• Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    Comparative Study: Neural Networks on MCUs at the Edge

    No Thumbnail [100%x160]
    View/Open
    201911043_HarshitaA_Thesis - Amit Bhatt.pdf (3.710Mb)
    Date
    2021
    Author
    Anand, Harshita
    Metadata
    Show full item record
    Abstract
    Computer vision has evolved excessively over the years, the sizes of the processor and camera shrinking, rising the computational complexity and power and also becoming affordable, making it achievable to be integrated onto embedded systems. It has several critical applications that require a Huge accuracy and vast real-time response in order to achieve a good user experience. The Neural network (NN) poses as an attractive choice for embedded vision architectures due to their superior performance and better accuracy in comparison to the traditional processing algorithms. Due to the security and latency issues which make larger systems unattractive for certain time-dependent applications, we require an always-on system; this application has a highly constrained power budget and needs to be typically run on tiny microcontroller systems having limited memory and compute capability. The NN design model must consider these above constraints. We have performed NN model explorations and evaluated the embedded vision applications including person detection, object detection, image classifications, and facial recognition on resource-constrained microcontrollers. We trained a variety of neural network architectures present in the literature, comparing their accuracies and memory/compute requirements. We present the possibility of optimizing the NN architectures in a way for them to be able to fit among the computational and memory criteria for the microcontroller systems without salvaging the accuracy. We also delve into the concepts of the depth-wise separable convolutional neural network (DS-CNN) and convolutional neural network (CNN) both of which are utilized in MobileNet Architecture. This thesis aims to present a comparative analysis based on the performance of edge devices in the field of embedded computer vision. The three parameters under major focus are latency, accuracy, and million operations, in this study.
    URI
    http://drsr.daiict.ac.in//handle/123456789/1034
    Collections
    • M Tech Dissertations [923]

    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     


    Resource Centre copyright © 2006-2017 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    NoThumbnail