Coronado
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to Imperial Beach is considered in this study. The elevation of SR-163 is between

28-53 m and SR-75 is between 4-13 m. Peak hour is the time of the day when most

people commute such that traffic flow is at its highest. The peak hour duration on

these roads is from 6:00 AM to 10:00 AM and from 3:00 PM to 6:00 PM.

4.2.1.2 Traffic Data from Alternate Source: Taxi GPS

The PeMS requires a system cost of about $3.5 million a year considering deploy-

ment and maintenance cost of hardware and software (in 2013) [24]. ITS infras-

tructure deployment and maintenance are costly. Therefore, the majority of the

roads worldwide have limited ITS infrastructure. To manage traffic on roads with

limited ITS infrastructure, stakeholders use alternate traffic data sources such as

cellular data, taxi GPS, etc. The traffic data from Mumbai corresponds to alter-

nate sources such as taxi GPS are obtained from the Uber Movement website [29].

Uber is a widely used cab service across multiple cities in India. The Uber move-

ment website provides the aggregate traffic data that consist of the road segment,

average speed, and travel time computed using the anonymized Uber trips. The

data is aggregated daily for a road segment. We use the traffic data of Borivali

East to Parel (BEP) and Mulund East to Parel (MEP) roads. Figure 4.3 shows the

chosen roads on the map of Mumbai.
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Figure 4.3: Selected Road Stretches of Mumbai.

The BEP road is a 29.1 km long collector road with six lanes (three lanes in

each headway). The elevation of the BEP road is between 12-15.8 m. The MEP is

a 24.5 km long collector road with four lanes (two lanes in each headway). The

elevation of the MEP road is 10-13.4 m. BEP and MEP both pass through the

densely populated area. The peak hour duration on these roads is from 7:00 AM

to 11:00 AM and from 4:00 PM to 7:00 PM on weekdays.

4.2.1.3 Weather Data

To study the impact of rainfall on traffic conditions of different road types, we use

the traffic and the rainfall data of San Diego (district 11), California, and Mum-

bai, India. The San Diego traffic data is described in section 4.2.1.1. San Diego’s

rainfall data is available from the National Climate Data Center (NCDC-NOAA)
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[69]. The NCDC-NOAA aggregates the weather data every fifteen minutes and

records timestamp, latitude, longitude, station id, and rainfall value. There are

twenty-two weather stations in San Diego that provide rainfall information. The

monthly rainfall data of San Diego is shown in figure 4.4. This study uses the traf-

fic and weather data of duration 21 January 2019 to 16 February 2019. The annual

rainfall in the year 2019 was 403.7mm.

Figure 4.4: Monthly Rainfall in San Diego (Year 2019)

The Mumbai traffic data is described in section 4.2.1.2. The rainfall data of

Mumbai are provided by the Maharashtra Remote Sensing Application Centre

(MRSAC) [70]. There are 60 automatic rain gauges at 58 locations in Mumbai, and

periodically update the data to MRSAC every fifteen minutes. The data consists

of a timestamp, station id, latitude, longitude, and rainfall value. The MRSAC

aggregates the rainfall data daily, weekly, and monthly. We use traffic and weather

data from January 2016 to December 2017. The annual rainfall in these years was

2500 - 2600 mm. Figure 4.5 shows the monthly rainfall data of Mumbai in the year

2017.
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Figure 4.5: Monthly Rainfall in Mumbai (Year 2017).

4.2.2 Synthetic Data Generation Method

One of our objectives is to generate synthetic data that provides an abstraction of

a real-world traffic condition during adverse weather conditions to overcome the

traffic data sparsity issue. The impact of rainfall on different roads is studied. We

proposed an empirical model to generate synthetic data considering the impact

of rainfall on traffic stream variables. In section 4.2.2.1 we describe and analyze

the traffic and the weather data for different road types under diverse traffic and

rainfall conditions; the section 4.2.2.2 presents the empirical model based on the

traffic and weather data; section 4.2.2.3 elaborates the simulation setup.

4.2.2.1 Analysis of Traffic and Weather Data

The impact of rainfall is different for various roads. Roads that are broad and

have excellent drainage systems are less affected than the roads that are narrow

and have a poor drainage system. A brief description of the roads considered in

this study is outlined in table 4.2.
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Table 4.2: Types of Roads Considered in This Study.

Road Type Description Road Stretch

Arterial Road A high capacity limited access road,

provides uninterrupted high speed

travel

I-5

Sub-arterial Road A medium capacity urban road,

connects collector road(s) to ex-

pressway, less traffic than arterial

road

SR-163, SR-75

Collector Road A low capacity road, connects traf-

fic from local street(s) to sub-

arterial and arterial roads

Borivali East to Parel

(BEP) and Mulund

East to Parel (MEP)

Table 4.3 describes the impact of rainfall on traffic movement in various cases.

The traffic movement on the arterial roads is affected by C1 - C3, whereas that on

collector roads is affected by all C1 - C4.

Table 4.3: Rainfall Impact on Traffic Movement.

Cases Description Affected Roads

C1 Drivers reduce their speed to avoid collision due

to aquaplaning, small patches of standing water

on road, and slippery road

I-5, I-5D, SR-

163, SR-75, BEP,

MEP

C2 Drivers reduce their speed to avoid collision due

to reduced visibility

I-5, I-5D, SR-

163, SR-75, BEP,

MEP

C3 Drivers avoid travel at night under heavy rain-

fall to avoid crash risk, reducing the flow and

speed on road

I-5, I-5D, SR-

163, SR-75, BEP,

MEP

C4 Waterlogging on road (due to heavy rain and

water-flow from flooded neighbor roads) affects

traffic flow and speed

BEP, MEP
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As rainfall is a local phenomenon [71], we associate every road segment with

one or more neighboring weather stations. This association is determined by com-

puting the correlation between a road segment’s traffic data and the weather data

of a weather station. The correlation coefficient is calculated for every pair of road

segments and weather stations.

Figure 4.6: Correlation Coefficient of Weather Data versus Distance of Weather
Stations.

Figure 4.6 shows the effect of distance between the road segment and weather

station on the correlation coefficient. It is observed that the correlation between

the traffic and the weather data weakens as the distance increases. Hence, we

consider the weather stations within proximity (a distance of three-five kilome-

ters) from a road segment. The distance of three-five kilometers is in line with

the past studies conducted by M. Agarwal et al. [22] and Tsapakis et al. [71]. For

this distance, the correlation coefficient between the traffic data and the weather

data is within the range of 0.8 - 1.0 (figure 4.6). Table 4.4 shows the category of

rainfall based on the rainfall intensity, these values, and category (low-high) is

similar with literature studies [21, 22]. We are interested in the prolonged impact

of rainfall. Therefore, we introduce the category "extended" for prolonged heavy

rainfall.
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Table 4.4: Rainfall Category Based on Rainfall Intensity.

Rainfall category Rainfall intensity

Light ≤ 0.5 mm / hr

Moderate ≤ 5 mm / hr

Heavy ≥ 7 mm / hr

Extended ≥ 40 mm in two hours

Based on the traffic and weather data of San Diego, the table 4.5 and 4.6 shows

the percentage decrease in traffic speed (km/hr) and flow (vehicle-count / 5 min),

respectively, due to rainfall. The aggregated traffic speed and flow information

during the normal day is used as a base condition to compute the percentage

decrease in the traffic stream variables during rainfall. It is observed that the light

and moderate rainfall (less than 5 mm/hr) shows very less impact on the traffic

speed and flow on the expressway, e.g., on I-5, decrease in speed and flow is less

than 5% and 4%, respectively. The impact is relatively high on the sub-arterial

roads; e.g., on SR-75, the decrease in speed and flow is greater than 8% and 7.5%,

respectively. The heavy rainfall (greater than 7 mm/hr) significantly affects the

traffic speed and flow on all the roads, and the decrease in speed and flow is 13 -

21.5% and 13.5 - 27.5%, respectively.

Table 4.5: Percentage Decrease in Traffic Speed (km/hr) as per San Diego Data.

Rainfall I-5 I-5D SR-163 SR-75

light(≤0.5mm/hr) 1.2 2.39 2.02 2.66

moderate(≤5 mm/hr) 4.84 6.43 7.74 8.17

heavy(≥ 7mm/hr) 13.02 14.31 16.12 17.57

≥ 10mm/hr 14.09 15.12 17.92 19.10

≥ 40mm in 2hr 15.77 16.03 19.59 20.87

≥ 60mm in 4hr 16.03 17.45 20.24 21.46
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Table 4.6: Percentage Decrease in Traffic Flow (vehicle-count / 5 min) as per San Diego
Data.

Rainfall I-5 I-5D SR-163 SR-75

light(≤ 0.5mm/hr) 1.32 1.65 1.83 1.94

moderate(≤ 5mm/hr) 3.60 4.20 6.96 7.65

heavy(≥ 7mm/hr) 13.88 14.66 16.51 16.64

≥ 10mm/hr 14.24 17.78 17.87 19.82

≥ 40mm in 2hr 17.80 19.74 21.38 23.26

≥ 60mm in 4hr 19.44 21.8 24.35 27.63

Based on the traffic and weather data of Mumbai, table 4.7 shows the per-

centage decrease in the traffic speed (km/hr) on Borivali East to Parel (BEP) and

Mulund East to Parel (MEP) roads due to rainfall. Both BEP and MEP are the col-

lector roads. The impact of prolonged heavy rainfall (greater than 7 mm/hr) on

these roads is significant, and the decrease in speed is 17-63%.

Table 4.7: Percentage Decrease in Traffic Speed (km/hr) as per Mumbai Data.

Rainfall BEP MEP

light(≤ 0.5mm/hr) 2.63 2.5

moderate(≤ 5mm/hr) 10.36 7.15

heavy(≥ 7mm/hr) 20.21 17.13

≥ 10mm/hr 26.87 21.24

≥ 40mm in 2hr 33.38 29.26

≥ 60mm in 4hr 38.34 32.52

≥ 100mm in 6hr 63.23 53.3

We compare our observations about the impact of rainfall on traffic data with

those reported in the literature. Table 4.8 and 4.9 shows the comparison between

the existing work and our observations for different roads. The effect of prolonged

rainfall on the traffic stream variables is not reported in the literature. Hence, we

exclude our readings related to the prolonged rainfall during the comparison. On

the arterial road, we observe that the traffic speed and flow decrease by 1.2 - 13%
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and 1.3 - 13.88%, respectively, for the light to heavy rainfall. These numbers match

those reported by Ibrahim et al. [21] and M. Agarwal et al. [22]. They observed

a decrease of 2 - 14% and 1.6-16.5% in the traffic speed and flow, respectively, in

their studies. On the sub-arterial road, we observe the reduction of 2.02 - 16% and

1.9 - 16.4% in the traffic speed and flow, respectively, for the light to heavy rainfall.

These numbers are similar to those reported by Wang et al. [72]. They observed a

decrease of 1.72 - 16% and 2 - 16.5 % in speed and flow, respectively. To the best

of our knowledge, no study in the literature has analyzed the effect of rainfall on

the collector roads. On these roads (MEP and BEP), we observe the traffic speed

reduction of 2-20% for the light to heavy rainfall.

Table 4.8: Comparison of Decrease in Traffic Speed Due to Rainfall Observed by the
Existing Work and This Study.

Existing Work Percentage Decrease in Traffic Speed

Arterial road Sub-Arterial road Collector road

Ibrahim et al. [21] 2 - 14%

M. Agarwal et al. [22] 2 - 16.5%

Wang et al. [72] 1.72 - 16%

This Study 1.2 - 13% 2.02 - 16% 2 - 20%

Table 4.9: Comparison of Decrease in Traffic Flow Due to Rainfall Observed by the
Existing Work and This Study.

Existing Work Percentage Decrease in Traffic Flow

Arterial road Sub-Arterial road

Angel et al. [73] 1.6 - 14.2%

Wang et al. [72] 2 - 16.5%

This Study 1.32 - 13.88% 1.94 - 16.4%

4.2.2.2 Empirical Model Design

The rainfall significantly affects the traffic stream variables, as observed in section

4.2.2.1. The traffic speed and flow are affected by various parameters during rain,

such as change in driving behavior to avoid crash risk, visibility, road capacity
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reduction, waterlogging, aquaplaning, etc. To calculate the traffic speed during

rainfall, there is a need to design a model that captures most of these parameters.

Weber et al. [74] introduced the friction coefficient (µ) to represent the effect of

road surface conditions on the traffic speed. The friction coefficient is varied to

capture the impact of rain and snowfall on the vehicle’s speed. Table 4.10 shows

how the friction coefficient changes with the road surface conditions.

Table 4.10: Road Surface Condition and Friction Coefficient.

Road Surface Condition Friction Coefficient
Dry µ ≈ 1.0− 1.2
Moist µ ≈ 0.8− 1.0
Wet µ ≈ 0.5− 0.8
Snow µ ≈ 0.3− 0.6
Ice µ ≈ .1− .4

We generalize the friction parameter µ to represent the wet surface’s impact

on the mobility parameters. It is observed that the water flows from one road

segment to another during prolonged rain and affects the traffic stream variables

on the target road segment. Similarly, the traffic stream variables are affected by

waterlogging caused by prolonged heavy rainfall. We introduce the rainfall pa-

rameter α to represent this phenomenon. The α is defined as the weighted average

of rainfall intensities values, and it is normalized to have a value between 0 and

1. In the case of light rainfall, the value of friction parameter µ is high, and the

rainfall parameter α is low, whereas for the prolonged heavy rainfall, the value of

µ is low and α is high. It is observed that the impact of prolonged rainfall varies

for different types of roads. The expressways where no water accumulates are the

least affected. In contrast, the narrow roads, passing through the densely popu-

lated area, and having a weak drainage system, are the most affected. Hence, we

introduce a road-type parameter R to consider different types of road. The value

of R is low for the roads that are least affected by the rainfall, whereas the value of

R is the highest for the roads that are the most affected by rainfall and waterlog-

ging. For an expressway with an excellent drainage system where waterlogging

does not occur, the value of R is very low. For a sub-arterial road that is less prone

to waterlogging, the value of R is moderate. For the collector roads, the value of
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R is the highest as they are the most vulnerable to waterlogging.

The traffic speed uw is defined as the linear equation of these three parameters

(µ, α, and R), and the least-square method is used to find their coefficient. In the

matrix notation, a system of linear equations is written using the coefficient matrix

A, the parameter vector x, and the result vector b. The size of matrix A is s× k,

and that of vectors x and b is k× 1 and s× 1, respectively. In this case, k = 3 as

we are working with three parameters µ, α and R and s is the sample size.

As×kxk×1 = bs×1

The objective of the least-square estimation is to minimize the difference between

the estimated speed and the actual speed (defined as the norm), as shown in equa-

tion (4.1), where i is the row, and j is the column.

min
x∈Rs
‖b− Ax‖ =

√√√√ s

∑
i=1

(
bi −

k

∑
j=1

aijxj

)2

(4.1)
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Table 4.11: Least Square Estimation of Speed Based on the Friction Parameter (µ),
Rainfall Parameter (α), and Road Type (R), Where µ ∈ [0, 1] and α ∈ [0, 1].

Road Traffic

Condi-

tion

Traffic Speed Considering Weather Condition (uw)

Arterial Peak

hour

uw = −10.815 ∗ α + 16.319 ∗ µ + 525.042 ∗ R, R ∈ [0− 0.1]

Arterial Off-peak

hour

uw = −5.744 ∗ α + 20.054 ∗ µ + 504.079 ∗ R, R ∈ [0− 0.1]

Arterial Night

time

uw = −17.565 ∗ α + 9.609 ∗ µ + 587.656 ∗ R, R ∈ [0.1− 0.2]

Sub-

arterial

Peak

hour

uw = −15.527 ∗ α + 21.085 ∗ µ + 90.095 ∗ R, R ∈ [0.5− 0.6]

Sub-

arterial

Off-peak

hour

uw = −20.619 ∗ α + 21.804 ∗ µ + 87.834 ∗ R, R ∈ [0.5− 0.6]

Sub-

arterial

Night

time

uw = −29.703 ∗ α + 18.38 ∗ µ + 94.66 ∗ R, R ∈ [0.6− 0.7]

Collector Peak

hour

uw = −39.571 ∗ α + 9.218 ∗ µ + 56.613 ∗ R, R ∈ [0.8− 1]

Collector Off-peak

hour

uw = −33.608 ∗ α + 14.832 ∗ µ + 52.158 ∗ R, R ∈ [0.8− 1]

Collector Night

time

uw = −39.278 ∗ α + 5.812 ∗ µ + 58.224 ∗ R, R ∈ [0.8− 1]

Table 4.11 shows the linear equations for estimating traffic speed using the

weather parameters µ, α, and R for various types of roads (arterial, sub-arterial,

collector) and traffic conditions (peak hour, off-peak hour, and night time).

We represent the road traffic condition as a ternary variable that takes the val-

ues 0 - peak hours, 1 - off-peak hours, and 2 - night hours. The few road network

parameters such as maximum speed on edge, road type of an edge remain fixed

over time. Whereas the traffic condition, rainfall parameter α, friction parameter
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µ varies with time.

4.2.2.3 Simulation Setup

A simulation model provides an abstraction of the real system and allows the user

to generate and analyze the results that correspond to an interesting real-world

problem. The results obtained using the simulation study are useful only if the

simulation model is close to a real-world scenario. Simulator for Urban MObility

(SUMO) [31] is an open-source, highly portable, microscopic, and continuous road

traffic simulator designed to handle large-scale road networks. SUMO includes

many applications that provide the user detailed microscopic traffic simulation

model. The vehicle parameters (vehicle type, acceleration, length, etc.), road net-

work parameters (number of lanes, length, maximum speed, etc.), vehicle route

and flow per hour, traffic light, etc., are easily configurable. A major limitation of

SUMO is that it doesn’t include weather parameters (rain, wind, snow, fog, etc.)

that influence the traffic stream variables in the real-world scenario.

In SUMO, each vehicle is modeled explicitly, has its own route, and moves

individually. A car-following model describes the interaction of a vehicle with

surrounding vehicles in the road network. It determines the speed of a vehicle in

relation to the vehicle ahead of it. It illustrates that the following vehicle is always

trying to keep a safe distance from the leading vehicle. The following vehicle

always adapts to the deceleration behavior of the leading vehicle [75]. Weber et al.

[74] modified the Krauss car-following [75] model to access the friction parameter

to derive vehicle’s speed. In the Krauss car-following model, the safe speed of a

vehicle vsa f e is computed as follows:

vsa f e = vl(t) +
g(t)− vl(t)(tr)

vl(t)+v f (t)
2b + tr

(4.2)

where vl(t) and v f (t) represent the speed of leading and following vehicle speed,

respectively, at time t. The g(t) is the gap between leading and the following vehi-

cle at time t, tr is the driver’s reaction time, and b is the maximum deceleration of

the following vehicle. Sometimes vsa f e is greater than the speed limit of the road
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or the maximum speed that the vehicle can reach due to its acceleration power.

Therefore, the desired speed vdes of the vehicle is computed as the minimum of

these speeds as follows:

vdes = min{vmax, v + at, vsa f e} (4.3)

where vmax is the maximum vehicle speed which is the minimum of the speed

limit on the road segment and the vehicle’s maximum speed attribute, v is current

vehicle speed, at is the vehicle acceleration at time t. At the next time step, the

vehicle moves at speed vdes to avoid collision with the front vehicle. This process

is repeated at every time step to update the vehicle’s movement speed.

We modify the Krauss car-following model [75] to add weather-related pa-

rameters and adapt the vehicle movement. This modified model uses the friction

parameter (µ), rainfall parameter (α), and road type (R) for a particular time in-

stance to derive vehicle speed. The vehicle speed uw considering the weather

condition is computed using linear equations described in table 4.11. We use uw

to compute the permissible acceleration of a vehicle at time t (at) based on the

difference between uw and its current speed. The value of at is passed in equation

(4.3) to calculate the desired speed vdes.

In SUMO version 1.4.0, it is possible to define one or more generic param-

eters for the edges and the lanes in a road network. These parameters can be

adapted online while the simulation is running either through Traffic Control In-

terface (TraCI) [76] or via an additional file where the temporal values of these

parameters are specified. We use the TraCI to associate the weather parameters

(µ, α, and R) with every lane to derive vehicle speed. The parameters can also

be introduced as additional attributes of the lane elements of the road network.

An XML file contains a specific value for all the attributes which can be set as the

key-value pair Friction =” < DOUBLE > ”, Rainfall =” < DOUBLE > ”, and

Road =” < DOUBLE > ” within respective tags. To ensure backward compati-

bility, the default value of friction parameter (µ) is set to 1.0, the value of rainfall

parameter (α) is set to 0.0, and road type parameter (R) is set to 0.0. To directly

manipulate the network files, these parameters can also be set in the NETEDIT
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file. Appendix A discusses the sample code for the TraCI and modified Krauss

car-following model.

4.2.3 Impact of Weather Conditions on Traffic Stream Variables

The traffic stream variables prediction on the target road segment is affected by

the traffic and the weather conditions on the adjacent road segments. For exam-

ple, during prolonged rainfall water flows from one road segment to other road

segments and affects its traffic stream variables. Also, the correlation between the

traffic and the weather data is not directly dependent on the distance between

them due to terrain feature constraints. Similarly, prolonged heavy rainfall or

snowfall significantly affects the traffic stream variables. We discuss the weather

data’s spatial and temporal significance on the traffic stream variables in section

4.2.3.1 and 4.2.3.2, respectively. We discuss the weather data spatial interpolation

techniques in section 4.2.3.3.

4.2.3.1 Soft Spatial Threshold

Traffic stream variables prediction in the presence of adverse weather conditions

is a challenging problem. Changes in the driving patterns to avoid collision risk,

poor visibility, waterlogging cause road capacity reduction, unforeseen events

due to adverse weather conditions, such as trees fall, which causes road closure,

and slippery roads cause an accident. All these factors affect the traffic stream

variables on the road segment. The traffic and weather conditions on the target

road segment have the spatiotemporal dependency on the other road segment’s

traffic conditions. For example, prolonged rainfall causes massive waterlogging

on road segments where the drainage system is weak and the surroundings are

densely populated. In an urban area, waterlogging or flash flood is caused due

to inadequate city planning, weak drainage system, over-construction, encroach-

ment, etc.; this will cause the water flow from one road segment to another. The

roads that are not adjacent to each other, but due to the terrain feature, the water

flows from the distant road segments cause a flash flood or waterlogging at the

target road segment. Therefore, weather data from the weather stations near the
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target road segment will not capture the impact of rainfall on other road segments.

If we have data corresponds to these features such as water flow path (hydrology

map), waterlogging sites, drainage maintenance, soil data, etc. We will use the

data to estimate the impact of rainfall on the road segment’s traffic stream vari-

ables. For the majority of the location, these datasets are not available. Therefore

for an accurate prediction of traffic stream variables on the target road segment

during rainfall, the effect of rain on the other road segments needs to be captured.

In the literature, the impact of rainfall on the traffic stream variables on a road

segment is captured using the interpolation method [25, 26]. The rainfall value

from the nearest station is used as point data for the road segment. Multiple in-

terpolation techniques were proposed in the literature [77, 78], where the weight

depends upon the distance between the road segment and the weather stations.

The impact of rainfall on traffic stream variables depends upon various dynamic

parameters. Therefore, distance-based interpolation techniques to provide point

weather data on the road segment will not capture the dynamic parameters.

There are two ways to solve this problem; either use the weather data from

all the stations in the city or define a threshold distance for the weather station

selection. If there is no computational limitation, we can use data from all the

stations in the city, but using this will increase the number of parameters. Simi-

larly, there is no fixed threshold value to decide the relevant number of weather

stations for the target road segment because various dynamic parameters are in-

volved. Therefore, instead of defining a hard threshold on the number of weather

stations relevant to the target road segment, we propose a soft threshold mecha-

nism. The number of stations is selected based on the threshold distance value,

and for all other stations (falling out of the threshold distance), we are using the

weighted average of the weather variable’s value. The weight is dependent on the

distance between the target road segment and the weather station. The threshold

value is set as a hyperparameter, the parameters that are not learned but need to

be fixed before training the learning model such that the model gives a minimum

error for a particular value.

There are total M weather stations in a geographical location. For a target road
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segment i where the traffic stream variables need to be predicted, we take into

account k weather stations (that are under threshold distance ∆). For other M− k

stations, we apply the weighted average. The equation (4.4) shows the weighted

average corresponds to the soft spatial threshold.

Ŵt = ∑
j∈{M−k}

β jW
j
t (4.4)

β j =

1
disti,j

∑ 1
disti,j

such that ∑ β j = 1

Where Ŵt is the weighted average from the M− k weather stations at time t,

W j
t is a weather reading from jth station at time t, β j is the weight factor, and disti,j

is the distance between target road segment i and jth weather station.

4.2.3.2 Soft Temporal Threshold

The prolonged effect of rainfall has a significant impact on the traffic stream vari-

ables of a road segment. For example, due to prolonged heavy rainfall, the soil

absorption and drainage capacity become weak; therefore, even the moderate

continuous rainfall will significantly affect the traffic stream variables. After pro-

longed rainfall, roads that are prone to waterlogging, take time to clear water-

logging. Suppose data corresponding to different features is available like wa-

terlogging sites, hydrology maps, drainage systems, soil, etc. These datasets are

used to extract the features to predict the traffic stream variables during adverse

weather conditions. For the majority of the location, these datasets are not avail-

able. Therefore it is needed to provide the extended past sequence of weather

data such that the model captures the prolonged rainfall impact on traffic stream

variables.

The temporal sequence of the traffic and the weather data is used for the traf-

fic stream variables prediction during adverse weather conditions [25, 26, 27]. We

propose a soft temporal threshold mechanism to capture the prolonged impact of

rainfall on the traffic stream variables. To capture the prolonged impact, with the

weather data sequence we also pass the weighted moving average of the weather
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variable value. The weighted moving average captures the prolonged effect of

the weather variable. If past values have higher significance, then more weight is

assigned to them. Otherwise, current values have a higher weight. The weight-

ing factor and sequence length are the hyperparameters, need to be tuned before

model training.

A weight factor γ captures the impact of relevant factors such as soil absorp-

tion capability, drainage system quality, etc., that affects the traffic stream vari-

ables. γ is in the range [0,1]. Closer the γ to 1, more weight is given to the past

rainfall value, whereas a smaller value of γ gives more weight to the current rain-

fall value.

Wk
t = γWk

t−1 + (1− γ)Wk
t ; such that 0 ≤ γ ≤ 1 (4.5)

For station i, Wk
t is current rainfall value average at time t, Wk

t−1 is average of past

rainfall value, Wk
t is current rainfall value.

4.2.3.3 Spatial Interpolation of Weather Data

The traffic data is collected from the sensors located on the road segment, whereas

the weather data on the road segment is interpolated from the nearest weather

station. The aggregation period is different for both the data. Traffic data is more

granular and dense compared to the weather data. Therefore, for the road seg-

ment, traffic data is more accurate compared to the weather data. If a weather

station has missing weather reading for a particular period, then with limited

weather data, it is difficult to ignore it. Therefore spatial interpolation technique

is needed for the weather data.

Spatial interpolation is carried out by estimating the missing value based on

weights of measured values. The general formula for spatial interpolation is de-

scribed as:

W i
t =

n

∑
j=1

ΛjW
j
t

W i
t is the interpolated weather variable’s value at the point i, W j

t is the measured

weather variable’s value at the point j, n is the total number of measured points,
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and Λ is the weight contributing to the interpolation. The interpolation technique

used in the literature is discussed below.

Theissen polygon The Thiessen polygon method assumes that the estimated

values can take the closest station’s measured values. The Thiessen polygon

method is also known as the nearest neighbor method [78]. This method is best

suitable for the regions where weather stations are dense. If weather stations

are sparse, then due to terrain the estimated value doesn’t give the correct result

based on the nearest neighbor method.

Inverse distance weighted method In an inverse distance weighted method,

the estimated value is replaced with the weighted measured value from the sur-

rounding stations [77]. The opposite of the distance defines the weights. Weights

are normalized such that sum of all weights equals one. The weight decreases as

distance increases, the farthest stations have the lowest weight, and the nearest

ones have the highest weights.

W i
t =

∑j
W j

t
disti,j

∑j
1

disti,j

(4.6)

W i
t is the estimated weather value at time t at station i and W j

t measured weather

value at time t at station j. The distance between target station i and measured

station j is given by disti,j.

Linear regression method Linear regression method is used to find the best fit

line for the data given dependent output value (predicted value) and independent

input value (predictor value) [79]. In linear regression-based spatial interpolation,

the best fit line is used to estimate the variable’s unknown value given the other

variable’s measured value.

W̆ i
t = θ0 +

M

∑
j=1

θjW
j
t (4.7)

For each predicted W̆ i
t value, there is true W i

t value. Our objective is to predict

W̆ i
t which is in the agreement of the W i

t , by defining an appropriate loss function

Ł(θ), where θ are the parameters to be learned. Our objective is to minimize the
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loss between the measured value and predicted value, S is the total number of

samples.

min Ł(θ) =
1
S

S

∑
i=1
|W̆ i

t −W i
t | (4.8)

The missing weather data is interpolated by one of the above discussed spatial

interpolation techniques. The weather data from all the weather stations up to the

threshold distance and the weighted distance-based average weather value cap-

ture the weather condition’s spatial significance on traffic stream variables. Sim-

ilarly, past weather sequences up to a particular lag value and moving weighted

rainfall average value are used to capture the prolonged impact of weather con-

ditions on the traffic stream variables.

4.2.4 Data Pre-processing

In the previous sections, we discuss the concerns related to the input traffic and

weather data and the approaches used to solve them. The deep learning mod-

els learn the hidden parameters given a large amount of data. The fine-grained

traffic and weather data are required as input in the deep learning model to pre-

dict the accurate traffic stream variables. In the absence of dense traffic data, we

use the empirical model to generate the fine-grained synthetic data. The traffic

data is granular for a road segment compared to the weather data. Weather data

has a long-term impact on traffic stream variables. The soft spatial and tempo-

ral threshold will capture the spatial and prolonged impact of weather variables

on a road segment. The fine-grained synthetic traffic data and weather informa-

tion with spatial and temporal significance captured using soft threshold is used

as an input in our model. In transportation network, traffic condition at future

time instance depends upon the past and the recent traffic conditions. The traf-

fic condition on a road segment also depends upon the traffic and the weather

conditions on the other road segments. Therefore, deep learning models require

the spatiotemporal input to extract this spatiotemporal dependency in the traffic

and weather data. The input traffic data from n road segments for t (current) to

t− pδ (past) time and input weather data from k weather stations for t (current) to
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t− pδ′ (past) time, makes the spatiotemporal data St . Here p defines the sequence

length. The spatiotemporal input St is shown below.

St =


X1

t X2
t . . . Xn

t {Wk
t } Ŵt {Wk

t }

X1
t−δ X2

t−δ . . . Xn
t−δ {Wk

t−δ′} ˆWt−δ′ {Wk
t−δ′}

...
... . . .

...
...

... . . .
...

X1
t−pδ X2

t−pδ . . . Xn
t−pδ {Wk

t−pδ′} ˆWt−pδ′ {Wk
t−pδ′}


Here, n and k are representing the spatial length, and p represents the temporal

length and δ′ ≥ δ. The weather data from k station for a particular time instance is

represented as, {Wk
t } = {W1

t , W2
t , . . . , Wk

t }. The weather readings from rest of the

stations (other than k) is captured using Ŵt (soft spatial threshold). The prolonged

impact of rainfall from k stations at time t is captured using weighted moving av-

erage (soft temporal threshold), represented as, {Wk
t } = {W1

t , W2
t , . . . , Wk

t }.

This spatiotemporal input is passed to the learning model to extract the spatiotem-

poral dependency to predict the traffic stream variables accurately.

72



CHAPTER 5

Learning Models

The deep learning models are appropriate for traffic forecasting due to the trans-

portation network’s non-linear and complex characteristics. The model should be

robust enough to deal with incomplete data and outlier. The appropriate learning

model for the traffic stream variables prediction should consider the spatiotempo-

ral dependency given the input traffic and the weather sequence for the adjacent

and target road segments. We adopt the RNN, LSTM, and CNN deep learning

models, that have been used to extract the spatiotemporal dependency from the

input data. The traffic data sequence of the target road segment contains hidden

features like road condition, peak hour traffic behavior, and point of interest influ-

ence. All these features affect the traffic condition on the target road. Therefore,

the traffic stream variables prediction during adverse weather conditions on the

target road segment has a spatiotemporal dependency on adjacent road segments

traffic and weather conditions and temporal dependency on traffic characteristic

of itself. We design the hybrid model that considers the spatiotemporal and tem-

poral dependency between traffic and weather data while predicting the future

traffic stream variables. The framework of the traffic stream variables prediction

is shown in figure 5.1. Our framework has three main blocks: data preprocessing,

learning model, and prediction output. The data preprocessing is discussed in the

previous chapter (section 4.2.4). In the learning method block, for each selected

deep learning model, we have a set of hyperparameters that can affect the results

of the model’s learning and the final regression prediction. The output block in

the figure is the predicted output of the model on the test dataset. Section 5.1 dis-

cusses the hyperparameters required for efficient learning of the model. Section
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Figure 5.1: Framework for Traffic Stream Variables Prediction.

5.2.1 discusses the Convolutional Neural Network in detail, followed by sequence

learning model in section 5.2.2. Section 5.2.3 discusses the hybrid CNN-LSTM

model and LSTM-LSTM model.

5.1 Hyperparameters Tuning

The deep learning model is the mathematical model with a number of parameters

that need to be learned from the data. By training the model with existing data,

we are able to fit the model parameters. However, another kind of parameter,

known as hyperparameters, cannot be directly learned from the data while train-

ing. Instead, they are usually fixed before the actual training process begins. In

most cases, hyperparameters tuning is performed either by using a search-based

approach or by trial and error for the given problem.

We use the random search method for hyperparameters tuning [80]. In this method,

the deep learning model is evaluated for a range of hyperparameter values. The

different values for each hyperparameter are provided to the random search ap-

proach. Out of the values mentioned, this approach randomly makes combina-

tions of its own and tries to fit the dataset, test the accuracy, and return the set of

hyperparameters for which model accuracy is optimal.
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Some examples of model hyperparameters include:

• Determine the optimization algorithm

• Determine the learning rate of the model

• Determine the mini-batch function

• Determine the neural network structure

• Determine the loss function

• Determine the activation function

5.1.1 Determine the Optimization Algorithm, Learning Rate, and

Mini-Batch Function

We use the BackPropagation and BackPropagation Through Time (BPTT) meth-

ods for model training. Section 5.1.1.1 discusses the BackPropagation and Back-

Propagation Through Time (BPTT) methods and section 5.1.1.2 gives insight about

the optimization algorithm and also discusses the learning rate and mini-batch

function.

5.1.1.1 BackPropagation and BackPropagation Through Time (BPTT) Meth-

ods

In the deep neural network, the backpropagation training algorithm is used to

update the weights [81]. The main aim of this algorithm is to update the deep

neural network’s weights such that the difference between the actual value and

the predicted value is minimized. Algorithm 1 describes the working of the back-

propagation algorithm.

Algorithm 1 Backpropagation

Step 1: The training input is given to the network. It passes through the whole network to
produce an output.
Step 2: The predicted outcome is compared with the actual outcome, and the error is calculated.
Step 3: The derivatives of the error are calculated with respect to the network weights.
Step 4: Weights are updated based on the optimization algorithm to minimize the error.
Step 5: Repeat the steps, till convergence.
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In a recurrent neural network, at time t = 0 an input x0 is feed into the net-

work, and output y0 is produced by the network. At time t = 1, an input x1 is feed

into the network and output y1 is produce by the network. The output y1 is cal-

culated based on the input x1 and the cell state from the previous timestamp. To

calculate the error, instead of having a single output, here we have multiple out-

puts, one at each timestamp. Therefore, backpropagation is not applicable here.

The modified backpropagation called BPTT is proposed for the recurrent neural

network [82]. Algorithm 2 describes the working of the BPTT algorithm. For each

time step, we are running the usual backpropagation. Therefore, BPTT is compu-

tationally expensive for more extended dependency.

Algorithm 2 Backpropagation Through Time

Step 1: The time-series input is given to the network. It passes through the whole network to
produce an output.
Step 2: Unroll the network, and the error is calculated by comparing the actual and the predicted
outcomes. Accumulate the errors across each timestamp.
Step 3: Roll the network, and the weights are updated to minimize the error.
Step 4: Repeat the steps, till convergence.

5.1.1.2 Optimization Algorithm

In the previous section, we have discussed the backpropagation training algo-

rithm. The training algorithm’s main aim is to calculate the error derivatives with

respect to the network weights. The weights of a neural network cannot be cal-

culated using an analytical method. Instead, the weights must be updated via an

empirical optimization procedure called stochastic gradient descent.

In deep learning, training algorithms are optimization algorithms used to find

the coefficient that minimizes the loss function (the difference between the actual

and the predicted value). A gradient descent optimization algorithm is used dur-

ing backpropagation where the error vector (a derivative of the loss function) is

computed backward, starting from the final layer. Depending upon the activa-

tion function, the algorithm identifies how much change is required by taking the

partial derivative of the function with respect to the weights or parameters. The

learning rate η is a hyperparameter that controls the change in the model corre-
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sponds to the estimated error each time the model parameters are updated. The

value for which model gives the minimum error is considered as the learning rate.

This value is subtracted from the previous output value to get the updated value.

This process repeats till convergence. There are three variants of gradient descent,

depending on the amount of data we use to compute the objective function’s gra-

dient. Depending upon the amount of data, these variants are a trade-off between

the parameter update’s accuracy and the time it takes to perform an update. De-

termining the batch size is another hyperparameter that needs to be tuned before

model training.

Batch gradient descent: It computes the gradient of the loss function with respect

to the parameters θ for the entire training dataset. Here, η is the learning rate, ∇θ

is the partial derivative with respect to θ, and J(θ) is the loss function [83]. The

parameters are updated as shown in the equation (5.1).

θt+1 = θt − η∇θt J(θt) (5.1)

Stochastic gradient descent : It computes the gradient of the loss function with re-

spect to the parameter θ for each training example (x(i)) [83]. It is faster than the

batch gradient descent but due to frequent updates, the steps taken towards the

minima are very noisy. It may take longer to achieve convergence to the minima

of the loss function due to noisy steps.

θt+1 = θt − η∇θt J(θt : x(i))

Mini batch gradient descent : It is a combination of batch and stochastic gradient de-

scent. It computes the gradient of the loss function with respect to the parameter

θ for n training example (x(i,i+n)) [83]. The n is defined as a hyperparameter and

therefore needed to be tune before actual training of the model.

θt+1 = θt − η∇θt J(θt : x(i,i+n))

The gradient descent algorithm takes a lot of time to navigate through the region

with a gentle slope, resulting in slow learning. Therefore momentum-based gra-
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dient descent is proposed [84]. In this approach, momentum is added based on

the past observation, resulted in the faster convergence. It does this by adding a

fraction κ of the updated vector (mt−1) of the past time step to the currently up-

dated vector.

mt = κmt−1 + η∇θt J(θt)

θt+1 = θt −mt

Adam: Adaptive moment estimation (Adam) method computes adaptive learn-

ing rates for each parameter [85]. It performs smaller updates (i.e. low learning

rates) for parameters associated with frequently occurring features, and larger

updates (i.e. high learning rates) for parameters associated with infrequent fea-

tures. It is well-suited for dealing with sparse data. The update rule is shown in

equation (5.2).

vt = κ1vt−1 + (1− κ1)(∇θt J(θt))
2 (5.2)

From the update rule, it is clear that the gradient’s history is stored in v. Adam

also keeps an exponentially decaying average of the past gradients mt, similar to

momentum.

mt = κ2mt−1 + (1− κ2)(∇θt J(θt))

As mt and vt are initialized to 0’s, when the decay rates are small at that time these

vectors are biased towards zero. This problem is solved by Zaheer et al. [86] by

computing bias-corrected.

v̂t =
vt

1− κt
1

m̂t =
mt

1− κt
2

These vectors are used to update the parameters, the Adam update rule is de-

fined as shown in equation (5.3), to avoid the denominator from becoming zero,
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a small value ε is added in the denominator. Smaller the v for smaller gradient

accumulated and it will lead to a bigger learning rate.

θt+1 = θt −
η√

v̂t + ε
∗ (m̂t) (5.3)

We use Adam as an optimization algorithm with all the learning models because

the weather variables are sparse compared to the traffic variables. Therefore adap-

tive learning rate is required such that the frequent update corresponds to the

traffic features doesn’t overshadow the weather features.

5.1.2 Determine the Network Structure

The network structure is the total number of layers used in the learning model.

The number of layers is different for different learning models. In determining

the learning model’s architecture, there is currently no widely accepted network

parameter selection strategy. The network structure is dependent on the complex-

ity of the specific problem. In the experimental setup (Chapter 6) we will discuss

the network structure for each learning model used in this research.

5.1.3 Determine the Loss Function

The loss function reflects the error between the model output and the actual data.

We use Mean Absolute Percentage Error (MAPE), which is compatible with the

input data and was found to reduce the impact of a large amount of noise existing

in the data [87]. Here, ŷi is the predicted value and yi is the actual value, S is the

sample size.

Loss =
S

∑
i=1

|ŷi − yi|
yi

The model adds L2 regularization to prevent the neural network from overfitting

[88]. The overfitting of the model means that the model’s prediction accuracy is

very high on the training set, but it does not perform well on the validation and

the test set. L2 regularization is introduced by adding the regularization term to
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the loss function. The formulation can be expressed as:

Loss =
S

∑
i=1

[
|ŷi − yi|

yi
+ λ ‖w‖2

]

where λ denotes the L2 regularization coefficient, w represents the weight of lay-

ers that uses L2 regularization. This method reduces the model’s overfitting risk

by penalizing the large weighting coefficients.

5.1.4 Determine the Activation Function

In a deep neural network, the weighted sum of the input is transformed into the

output and this transformation is defined by the activation function. The activa-

tion function decides whether to activate the particular node or not. If information

produce by the node is not useful then the node will not be activated else it will

be activated. Without activation function, the neurons perform a linear transfor-

mation on the input using the weights and the biases as shown below.

x = ∑(weight ∗ input) + bias

Here, output x is just the linear transformation of the input variable. The activa-

tion function is applied on the above equation as shown below.

f (x) = Activation(x)

Therefore, the non-linearity in the network is introduced by the activation func-

tion. Activation functions are differentiable, the first-order derivative can be cal-

culated for a given input value. The neural network is trained using the backprop-

agation algorithm that requires the derivative of the prediction error to update the

weights of the model. Different types of activation functions are discussed below:

Sigmoid Activation Function: This function (σ) is also called the logistic func-

tion [89]. It takes any real value as input and produces the output in the range

of 0.0 to 1.0. The larger the input value, the transformed value will be closer to

1.0 and for the smaller value, the transformed value will be closer to 0.0. The
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mathematical expression for sigmoid is shown below.

σ =
1

1 + e−x

Where e is a mathematical constant, which is the base of the natural logarithm.

The sigmoid function is not zero-centered. So the output of all the neurons will

be of the same sign. This makes the gradients saturated and therefore results in

slow or no learning. Sigmoid functions are useful for predicting probability-based

output, filtered output, and binary classification problems [90]. It is used with the

LSTM gates to give the filtered output.

Hyperbolic Tangent (Tanh) Activation Function: The tanh function is similar

to the sigmoid function but it is zero centered [91]. This function takes any real

value as input and produces the output in the range of -1.0 to 1.0. The tanh func-

tion is zero centered and therefore preferred over the sigmoid function, it gives

better training performance for the deep neural networks [90, 92]. The mathemat-

ical expression for tanh is shown below.

tanh =
(ex − e−x)

(ex + e−x)

The tanh functions have been used in recurrent neural networks for natural lan-

guage processing and speech recognition tasks [93, 94].

Rectified Linear Unit (ReLU) Activation Function: The mathematical expres-

sion for ReLU is shown below.

ReLU = max(0.0, x)

The main advantage of using the ReLU function is that it does not activate all the

neurons at the same time. This function helps the deep neural network realize

sparse activation [95]. The neurons will be deactivated if the output of the lin-

ear transformation is less than 0. The ReLU function is computationally efficient

compared to the sigmoid and tanh functions because only a certain number of

neurons are activated. The ReLU has been used in different architectures of deep
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learning because of its simplicity and reliability, which includes the convolutional

neural network architectures [96, 97, 98].

Other hyperparameters such as the number of epoch and lag values are set

using the random search method. The lag value is defined as the length of the past

sequence passed as the input to the model. An epoch is when an entire training

dataset is passed both forward and backward through the neural network, and

the model requires multiple numbers of epoch to converge.

5.2 Learning Models

Traffic stream variables on the target road segment depend upon the other road

segments’ traffic and weather conditions. Also, the future traffic condition on

the road segment depends upon its previous and current traffic conditions. We

consider the deep learning models that extract the spatiotemporal and recurrent

relationship from the traffic and weather data. The deep learning model should

be robust enough to deal with the outlier. Also, the model accuracy should not be

dependent on the prior domain knowledge to extract the hidden features.

5.2.1 Convolutional Neural Network (CNN)

In deep learning, the model used for object detection, image classification, and

face recognition is Convolutional Neural Network (CNN) [99]. The main focus

of CNN is local connectivity. It performs local dimensionality reduction. Each

pixel shares the maximum correlation with its local neighbor. The traffic condition

on a road segment is highly correlated to neighboring road’s traffic and weather

conditions. Therefore to extract the spatiotemporal features of the traffic and the

weather data, CNN is the suitable choice. The spatial extent of this connectivity is

called the receptive field of the node. The CNN derives its name from the convo-

lution operator. The convolution preserves the spatial relationship between pixels

by learning features using a small set of input data at a time. A convolution is a

linear operation that involves multiplication between a set of weights with the

input. The set of weights in the context of CNN is called a filter or kernel [100].
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The filter’s size is smaller than the input data, and element-wise multiplication is

applied between the filter and filter-sized patches of input data to obtain the local

connectivity. The resulting value shows the local connectivity between the pixels.

The filter is applied to each filter-sized patch of the input data horizontally and

vertically. The same filter applied over whole input data thus decreases the num-

ber of parameters. If the filter is designed to extract a specific feature in the input

data, it will discover a similar feature anywhere in the input data. This is called

translation invariance, where our model does not just tell whether the feature is

present or not but also tells where it is present. For example, suppose the filter

detects the change in the traffic variables due to weather variables at a particular

location. In that case, the same filter will detect a similar pattern in other locations

also. A dot product between the filter and input data gives a single value or a

feature and filter slide over complete input data, resulting in a two-dimensional

array called a feature map. The equation (5.4) shows the convolution operation

between the input and the filter, where X(m, n) is the convolutional input, w(i, j)

is the convolutional filter, b is the bias vector and y(m, n) is the output of the con-

volution, here m and n are the data point of interest and filter size is M× N [101].

y(m, n) =
M

∑
i=1

N

∑
j=1

X(m + i, n + j)w(i, j) + b (5.4)

The feature map is passed through the nonlinear activation function that performs

the nonlinear transformation. This transformed output is sent to the next layer for

further computation. In the convolutional layer, multiple filters of different sizes

are applied to each filter-sized patch of input data horizontally and vertically. The

resulted feature map is passed as the input to the further convolutional layer. The

convolutional layer’s final output gives the feature vector that contains the hidden

abstract information regarding the input. In deep learning, the feature vector is

a collection of the measured values of a particular feature. In our case, it is a

spatiotemporal feature corresponding to the input traffic and weather data.

The CNN model used in this study is shown in figure 5.2. The spatiotemporal

input is passed to the first convolutional layer. In the process of convolution,

multiple convolution kernels or filters are applied to the input such that each filter
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Figure 5.2: Schematic Diagram of CNN Based Traffic Stream Variables Prediction
Model.

will extract a particular feature. When one convolution filter wconv1 is applied to

the input the resultant output vector is yconv1 [102].

yconv1(m, n) =
M

∑
i=1

N

∑
j=1

St(m + i, n + j)wconv1(i, j) + b1

Equation (5.5) shows the complete formulation for multiple filters (cl) for each

layer.

yconv
k (m, n) = ReLU(

M

∑
i=1

N

∑
j=1

cl

∑
l=1

St(m, n, l)wconv
k (i, j, l) + bconv

k ) , k ∈ [1, 2, . . . L]

(5.5)

Here cl represents the number of convolution kernel contained in the kth convolu-

tion layer. L represents the total number of layers in the CNN architecture [100].

The ReLU is used as the activation function. After feature extraction, we need to

predict the output value corresponding to the input sequence; this can be done

using a fully connected layer. Before the fully connected layer, the feature vector

should be converted into a one-dimensional vector, making it suitable for the fully

connected layer processing. The flatten layer is used to convert the feature vector

into a one-dimensional vector.

y f latten = flatten([yconv
1 , yconv

2 , . . . , yconv
L ])
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The flattened one-dimensional vector is passed through the activation function,

and the resultant flatten output is given to the fully connected layer for the output

prediction. The fully connected layer is similar to that in ANN, where each neuron

is connected to all neurons in the last layer. The fully connected layer captures the

complex relationships between high-level features. This layer’s output is the one-

dimensional vector; it is the predicted value of the traffic stream variables. In the

below equation, w f c and b f c are the fully connected layer’s weight and bias. Yi
tg

is

the predicted traffic stream variable at ith road segment for prediction horizon tg.

Yi
tg = w f c y f latten + b f c

Algorithm 3 shows the steps to train the CNN model. The traffic and the weather

data are pre-processed. The input consists of traffic and weather sequence up

to lag value, and output consists of traffic stream variables value at the predic-

tion horizon. After pre-processing, the spatiotemporal data is split into the train-

ing and the test data-set for different prediction horizons. The hyperparameters

tuning is performed. For each spatiotemporal input sequence, our CNN model

extracts the spatiotemporal feature vector. This spatiotemporal feature vector is

given to the flatten layer. The one-dimensional vector is passed to the fully con-

nected layer to predict the output value. The error is calculated based on the pre-

dicted output value. The calculated error is backpropagated to the model using

the backpropagation method. To update the weight, the optimization algorithm is

used, and this process repeats till convergence. After completion of the training,

test data is used to evaluate the model performance.
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Algorithm 3 Training CNN Model

Step 1: Pre-process the traffic and the weather data. Split the spatiotemporal data into the
training and the test data set for 15-minute, 30-minute, 45-minute, and 60-minute prediction
horizons.
Step 2: Hyperparameters tuning is performed.
Step 3: Input is passed to the first convolutional layer. The output from the first layer is passed
to the next layer and so on. The feature vector from the last convolutional layer is passed to the
flatten layer which transforms the input to one-dimensional output. This output is passed to
the fully connected layer to predict the output.
Step 4: The predicted output is compared to the true output, and the error is generated. The
error is backpropagated to the model with the backpropagation method. The optimization
algorithm is used to update the weights; hence the CNN model is trained.
Step 5: Use test data to examine the prediction performance.

5.2.2 Sequence Learning Models

For accurate traffic stream variables prediction, we use the model that considers

a recurrent learning approach to learn the relevant spatiotemporal features from

the weather and traffic data. In a sequence learning problem, the future outcome

is dependent on the current and the past observations, i.e., the output from the

current timestamp is provided as input to the next timestamp. The deep learning

model designed for sequence learning is Recurrent Neural Network (RNN), and

Long Short Term Memory (LSTM). Section 5.2.2.1 discusses the RNN model and

section 5.2.2.2 discusses the LSTM model in detail.

5.2.2.1 Recurrent Neural Network (RNN)

The idea behind RNN is to use sequential information. Unlike other neural net-

works where inputs are independent, RNN takes sequential input into account

[100]. Hidden layers in the RNN have the same parameters (weight and bias)

throughout the procedure, which works as a working memory to process the in-

formation. In the figure 5.3, the RNN received input xt and produce the output

feature vector ht [65]. A loop allows information to be passed from one step of the

network to the next [103].
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Figure 5.3: An Unrolled Recurrent Neural Network.

Figure 5.4: Schematic Diagram of RNN Based Traffic Stream Variables Prediction
Model.

The design of our RNN based model is shown in figure 5.4. The model con-

sists of the input layer, the hidden layers, and the prediction layer. The input layer

contains a spatiotemporal sequence of traffic and weather data. The spatiotempo-

ral sequence is passed to the hidden layer. The hidden layer is a memory block,

where the cell memorizes the spatiotemporal features and passes this information

to the next cell state. In the RNN model, the hidden layer consists of RNN mem-

ory cells. The input sequence is passed through the RNN cell, one at a time. The

cell state remembers the past sequence and combines this information with the

current input data to provide the output. The multiple hidden layers provide the

ability to learn features at different levels of abstraction. For each time instance,
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the traffic data of n road segment and weather data from k weather stations is

given to the model. Therefore, the cell state of RNN updates this information

based on the previous cell state and current input. If there is a spatiotemporal cor-

relation between traffic conditions on road segments and weather conditions, the

RNN updates its feature vector. The last hidden layer’s output, the feature vector,

is given as input to the prediction layer. After feature extraction, we need to pre-

dict the output value corresponding to the input sequence. This can be done using

a fully connected layer. The output of a fully connected layer is a one-dimensional

vector. It is a vector of traffic stream variables (traffic speed and flow) predicted

value.

Figure 5.5 shows the details of the RNN cell [103].

Figure 5.5: RNN Cell Architecture.

Formula for current cell state considering traffic and weather data,

Ct = tanh (wcCt−1 + wx(Xt, Wt) + bc)

Where, (Xt, Wt) is the current traffic data and weather data from n road segment

and k weather stations, respectively. Ct−1 is the previous cell state, wc is the weight

of previous cell state, wx is weight of current input state, bc is the bias vector and

tanh is non-linear activation function [65].

The output from the last hidden layer is provided as input to the flatten layer and

then provide the one-dimensional vector to fully connected layer for the predic-
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tion task.

Yi
tg = wy Ct + bv

Yi
tg

is the traffic stream variables for ith road segment at prediction horizon tg, wy

is the weight and bv is the bias vector.

5.2.2.2 Long Short Term Memory (LSTM)

The RNN model suffered from the vanishing gradient problem and this problem

is solved by the LSTM [18]. LSTM introduces the concept of working memory

(short-term memory) as the hidden state and long-term memory as cell states to

solve the problem of vanishing gradient due to the long-term dependency [18].

Appendix B discusses the vanishing gradient problem suffered by RNN and the

solution offered by the LSTM model. LSTM uses the forget, input, and output

gate to update the long and short-term memory [66, 100]. Rainfall has both short-

term and long-term effects on the traffic stream variables. The short-term impact

of rainfall is significant on traffic speed as vehicles slow down their speed due

to poor visibility or to avoid collision risk. The long-term impact of rainfall is

substantial on both traffic flow and speed. Our model remains the same, as shown

in figure 5.4. The only change is in the hidden layer where LSTM cells are used.

Figure 5.6 shows the detail of the LSTM cell. A set of equations used in LSTM are

as follows:

ft = σ(w f [ht−1, (Xt, Wt)] + b f )

it = σ(wi[ht−1, (Xt, Wt)] + bi)

ot = σ(wo[ht−1, (Xt, Wt)] + bo)

C̃t = tanh (wc[ht−1, (Xt, Wt)] + bc)

Ct = ft ⊗ Ct−1 + it ⊗ C̃t

ht = ot ⊗ tanh (Ct)
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Figure 5.6: LSTM Cell Architecture.

Where (Xt, Wt) is the current traffic and weather data, w f , wi, wo, wc are the weight

of the forget gate, input gate, output gate, and cell state, respectively. b f , bi, bo and

bc is the bias vector of the forget gate, input gate, output gate, and cell state, re-

spectively. ft, it, ot, Ct, ht is the output of the forget gate, input gate, output gate,

current cell state and current hidden state, respectively. Ct−1 is the previous cell

state and ht−1 is the previous hidden state, ⊗ is element-wise multiplication, tanh

and σ are the activation function. The output from the last hidden layer is given to

the fully connected layer after passing through flatten layer and predicted value

is calculated based on the linear activation function.

Yi
tg = wy(ht) + bv

Yi
tg

is the output at prediction horizon tg, wy is weight of current hidden state and

bv is the bias vector.

The algorithm to train the RNN and the LSTM model is described in the Algo-

rithm 4.
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Algorithm 4 Training RNN and LSTM Model

Step 1: Split the spatiotemporal data into training and test data sets. In training data, for each
input sequence, there is a true output value.
Step 2: Perform hyperparameters tuning.
Step 3: Based on the optimal set of hyperparameters, train the RNN and the LSTM model using
the training data.
Step 4: For each input, the current state is updated based on the current input and the previous
state. The output from the last state is given as input to the fully connected layer. This layer
calculates the output value. The predicted output is then compared to the actual output, and er-
ror is computed. The error is backpropagated to the model with the BackPropagation Through
Time (BPTT) method. The optimization algorithm is used to update the weights. Hence the
model is trained.
Step 5: Use the test data to examine the prediction performance.

5.2.3 Hybrid Deep Learning Models

The traffic stream variables prediction in the presence of weather conditions on

the target road has a spatiotemporal dependency on adjacent roads traffic and

weather conditions and temporal dependency on traffic characteristic of itself.

In our model, there are two submodels, one which extracts the spatiotemporal

features and the other that uses these spatiotemporal features as memory and ex-

tracts features based on memory and temporal input for traffic forecasting.

CNN is the suitable model to extract the spatiotemporal features between the

target and adjacent road’s traffic and weather data because of its characteris-

tics to extract local connections between pixels from one-dimensional and two-

dimensional data. LSTM is a favorable choice to extract the short and long-term

spatiotemporal dependency between the weather and the traffic data of the target

and other roads. Also, the LSTM model learns the effective temporal features of

the traffic and the weather data to predict the traffic stream variables. Therefore,

we design two hybrid models, CNN-LSTM and LSTM-LSTM.

In the LSTM model, the hidden layer is the memory block, where the cell mem-

orizes the temporal features and passes this information to the next cell state. In

LSTM memory cells, the current cell state depends upon the previous cell state

and the current input. This cell state is initialized randomly during model train-

ing. The traffic condition on the target road is spatiotemporal dependent upon
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the past and the current surrounding traffic and weather conditions and temporal

dependency on previous and current traffic conditions of its own. Therefore, in

our model, we initialize the memory or cell state of LSTM with the spatiotemporal

features extracted by the CNN or the LSTM model.

5.2.3.1 CNN-LSTM

Figure 5.7: CNN-LSTM Model for Traffic Variables Prediction.

The design of our hybrid CNN-LSTM model is shown in figure 5.7. In our

model, the spatiotemporal input consists of traffic, and weather data is passed

to the convolutional layer. The CNN model considers each input independently;

the output doesn’t depend upon the previous input. Ideally, CNN can handle a

single image at a time and transform it from input pixels into a vector representa-

tion. In our model, we need to repeat the same operation across multiple inputs,

where inputs are dependent on each other. This mechanism will allow the LSTM

model to build up internal state and update weights using the BPTT algorithm

across a sequence of the input’s internal vector representation. In our case in-

put to the CNN is the spatiotemporal data from n road segments and k weather

station from time t− pδ to t. The CNN model transforms the spatiotemporal in-

put data into a vector representation. We want to apply the CNN model to each

spatiotemporal input and pass the output vector to the LSTM model as a single

time step. We can achieve this by wrapping the CNN model (one layer or more)
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in a TimeDistributed layer [104]. The TimeDistributed layer applies the same set

of operations to every temporal slice of an input. Therefore, this layer achieves

the desired outcome of applying the same layer or layers multiple times. In our

case, the TimeDistributed layer helps us in applying the CNN layer multiple times

to multiple input time steps. A sequence of the feature vector is provided to the

LSTM model to work on. This feature vector, along with the target road segment’s

temporal data, is passed to the LSTM layer.

The temporal sequence as shown below from ith target road segment for t to t− pδ

time is used as the input in our LSTM model.

[
Xi

t Xi
t−δ . . . Xi

t−pδ

]
The temporal data contains all the information about the hidden characteris-

tics of the target road segment. The feature vector from the CNN will work as

an initial cell state of the LSTM network. The traffic stream variable’s tempo-

ral correlation to the target road segment given spatiotemporal feature vector is

identified through the LSTM layer. After feature extraction, we need to predict

the output value corresponding to the input sequence; this can be done using

the fully connected layer. The fully connected layer gives the predicted value of

the traffic stream variables. Algorithm 5 shows the steps to train the CNN-LSTM

model. The traffic and the weather data are pre-processed. The input consists of

the traffic and the weather sequence up to the lag value, and the output consists

of the traffic stream variable value at the prediction horizon. After pre-processing,

the spatiotemporal and temporal data is split into the training and the test data-

set for different prediction horizons. The hyperparameters are tuned for efficient

model performance. For each spatiotemporal input sequence, our CNN model

extracts the spatiotemporal feature vector. This spatiotemporal feature vector and

the temporal input sequence are given to the LSTM model to predict the output

value. The error is calculated based on the predicted output value. The calculated

error is backpropagated to the model using the BPTT method. The optimization

algorithm is used to update the weights, and this process repeats till convergence.

After completion of the training, test data is used to evaluate the model perfor-
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mance.

Algorithm 5 Training CNN-LSTM Model

Step 1: Split the data into spatiotemporal and temporal training and test data set, for each input
instance, there is the output value.
Step 2: Perform hyperparameters tuning.
Step 3: Each layer in the CNN model wrapped in a TimeDistributed layer. The CNN model’s
output feature vector is stored as an initial cell state of the first layer of the LSTM model. The
CNN model is trained based on spatiotemporal training data, and the LSTM model is trained
based on temporal training data.
Step 4: The predicted output is compared to the true output, and the error is generated. The
error is backpropagated to the model with the BPTT method. The optimization algorithm is
used to update the weights; hence the CNN-LSTM model is trained.
Step 5: Use test data to examine the prediction performance.

5.2.3.2 LSTM-LSTM

Figure 5.8: LSTM-LSTM Model for Traffic Variables Prediction.

The design of our LSTM-LSTM model is shown in figure 5.8. The spatiotemporal

input is passed to the first LSTM model, and the hidden state vector from the last

layer is passed to the second LSTM model with the temporal input. The LSTM

layer finds the correlation between the feature vectors consisting of a summary of

spatiotemporal traffic and weather sequence and temporal traffic sequence at the

target road segment. The design of the latter LSTM model is similar to the design

of the LSTM model of CNN-LSTM as discussed above.
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Algorithm 6 gives the details about training LSTM-LSTM model. The spa-

tiotemporal and temporal data is split into the training and the test dataset for

different prediction horizons. For example, to predict the traffic stream variables

at the prediction horizon of 15-minute, we pre-process the data. The input consists

of the sequence up to lag value and output consisting of traffic stream variables

value at 15-minute from the current time instance. The pre-processed data is split

into training and test dataset. For each spatiotemporal input sequence, our for-

mer LSTM model extracts the spatiotemporal feature vector. This spatiotemporal

feature vector and temporal input sequence are given to the latter LSTM model to

predict the output value. The difference between the actual and predicted value

is used to calculate the prediction error. The calculated error is backpropagated to

the model using the BPTT method. The optimization algorithm is used to update

the weights, and this process repeats till convergence. After completion of the

training, test data is used to evaluate the model performance.

Algorithm 6 Training LSTM-LSTM Model

Step 1: Split the data into spatiotemporal and temporal training and test dataset.
Step 2: Perform hyperparameters tuning.
Step 3: Output feature vector from the former LSTM model is stored as an initial cell state of the
first layer of the latter LSTM model. The first LSTM model is trained based on spatiotemporal
training data, and the second LSTM model is trained based on the temporal training data and
features extracted by the first one.
Step 4: The predicted output is compared to the actual output, and the error is generated. The
error is backpropagated to the model with the BPTT method, and the optimization algorithm is
used to update the weights. The process repeats until convergence, and hence the LSTM-LSTM
model is trained.
Step 5: Use the test data to examine the prediction performance.

Appendix C shows the sample code of all the above discussed deep learning

models.
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CHAPTER 6

Experimental Setup and Result Analysis

We perform two different kinds of experiments, one is to examine the perfor-

mance of adopted deep learning models under different scenarios and the other

is to examine the quality of synthetic traffic data for different types of roads and

rainfall intensities.

To examine the performance of adopted deep learning models, each model is

trained with a large dataset depends upon the scenario and for the unseen dataset,

the model prediction performance is observed. One of our main objectives is to

examine the performance of deep learning models with weather data inclusion.

The accuracy of the prediction model is defined as the difference between the

actual and the predicted value. In an ideal situation, this difference is zero. Sec-

tion 6.1 discusses the performance of the recurrent learning models, RNN and

LSTM, with and without the weather variables inclusion. The model’s prediction

accuracy is used to analyze the model’s performance. We compare the recurrent

learning models with the models discussed in the literature.

To examine the quality of synthetic data, the comparison between ground

truth data and synthetic data is necessary to validate the synthetic data gener-

ation’s empirical model. Section 6.2 discusses the simulation model’s calibration

for generating traffic data for different rainfall intensities for different road types.

We compare the synthetic traffic data with the ground truth traffic data for differ-

ent rainfall intensities and different road types.

Section 6.3 analyzes the prediction accuracy of the adopted deep learning mod-

els for synthetic traffic data. The RNN, CNN, LSTM, CNN-LSTM, and LSTM-

LSTM models predict the traffic stream variables using synthetic traffic data. We
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generate the traffic data for different types of roads such as arterial, sub-arterial,

and collector for different road network types, i.e., single, small and large road

networks. We discuss the complexity involves with each learning model. We also

compare the hybrid models with the existing models.

6.1 Deep Learning Model Performance with Inclusion

of Rainfall Data

We examine whether the inclusion of the weather variable improves the deep

learning model’s prediction accuracy. We use the recurrent learning model to per-

form this experiment. We exclude the soft spatial and temporal threshold for this

experiment and consider only the spatiotemporal traffic and weather data as in-

put. Our main aim is to observe the performance of the learning model with the

inclusion of weather variables. We examine RNN and LSTM model performance

when trained with traffic data only and trained with traffic and weather data to

predict the traffic stream variables during adverse weather conditions. We design

two cases for this study as described in Table 6.1.

Table 6.1: Cases To Evaluate Model Performance.

Case Data Consider for Training and Test

I Traffic data only

II Traffic and weather data

6.1.1 Data Description

For this experiment, we use the traffic data from the ITS infrastructure [67]. Traf-

fic and weather data from San Diego (district 11) are used in this experiment.

Details of the traffic and weather data are provided in section 4.2.1. Traffic data

contains road segment id, timestamp, traffic flow, and average traffic speed along

the lanes. The weather data contains station id, timestamp, latitude, longitude,
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precipitation value. We check the optimal distance to consider the other road seg-

ments and weather stations for the target road segment. The distance for which

models give minimum error is considered in this study. For the target road seg-

ment, the other road segments up to 11 km and weather stations up to 15 km

are considered. Table 6.2 shows the example of the target road segment id and

corresponding road segments and weather station ids. In our model, if we con-

sider a lag value of 12, then 1-hour traffic data is passed (collection frequency is

a 5-minute interval), and 3-hour rainfall data is passed (collection frequency is a

15-minute interval). Therefore we can access a more extended rainfall sequence

as compared to the traffic sequence.

Table 6.2: Target Road Segment and Other Road Segments and Weather Stations id for
the Experiment Corresponds to I-5 Road Segment.

Target Road Segment id Weather Stations ids Other Road Segments ids

5N1108459 Coop:040136,

Coop:047740,

Coop:040983,

Coop:041424,

Coop:042239,

Coop:042350,

Coop:042406

5N1108648, 5N1108450,

5N1108452, 5N1108456,

5N1108458 5N1108461,

5N1108464, 5N1108465,

5N1108467

6.1.2 Experimental Setup

For the model’s optimal structure, we need to determine the number of hidden

layers, the number of hidden units per layer, the number of the epoch, and the

lag value. We use the random search method for hyperparameter tuning [80].

The number of parameters to be estimated is dependent on the optimal structure,

and the normal distribution is used to initialize the parameters. The LSTM and

RNN model is trained based on Adam optimizer [85]. The learning rate is set to

be 0.006, and the batch size is set to 215. To avoid overfitting, the dropout layer

and early stopping are used. For the implementation, we used the TensorFlow
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version 1.0.1 framework, and GPU is used to improve the computational capabil-

ity to fasten the training module’s execution. Python version 2.7 is used for the

programming. Table 6.3 and 6.4 show the most useful set of hyperparameters for

the LSTM and RNN model, respectively, for different road traffic data. The small

change in the hyperparameter’s value doesn’t reflect the significant change in the

model’s output, which shows the deep learning model robustness. For both the

LSTM and RNN models for different road types, the lag value in the range [12-20]

for a 5 to 30 minutes prediction horizon provides no significant difference. For a

45 to 60 minutes prediction horizon, the lag value is in the range [20-25]. For 5 to

30 minutes, the number of layers is in the range [1-2], and 45 to 60 minutes is in

the range [2-4]. The number of epoch for 5 to 15 minutes is in the range of [10-18],

and 30 to 60 minutes is in the range [20-27] for I-5 and I-5D road. The number of

epoch for 5 to 15 minutes is in the range of [15-20] for 30 to 60 minutes is in the

range [22-35] for SR-75 road.

In all the hyperparameter table, PH stands for prediction horizon, p defines

the sequence length or lag value, L defines the number of layer, NPL defines the

nodes per layer, E defines the number of epoch.

Table 6.3: Hyperparameters for the LSTM Model for Different Roads.

Road PH p L NPL E
I-5 5 12 1 30 12

15 18 1 40 15
30 18 2 [20,40] 18
45 24 2 [30,60] 22
60 24 2 [40,80] 25

I-5D 5 15 1 30 15
15 18 1 50 18
30 20 2 [30,50] 22
45 24 2 [40,60] 25
60 28 3 [30,50,80] 30

SR-75 5 12 1 40 18
15 18 2 [30,50] 20
30 18 2 [40,60] 27
45 24 3 [40,60,80] 30
60 24 3 [50,80,120] 35
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Table 6.4: Hyperparameters for the RNN Model for Different Roads.

Road PH p L NPL E
I-5 5 10 1 15 10

15 12 1 20 12
30 18 2 [10,30] 15
45 22 2 [15,40] 20
60 22 2 [20,40] 20

I-5D 5 10 1 20 12
15 12 1 30 15
30 18 2 [30,40] 18
45 22 2 [30,60] 22
60 22 3 [40,70,90] 27

SR-75 5 10 1 60 15
15 12 2 [20,50] 18
30 18 2 [30,70] 22
45 22 3 [30,60,80] 25
60 22 3 [40,70,90] 32

6.1.3 Result Analysis

The traffic data on the I-5 road segment on a normal weather day is shown in

figure 6.1. Peak hour shows the maximum flow, which resulted in the lower traffic

speed. The rainfall data for a similar geographical location is shown in figure 6.2.

Figure 6.1: Traffic Flow and Speed During Normal Weather Day Corresponding
to I-5 Road, Vertical Lines Signifies the Peak Hour.

The rainfall value ≤ 0.5 mm/hr is categorized as light rainfall, ≤ 5 mm/hr is
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categorized as moderate rainfall and ≥ 7 mm/hr is categorized as heavy rainfall.

Figure 6.2: Rainfall Data from Weather Station in San Diego.

Figure 6.3 shows the heat-map, the darker color represents the lower traffic

speed value and the lighter color represents the higher traffic speed value. The

light to moderate rainfall affects the traffic speed during peak hour, and during

the off-peak hour, the impact is small. Heavy rainfall significantly affects the traf-

fic speed during the entire day.
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Figure 6.3: Traffic Speed as a Function of Hourly Precipitation and Time of the
Day.

We examine the RNN and LSTM model’s performance to predict the traffic

stream variables during adverse weather conditions when trained with traffic and

weather data and when trained only with traffic data. Figure [6.4-6.6] shows the

value predicted by the LSTM model trained with and without rainfall variable of

I-5 road for the 15-minute and 60-minute prediction horizon, respectively, for dif-

ferent rainfall intensities. We test our model performance for a rainy, moderate,

and light to no rainfall day.

On heavy rainfall day, the figure shows that the value predicted by the model

trained with rainfall input is close to the measured traffic speed value compared to

the model trained with traffic data only. The absolute difference between the mea-

sured and the predicted speed for the LSTM model trained with rainfall data and

tested on the heavy rainfall day is in the range [0.32-3.4] and [1.99-8.46] km/hr for

15-minute and 60-minute prediction horizon, respectively. For the same test data,
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Figure 6.4: 15-minute and 60-minute Traffic Speed Prediction Performance of
LSTM With and Without Rainfall Variable. Model Performance is Tested for
Heavy Rainfall Day.

the absolute difference between the measured and predicted speed for the model

trained without rainfall data is in the range [2.4-25.3] and [3.45-34.8] km/hr for

15-minute and 60-minute prediction horizon, respectively. Therefore, we can con-

clude that a significant difference is observed in the model’s performance when

trained with and without rainfall data for a heavy rainfall day.

Figure 6.5: 15-minute and 60-minute Traffic Speed Prediction Performance of
LSTM With and Without Rainfall Variable. Model Performance is Tested for Mod-
erate Rainfall Day.

For a moderate rainfall day, as shown in figure 6.5, the absolute difference be-

tween the measured and predicted speed for the LSTM model trained with rain-
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fall data is in the range [0.29-2.8] and [1.7-5.8] km/hr for 15-minute and 60-minute

prediction horizon, respectively. The absolute difference between the measured

and predicted speed for the model trained without rainfall data is in the range

[1.7-11.6] and [2.7-19.6] km/hr for 15-minute and 60-minute prediction horizon,

respectively. There is a difference between the model performance when trained

with and without rainfall data but not as significant as heavy rainfall days.

Figure 6.6: 15-minute and 60-minute Traffic Speed Prediction Performance of
LSTM With and Without Rainfall Variable. Model Performance is Tested for Light
to No Rainfall Day.

As shown in figure 6.6, the performance of the model trained with rainfall

data and tested on light to no rainfall day is in the range [0.22-1.93] and [1.92-

4.3] km/hr for a 15-minute and 60-minute prediction horizon. For the same test

data, the model’s performance when trained without rainfall data is in the range

[0.24-2.2] and [2.3-6.35] km/hr for a 15-minute and 60-minute prediction horizon,

respectively. Therefore we can conclude that for light to no rainfall day, there is

no significant difference in the performance of the model when trained with and

without rainfall data.

To examine the impact of rainfall on different roads, we test the model perfor-

mance on San Diego’s roads. The broader road faces less reduction in road capac-

ity during rainfall as compared to the narrow road. Similarly, low-elevation and

narrow roads are more prone to waterlogging as compare to high-elevation and

broad roads. The roads passing through the densely populated area are more af-
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fected compared to the freeway road segment. Instead of passing the data related

to every hidden variable like elevation, road width, road type, etc., that affects

the traffic stream variables during rainfall; we use the deep learning model that

learns hidden features from the traffic and weather data. Therefore, we test the

model performance for various roads (I-5, I-5D, and SR-75). Figure 6.7 shows the

traffic speed prediction accuracy of the RNN and LSTM model for different pre-

diction horizons. The performance is evaluated corresponding to the data from

road segments of I-5 passing through the countryside area, the Downtown area,

and SR-75.

Figure 6.7: Traffic Speed Prediction by RNN and LSTM Model Trained With and Without
Rain Input and Comparing MAPE Corresponding to I-5, I-5 Downtown, and SR-75 Roads.

Comparing the prediction performance, less error is observed when trained

with rainfall data as compare to trained without rainfall data. The traffic speed

prediction error of the LSTM model trained with rainfall variable is the lowest for

all road segments corresponding to all prediction horizons. The traffic speed pre-

diction error of both the models (RNN and LSTM) trained without rainfall input
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is the highest for SR-75. The traffic speed MAPE of the RNN model trained with-

out rainfall data for the SR-75 road segment considering the 30-minute prediction

horizon is 46% and of the LSTM model is 36%. The traffic speed MAPE of the

RNN model trained without rainfall data for the I-5 road segment considering the

30-minute prediction horizon is 31% and of the LSTM model is 20%. SR-75 is a

narrow and low-elevation road compared to I-5. Therefore it gets most affected

due to rainfall compared to the I-5. For SR-75 road, the MAPE for the predic-

tion horizon of 30 minutes of RNN model when trained with rain input is 28%,

whereas, for the LSTM model trained with rain input, it is 8%. For the I-5 road

segment, the MAPE of the RNN and LSTM models when trained with rainfall

data for 30-minute prediction horizon is 19% and 7%, respectively.

Figure 6.8 shows the traffic flow prediction accuracy of the RNN and LSTM

model for different prediction horizons for all road segments. It is observed that

for a shorter prediction horizon (≤ 15 minutes) traffic speed prediction is affected

by rainfall events because as rainfall starts, it affects the driver’s visibility and

mobility. For the same prediction horizon, the model’s performance trained with

and without rainfall data is almost the same for traffic flow prediction.

The percentage traffic flow error of the LSTM model for SR-75 is 9% and 4% when

trained without and with rainfall data, respectively, for a 15-minute prediction

horizon.

However, for a longer prediction horizon, the rainfall shows an impact on traffic

flow prediction accuracy. The LSTM model trained with rain inputs shows the

minimum error for all the prediction horizons. LSTM model’s traffic flow MAPE

when trained without rainfall data for SR-75 road segment and 30-minute predic-

tion horizon is 22% whereas for RNN model trained without rainfall data is 35%.

The percentage error of a model for the same prediction horizon when trained

with rainfall data is 10% for LSTM and 21% for RNN. The memory component

of LSTM holds long spatial and temporal dependency. Therefore it can find the

spatiotemporal relationship between the traffic and rainfall data.

It is observed from both the figures that the error corresponds to I-5 passing

through the Downtown area is more than I-5 passing from the countryside. The
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Figure 6.8: Traffic Flow Prediction by RNN and LSTM Model Trained With and
Without Rain Input and Comparing MAPE Corresponding to I-5, I-5 Downtown,
and SR-75 Roads.

LSTM traffic flow prediction error when trained without rainfall data is 32% and

43% for I-5 and I-5D, respectively, for 60-minute prediction horizon. The predic-

tion error reduces with the inclusion of rainfall data. For I-5 road it is 11% and 15%

for I-5D road. Downtown is a densely populated area, and the I-5 has a lower ele-

vation near the Downtown area (41 - 72 m) then the countryside area (70 - 119 m).

Therefore, the traffic flow and speed of I-5 passing through the Downtown area

are affected more than the countryside road segments of I-5.

We observe that the prediction accuracy decreased with an increase in the predic-

tion horizon. The reason for this phenomenon is that the multi-step prediction

needs to use the previous prediction results. Unless the prediction is completely

accurate, there must be an error between the predicted value and the observed

value. Therefore, the larger is the step ahead of the prediction, the more errors of
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the previous prediction will be accumulated, leading to greater errors in the end.

6.1.3.1 Comparison with Other Deep Learning Models

We compare the performance of the recurrent learning models with the other deep

learning models used in the literature. To compare the model performance, we

use the same algorithm as suggested in the literature. The hyperparameters tun-

ing is performed using a random search method such that the adopted model

gives minimum prediction error for the particular set of hyperparameters. The

deep learning models adopted from literature are Stacked AutoEncoder (SAE)

[5], Back Propagation Neural Network (BPNN) [54], and Deep Belief Neural Net-

work (DBNN) [27]. All the models are trained with rainfall and traffic data. The

dataset corresponds to I-5 road segments is used for the performance comparison.

Figure 6.9: Traffic Flow and Speed Prediction Error Comparison of SAE, BPNN,
DBNN, RNN and LSTM for Different Prediction Horizon for Traffic Data Along
I-5. Error Bar Shows the Standard Deviation.

Figure 6.9 shows that for the prediction horizon of 15 minutes, the perfor-
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mance of SAE, BPNN, DBNN, and RNN has a negligible difference. However,

LSTM shows the lowest error value. It indicates that spatial and temporal fea-

tures improve the prediction accuracy of the model. For the prediction horizon

(greater than 30 minutes), the performance of SAE is better than BPNN. The per-

formance of RNN is better than SAE and DBNN, which indicates that spatial and

temporal features are dependent on previous information. Therefore sequence

learning models are better than non-sequential models. The traffic flow predic-

tion error for LSTM is 15%, RNN is 41%, DBNN is 43%, SAE is 44%, BPNN is

55%, for 60-minute prediction horizon. The LSTM yields the lowest prediction er-

ror with a stable trend. The LSTM model holds long spatiotemporal dependency

due to its gate mechanism compared to SAE, BPNN, and DBNN where the cur-

rent input is independent of the past observations. The traffic speed prediction

error for LSTM is 12%, RNN is 40%, DBNN is 43%, SAE is 49%, BPNN is 55%

for 60-minute prediction horizon. From this result, we conclude that the LSTM

model is suitable for holding long spatiotemporal dependency where future pre-

diction is dependent on the past and current data. Therefore the prediction error

of LSTM is less as compared to the non-recurrent models. With longer depen-

dency, the RNN model suffers from the vanishing gradient problem, therefore for

longer dependency performance of the LSTM is significantly better than the RNN.

6.1.3.2 Spatiotemporal Data vs Temporal Data Performance

Y. Jia et al. [26] used Deep Belief Network (DBN) and LSTM to predict the traffic

flow on the road segment. The rainfall data from the nearest station is interpo-

lated to the target road segment for traffic prediction. The temporal traffic and

weather data are used to predict the traffic flow on a road segment. The experi-

ment is performed on the arterial road segments of Beijing, China. The dataset is

private and inaccessible. We trained our RNN and LSTM model with temporal

traffic data of the I-5 road segment and rainfall data corresponding to the target

road segment, ignoring the spatial dependency. The rainfall data from the nearest

weather station is interpolated to the target road segment. We compare the MAPE

of the LSTM and the RNN model when trained with spatiotemporal traffic and
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weather data and with the LSTM and RNN model when trained only with tem-

poral traffic and weather data. Table 6.5 listed out the performance of LSTM and

RNN considering spatiotemporal input vs temporal input. The MAPE recorded

in [26] for DBN is 13% and 19% for 10-minute and 30-minute prediction horizon,

respectively. The MAPE recorded for LSTM is 11% and 17% for 10-minute and 30-

minute prediction horizons, respectively. In their result, the performance of the

LSTM is better than the DBN considering temporal input. The performance of our

LSTM model considering temporal input shows similar performance. The perfor-

mance of the LSTM model trained with spatiotemporal input is better compared

to the LSTM model trained with temporal input. The MAPE of the LSTM model

trained with spatiotemporal input is 2% and 6% for 15-minute and 30-minute pre-

diction horizons. The MAPE of the LSTM model trained with temporal input is

8% and 15% for 10-minute and 30-minute prediction horizons, respectively. The

MAPE for the DBN and LSTM model is from the result reported in the study [26].

Table 6.5: MAPE Comparison Between Models Trained with Temporal Input vs Trained
with Spatiotemporal Input, I-5 road segments.

Model Input 10 min 30 min

LSTM
Temporal input 8% 15%

Spatiotemporal input 2% 6%

RNN
Temporal input 12% 19%

Spatiotemporal input 7% 12%

DBN [26] Temporal input 13% 19%

LSTM [26] Temporal input 11% 17%

Table 6.6 shows the MAPE comparison between the models for the SR-75 road

segment. The difference between the MAPE of the two models (trained with spa-

tiotemporal input and temporal input) is more significant for the SR-75 road seg-

ment compared to the I-5 road segment. The target road segment gets affected

due to the rainfall at the other road segments because SR-75 is narrow and low

elevation compared to I-5 road. The performance of the LSTM model trained

with spatiotemporal input is better compared to the LSTM model trained with
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temporal input. The MAPE of the LSTM model trained with spatiotemporal in-

put is 4% and 10% for 10-minute and 30-minute prediction horizons, respectively.

The MAPE of the LSTM model trained with temporal input is 11% and 19% for

10-minute and 30-minute prediction horizons, respectively. Therefore, it is im-

portant to consider the spatiotemporal dependency for the accurate prediction of

traffic stream variables.

Table 6.6: MAPE Comparison Between Models Trained with Temporal Input vs Trained
with Spatiotemporal Input, SR-75 Road Segments.

Model Input 10 min 30 min

LSTM
Temporal input 11% 19%

Spatiotemporal input 4% 10%

RNN
Temporal input 15% 28%

Spatiotemporal input 11% 20%

6.1.3.3 Single Rainfall Data vs Sequential Rainfall Data Performance

Koesdwiady et al.[27] used DBN for traffic flow prediction during rainfall. The

rainfall data is considered as complementary data, for traffic data the sequence

length p is taken into account but only the most recent value of rainfall is consid-

ered for traffic flow prediction. The prediction horizon is 5-minute in this study.

The author considers the spatiotemporal rainfall and traffic data. The experiment

is performed on the arterial road segments of San Francisco. We trained our RNN

and LSTM model with spatiotemporal traffic and rainfall data corresponds to I-5,

the recent value of rainfall is considered as input. Table 6.7 shows the performance

of LSTM, RNN, and DBN considering recent rainfall data for a 5-minute predic-

tion horizon. The MAPE for the DBN model is from the result reported in the

study [27]. The author reported the results for a 5-minute prediction horizon. For

such a smaller prediction horizon, the dependency is not very large, the traffic

prediction is dependent on recent traffic conditions, therefore the difference be-

tween models performance is not significant. For a 30-minute prediction horizon,

the difference between the model considering only recent rainfall data and the

model considering past and recent rainfall data is significant. The LSTM model
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performance when trained with the most recent rainfall data is 13% and when

trained with sequential rainfall data is 6% for 30-minute prediction horizon. For

longer dependency, the sequential rainfall data provides better prediction accu-

racy compared to the recent rainfall data.

Table 6.7: MAPE Comparison Between Models Trained with Recent Rainfall Data vs
Trained with Sequential Traffic and Rainfall Data, I-5 Road Segments.

Model Input 5 min 30 min

LSTM
Recent rainfall input 2% 13%

Timeseries rainfall input 1% 6%

RNN
Recent rainfall input 2% 25%

Timeseries rainfall input 1% 12%

DBN [27] Recent rainfall input 4%

We can conclude that the rainfall variable improves the traffic stream variables

prediction accuracy of the deep learning model. The narrow and low-elevation

roads are more affected by the rainfall than the broad and high-elevation, as traffic

prediction error is higher for SR-75 than the I-5 when the model trained without

rainfall data. The traffic condition on a road segment depends upon the traffic

and weather conditions on adjacent roads, therefore, spatiotemporal input pro-

vides better prediction accuracy compared to the temporal input. The sequential

rainfall input improves the prediction accuracy of the model compared to single

rainfall input because of the prolonged dependency of rainfall on traffic stream

variables. The prediction error increases with the prediction horizon due to the

error accumulation.

6.2 Synthetic Data Calibration and Validation

We have developed the empirical model to generate the traffic data considering

the rainfall impact on a variety of roads as shown in section 4.2.2. We perform

a calibration to use the proposed empirical model to generate synthetic traffic

data during adverse weather conditions. We generate the traffic data for different
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roads (arterial, sub-arterial, and collector) during rainfall. The simulation param-

eters are calibrated using the traffic data described in section 4.2.1.

Table 6.8: Description of Simulated Road Types.

Name Description Relevant Study data

Rarterial An expressway road consists of 12 lanes (6 lanes in

each headway); Speed limit is 70 km/hr; No water-

logging occurs on this road

Arterial road

I-5

Rsub−arterial A sub-arterial road consists of 8 lanes (4 lanes in each

headway); Speed limit is 65 km/hr; passes through

densely populated area; less prone to waterlogging

Sub-arterial road

SR-75 and SR-163

Rcollector A collector road consisting of 4 lanes (2 lanes in each

headway); Speed limit is 60 km/hr; passes through

densely populated area; highly prone to waterlogging

Collector road

BEP and MEP

Table 6.8 describes the simulated road types. We simulate the expressway

(Rarterial), sub-arterial road (Rsub−arterial), and collector roads (Rcollector), which cor-

responds to I-5, SR-75 and SR-163, and BEP and MEP roads, respectively, in the

study data.
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Table 6.9: Simulated Vehicle Flow Calibrated from Study Data for Different Types of
Roads under Various Traffic and Weather Conditions.

Road Type Traffic Flow (x100 v/hr) Varying Rain Fall ( mm per hour)

and Traffic No rain Low Moderate Heavy Extended

Scenario 00 mm/hr ≤ 0.5

mm/hr

≤ 5

mm/hr

≥ 7

mm/hr

≥ 40mm in

2hr

Rarterial (peak) 45-62 42-62 35-58 27-53 18-46

Rarterial(off-

peak)

30-56 27-53 25-46 19-40 15-34

Rarterial (night) 21-38 19-33 15-25 12-21 10-18

Rsub−arterial

(peak)

40-55 38-53 33-48 25-39 12-30

Rsub−arterial(off-

peak)

32-43 28-40 25-35 18-27 10-22

Rsub−arterial

(night)

20-24 16-22 12-19 10-15 06-09

Rcollector (peak) 28-38 24-35 20-32 15-20 08-12

Rcollector(off-

peak)

18-22 15-18 10-15 08-10 04-05

Rcollector (night) 05-09 04-07 03-06 01-03 01-1.5

As noted in section 4.2.2.1, rainfall has a varying effect on traffic flow and

speed on different types of roads. We calibrate the traffic flow on the Rarterial,

Rsub−arterial, and Rcollector under various traffic and weather conditions to observe

the effect on traffic speed. It is expected that the traffic speed in the simulation

environment is similar to one in the study data under the relevant traffic and

weather condition. Table 6.9 describes the simulated vehicle flows on Rarterial,

Rsub−arterial, and Rcollector under different traffic and weather conditions. As de-

scribed earlier, for BEP and MEP (corresponding to Rcollector in simulation), the

vehicle flow data is not available. Hence, the vehicle flow on Rcollector is simulated

using the typical peak and off-peak hour traffic conditions reported on the Indian
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collector roads [105]. The traffic flow is reduced by 10 - 15% for the low to moder-

ate rainfall, 25 - 30% for the heavy rainfall, and 50 - 60% for the prolonged heavy

rainfall, based on the approximate knowledge of ground truth data.

Every simulation scenario is executed seven times by changing the random

speed, and the aggregate traffic speed is recorded. The percentage decrease in

traffic speed along the three types of roads (Rarterial, Rsub−arterial, and Rcollector)

under different traffic and rainfall conditions is shown in figure 6.10, 6.11, and

6.12. The variations in percentage decrease in the traffic speed are denoted by

error bars in the graph. The height of an error bar equals the standard-deviation

in percentage decrease in traffic speed.

Figure 6.10: Percentage Decrease in Traffic Speed Due to Rainfall on Rarterial-type
Road, Error Bar Reflects the Standard Deviation.

As shown in figure 6.10, the traffic speed decreases by 1.3 - 14% on the Rarterial

road under the light (≤ 0.5 mm/hr), moderate (≥ 5 mm/hr) and heavy (≥ 7

mm/hr) rainfall condition. This decrease in speed observed in the simulations

matches with the study data (table 4.8), where the decrease of 1.2 - 13 % in traffic

speed on arterial roads is reported. As noted earlier, the effect of prolonged rain-

fall on traffic stream variables is not reported in the literature. Under this weather

condition, the decrease of 14 - 27% in traffic speed is observed in simulations.

On the Rsub−arterial roads, the traffic speed decreases by 1 - 21% under the light,
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Figure 6.11: Percentage Decrease in Traffic Speed Due to Rainfall on Rsub−arterial-
type Road, Error Bar Reflects the Standard Deviation.

moderate, and heavy rainfall conditions as shown in figure 6.11. This decrease in

speed observed in the simulations matches with the study data (table 4.8), where

the decrease of 1.2 - 16 % in traffic speed on sub-arterial roads is reported. Under

the prolonged rainfall condition, a decrease of 18 - 59% in traffic speed is observed

in simulations.

Figure 6.12 shows the speed decrease of 2 - 22% on Rcollector-type roads under

the light, moderate, and heavy rainfall conditions. This decrease in speed ob-

served in the simulations matches with the study data (table 4.8) of the collector

roads - BEP and MEP in Mumbai - where the decrease of 2 - 20% in traffic speed

is reported. No literature study has analyzed the effect of rainfall on the collector

roads, as noted earlier. The simulations report a decrease of 20 - 65% in traffic

speed on collector roads under the prolonged rainfall condition.

From the figures 6.10 - 6.12 and table 4.8, it is clear that the simulation model

replicates the effect of rainfall on traffic parameters as reported in the literature

and study data (section 4.2.2.1).

The simulation results also provide additional insight into the effect of rainfall

on traffic parameters during peak hours, off-peak hours, and night time. The

effect of rainfall during peak-hours is more severe on all types of roads. On the
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Figure 6.12: Percentage Decrease in Traffic Speed Due to Rainfall on Rcollector-type
Road, Error Bar Reflects the Standard Deviation.

Rarterial roads, during peak hours, the traffic speed decreases by 1.82 - 22.98% due

to rainfall, whereas during off-peak hours, the rainfall causes the decrease of 1.2

- 20% in traffic speed. On the Rsub−arterial roads, the traffic speed decreases by 2 -

34% due to rainfall during peak hours. During off-peak hours, the rainfall causes

a decrease of 2 - 32% in traffic speed. Similarly, on the Rcollector roads, during

peak hours, the traffic speed decreases by 2 - 60% due to rainfall, whereas during

off-peak hours, the rainfall causes the decrease of 2 - 58% in traffic speed.

A significant decrease in traffic speed is observed during night time due to

rainfall. The low (≤ 0.5 mm/hr) to very heavy prolonged rainfall (≥ 100 mm in

6hrs) causes the percentage decrease in traffic speed during night time 2 - 27%, 5

- 58%, and 5 - 65% on the arterial, sub-arterial, and collector roads, respectively.

Vehicle flow also decreases significantly during severe rainfall at night as drivers

try to avoid night journeys due to the risk of major crashes or accidents.

6.2.1 Discussion

The following observations are made from the study data and the generated syn-

thetic data:
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On the Rarterial road, we observe that the traffic speed decrease by 1.2 - 13.8%

for the low to heavy rainfall. These numbers match with those reported by Ibrahim

et al. [21] and M. Agarwal et al. [22]. On the Rsub−arterial road, we observe the re-

duction of 2.1 - 16.56% in the traffic speed for the low to heavy rainfall. These

numbers are similar to those reported by Wang et al. [72]. They observed a de-

crease of 1.72 - 16% in traffic speed. To the best of our knowledge, no study in the

literature has analyzed the effect of rainfall on the collector roads. On the Rcollector

road, we observe the traffic speed reduction of 2.58 - 20.43% for the low to heavy

rainfall. These number matches with the Mumbai’s MEP and BEP road data, the

decrease of 2 - 20% in traffic speed is observed.

This opens the door for generating realistic synthetic data for a variety of traffic

and weather conditions. The availability of realistic synthetic data enables further

studies based on the data-driven models.

The rain causes a decrease in the traffic flow and speed, and this reduction is

associated with rainfall intensity - the light rainfall has little impact on the traffic

stream variables. The impact of rainfall on traffic stream variables is different

on different types of roads. On the expressway (Rarterial), the rainfall impact is

less than the collector road (Rcollector). The effect of rainfall during peak-hours is

more severe. The decrease in speed during peak hours is more than that in off-

peak hours. A significant decrease in traffic flow and speed is observed during

nighttime.

6.3 Deep Learning Model Performance with Synthetic

Data

In the previous section, we generated synthetic data corresponding to different

rainfall intensities for three roads (arterial, sub-arterial, and collector). To validate

learning model performance, we generate traffic data using a similar empirical

model and simulation study, for the worst-case rainfall scenario. We consider

the case when both target and other roads receive heavy rainfall for a prolonged

time greater than 100 mm in 6 hours. Table 6.8 describes the three simulated road
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types (Rarterial, Rsub−arterial, and Rcollector). To validate learning model performance

considering small and large size road networks, synthetic data is generated for

three road networks as shown in table 6.10, for each road type. The small road

network size is 5× 7 km, and the size of the large road network is 20× 28 km.

Here rainfall station symbol is for the representation purpose.

Figure 6.13: Small Road Network.

Figure 6.14: Large Road Network.
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Table 6.10: Scenarios to Test Model Performance.

Scenarios Description

S1 Single road with point traffic and weather data

S2 Small road network, figure 6.13

S3 Large road network, figure 6.14

In all three scenarios, the following is applicable. We use the random search

method for hyperparameter tuning [80]. The models are trained based on Adam

optimizer [85]. The learning rate is set to be 0.005, and the batch size is set to 256.

To avoid overfitting, L2 regularisation is used. The normal distribution is used to

initialize the set of parameters. For the implementation, we used the TensorFlow

version 1.0.1 framework, and GPU is used to improve the computational capa-

bility and fasten the training module’s execution. For the programming, Python

version 2.7 is used.

Appendix D discusses the experimental setup and result analysis for the single

road (S1) and the small road network (S2).

For the single road, there is no dependency on other road segments. The traffic

and weather data are available as point data. When trained with rain data, the

model’s traffic speed prediction improves compared to the model’s traffic speed

prediction when trained without rain data. For the single road, hybrid and non-

hybrid model’s performance shows no significant difference as there is no depen-

dency from other road segments are involved.

Considering the small road network, for road type Rsub−arterial and Rcollector,

the target road traffic variables get affected due to rainfall at adjacent roads, as wa-

ter flows from one road segment to another. Similarly, waterlogging makes the sit-

uation worse. Therefore for road type Rsub−arterial and Rcollector the performance of

LSTM-LSTM and CNN-LSTM shows significant improvement over LSTM, CNN,

and RNN models. For the prediction horizon (> 30 minutes) the traffic prediction

error improvement of the hybrid model is 10% over the non-hybrid models.
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6.3.1 Experimental Setup and Result Analysis for Large Road Net-

work

We generate the traffic data for a large road network as shown in figure 6.14 con-

sidering each road segment receives an average rainfall of 100 mm in 6 hours (

scenario S3). The traffic data is generated separately for arterial (Rarterial), sub-

arterial (Rsub−arterial) and collector road (Rcollector). The traffic and weather condi-

tion of other road segment affects the traffic stream variables of the target road

segment. The dependency in this scenario is large compared to the other two sce-

narios, as the impact of rainfall on other road segments (distant one) is significant

on the target road segment at some later time instance.

6.3.1.1 Experimental Setup

Table 6.11 and 6.12 shows the most useful set of hyperparameters for the CNN-

LSTM and LSTM-LSTM model, respectively. The hyphen’s left side’s value indi-

cates the hyperparameter for the first sub-model (CNN/LSTM), and the right side

value shows the hyperparameter for the second sub-model (LSTM). The hyperpa-

rameters for the other models (RNN, CNN, and LSTM) is shown in Appendix E.

For a large road network of road type Rarterial, the lag value of the former model

in the hybrid model for 15 to 30 minutes prediction horizon is in the range [15-22],

and for the later LSTM model, the range is [10-15]. The number of the epoch of

hybrid models is in the range [15-20] for 15 to 30 minutes prediction horizon and

[27-40] for 45 to 60 minutes prediction horizon. The spatial threshold value ∆ is

in the range [3-5] km. The value of weight in weighted moving average (γ) is in

the range [0.5-0.7]. The number of layers is in the range [2-3].

For Rsub−arterial road, the lag value of the former model in the hybrid model is in

the range [18-24] and for the later LSTM model is in the range [12-18]. For the

hybrid models, the epoch value for the 15 to 30 minutes prediction horizon is in

the range [18-22] and for the 45 to 60 minutes prediction horizon is in the range

[30-45]. The spatial threshold value ∆ is in the range [3-7] km.

For Rcollector road, for the CNN-LSTM model, the lag value of the former model
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is in the range [20-30] and for the later LSTM model is in the range [12-18] for

15 to 45 minutes prediction horizon and is in the range [18-23] for 60 minutes

prediction horizon. For the LSTM-LSTM model, the lag value of the former model

is in the range [20-30] and for the later LSTM model is in the range [17-20] for 15

to 30 minutes prediction horizon and is in the range [22-26] for 45 to 60 minutes

prediction horizon. For the CNN-LSTM model, the epoch value is in the range

[18-25] for 15 to 30 minutes prediction horizon and is in the range [40-50] for 45

to 60 minutes prediction horizon. For the LSTM-LSTM model, the epoch value

is in the range [20-28] for 15 to 30 minutes prediction horizon and is in the range

[40-55] for 45 to 60 minutes prediction horizon. The spatial threshold value ∆ is

in the range [3-7] km.

The reason for providing this range is because for a new data-set considering

similar road types for prolonged rainfall conditions, the prediction of the model

using the hyperparameters within the range will not affect much the performance

of the models for the particular prediction horizon.

Table 6.11: Hyperparameters for the CNN-LSTM Model.

Road Type PH p L NPL E γ ∆
Rarterial 15 18-12 1-1 [16,3×3-12] 15 .6 3

30 18-12 2-1 [(32,3×3),(16,3×3)-20] 18 .7 5
45 22-15 3-2 [(32,3×3),(16,3×3)-(30,10)] 27 .7 5
60 22-15 3-2 [(32,3×3),(32,3×3),(16,3×3)]-

[52,20]
35 .7 7

Rsub−arterial 15 18-12 1-1 [16,3×3-18] 18 .6 5
30 20-12 2-1 [(32,3×3),(16,3×3)-24] 20 .7 5
45 22-15 3-2 [(32,3×3),(16,3×3)-(30,15)] 30 .7 7
60 22-18 3-3 [(48,3×3),(32,3×3),(16,3×3)]-

[50,30,20]
40 .7 7

Rcollector 15 20-12 1-1 [16,3×3-22] 18 .6 5
30 24-15 2-1 [(32,3×3),(16,3×3)-28] 20 .7 7
45 24-18 3-2 [(32,3×3),(16,3×3)-(40,20)] 40 .7 7
60 28-22 3-3 [(64,3×3),(32,3×3),(16,3×3)-

(60,40,20)]
50 .7 7

6.3.1.2 Result Analysis for Large Road Network

We examine the performance of models for the large road network (scenario 3) as

shown in figure 6.14. We test the model performance for the worst-case scenario
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Table 6.12: Hyperparameters for the LSTM-LSTM Model.

Road Type PH p L NPL E γ ∆
Rarterial 15 18-12 2-1 [20,40]-[20] 16 .5 5

30 18-12 2-2 [30,70]-[20,10] 19 .7 5
45 22-12 3-2 [20,40,60]-[30,10] 35 .7 7
60 22-15 3-2 [30,50,80]-[40,20] 40 .7 7

Rsub−arterial 15 20-12 2-1 [20,50]-[25] 18 .5 5
30 20-12 2-2 [30,80]-[30,10] 20 .7 7
45 22-15 3-2 [30,60,90]-[40,20] 37 .7 7
60 24-15 3-3 [50,80,100]-[50,30,10] 45 .7 7

Rcollector 15 18-18 2-1 [30,50]-[28] 20 .5 7
30 22-20 2-2 [40,80]-[30,20] 26 .7 7
45 27-24 3-2 [30,60,90]-[50,20] 45 .7 7
60 30-24 3-3 [50,80,110]-[60,40,20] 55 .7 7

where both the target and other roads receive prolonged heavy rainfall (≥ 100

mm in 6 hours).

Figure 6.15 shows the performance of models for traffic speed prediction for

road type Rarterial when trained without and with rainfall data. From the result, it

is observed that the inclusion of rainfall variables decreases the error of the model.

For the 60-minute prediction horizon, the traffic speed prediction error for LSTM-

LSTM is 42%, and CNN-LSTM is 47% when the model is trained without rainfall

variable. When both the models are trained with rainfall variable, then traffic

speed prediction error for LSTM-LSTM is 9%, and CNN-LSTM is 11%. The CNN-

LSTM and LSTM-LSTM model’s performance is better in extracting spatiotempo-

ral and temporal dependency than the model that considers only spatiotemporal

dependency. When trained with the rainfall variable, RNN, CNN, and LSTM

model’s performance is 43%, 40%, and 29%, respectively, for a 60-minute predic-

tion horizon. For 15 minutes prediction horizon, the traffic speed prediction error

of RNN is 13%, CNN is 13%, LSTM is 10%. LSTM-LSTM is 1% and CNN-LSTM

is 3%. With the higher value of the prediction horizon, the model’s prediction er-

ror increases due to error accumulation. Therefore, a significant difference is ob-

served between the performance of hybrid and non-hybrid models. The model’s

traffic speed prediction performance when trained with rainfall variables in MAE

and RMSE is discussed in Table 6.13. The MAE and RMSE are in agreement with

MAPE. LSTM-LSTM model performance is better than other models.
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Figure 6.15: Traffic Speed Prediction Performance of Models without and with
Rain Data for Simulated Rarterial Road. Error Bar Shows the Standard Deviation.

Table 6.13: Traffic Speed Prediction Error of Different Models when Trained with Rainfall
Data for Road Type Rarterial.

Model Error 15 min 30 min 45 min 60 min

RNN
MAE 8.7 14.3 19.4 23.4

RMSE 13.8 21.8 29.7 36.5

CNN
MAE 4.8 6.6 9.8 13.2

RMSE 11.8 15.5 24.5 32.1

LSTM
MAE 3.76 5.4 7.4 11.8

RMSE 9.6 12.6 22.8 30.7

CNN-LSTM
MAE 2.1 3.1 4.7 5.7

RMSE 7.5 10.7 18.5 25.4

LSTM-LSTM
MAE 1.2 1.7 2.5 4.2

RMSE 5.4 8.3 14.8 21.9

Figure 6.16: Traffic Flow Prediction Performance of Models without and with Rain
Data for Simulated Rarterial Road. Error Bar Shows the Standard Deviation.
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Figure 6.16 shows the traffic flow prediction performance of the models for

road type Rarterial. The figure shows that the traffic flow prediction error of models

trained without rainfall variables is higher than the models trained with rainfall

variables. The traffic flow prediction error (60-minute prediction horizon), when

trained without rainfall variables is 51% and 55% for LSTM-LSTM and CNN-

LSTM models, respectively. The traffic flow prediction error for a similar predic-

tion horizon decreases when trained with rainfall variables. The error is 14% and

15% for LSTM-LSTM and CNN-LSTM models, respectively. When trained with-

out rainfall variable, the model’s error is more for traffic flow than traffic speed.

For the road type Rarterial, we assume no waterlogging; therefore, the speed reduc-

tion is due to reduced visibility or avoiding crash risk during heavy rainfall. But

considering the traffic flow, the impact of rainfall on other road segments affects

the traffic flow at the target road segment. For 60 minutes prediction horizon,

the traffic flow prediction error of the non-hybrid models, RNN is 39%, CNN is

36%, and LSTM is 25%. The hybrid model’s traffic flow prediction performance

is better than the non-hybrid model for traffic flow prediction in extracting longer

dependencies. But there is no significant difference between the performance of

hybrid models observed for large road networks consisting of arterial roads.

Figure 6.17 shows the performance of models for traffic speed prediction for

road type Rsub−arterial when trained without and with rainfall data. The result

shows that the inclusion of rainfall variables decreases the prediction error of the

models. For the 60-minute prediction horizon, the traffic speed prediction error

for LSTM-LSTM is 48%, and CNN-LSTM is 59% when the model is trained with-

out rainfall variable. When both the models are trained with rainfall variable, then

traffic speed prediction error for LSTM-LSTM is 10%, and CNN-LSTM is 22%. For

road type Rsub−arterial, the model’s prediction error when trained without rainfall

variable is higher than road type Rarterial. The Rarterial road is exceptional, and traf-

fic speed reduction due to rainfall is less than the Rsub−arterial road. The prolonged

heavy rainfall affects Rsub−arterial roads more compared to Rarterial road. Therefore,

the error in traffic speed prediction is more in Rsub−arterial compared to Rarterial.

With the inclusion of the rainfall variable, for 15 minutes prediction horizon, the
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traffic speed prediction error of RNN is 15%, CNN is 14%, LSTM is 12%, LSTM-

LSTM is 2%, and CNN-LSTM is 7%. For 60 minutes prediction horizon, the traffic

speed prediction error of RNN is 45%, CNN is 42%, LSTM is 31%, LSTM-LSTM is

10%, and CNN-LSTM is 22%. The CNN-LSTM and LSTM-LSTM model’s perfor-

mance is better in extracting spatiotemporal and temporal dependency than the

model that considers only spatiotemporal dependency. The LSTM-LSTM model

shows better prediction accuracy compared to the CNN-LSTM model. The RNN

and CNN model doesn’t hold such long-term dependencies. RNN suffers from

vanishing gradient problem, and the CNN model performs local dimensionality

reduction, which is limited by their localized receptive field.

The model needs to handle large memory proportional to the sequence length

to handle longer dependencies, making it difficult to scale to a large problem.

Therefore for learning long-term dependency, the LSTM model shows signifi-

cant performance. The LSTM model is designed initially to improve gradient

flow in a recurrent network such that the network can learn long-term dependen-

cies, which is achieved with proper use of the gating mechanism. In the LSTM-

LSTM model, the first LSTM model learns the spatiotemporal dependency be-

tween weather and traffic data. It learns both short and long-term dependencies.

The second LSTM uses the feature vector generated from the first LSTM and traf-

fic data from the target road segment for traffic forecasting. The model’s traffic

speed prediction performance when trained with rainfall variables in MAE and

RMSE is discussed in Table 6.14, which reflects the same findings as discussed

above, the performance of the LSTM-LSTM model is better than other models.
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Figure 6.17: Traffic Speed Prediction Performance of Models without and with
Rain Data for Simulated Rsub−arterial Road. Error Bar Shows the Standard Devia-
tion.

Table 6.14: Traffic Speed Prediction Error of Different Models when Trained with Rainfall
Data for Road Type Rsub−arterial.

Model Error 15 min 30 min 45 min 60 min

RNN
MAE 17.56 20.42 26.45 32.22

RMSE 25.4 31.2 39.7 49.7

CNN
MAE 10.42 14.34 17.45 22.24

RMSE 15.7 24.5 35.4 43.3

LSTM
MAE 7.34 12.42 15.35 20.24

RMSE 11.2 20.4 30.2 39.6

CNN-LSTM
MAE 4.5 7.2 10.4 15.2

RMSE 9.4 16.3 26.5 35.4

LSTM-LSTM
MAE 2.2 4.25 5.2 7.8

RMSE 7.8 15.4 23.2 31.23

Figure 6.18 shows the traffic flow prediction performance of the models for

road type Rsub−arterial. The traffic flow prediction error for 60-minute prediction

horizon when trained without rainfall variables is 59% and 64% for LSTM-LSTM

and CNN-LSTM models, respectively. The traffic flow prediction error of the

model for a similar prediction horizon when trained with rainfall variables is 14%

and 26% for LSTM-LSTM and CNN-LSTM models, respectively. For a similar

prediction horizon and with the inclusion of rainfall variable, the traffic flow pre-

diction error of RNN is 47%, CNN is 44%, LSTM is 33%. The impact of rainfall
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Figure 6.18: Traffic Flow Prediction Performance of Models without and with Rain
Data for Simulated Rsub−arterial Road. Error Bar Shows the Standard Deviation.

is more on traffic flow than traffic speed because traffic speed comes to the sat-

uration point after prolonged heavy rainfall. People avoid traveling during pro-

longed heavy rainfall, especially in off-peak hours, which drastically affects traf-

fic flow. Therefore, the performance of the LSTM-LSTM model and other models

show a significant difference.

Figure 6.19 shows the performance of models for traffic speed prediction for

Rcollector type road (highly prone to waterlogging) when trained without and with

rainfall data. For the LSTM-LSTM model, when trained without rainfall data, the

prediction error (60-minute prediction horizon) for road type Rarterial, Rsub−arterial,

and Rcollector is 42%, 48%, and 59%, respectively. The impact of prolonged heavy

rainfall is most significant on Rcollector type road as these are prone to waterlogging

and narrow compared to Rarterial and Rsub−arterial roads. The prediction error de-

crease with the inclusion of the rainfall variable. There is a significant difference in

the performance of LSTM-LSTM and CNN-LSTM. With the inclusion of the rain-

fall variable, for 15 minutes prediction horizon, the traffic speed prediction error

of RNN is 21%, CNN is 19%, and LSTM is 17%, and LSTM-LSTM is 3%, and CNN-

LSTM is 16%. For 60 minutes prediction horizon, the traffic speed prediction error

of RNN is 51%, CNN is 47%, LSTM is 36%, LSTM-LSTM is 11%, and CNN-LSTM

is 31%. There is a considerable drop in CNN and CNN-LSTM model performance

for a large-scale problem because there is a more extended spatiotemporal de-

pendency. For a large network, the LSTM-LSTM model’s performance is better

than the other models considering the impact of other roads ’ traffic and weather

conditions on target road traffic conditions. The LSTM-LSTM model learns the
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Figure 6.19: Traffic Speed Prediction Performance of Models without and with
Rain Data for Simulated Rcollector Road. Error Bar Shows the Standard Deviation.

longer spatiotemporal and temporal dependency more accurately as compared

to other models. The model’s traffic speed prediction performance when trained

with rainfall variables in MAE and RMSE is discussed in Table 6.15, which shows

that the performance of the LSTM-LSTM model is better than the other models.

Table 6.15: Traffic Speed Prediction Error of Different Models when Trained with Rainfall
Data for Road Type Rcollector.

Model Error 15 min 30 min 45 min 60 min

RNN
MAE 21.22 26.45 32.4 37.7

RMSE 32.3 40.23 52.1 64.2

CNN
MAE 10.2 15.3 22.2 29.7

RMSE 18.3 31.2 44.5 58.7

LSTM
MAE 7.3 12.2 18.7 24.5

RMSE 15.6 27.5 36.6 55.3

CNN-LSTM
MAE 6.09 9.99 17.5 21.5

RMSE 14.4 29.4 35.2 49.4

LSTM-LSTM
MAE 2.2 4.5 6.1 8.3

RMSE 10.2 20.3 29.3 36.4

Figure 6.20 shows the traffic flow prediction performance of the models for

road type Rcollector. The traffic flow prediction error for the 60-minute prediction

horizon when trained without rainfall variables is 59% and 62% for LSTM-LSTM

and CNN-LSTM models, respectively. The traffic flow prediction error when
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Figure 6.20: Traffic Flow Prediction Performance of Models without and with Rain
Data for Simulated Rcollector Road. Error Bar Shows the Standard Deviation.

trained with rainfall variables is 11% and 28% for LSTM-LSTM and CNN-LSTM

models, respectively. For a similar prediction horizon with the inclusion of rainfall

variable, the traffic flow prediction error of RNN is 48%, CNN is 41%, and LSTM

is 30%. The impact of traffic flow is significant on Rcollector type road. Due to wa-

terlogging, road capacity reduces. In addition to that, the traffic flow drastically

reduces because the driver avoids waterlogging sites.

One of the major observations from the results is that the model’s prediction

error increased with the prediction horizon because of error accumulation. There

is a longer dependency for the large road network scenario in terms of the road

network and the prolonged rainfall impact. With the non-hybrid models, the error

accumulated will be more. Therefore, there is a large difference between the pre-

diction accuracy of the hybrid and non-hybrid models. The LSTM-LSTM model’s

performance is better than the other non-hybrid and hybrid CNN-LSTM mod-

els for the longer dependency. The impact of rainfall is significant on all road

types. The prediction error of the models reduces with the inclusion of the rain-

fall data for all road types. But for the collector road types, the error of the models

when trained without rainfall data is higher than the arterial and sub-arterial road

types. We can conclude that the performance of the LSTM-LSTM model is best in

all three scenarios (from the best to the worst case).
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6.3.2 Hybrid Models Comparison with Existing Models

There is two existing work that performs the traffic flow prediction during ad-

verse weather conditions. We compare the prediction performance of our devel-

oped hybrid models with the existing models.

We developed the DBN model as proposed by Y. Jia et al. [26] and called it

DBN (1). The author also implemented the LSTM model, but we have already

compared the performance of the hybrid model with the LSTM model. Therefore,

in this experiment, we are comparing the hybrid model only with DBN (1). To

predict the traffic flow on the target road segment, temporal traffic, and rainfall

data corresponds to the target road segment are used in this study. Rainfall data

from the nearest station is interpolated to the target road segment. For the com-

parison, we train the DBN(1) with temporal traffic and weather data. Another

study was done by A. Koesdwiady et al. [27], used the DBN model to predict the

traffic flow on the road segment. The prediction horizon of 5 minutes is consid-

ered in their study. We developed the DBN model as proposed in their work and

called it DBN (2). The author estimates the traffic flow on the target road segment,

spatiotemporal traffic, and rainfall data is used. As per their assumption, for traf-

fic flow prediction sequence of traffic readings from past and current is needed,

but rainfall data is complementary. Therefore, only the most recent rainfall value

is provided as input to the model. For the comparison, we train the DBN (2) with

spatiotemporal traffic and weather data. The traffic data up to optimal lag value

is provided for the model training, but rainfall reading from the current time in-

stance is provided.

As per previous results, hybrid deep learning model’s performance is better

than the non-hybrid models. Specifically for the worst-case scenario, i.e., large

road network and prolonged rainfall. The LSTM-LSTM model’s performance

surpasses the other hybrid and non-hybrid models in extracting the long-term

dependency of traffic and weather data. There is a need for a common dataset

to compare our hybrid model’s performance with the existing models for traffic

flow prediction during rainfall. The traffic data used in the literature are either pri-

vate or the complete dataset information is not shared. Therefore, to compare the
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Figure 6.21: Traffic Flow MAPE Comparison of Hybrid and Existing Models. Er-
ror Bar Shows the Standard Deviation.

model on a similar dataset, we used our synthetic data. We compare the model’s

performance for large road network scenarios, and road type is Rcollector. The traf-

fic data is generated considering the average prolonged rainfall case (100 mm in

6 hours). Both the existing work perform traffic flow prediction only, not con-

sidering the traffic speed, therefore for the comparison, we also perform traffic

flow prediction only. As traffic speed measurement requires a double loop de-

tector, therefore the majority of the roads with ITS infrastructure provide traffic

flow measurement only. The fine-grained synthetic data will solve this issue by

providing the approximate measurement of the traffic speed and flow.

Figure 6.21 shows the traffic flow prediction performance of the DBN (1), DBN

(2), LSTM-LSTM and CNN-LSTM model for different prediction horizons. The

result shows that for a smaller prediction horizon (5 minutes) there is a small dif-

ference in model’s performance. The traffic flow prediction error of LSTM-LSTM

is 2%, CNN-LSTM is 4%, DBN (1) is 12% and DBN (2) is 8%. With the increase

in the prediction horizon, we can observe the difference between model’s perfor-

mance increase significantly. For 60 minutes prediction horizon, the traffic flow

prediction error of LSTM-LSTM is 11%, CNN-LSTM is 28%, DBN (1) is 58% and

DBN (2) is 50%. DBN (1) consider only temporal traffic and rainfall input ignores

the spatiotemporal dependency. DBN (2) consider only recent rainfall value for

traffic flow prediction. Considering the large road network and prolonged rainfall

scenario, the traffic stream variables on the target road segment get affected due

to traffic and rainfall conditions on the other road segment. We are considering
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the Rcollector roads that are prone to waterlogging, which greatly affects the traffic

flow on target and other road segments. The traffic and rainfall information from

other road segments is important for making an accurate prediction. Similarly,

the extended rainfall information is necessary to capture the prolonged impact of

rainfall. In DBN, the current input is independent of the previous outcome. Our

LSTM-LSTM model learns the longer dependency due to the gating mechanism,

which works as a memory to store the previous outcome and use it with current

input for prediction. We conclude that the LSTM-LSTM model’s performance is

better than the existing models.

6.3.3 Model Robustness

A model is considered robust if changing the hyperparameter value by a small

amount doesn’t affect the model’s prediction accuracy significantly. We exam-

ine the hybrid models for different threshold values and analyze the changes in

prediction accuracy.

6.3.3.1 Soft Temporal Threshold

A more extended past sequence is required to observe the impact of prolonged

rainfall, but a more extended sequence increases the model’s training time and

the number of parameters. The soft temporal threshold considers the weather

data sequence up to the lag value and exponential moving average of the past

weather data to consider the prolonged impact of weather conditions. In the hard

threshold, only the weather data sequence up to the lag value is considered. In

figure 6.22, the performance of models trained with soft temporal threshold and

hard threshold are compared considering the 60-minute prediction horizon for

road type Rcollector. The result shows that for the LSTM-LSTM model, the traffic

speed prediction error with a hard threshold is 17%, and with a soft temporal

threshold is 11%. For the CNN-LSTM model, the traffic speed prediction error

with hard and with soft temporal threshold is 39% and 31%, respectively.

Therefore, including the information related to the extended rainfall sequence

will increase the model’s accuracy.
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Figure 6.22: Traffic Speed MAPE Comparison for Hard and Soft Temporal Thresh-
old for the 60-minute Prediction Horizon for Rcollector Road. Error Bar Shows the
Standard Deviation.

Figure 6.23 shows the model performance for 30-minute prediction horizon.

The result shows that the model gives the best performance for weighing factor

γ equals to 0.7. The traffic speed prediction error of LSTM-LSTM model when

γ = 0 is 9% and for γ = 0.7 is 5%. The traffic speed prediction error of CNN-

LSTM model when γ = 0 is 24% and for γ = 0.7 is 18%. The CNN-LSTM and

LSTM-LSTM models are robust, and there is no significant change in prediction

output with a small change in the value of γ. The traffic speed prediction error of

the LSTM-LSTM model for γ = 0.7 and γ = 0.9 is 5.82% and 5.99%, respectively.

Figure 6.23: Traffic Speed MAPE Comparison for Different Value of Weighing fac-
tor (γ), for the 30-minute Prediction Horizon for Rcollector Road. Error Bar Shows
the Standard Deviation.
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6.3.3.2 Soft Spatial Threshold

Due to the poor drainage system and saturated soil, prolonged rainfall causes

waterlogging. The traffic stream variables on the target road get affected due to

waterlogging and water flow from the other roads during rainfall. For an ac-

curate prediction of traffic stream variables on the target road segment during

rainfall, along with the traffic data from the target road segments, the effect of

rain on the other road segments in the geographical location needs to be cap-

tured. We proposed the soft spatial threshold mechanism to capture the spatial

significance of weather conditions, as discussed in section 4.2.3.1. The rainfall

data from stations under the threshold distance are considered, and for all other

stations, the weighted average rainfall value is used as the input. In a large road

network scenario S3, there are 24 roads. Each road is receiving an average rainfall

of 100 mm in 6 hours. The traffic and weather data from other roads are passed

to predict the traffic stream variables at the target road. Instead of passing the

rainfall value corresponding to each road, we used a soft spatial threshold mech-

anism. We set the threshold distance as a hyperparameter. The distance up to

which rainfall value corresponds to all road segments is passed, and for all the

other roads falling outside the threshold value, we pass the weighted average

rainfall value.

Figure 6.24 shows the model’s performance for different threshold values for the

30-minute prediction horizon. For the threshold value equals to 7 km model gives

the minimum error. With the change in the threshold value, no significant differ-

ence in performance is observed, which shows the model’s robustness. The traffic

speed prediction error of LSTM-LSTM model for threshold value 3, 7, and 24 is

9%, 5%, and 7%, respectively. The traffic speed prediction error of CNN-LSTM

model for threshold value 3, 7, and 24 is 22%, 18%, and 21%, respectively. The er-

ror increase for larger threshold value because of overfitting. The result concludes

that the weather data from other road segments improve the model’s accuracy

while predicting the traffic stream variables at the target road segment.
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Figure 6.24: Traffic Speed Prediction Performance of the Models for Soft Spatial
Threshold. Error bar Shows the Standard Deviation.

6.3.3.3 Spatial interpolation

We test our hybrid model’s performance for the linear regression-based spatial

interpolation method. To test the performance of the model, we make two cases,

case one where we train and test our model with complete rainfall and traffic data

and case two where we randomly remove 20% of the rainfall data and interpo-

late the removed data with linear regression interpolation method as discussed in

section 4.2.3.3. Figure 6.25 shows the result comparison with complete data and

interpolation using the linear regression method on 20% missing data. It is ob-

served from the result that for 15-minute and 30-minute prediction horizon, the

model performance is almost similar to the model’s performance with complete

data. For 45-minute and 60-minute prediction, the model performance degrades

using spatial interpolation because there is an increase in error with the increase in

prediction horizon, error from the previous prediction gets accumulated. For in-

terpolation, this error increases further. The LSTM-LSTM traffic speed prediction

error with complete data for 15-minute, 30-minute, 45-minute, and 60-minute is

3%, 5%, 8%, and 11%, respectively, for road type Rcollector and large road network.

With spatial interpolation using a linear regression technique, the LSTM-LSTM
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model output is 3%, 6%, 12%, and 14% for 15-minute, 30-minute, 45-minute, and

60-minute, respectively.

Figure 6.25: Traffic Speed Prediction Performance of the Models with Complete
Data and with Spatial Interpolation Method on Missing Data. Error Bar Shows
the Standard Deviation.

Figure 6.26: Traffic Speed Prediction Performance of the Models with Different
Interpolation Techniques for the 30-minute Prediction Horizon on Rcollector Road.
Error Bar Shows the Standard Deviation.

We also examine the performance of different spatial interpolation techniques

as discussed in section 4.2.3.3, Theissen polygon method, Inverse Distance Weighted

(IDW) method, and Linear Regression (LR) method. Model using linear regres-

sion interpolation technique shows the lowest prediction error and highest error

with Theissen polygon method. The error difference between linear regression

and inverse distance weighted method is not significant. The linear regression

method is preferred over inverse distance weighted. In the IDW method, perfor-
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mance is dependent on the radius (area up to which station is considered for the

interpolation). In the linear regression method, the model learns this dependency

from the given input data. Therefore, no external tuning is required. Figure 6.26

shows the deep learning model’s performance with different spatial interpolation

techniques considering the 30-minute prediction horizon for road type Rcollector.

The traffic speed prediction error of the LSTM-LSTM model using Theissen, IDW,

and linear regression interpolation method is 8%, 6.9%, and 6.5%, respectively.

The traffic speed prediction error of the CNN-LSTM using Theissen, IDW, and

linear regression interpolation method is 24.1%, 21.3%, and 20.3%, respectively.

6.3.3.4 Additional Variables

We examine the performance of the model providing additional data sources as

input. The average rainfall value from the past days will give more insight into

the soil absorption capability and drainage system. We provide the additional

variable as the average rainfall value for a day along with the input data. We per-

form this experiment for road type Rcollector and large road network. The model’s

performance is shown in figure 6.27, where we compare the traffic speed predic-

tion error for the cases when additional data is used versus not used. The figure

shows that for the 60-minute prediction horizon, the traffic speed prediction er-

ror of LSTM-LSTM is 9% and 11% for the with additional data (one-day average

rainfall) and without additional data cases, respectively. There is no significant

difference observed in the performance of the model.

Figure 6.27: Traffic Speed Prediction Performance of the Models Considering Ad-
ditional Data (one day average rainfall value). Error Bar Shows the Standard De-
viation.
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Figure 6.28 shows the traffic flow prediction error, considering the 60-minute

prediction horizon, the performance of LSTM-LSTM is 12% and 14% for with the

additional data and without additional data cases, respectively.

Figure 6.28: Traffic Flow Prediction Performance of the Models Considering Ad-
ditional Data (one day average rainfall value). Error Bar Shows the Standard De-
viation.

We also test model performance when the average rainfall value for the past

two days is passed for road type Rcollector. For the 60-minute prediction horizon,

the traffic flow prediction error of the LSTM-LSTM model is 11% and 14% for the

additional data and without additional data cases, respectively, as shown in figure

6.29. The results are similar to the previous scenario (rainfall average of one day).

We conclude that considering the heavy rainfall scenario, the traffic flow comes to

the saturation point (minimal value) after prolonged heavy rainfall. Therefore, not

much of the difference is observed in model performance. We conclude that the

LSTM-LSTM model is robust, increasing the training data will not significantly

improve the model’s performance.

Figure 6.29: Traffic Flow Prediction Performance of the Models Considering Ad-
ditional Data (two day average rainfall value). Error Bar Shows the Standard
Deviation.
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6.3.4 Learning Models Complexity Analysis

We evaluate the time and number of parameters needed to train the models. The

main factors that influence the model’s training time are the lag value and num-

ber of the epoch. The lag value is the sequence length passed as an input to the

model. For model learning, the entire training dataset is passed both forward and

backward through the model defined as the epoch, and the model requires mul-

tiple epochs to converge. These are the two hyperparameters that are required

to be set before the model training. The large value of lag requires more train-

ing time per epoch. The number of epoch until convergence is data-dependent.

Figure 6.30 shows the performance of models for different lag value for Rcollector

road type (large road network) considering 30-minute prediction horizon. It is ob-

served that LSTM and LSTM-LSTM models require longer lag values for making

an accurate prediction as compared to the RNN, CNN, and CNN-LSTM models.

The traffic speed prediction error of the LSTM-LSTM model is the lowest (6%) for

the lag value 27. The same reason is applicable for the better performance of the

LSTM-LSTM model as it looks out for a longer past range to make a future pre-

diction. The CNN-LSTM model shows the traffic speed prediction error of 19%

for the lag value 18. We observe that there is not much difference in the model’s

performance for the small change in these hyperparameters value. For the RNN

model, the lag value 18 shows the error of 26%, CNN shows the error of 23% for

the lag value 18, and LSTM shows the error of 20% for the lag value 22.

Figure 6.31 shows the model’s performance for the different number of epoch

considering the 30-minute prediction horizon for Rcollector road type. It is observed

that the LSTM and LSTM-LSTM model require larger epochs to converge than

CNN and CNN-LSTM models. The traffic speed prediction error of LSTM-LSTM

is 6% for the number of epoch equals 35. The traffic speed prediction error of

CNN-LSTM is 19% for the number of epoch equals 25. For the RNN, CNN, and

LSTM model, epoch value is 18, 25, and 35, respectively.
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Figure 6.30: Traffic Speed Prediction Performance of the Models for Different Lag
Values, 30-minute prediction horizon for Rcollector Road. Error Bar Shows the Stan-
dard Deviation.

Figure 6.31: Traffic Speed Prediction Performance of the Models for Different
Epoch Values, 30-minute prediction horizon for Rcollector Road. Error Bar Shows
the Standard Deviation.

Figure 6.32 and 6.33 shows the relation between the lag value, the number of

epoch, and the model’s training time considering the 30-minute prediction hori-

zon for Rcollector road type. The CNN model shows the optimal value (lowest

prediction error) at a lower lag value than the LSTM model; therefore, the epoch’s

number is less. Similarly, the training time is less than the LSTM model. The

training time required to train the RNN model for a lag value of 18 is 46 minutes.

The training time required to train the CNN model for a lag value of 18 is 42 min-

utes. The training time required to train the LSTM model for a lag value of 27 is

84 minutes. The recurrent learning model uses the BPTT algorithm, which runs

backpropagation for each lag value. Therefore it increases the time complexity of
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the recurrent learning model. The LSTM-LSTM and CNN-LSTM are the slowest

models to train. The training time required by the LSTM-LSTM model is 159.7

minutes, and for the CNN-LSTM model, it is 108.7 minutes. This forms a trade-

off between training time and prediction accuracy. LSTM-LSTM being the most

accurate model is the slowest model to train.

Figure 6.32: The Number of Epoch Required for the Particular Lag Value.

Figure 6.33: Training Time Required for the Each Lag Value.

The number of parameters in a model is the sum of parameters of all layers.

The parameters on each layer depend upon the input feature vector and output

feature vector. The number of parameters is O(k × n2), where k is the constant

which is different for the RNN, LSTM, and CNN.
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In the recurrent learning model for each layer, there are two matrices W and

U and one bias vector b. The m is input vector size and n is output vector size.

The size of W is m× n which shows the relationship between input and present

cell state, and the size of U is n× n which shows the relation between previous

cell state and current cell state. The size of bias vector b is n. The LSTM uses four

gates, and therefore for the LSTM value of k is four and for the RNN is one.

For CNN, the constant value depends upon the size of the filter. If size of filter

is k× k, the number of parameters are O(k× k× n2).

Table 6.16 shows the training time and the number of parameters required by

the models to predict traffic speed and flow for a 30-minute prediction horizon

for Rcollector road type.

Table 6.16: Training Time and Number of Parameters in Models.

RNN CNN LSTM LSTM-LSTM CNN-LSTM

Training time in

minute

46 42 84.6 159.7 108.7

Number of pa-

rameters in mil-

lion

0.8 1.7 1.4 2.2 2.8

We also discuss the impact of other environmental variables such as snowfall

on traffic stream variables prediction in Appendix F.

6.4 Discussion

The results show that with the inclusion of rainfall data prediction accuracy of the

model improves. The result reinforces the fact that the LSTM-LSTM model learns

the long-term spatiotemporal dependency between rain and traffic data for a large

network and longer temporal dependency between traffic data. The LSTM-LSTM

model shows the trade-off between complexities and prediction accuracy. It is the

best model in terms of prediction accuracy but at the same time requires longer

training time and a large number of parameters. For the large road network of
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Table 6.17: Prediction Performance Comparison of LSTM-LSTM model and Existing
Models.

Weather Condition Prediction Horizon in Minutes Prediction Accuracy
Normal Weather [5, 20, 54] 5 to 15 minutes 92-96%

30 to 60 minutes 78-82%
Rainy Weather [26, 27] 5 minutes 96%

10 to 30 minutes 81-87%
LSTM-LSTM model 5 to 15 minutes 97-98%

30 to 60 minutes 92-85%

road type Rcollector and prolonged heavy rainfall scenario, the LSTM-LSTM model

surpasses all the other models in learning the spatial and temporal features from

the rain and traffic data. For the prediction horizons less than 30 minutes, the

prediction error of the LSTM-LSTM model is ≤ 10%. For the prediction horizons

greater than 30 minutes the prediction error is≤ 15%. Compared with the existing

research in traffic stream variables prediction during rainfall for shorter predic-

tion horizon (≤ 15-minute) the average error improvement of LSTM-LSTM over

existing work is 10% and for larger prediction horizon (≥ 45-minute) it is 30%.

The results also show that the LSTM-LSTM model is robust, with small changes

in threshold values there is no significant change in model performance.

In the majority of the literature, [5, 20, 54] the prediction accuracy≥ 90% is ob-

served for 15 to 20-minute prediction horizon. The prediction accuracy ≥ 80% is

observed for a 45 to 60-minute prediction horizon. Our experimental results show

the prediction accuracy of the LSTM-LSTM model for the worst case is ≥ 97% to

85% for 15-minute to 60-minute prediction horizon. The LSTM-LSTM model per-

forms best because other models update their current state and can’t hold more

prolonged dependency. With the use of a proper gating mechanism, the LSTM-

LSTM model holds a more prolonged dependency.

As per the U.S. Department of Transportation [106], the traffic flow predic-

tion error up to 10-18% reduces the severe congestion (unstable traffic regime) by

5-9%. The ATIS developed by M. Chaturvedi and S. Srivastava [107], where vehi-

cles get real-time traffic information and based on this information the travel time

decision are made. With an ATIS penetration rate of 40-50%, for the traffic speed

estimation error of 10-15%, the trip duration reduces more than 40%. R. Anil et
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al. [108] developed the ATIS for emergency vehicles (ambulance). As per their

observation, the traffic speed estimation error of 3-10% provides accurate travel

time estimation to the emergency vehicles, based on the analysis of ground truth

and synthetic data. A Bisht et al. [109] develop a local adaptive light system for

ATMS application. As per their observation, the traffic flow error up to 10-15% is

acceptable without degrading the network performance. Our LSTM-LSTM model

gives the error between 2-15% for a 5 to 60 minutes prediction horizon. Therefore,

the ITS application can plug the LSTM-LSTM model for traffic prediction during

adverse weather conditions. The lower prediction error achieved by the LSTM-

LSTM model makes it suitable for ITS applications used by normal and emer-

gency vehicle users. The experimental results are shown for the rainfall data, a

similar model can be used with other environmental data.

145



CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

Adverse weather conditions such as rainfall, snowfall, and fog significantly af-

fect the traffic stream variables of the road segment. The short-term traffic stream

variables prediction during adverse weather conditions is needed for effective ITS

applications such as route guidance and traffic management-related applications.

We adopted multiple deep learning models because of their underlying architec-

ture to extract the spatiotemporal features from the input data. The CNN model

is known for finding the correlation between the neighboring pixels. The recur-

rent learning models, RNN and LSTM, specifically designed for sequence learn-

ing problems, are used to extract the spatiotemporal features from the historical

and current traffic and weather data. The traffic condition on the road segment is

affected by traffic and weather conditions of other connected roads and the pre-

vious traffic conditions of its own. We designed the hybrid deep learning models

CNN-LSTM and LSTM-LSTM, where the former model extracts the spatiotempo-

ral features and the latter model uses these features as memory. Based on memory

and temporal input, the traffic prediction is performed. During prolonged rain-

fall, the rainfall impact on distant roads affects the traffic condition on the target

road at a much later time instance. The hybrid models are specifically designed

to extract the longer spatiotemporal dependencies.

Traffic stream variables prediction during adverse weather conditions should

consider the spatial and the temporal significance of the weather conditions. The

impact of weather conditions on other road segments is important to capture the
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waterlogging and water flow paths. Similarly, the extended weather sequence

would capture the impact of prolonged weather conditions.

We proposed the soft spatial and temporal threshold mechanism to capture the

spatial and prolonged impact of weather conditions. The soft spatial threshold

mechanism considers the time-series weather data from all the stations that are

threshold distance apart and the weather reading from the other weather stations

that fall out of the threshold range through distance-based weighted average. The

soft temporal threshold mechanism considers the moving weighted average of the

extended weather readings.

Weather data is less granular than the traffic data; therefore, for accurate traffic

forecasting, missing weather data can’t be ignored. We used the spatial interpo-

lation method such as the Theissen polygon, inverse distance weighted method,

and linear regression method to fill out the missing weather readings. The linear

regression method is preferred over other methods because it predicts the inter-

polated values from the given data without any external tuning.

The deep learning models require a large amount of data to extract the hidden

features. The majority of road segments depend upon the alternate traffic data

source because of the high maintenance and deployment cost of the ITS infras-

tructure. The alternate source of traffic data gives sparse and incomplete traffic

information. Therefore, to overcome data sparsity, we proposed the mechanism

to generate realistic synthetic traffic data. We studied the impact of rainfall on the

traffic stream variables of different roads such as arterial, sub-arterial, and collec-

tor. The traffic and the rainfall data of different types of roads are analyzed to

design the empirical model. The empirical model computes traffic speed using

the friction, rainfall, and road-type parameters. These parameters are estimated

using the ground truth data under diverse traffic and weather conditions.

To generate the synthetic data under a realistic simulation setting, we used the

SUMO traffic simulator. SUMO car-following models don’t consider the weather

parameters for estimating the traffic speed of the vehicle. To overcome this limi-

tation, the Krauss car-following model in SUMO is upgraded to use the friction,

rainfall, and road-type parameters to compute the vehicle speed during rainfall.

147



We performed various experiments to observe the prediction performance of

the deep learning models. We performed the experiment to test whether the traf-

fic prediction accuracy of the deep learning model improves with the inclusion of

weather data or not. We used the RNN and LSTM models for this experiment.

The traffic and the rainfall data of San Diego are used to test the model perfor-

mance. Results show that traffic speed and flow prediction of the model trained

with traffic and rainfall data is more accurate than the model trained without rain-

fall data. The average prediction improvement of LSTM and RNN trained with

rainfall data is 10% compared to the LSTM and RNN when trained without rain-

fall data for a shorter prediction horizon (≤ 30 minutes). For a higher prediction

horizon (> 30 minutes and≤ 1 hour), the prediction error improvement of models

when trained with rainfall data is approximately 30% compared to models when

trained without rainfall data. We observe that due to error accumulation, as the

prediction horizon increases, prediction error also increases.

We experiment with different types of roads, I-5, I-5D, and SR-75 road segments.

We observe that when trained without rainfall data, the prediction error are high

for narrow and low elevation roads (SR-75) as well as for the road passing through

the densely populated area (I-5D) as compared to the broad, high elevation road

passing through the countryside area (I-5). Therefore apart from rainfall, other

factors like drainage system, soil absorption, waterlogging, road width, densely

populated area, etc., also play an important role in traffic stream variables pre-

diction. Our deep learning model learns these additional features from the input

traffic and rainfall data.

We compare the prediction performance of recurrent learning models with the

other deep learning models (SAE, BPNN, DBN) during adverse weather condi-

tions. For a prediction horizon greater than 15 minutes, LSTM shows approxi-

mately 15% error improvement over other models. The LSTM model holds long

spatiotemporal dependency due to its gating mechanism, which works as a mem-

ory component.

We compare the LSTM and RNN model’s performance with the existing mod-

els to predict the traffic stream variables during adverse weather conditions. The
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existing model is trained on traffic data which is either private or complete data

information is not shared. Compared with the reported results, LSTM considers

spatiotemporal traffic and weather input, show an average error improvement of

2-9%.

We perform the experiment to test the quality of the synthetic traffic data. The

synthetic data generated using simulations are compared with the ground truth

data for all roads (arterial, sub-arterial, and collector road) under various traffic

and rainfall conditions to validate the empirical model and simulation setup. We

calibrate the real traffic flow data during rainfall to generate synthetic data using

the proposed empirical model. On the arterial road, traffic speed decrease by 1 -

13%, for the low to heavy rainfall. On the sub-arterial road, the reduction of 2 -

16% in the traffic speed for the low to heavy rainfall is observed. These numbers

are similar to the literature studies. On the collector road, we observe the traffic

speed reduction of 2 - 20% for the low to heavy rainfall. The availability of real-

istic synthetic data enables further studies based on data-driven models. Most of

the traffic data from ITS infrastructure is not open for free access. Therefore, us-

ing fine-grained synthetic data, the comparison study between different learning

models will be possible.

To validate the deep learning models, we use the synthetic traffic data gen-

erated by SUMO using an empirical model for various road types (arterial, sub-

arterial, and collector) and different road network types (single, small and large).

The traffic data is generated for a prolonged heavy rainfall scenario (100 mm in

6 hours) for each road network type. We test the performance of RNN, CNN,

LSTM, LSTM-LSTM, and CNN-LSTM. We observe that for all the road segments

and every road network, the inclusion of rainfall variable improves the models’

traffic prediction accuracy. The prolonged rainfall significantly affects the traffic

stream variables, both traffic speed and flow.

For large road networks, the performance of LSTM-LSTM is better than the

other models for road type sub-arterial and collector. For the sub-arterial road

segment, for a larger prediction horizon (≥ 45 minutes), the average error im-

provement of LSTM-LSTM is 25% compared to non-hybrid models and 10% over
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CNN-LSTM. For collector road, the average error improvement of LSTM-LSTM is

20% compared to CNN-LSTM. RNN suffers from vanishing gradient problem,

and the CNN model performance is limited by their localized receptive field.

For prolonged rainfall and large road network scenario, the LSTM-LSTM model

shows significant improvement in handling longer dependencies. In the LSTM-

LSTM model, the former LSTM model learns the spatiotemporal dependency be-

tween weather and traffic data. It extracts both short and long-term dependencies.

The latter LSTM model uses the spatiotemporal features extracted by the former

LSTM model as memory components. It learns weather and traffic dependency

on the target road segment based on spatiotemporal features and traffic data from

the target road segment.

One of the main advantages of realistic synthetic data is that we can compare

different deep learning models’ performance on a similar data set. We compare

the existing models with our hybrid models for large road networks and collector

road segments. In literature, either the temporal traffic and weather data is used

for traffic prediction, or recent rainfall value is used with spatiotemporal traffic

data. For smaller prediction horizons, the average error improvement of LSTM-

LSTM is 15%. For a larger prediction horizon, the average error improvement is

35% compared to the existing models.

We observe that the performance of deep learning models improves with the

inclusion of spatial and prolonged information of weather variables. Also, the

spatial interpolation technique such as linear regression provides a good approx-

imation of the measured value for smaller prediction horizons, but for larger pre-

diction horizons due to error accumulation, the difference between the predicted

value and measured value increases.

We perform various experiments to validate the robustness of the model. We

change the threshold values and examine the performance of the hybrid models.

We observe that no significant difference in model performance is observed with

a small change in the threshold values.

To learn about the model’s complexities, we compare the model’s training time

and the number of parameters. The training time is dependent on the lag value
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and the number of the epoch. LSTM-LSTM model holds the longer dependency

and, therefore, required a larger lag value compared to other models. It uses the

BPTT algorithm, which runs backpropagation for each lag value. Therefore, the

training time of the LSTM-LSTM model is higher compared to the other mod-

els. Similarly, the number of parameters learned is higher for the hybrid models

compared to the non-hybrid models. This forms a trade-off; the hybrid models

are accurate but require more training time and parameters compared to the non-

hybrid models.

The performance of LSTM-LSTM shows significant improvement over exist-

ing models, specifically during the worst-case scenario (large road network and

prolonged heavy rainfall scenario). The literature suggests that ATIS and AMTS

applications work accurately for traffic speed and flow error of 10 to 15%. Our

LSTM-LSTM model shows an error of less than 15% for a 60-minute prediction

horizon under the worst-case scenario. Therefore, this model can be easily plugin

for traffic stream variables prediction during adverse weather conditions.

We have focused on rainfall conditions but a similar method can be used to

predict the traffic stream variables in the presence of other environmental vari-

ables also.

7.2 Future Work

The empirical model is developed to generate realistic synthetic traffic data dur-

ing adverse weather conditions. As future work, a more generic empirical model

can be built and evaluated. The empirical model should consider other weather-

related parameters such as visibility, sleet, etc. The availability of such a standard

data-set may enable the evaluation of various learning algorithms on common

ground and open up doors for research in traffic variables prediction using a cost-

effective source of traffic data. Development of the data set is part of future re-

search.

It is assumed that the simulation model considers homogeneous vehicles (car),

and all vehicles follow lane discipline. As future work, we aim to generate traffic
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data for heterogeneous vehicles environment where vehicles may follow lane less

discipline.

We studied alternate traffic data sources such as taxi GPS in the absence of

traffic data from the ITS infrastructure. Social media are increasingly being used

as an information source. The user shares information related to waterlogging,

traffic jams, snowfall, etc. As future work, social media information with other

traffic data sources such as taxi GPS and cellular data gives more insight into the

actual traffic during adverse weather conditions.

We examined the impact of weather conditions on traffic stream variables pre-

diction. As future work, we aim to examine the impact of other non-recurrent

events such as road accidents, social events, etc., on traffic stream variables pre-

diction.

The shortcoming of the multistep prediction model is with an increase in pre-

diction horizon, the error increases due to error accumulation. The model learns

based on some loss function. Therefore, there is a need for proper loss function

for multistep output. As future work, we aim to use the multistep loss function

such that the problem of an increase in prediction error due to error accumulation

can be resolved.

As future work, we extend our designed models for other environmental data

such as snowfall, fog, etc. Depending upon the weather condition at a particular

geographical location, the prediction result will be helpful for various stakehold-

ers worldwide.
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CHAPTER 8

List of Publications

• Journal

1. Nigam, Archana, and Sanjay Srivastava. "Weather impact on macro-

scopic traffic stream variables prediction using recurrent learning ap-

proach." Journal of Intelligent Transportation Systems (2021): 1-17. Tay-

lor & Francis.

This publication is based on the work discussed in section 5.2.2 and 6.1.

• Conferences

1. Archana Nigam and Sanjay Srivastava, "Macroscopic Traffic Stream

Variable Prediction with Weather Impact using Recurrent Learning Ap-

proach." 2020 IEEE-HYDCON, pp. 1–6, Sept 2020.

This publication is based on the work discussed in section 5.2.2.

2. Archana Nigam and Sanjay Srivastava, "Macroscopic Traffic Stream

Variables Prediction with Weather Impact Using Hybrid CNN-LSTM

model." Adjunct Proceedings of the 2021 International Conference on

Distributed Computing and Networking (ICDCN), pp. 1–6, Jan 2021.

This publication is based on the work discussed in section 4.2.3.2 and

5.2.3.1.

3. Archana Nigam, Manish Chaturvedi, and Sanjay Srivastava, "Impact

of Rainfall and Waterlogging on Traffic Stream Variables in Developing

Countries." 2021 International Conference on COMmunication Systems

NETworkS (COMSNETS), pp. 728–735, Jan 2021.

This publication is based on the work discussed in section 4.2.2 and 6.2.
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Appendix A SUMO Sample Code

The parameters related to road-type, friction, average rainfall value, and time are

passed to the car following model through the Traffic Control Interface (TraCI).

The below program shows the sample code of TraCI, the function run_test is writ-

ten in Python. The value corresponds to the particular parameter is set (using

setParameter) which will be further retrieved by the car-following model.

1 def run_test():

2 while traci.simulation.getMinExpectedNumber() >0:

3 traci.simulationStep()

4 traci.lane.setParameter("Lane1_name", "friction", fric_val)

5 traci.lane.setParameter("Lane1_name", "alpha", alpha_val )

6 traci.lane.setParameter("Lane1_name", "road", road_val )

7 traci.close()

8 sys.stdout.flush()

Once the parameters are set, these parameters are retrieved by the Krauss car-

following model (using getParameter) to derive vehicle speed. The below sample

code shows the function to calculate speed based on parameters.

1 // save old v for optional acceleration computation

2 const double oldV = veh->getSpeed();

3 /*below statements define the parameters and get the values passed

4 through TraCI. If value is not defined than for

5 backward compatibility values are provided.*/

6 double fric = StringUtils::toDouble(veh->getLane()->

7 getParameter("friction", "1.0"));

8 double alpha = StringUtils::toDouble(veh->getLane()->
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9 getParameter("alpha", "0.0"));

10 double road = StringUtils::toDouble(veh->getLane()->

11 getParameter("road", "0.1"));

12 double time = StringUtils::toDouble(veh->getLane()->

13 getParameter("time", "0"));

14 double factor = -0.3491 * fric * fric + 0.8922 *

15 fric + 0.4493; //2nd degree polyfit

16 double u_w;

17 if(time == 0.000000 && road == 0.100000)

18 u_w = (43.3548 + 26.9938 * fric - 0.5541 * alpha ) * .27778;

19 else if(time == 0.000000 && road == 0.900000)

20 {

21 u_w = ( -39.5716 * alpha + 56.613 * road + 9.2185 * fric ) * .27778; }

22 else if(time == 1.000000 && road == 0.900000)

23 {

24 u_w = ( -33.608 * alpha + 52.158 * road + 14.832 * fric) * .27778;

25 //printf("speed t=1 %f ",u_w);

26 }

27 else if(time == 2.000000 && road == 0.900000)

28 {

29 u_w = (-39.278 * alpha + 58.224 * road + 5.8123 * fric) * .27778;

30 }

31 double acc=(u_w-oldV)/veh->getActionStepLengthSecs();

32 double vMax = MIN3(oldV + ACCEL2SPEED(acc),

33 maxNextSpeed(oldV, veh), vStop);

167



Appendix B Vanishing Gradient Problem and Solu-

tion

After the RNN outputs the prediction vector Ŷi
tg

, the model computes the predic-

tion error Etg and uses the BPTT algorithm to compute the gradient.

∂Etg

∂W

For the simplification we called Etg as Et and Ŷi
tg

as Yt. The gradient is used to

update the model parameters, and η is the learning rate. The below equation is

used to update the parameters.

W ←W − η
∂Et

∂W

and the learning process continues using the gradient descent (GD) algorithm.

After t time stamps, gradient is computed as,

∂Et

∂W
=

∂Et

∂Yt

∂Yt

∂Ct

∂Ct

∂Ct−1
. . .

∂C2

∂C1

∂C1

∂W

∂Et

∂W
=

∂Et

∂Yt

∂Yt

∂Ct
(

t

∏
k=2

∂Ck
∂Ck−1

)
∂C1

∂W
(B.1)

Notice that since W = [wc, wx], Ck can be written as:

Ck = tanh(wcCk−1 + wx(Xk, Wk))
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Compute the derivative of Ck and get:

∂Ck
∂Ck−1

= tanh′(wcCk−1 + wx(Xk, Wk)).
d

dck−1
[wcCk−1 + wx(Xk, Wk)]

= tanh′(wcCk−1 + wx(Xk, Wk)).wc (B.2)

Plug equation B.2 into B.1

∂Et

∂W
=

∂Et

∂Yt

∂Yt

∂Ct
(

t

∏
k=2

tanh′(wcCk−1 + wx(Xk, Wk)).wc)
∂C1

∂W

The last expression tends to vanish when t is large, this is due to the derivative of

the activation function tanh which is smaller or equal to 1.

We have:

k

∏
t=2

tanh′(wcCt−1 + wx(Xt, Wt)).wc → 0

so,

∂Ek
∂w
→ 0

So the network’s weights update will be:

w← w− η
∂Et

∂w
≈ w

And no significant learning will be done.

This is called the vanishing gradient problem, due to this problem the RNN is not

capable of holding long-term dependencies. This shortcoming of RNN is solved

by the LSTM model.

The equation corresponds to cell state gate in LSTM is represented as,

Ck = Ck−1⊗σ(w f .[hk−1(Xk, Wk)])⊕ tanh(wc.[hk−1(Xk, Wk)])⊗σ(wc.[hk−1(Xk, Wk)])

Ct = Ck−1 ⊗ fk ⊕ C̃k ⊗ ik
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∂Ck
∂Ck−1

= σ(w f .[hk−1(Xk, Wk)])+
d

dck−1
(tanh(wc.[hk−1(Xk, Wk)])⊗σ(wc.[hk−1(Xk, Wk)]))

(B.3)

Plug equation B.3 into B.1,
∂Ck

∂Ck−1
≈ fk

∂Et

∂W
=

∂Et

∂Yt

∂Yt

∂Ct
(

t

∏
k=2

fk)
∂C1

∂W

fk ≈ 1

Hence gradient will not vanish, forget gate output will close to zero for the cases

where long term dependencies are not important under such cases gradient will

vanish but the vanishing of such gradients is allowed in the model.
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Appendix C Sample Code of Traffic Stream Variables

Prediction Using Deep Learning Models

The data pre-processing makes the spatiotemporal data. The spatiotemporal data is di-

vided into training and validation or test data. For RNN, CNN, and LSTM Xtrain and

Ytrain are input and output training data. XVad and YVad are input and output valida-

tion data. For LSTM-LSTM and CNN-LSTM, Xtrain1 and Xtrain2 are the spatiotemporal

and temporal input training data, and Ytrain2 is the output training data. XVad1 and

XVad2 are the spatiotemporal and temporal input validation data, and YVad2 is the out-

put validation data. Adam is the optimizer used in all the deep learning models with

MAPE loss function. ep is the number of epoch required by the model to converge.

C.1 Sample RNN code

The sample code for single-layer RNN is given below. node_rnn is the number of units in

the RNN layer, n_input is the size of input which is defined by the length of the sequence,

and n_dim is the number of attributes in the data. Similarly, RNN with multiple layers

will be created.

1 from keras.models import Sequential

2 from keras.layers import Dense

3 from keras.models import Model

4 from keras.layers import Input

5 from keras.layers import SimpleRNN

6 model = Sequential()

7 model.add(SimpleRNN(node_rnn, input_shape=(n_input,n_dim)))

8 model.add(Dense(n_dim, activation='linear'))

9 model.compile(optimizer='adam', loss='mape')
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10 history = model.fit(Xtrain, Ytrain, validation_data

11 = (XVad, YVad), epoch=ep, verbose=0)

C.2 Sample CNN code

The sample code for single layer 2 dimensional CNN with flatten and dense layer is given

below. n_kernel is the number of filters in the CNN layer, s_kernel is the size of the filter,

n_input is the size of input which is defined by the length of the sequence, n_dim is the

number of attributes in the data. In a similar manner, CNN with multiple layers will be

created.

1 from keras.models import Sequential

2 from keras.layers import Dense, Conv2D, Flatten

3 input_shape = (n_input,n_dim, 1)

4 model = Sequential()

5 model.add(Conv2D(n_kernel, kernel_size=(s_kernel,s_kernel),

6 input_shape=input_shape))

7 model.add(Flatten())

8 model.add(Dense(n_dim))

9 model.compile(optimizer='adam', loss='mape')

10 history = model.fit(Xtrain, Ytrain, validation_data

11 = (XVad, YVad), epoch=ep, verbose=0)

C.3 Sample LSTM code

The sample code for single-layer LSTM is given below. node_lstm is the number of units

in the LSTM layer, n_input is the size of input which is defined by the length of the se-

quence, and n_dim is the number of attributes in the data. Similalry, LSTM with multiple

layers will be created.

1 from keras.models import Sequential

2 from keras.layers import Dense

3 from keras.models import Model

4 from keras.layers import Input
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5 from keras.layers import LSTM

6 model = Sequential()

7 model.add(LSTM(node_lstm, input_shape=(n_input,n_dim)))

8 model.add(Dense(n_dim, activation='linear'))

9 model.compile(optimizer='adam', loss='mape')

10 history = model.fit(Xtrain, Ytrain, validation_data

11 = (XVad, YVad), epoch=ep, verbose=0)

C.4 Sample LSTM-LSTM Code

The former LSTM model learns the feature vector and stores it as cell state to the latter

LSTM model. The latter LSTM model learns the features from input data and current cell

state. Here, LSTM1_n_input and LSTM2_n_input is the size of the input in the former

and latter LSTM model, and LSTM1_n_units and LSTM2_n_units define the number of

nodes in a layer. n_out is the number of units in the dense layer of the latter LSTM model.

This code uses a single layer for each LSTM model. Depending upon hyperparameters

LSTM-LSTM with multiple layers can be defined.

1 from keras.layers import Dense

2 from keras.models import Model

3 from keras.layers import Input

4 from keras.layers import LSTM

5 from keras.layers import Dense

6 def define_models(LSTM1_n_input, LSTM2_n_input, LSTM1_n_units, LSTM2_n_units):

7 # define training LSTM-LSTM

8 LSTM1_inputs = Input(shape=(None, LSTM1_n_input))

9 LSTM1 = LSTM(LSTM1_n_units, return_state=True)

10 LSTM1_outputs, state_h, state_c = LSTM1(LSTM1_inputs)

11 LSTM1_states = [state_h, state_c]

12 print(state_h.shape)

13 # define training LSTM2

14 LSTM2_inputs = Input(shape=( None, LSTM2_n_input))

15 LSTM2_lstm = LSTM(LSTM2_n_units, return_sequences=True,

16 return_state=True)
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17 LSTM2_output, _, _ = LSTM2_lstm(LSTM2_inputs,

18 initial_state = LSTM1_states)

19 LSTM2_outputs = Dense(n_out, activation='linear')(LSTM2_output)

20 model = Model([LSTM1_inputs, LSTM2_inputs], LSTM2_outputs)

21 return model

22 model = define_models(LSTM1_n_input, LSTM2_n_input,

23 LSTM1_n_units, LSTM2_n_units)

24 model.compile(optimizer='adam', loss='mape')

25 history = model.fit(([Xtrain1, Xtrain2], Ytrain2),

26 validation_data=(([XVad1, XVad2], YVad2), epoch=ep, verbose=0)

C.5 Sample CNN-LSTM code

The former CNN model wrapped in timedistributed provides the sequential feature vec-

tor to the LSTM model. The LSTM model uses this feature vector as a cell state. The

LSTM model predicts the output based on cell states and temporal input. CNN_n_input

and LSTM_n_input is the size of the input in CNN and LSTM input and n_out is the

number of units in the dense layer of CNN. CNN_unit is the number of filters and ker-

nel_size_cnn is the size of the filter. This code uses a single layer of CNN and LSTM

model and similarly depends upon hyperparameters CNN-LSTM with multiple layers

can be defined.

1 from keras.layers import Input, Reshape

2 from numpy import *

3 from keras.models import Sequential

4 from keras.layers import Dense

5 from keras.models import Model

6 from keras.layers import Input

7 from keras.layers import LSTM

8 from keras.layers import Conv2D

9 from keras.layers import TimeDistributed

10 def define_models(CNN_n_input, LSTM_n_input, n_out, LSTM_unit):

11 CNN_inputs = Input(shape=((None, CNN_n_input,1))

12 x1 = Conv2D(CNN_unit, kernel_size=(kernel_size_cnn,kernel_size_cnn)
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13 ,padding='same')(CNN_inputs)

14 time_x1 = TimeDistributed()(x1)

15 flat= Flatten()(time_x1)

16 time_flat = TimeDistributed()(flat)

17 outputscnn=Dense(n_out, name='predictions')(time_flat)

18 LSTM_inputs = Input(shape=(none,LSTM_n_input))

19 x = LSTM(LSTM_unit, return_sequences=True)(LSTM_inputs,

20 initial_state=[outputscnn])

21 LSTM_outputs = Dense(LSTM_output, name='predictions_op')(x)

22 model = Model([CNN_inputs,LSTM_inputs],LSTM_outputs)

23 return model

24 model = define_models(CNN_n_input, LSTM_n_input, n_out, LSTM_unit)

25 model.compile(optimizer='adam', loss='mape')

26 history = model.fit(([Xtrain1, Xtrain2], Ytrain2),

27 validation_data=(([XVad1, XVad2], YVad2), epoch=ep, verbose=0)
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Appendix D Experimental Setup and Result Analysis

for Single and Small Road Network

D.1 Experimental Setup and Result Analysis for Sin-

gle Road

We generate the traffic data for a single road considering prolonged rainfall (100 mm in

6 hours) (S1). The traffic data is generated separately for arterial (Rarterial), sub-arterial

(Rsub−arterial) and collector road (Rcollector). We examine the performance of deep learning

models for a single road. There is no dependency on other road segments. The traffic and

weather data are available as point data.

D.1.1 Experimental Setup

The number of parameters is dependent on optimal structure, which is obtained by per-

forming hyperparameters tuning. Table [D.1 - D.5] shows the most useful set of hyperpa-

rameters for the RNN, CNN, CNN-LSTM, LSTM and LSTM-LSTM model, respectively.
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Table D.1: Hyperparameters for the RNN Model for Single Road Network.

Road Type PH p L NPL E γ

Rarterial 15 3 1 [10] 10 0
30 6 1 [15] 12 0
45 9 1 [20] 15 0.1
60 12 1 [30] 18 0.1

Rsub−arterial 15 5 1 [12] 10 0
30 7 1 [18] 12 0.1
45 10 1 [27] 15 0.1
60 12 1 [35] 20 0.2

Rcollector 15 6 1 [18] 12 0.1
30 9 1 [27] 15 0.1
45 12 1 [30] 18 0.2
60 15 1 [40] 22 0.2

Table D.2: Hyperparameters for the CNN Model for Single Road Network.

Road Type PH p L NPL E γ

Rarterial 15 3 1 [(16,3×3)] 8 0
30 6 1 [(16,3×3)] 10 0
45 9 1 [(32,3×3)] 12 0.1
60 12 1 [(32,3×3)] 15 0.1

Rsub−arterial 15 3 1 [(16,3×3)] 10 0
30 6 1 [(16,3×3)] 15 0.1
45 9 1 [(32,3×3)] 18 0.1
60 12 1 [(32,3×3)] 22 0.1

Rcollector 15 5 1 [(16,3×3)] 12 0.1
30 7 1 [(32,3×3)] 18 0.1
45 10 1 [(32,3×3)] 20 0.2
60 13 1 [(64,3×3)] 24 0.2

Table D.3: Hyperparameters for the LSTM Model for Single Road Network.

Road Type PH p L NPL E γ

Rarterial 15 3 1 [15] 12 0
30 7 1 [20] 15 0
45 10 1 [30] 18 0.1
60 12 1 [40] 20 0.1

Rsub−arterial 15 5 1 [15] 12 0
30 7 1 [30] 15 0.1
45 10 1 [40] 18 0.1
60 15 1 [50] 20 0.2

Rcollector 15 5 1 [15] 12 0.1
30 7 1 [30] 15 0.1
45 10 1 [50] 18 0.2
60 15 1 [60] 20 0.2
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Table D.4: Hyperparameters for the CNN-LSTM Model for Single Road Network.

Road Type PH p L NPL E γ

Rarterial 15 3-3 1-1 16,3×3-10 12 0

30 6-5 1-1 [(16,3×3)-12] 15 0

45 9-6 1-1 [(32,3×3)-15] 18 0.1

60 12-9 1-1 [(32,3×3)-20] 20 0.1

Rsub−arterial 15 3-3 1-1 16,3×3-10 15 0

30 7-5 1-1 [((16,3×3)]-12 18 0.1

45 10-6 1-1 [(32,3×3)-18] 22 0.1

60 12-9 31-1 [(32,3×3)-24] 25 0.1

Rcollector 15 3-3 1-1 16,3×3-12 15 0.1

30 7-5 1-1 [(32,3×3)-18 18 0.1

45 10-7 1-1 [(32,3×3)-30] 22 0.2

60 13-9 1-1 [(64,3×3)-40] 25 0.2

Table D.5: Hyperparameters for the LSTM-LSTM Model for Single Road Network.

Road Type PH p L NPL E γ

Rarterial 15 3-3 1-1 [15-10] 12 0

30 6-5 1-1 [20-12] 15 0

45 9-6 1-1 [(30-15] 18 0.1

60 12-9 1-1 [40-20] 20 0.1

Rsub−arterial 15 3-3 1-1 [15-10] 15 0

30 7-5 1-1 [30-12] 18 0.1

45 10-6 1-1 [(40-18] 22 0.1

60 12-9 1-1 [50-24] 25 0.1

Rcollector 15 3-3 1-1 [15-12] 15 0.1

30 7-5 1-1 [30-18] 18 0.1

45 10-7 1-1 [50-30] 22 0.2

60 13-9 1-1 [60-40] 25 0.2
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D.1.2 Result Analysis for Single Road

We test the model’s performance for the point traffic and weather data. We are consider-

ing a single road; therefore, there is no spatiotemporal dependency. For scenario S1, we

only consider the prolonged heavy rainfall (≥ 100 mm in 6 hr) impact on traffic stream

variables. Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE)

performance metric is used to compare the model’s performance.

Figure D.1-D.3 shows the traffic speed prediction performance of RNN, CNN, LSTM,

LSTM-LSTM, and CNN-LSTM models for scenario S1 for Rarterial , Rsub−arterial , and Rcollector

road type.

Figure D.1: MAPE (top) and MAE (bottom) of Traffic Speed Prediction when
Model Trained Without Rainfall Data (left) and when Trained with Rainfall Data
(right), for Rarterial Road Type. Error Bar Shows the Standard Deviation.
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Figure D.2: MAPE (top) and MAE (bottom) of Traffic Speed Prediction when
Model Trained Without Rainfall Data (left) and when Trained with Rainfall Data
(right), for Rsub−arterial Road Type. Error Bar Shows the Standard Deviation.

Figure D.3: MAPE (top) and MAE (bottom) of Traffic Speed Prediction when
Model Trained Without Rainfall Data (left) and when Trained with Rainfall Data
(right), for Rcollector Road Type. Error Bar Shows the Standard Deviation.

When trained with rain data, the model’s traffic speed prediction improves compared

to the model’s traffic speed prediction when trained without rain data. For the 60-minute
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prediction horizon, the traffic speed prediction error of the LSTM-LSTM model when

trained without rainfall data and when trained with rainfall data is 5% and 2%, respec-

tively, for road type Rarterial . For similar prediction horizon and Rsub−arterial road type, the

prediction error of the LSTM-LSTM model when trained without rainfall data and when

trained with rainfall data is 6% and 3%, respectively. For the Rcollector road type, the predic-

tion error when trained only with traffic data and when trained with traffic and weather

data is 8% and 3%, respectively. Comparing all the models’ performance when trained

with rainfall data, no significant difference is observed for each road type. Considering

the 30-minute prediction horizon, for Rarterial road type, the traffic speed prediction error

of RNN is 6%, CNN is 4% LSTM is 1%, LSTM-LSTM is 1%, CNN-LSTM is 1%. For same

prediction horizon the prediction error of RNN is 7%, CNN is 4%, LSTM is 2%, LSTM-

LSTM is 1%, CNN-LSTM is 2%, for road type Rsub−arterial . The prediction error of RNN

is 7%, CNN is 4%, LSTM is 3%, LSTM-LSTM is 1%, CNN-LSTM is 2%, for Rcollector road

type. This is because it involves a single road, and both traffic and weather are point data,

which provides accurate information about the weather impact on the traffic stream vari-

ables. Therefore even a non-hybrid model can learn the dependency between the traffic

and weather data. With this observation regarding the single road network, we conclude

that the traffic stream variables prediction during rainfall improves with rainfall data in-

clusion. Since there is no dependency on other road segment’s traffic and weather data,

hybrid and non-hybrid model’s performance shows no significant difference.

D.2 Experimental Setup and Result Analysis for Small

Road Network

We generate the traffic data for small road networks, considering each road segment re-

ceives an average rainfall of 100 mm in 6 hours (scenario S2). The traffic data is generated

separately for arterial (Rarterial), sub-arterial (Rsub−arterial) and collector road (Rcollector). We

examine the performance of deep learning models for the small road network. The traf-

fic and weather conditions of other road segments affect the target road segment’s traffic

stream variables.
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D.2.1 Experimental Setup

Table [D.6-D.10] shows the most useful set of hyperparameters for the RNN, CNN, LSTM,

CNN-LSTM, and LSTM-LSTM model, respectively.

Table D.6: Hyperparameters for the RNN Model for Small Road Network.

Road Type PH p L NPL E γ ∆
Rarterial 15 6 1 [20] 12 0.1 3

30 9 1 [40] 15 0.1 3
45 12 2 [20,40] 16 0.3 3
60 16 2 [20,50] 18 0.3 3

Rsub−arterial 15 6 1 [30] 15 0.1 3
30 9 1 [45] 18 0.2 3
45 14 2 [30,50] 20 0.3 3
60 17 2 [20,60] 22 0.3 3

Rcollector 15 10 1 [30] 15 0.2 3
30 15 1 [50] 18 0.2 3
45 18 2 [40,50] 20 0.3 4
60 20 2 [40,60] 22 0.3 4

Table D.7: Hyperparameters for the CNN Model for Small Road Network.

Road Type PH p L NPL E γ ∆
Rarterial 15 5 1 [(16,3×3)] 10 0.1 3

30 8 1 [(32,3×3)] 12 0.1 3
45 10 1 [(32,3×3)] 15 0.3 3
60 14 2 [(32,3×3), (16, 3× 3)] 20 0.3 3

Rsub−arterial 15 6 1 [(16,3×3)] 12 0.1 3
30 9 1 [(32,3×3)] 14 0.2 3
45 12 2 [(28,3×3), (14, 3× 3)] 18 0.3 3
60 16 2 [(48,3×3), (16, 3× 3)] 22 0.3 3

Rcollector 15 7 1 [(32,3×3)] 15 0.2 3
30 9 1 [(48,3×3)] 18 0.2 3
45 15 2 [(32,3×3), (16, 3× 3)] 20 0.3 4
60 18 2 [(64,3×3), (32, 3× 3)] 22 0.3 4
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Table D.8: Hyperparameters for the LSTM Model for Small Road Network.

Road Type PH p L NPL E γ ∆

Rarterial 15 6 1 [20] 12 0.1 3

30 9 1 [30] 15 0.1 3

45 12 2 [20,50] 16 0.3 3

60 15 2 [30,60] 18 0.3 3

Rsub−arterial 15 8 1 [30] 14 0.1 3

30 10 1 [40] 16 0.2 3

45 14 2 [20,60] 18 0.3 4

60 17 2 [30,80] 21 0.3 4

Rcollector 15 10 1 [40] 15 0.2 3

30 12 1 [50] 18 0.2 4

45 17 2 [30,50] 20 0.3 5

60 20 2 [30,70] 24 0.3 5

Table D.9: Hyperparameters for the CNN-LSTM Model for Small Road Network.

Road Type PH p L NPL E γ ∆

Rarterial 15 6-3 1-1 [16,3×3-10] 12 0.1 3

30 8-5 1-1 [(16,3×3)-12] 15 0.1 3

45 10-7 1-1 [(32,3×3)-(16)] 20 0.3 3

60 12-7 1-1 [((32,3×3)]-[20] 25 0.3 3

Rsub−arterial 15 9-3 1-1 [16,3×3-14] 15 0.1 3

30 12-6 1-1 [(16,3×3)-15] 18 0.2 4

45 15-6 2-1 [(32,3×3),(16,3×3)-(20)] 25 0.3 4

60 18-9 2-1 [((32,3×3),(16,3×3)]-[30] 29 0.3 4

Rcollector 15 9-3 1-1 [16,3×3-16] 15 0.2 3

30 13-6 1-1 [(32,3×3)-20] 19 0.3 4

45 18-6 2-1 [(28,3×3),(12,3×3)-(30)] 25 0.3 4

60 20-9 2-1 [(32,3×3),(16,3×3)-(40)] 32 0.3 5
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Table D.10: Hyperparameters for the LSTM-LSTM Model for Small Road Network.

Road Type PH p L NPL E γ ∆

Rarterial 15 7-3 1-1 [20]-[10] 14 0.1 3

30 10-5 1-1 [40]-[20] 17 0.1 3

45 12-5 1-1 [60]-[27] 25 0.3 4

60 15-7 2-1 [20,40]-[30] 30 0.3 4

Rsub−arterial 15 9-3 1-1 [30]-[15] 15 0.1 3

30 12-5 1-1 [40]-[20] 18 0.2 4

45 15-5 2-1 [20,40]-[30] 27 0.3 4

60 18-7 2-1 [30,60]-[30] 30 0.3 5

Rcollector 15 9-3 1-1 [30]-[20] 18 0.2 4

30 13-5 1-1 [50]-[20] 22 0.2 4

45 17-6 2-1 [20,50]-[30] 29 0.3 5

60 22-8 2-1 [30,80]-[30] 35 0.3 5

D.2.2 Result Analysis for Small Road Network

Figure D.4-D.7 shows the traffic speed prediction error of RNN, CNN, LSTM, LSTM-

LSTM, and CNN-LSTM models for scenario S2 for road type Rarterial , Rsub−arterial , and

Rcollector.
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Figure D.4: MAPE (top) and MAE (bottom) of Traffic Speed Prediction when
Model Trained Without Rainfall Data (left) and when Trained with Rainfall Data
(right), for Scenario S2 and Rarterial Road Type. Error Bar Shows the Standard
Deviation.

In the scenario S2 for all road types, the models’ traffic speed prediction performance

when trained with rain data is more accurate than the models’ traffic speed prediction

performance when trained without rain data. For Rarterial road type, the prediction error

of the LSTM-LSTM model when trained without rainfall data is 18% and 4% when trained

with rainfall data for a 60-minute prediction horizon.

Figure D.4 shows the traffic speed prediction performance of the models for the small

road network of arterial road type, the model’s traffic speed prediction error when trained

with rainfall data is 31%, 14%, 11%, 4%, and 6% for RNN, CNN, LSTM, LSTM-LSTM, and

CNN-LSTM, respectively, for 60-minute prediction horizon. Figure D.5 shows the perfor-

mance of the models for traffic flow prediction for arterial road type. The RNN, CNN,

LSTM, LSTM-LSTM, and CNN-LSTM models’ traffic flow prediction error when trained

with rainfall data is 42%, 20%, 19%, 5%, and 8%, respectively. Considering the case when

model trained with rainfall data, for Rarterial type of road, there is no waterlogging and

water flow from the adjacent neighbors. For traffic flow prediction on Rarterial type road,

if there is heavy rainfall on adjacent roads, traffic flow on the target road is affected. For

traffic flow prediction, LSTM-LSTM and CNN-LSTM model performance show signif-

icant improvement over LSTM, CNN, and RNN model for the Rarterial road type. As
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dependency increases, the hybrid model performance is much better than the non-hybrid

model performance.

Figure D.5: MAPE (top) and MAE (bottom) of Traffic Flow Prediction when Model
Trained Without Rainfall Data (left) and when Trained with Rainfall Data (right),
for Scenario S2 and Rarterial Road Type. Error Bar Shows the Standard Deviation.

For road types Rsub−arterial and Rcollector, a significant difference between the model

performance when trained with and without rainfall data can be observed as shown in

figure D.6 and D.7.
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Figure D.6: MAPE (top) and MAE (bottom) of Traffic Speed Prediction when
Model Trained Without Rainfall Data (left) and when Trained with Rainfall Data
(right), for Scenario S2 and Rsub−arterial Road Type. Error Bar Shows the Standard
Deviation.

Figure D.7: MAPE (top) and MAE (bottom) of Traffic Speed Prediction when
Model Trained Without Rainfall Data (left) and when Trained with Rainfall Data
(right), for Scenario S2 and Rcollector Road Type. Error Bar Shows the Standard
Deviation.
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The traffic speed prediction error of the LSTM-LSTM model, when trained with and

without rainfall data for 60-minute prediction horizon is 8% and 29%, respectively, for

road type Rsub−arterial . For the similar prediction horizon and road type Rcollector, the traffic

speed performance (prediction error) of the LSTM-LSTM model when trained with and

without rainfall data is 11% and 46%, respectively. The road type Rsub−arterial and Rcollector

depicts sub-arterial and collector roads’ behavior under adverse weather conditions. For

road type Rsub−arterial and Rcollector, we can observe that the target road traffic variables get

affected due to rainfall at adjacent roads as water flows from one road segment to another.

Similarly, waterlogging makes the situation worse. Therefore for road type Rsub−arterial

and Rcollector we can observe from the results that the performance of LSTM-LSTM and

CNN-LSTM shows significant improvement over LSTM, CNN, and RNN models. For

the 60-minute prediction horizon, when the model trained with rainfall data, the traffic

speed prediction error of RNN is 40%, CNN is 26%, LSTM is 21%, LSTM-LSTM is 8%, and

CNN-LSTM is 11%, for road type Rsub−arterial . For the similar prediction horizon and road

type Rcollector, the traffic speed prediction error of RNN is 48%, CNN is 34%, LSTM is 30%,

LSTM-LSTM is 11%, and CNN-LSTM is 17%. From the results, we can observe that the

prediction error increases for a larger prediction horizon because of error accumulation.

In the case of non-hybrid models, this will reach a higher error for the larger prediction

horizon than the hybrid models. The prediction error of the models for road type Rcollector

is more than road type Rsub−arterial . Rcollector is the collector road that is most affected due

to prolonged rainfall as it is highly prone to waterlog. The impact of rain on traffic stream

variables is significant on Rcollector compared to other road types.

The traffic flow prediction error of the models for the scenario S2 for road type Rsub−arterial

and Rcollector is shown in figure D.8 and D.9, respectively. When trained with rainfall data,

the model’s traffic flow prediction error is less than the model when trained without rain-

fall data.
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Figure D.8: MAPE (top) and MAE (bottom) of Traffic Flow Prediction when Model
Trained Without Rainfall Data (left) and when Trained with Rainfall Data (right),
for Scenario S2 and Rsub−arterial Road Type. Error Bar Shows the Standard Devia-
tion.

Figure D.9: MAPE (top) and MAE (bottom) of Traffic Flow Prediction when Model
Trained Without Rainfall Data (left) and when Trained with Rainfall Data (right),
for Scenario S2 and Rcollector Road Type. Error Bar Shows the Standard Deviation.
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Therefore, for road type Rsub−arterial and Rcollector significant improvement is observed

in model performance with the inclusion of weather data. The prediction error of the

models with inclusion of rainfall variable, is 46%, 21%, 20%, 6%, and 7% for RNN, CNN,

LSTM, LSTM-LSTM, and CNN-LSTM, respectively, for 60-minute prediction horizon. For

similar prediction horizon and road type Rcollector, the traffic flow prediction error with the

inclusion of rainfall data is 52%, 20%, 21%, 8%, and 10% for RNN, CNN, LSTM, LSTM-

LSTM, and CNN-LSTM, respectively.

The LSTM-LSTM and CNN-LSTM model’s error improvement is significant over RNN,

CNN, and LSTM model when trained with rainfall data for the small road network. But

there is no significant difference is observed between the performance of the LSTM-LSTM

and CNN-LSTM model.

With the results corresponding to a small road network, we conclude that hybrid mod-

els’ performance in extracting the long-term weather dependency on traffic stream vari-

ables is better than the non-hybrid models. There is no significant difference between the

CNN-LSTM, and LSTM-LSTM model’s performance is observed. Also, due to error accu-

mulation, the prediction error of the non-hybrid models is more than the hybrid models

for a larger prediction horizon.
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Appendix E Hyperparameters for the RNN, CNN, and

LSTM Model for Large Road Network

Table E.1: Hyperparameters for the RNN Model for Large Road Network Scenario.

Road Type PH p L NPL E γ ∆

Rarterial 15 12 2 [10,30] 10 0.5 3

30 15 2 [20,40] 13 0.7 3

45 18 3 [20,40,60] 16 0.7 5

60 20 3 [30,40,70] 20 0.7 5

Rsub−arterial 15 12 2 [10,30] 10 0.5 3

30 15 2 [20,40] 15 0.7 5

45 20 3 [30,50,80] 18 0.7 5

60 22 3 [30,60,100] 22 0.7 7

Rcollector 15 15 2 [30,50] 12 0.5 3

30 18 2 [40,60] 18 0.7 5

45 22 3 [40,50,80] 20 0.7 7

60 24 3 [40,60,110] 22 0.7 7
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Table E.2: Hyperparameters for the CNN Model for Large Road Network Scenario.

Road Type PH p L NPL E γ ∆

Rarterial 15 12 2 [(32,3×3), (16, 3× 3)] 12 0.5 3

30 15 2 [(32,3×3), (16, 3× 3)] 17 0.7 3

45 18 2 [(32,3×3), (16, 3× 3)] 20 0.7 5

60 22 2 [(48,3×3), (32, 3× 3)] 25 0.7 5

Rsub−arterial 15 12 2 [(32,3×3), (16, 3× 3)] 12 0.5 5

30 15 2 [(32,3×3), (16, 3× 3)] 17 0.7 5

45 18 2 [(32,3×3), (16, 3× 3)] 22 0.7 7

60 22 3 [(64,3×3), (32, 3× 3), (16, 3× 3)] 27 0.7 7

Rcollector 15 15 2 [(32,3×3), (16, 3× 3)] 15 0.5 5

30 18 2 [(32,3×3), (16, 3× 3)] 18 0.7 7

45 20 2 [(32,3×3), (16, 3× 3)] 25 0.7 7

60 24 3 [(64,3×3), (32, 3× 3), (16, 3× 3)] 28 0.7 7

Table E.3: Hyperparameters for the LSTM Model for Large Road Network Scenario.

Road Type PH p L NPL E γ ∆

Rarterial 15 15 2 [20,40] 18 0.6 3

30 18 2 [30,70] 20 0.7 3

45 20 3 [30,50,70] 25 0.7 5

60 22 3 [50,80,100] 32 0.7 5

Rsub−arterial 15 18 2 [20,50] 20 0.6 3

30 20 2 [30,80] 25 0.7 5

45 22 3 [30,60,80] 30 0.7 5

60 27 3 [50,80,110] 35 0.7 7

Rcollector 15 20 2 [30,50] 18 0.6 5

30 22 2 [40,80] 20 0.7 7

45 27 3 [30,60,80] 35 0.7 7

60 30 3 [50,80,110] 40 0.7 7
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Appendix F Traffic Stream Variables Prediction in Pres-

ence of Snowfall

We examine the performance of the model for traffic stream variables prediction during

snowfall. Therefore, to capture the snowfall effect on traffic stream variables, we collect

traffic and weather data across Minneapolis, Minnesota, Twin city data. The traffic data of

the 1-hour aggregation period is collected from the Minnesota Department Of Transporta-

tion (MnDOT) [110]. The area being studied is Trunk Highway 10 (TH10) in Minnesota.

The weather data is collected from National Weather Service Twin Cities [111], the aggre-

gation period is 1 hour. The duration of data is from 10 January 2019 to 20 February 2019.

Figure F.1 shows the performance of the models trained with and without snowfall data

for 60-minute and 120-minute prediction horizons. The traffic flow prediction error of the

LSTM-LSTM model trained without and with snowfall data is 31% and 12%, respectively,

for a 60-minute prediction horizon. We conclude that weather variables show a signifi-

cant impact on traffic stream variables. Therefore, model prediction improves with the

inclusion of weather data.

Figure F.1: Traffic Flow Prediction Performance of the Model Trained with and
without Snowfall Data Corresponding to TH10 in Minnesota.
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